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Abstract

This work concerns the construction and the convergence analysis of a Discontinuous Galerkin Finite
Element approximation of a Cahn-Hilliard type equation with degenerate mobility and single-well singular
potential of Lennard-Jones type. This equation has been introduced in literature as a diffuse interface
model for the evolution of solid tumors. Differently from the Cahn-Hilliard equation analyzed in the
literature, in this model the singularity of the potential does not compensate the degeneracy of the
mobility at zero by constraining the solution to be strictly positive. In previous works a finite element
approximation with continuous elements of the problem has been developed by the author and co-
authors. In the latter case, the positivity of the solution is enforced through a discrete variational
inequality, which is solved only on active nodes of the triangulation where the degenerate operator
can be inverted. Moreover, a lumping approximation of the L? scalar product is introduced in the
formulation in order to select the solutions with a moving support with finite speed of velocity from the
unphysical solutions with fixed support. As a consequence of this approximation, the order of convergence
of the method is lowered down with respect to the case of the classical Cahn-Hilliard equation with
constant mobility. In the present discretization with discontinuous elements, the concept of active nodes
is delocalized to the concept of active elements of the triangulation and no lumping approximation of the
mass products is needed to select the physical solutions. The well posedness of the discrete formulation
is shown, together with the convergence to the weak solution. Different algorithms to solve the discrete
variational inequality, based on iterative solvers of the associated complementarity system, are derived
and implemented. Simulation results in two space dimensions are reported in order to test the validity
of the proposed algorithms, in which the dynamics of the spinodal decomposition and the evolution
behaviour in the coarsening regime are studied. Similar results to the ones obtained in standard phase
ordering dynamics are found, which highlight nucleation and pattern formation phenomena and the
evolution of single domains to steady state with constant curvature. Since the present formulation does
not depend on the particular form of the potential, but it’s based on the fact that the singularity set
of the potential and the degeneracy set of the mobility do not coincide, it can be applied also to the
degenerate CH equation with smooth potential.



1 Introduction

In this paper a Discontinuous Galerkin finite element approximation of the following initial and bound-
ary value problem for a Cahn-Hilliard type equation with degenerate mobility and single-well potential of
Lennard-Jones type is considered:

Problem P: Find ¢(x,t) such that

% =V - (b(c)V(=—yAc+v'(c))) inQr :=Qx (0,T), (1)
c(x,0) = co(x) Vx € (Q, (2)
Ve v =bc)V(—yAc+¢'(¢))-v=0 ondQ x (0,T), (3)

where Q € R?, d = 1,2,3 is a given bounded domain with a Lipschitz boundary 99, v is the unit normal
vector pointing outward to 0f2, ¢ is the volume fraction of cancerous cells, ¢g is a given initial concentration
and

¥(c) = 1(c) +a(c), (4)
where
Y1(c) = —(1 = c*)log(1l —¢), (5)
c3 c?
Pa(c) = 3 (1- C*)§ —(1=c")c+k.

Here ¢* is the volume fraction at which the cells would naturally be at mutual equilibrium and £ > 0. A
spinodal decomposition can be triggered if ¢ < ¢, where 9" (¢) = 0. The derivative of the potential is

2 *
/ c(c—c")
— 6
¥(e) = S5 (6)
Correspondingly, the mobility is given by
b(c) = c(1 — ¢)2 (7)

In [8, 9] Problem P is derived as a result of the application of mixture model to solid tumors. Note that
is a convex function defined on [0, 1) while 15 is concave. Also, the product by)” is a continuous function in
[0, 1].

In [4] the existence of different classes of weak solutions of Problem P and their positivity properties, for
the cases of spatial dimension d = 1 and d = 2, 3 separately, were studied, and a continuous finite element
approximation of the problem was formulated, studying its well posedness in d = 1,2, 3 spatial dimensions
and its convergencence, in d = 1 spatial dimension, to the weak solutions. In [3] the error analysis of
the discretization introduced in [4] was studied, showing that in that case the order of convergence of the
approximation method is lowered down with respect to the case of the classical Cahn-Hilliard equation
with constant mobility. As a consequence of the fact that (1) degenerates on the set {¢ = 0;¢ = 1}, and
the singularity is concentrated on the set {¢ = 1} only, one cannot exploit the relationship between b and
1 at 0 in order to ensure that ¢ > 0 at a discrete level. Moreover, the Entropy inequalities obtained in
[4], which guarantee the positivity property of the continuous solutions, are not straightforwardly available
at the discrete level. Therefore, following [6], this condition was imposed in [4] as a constraint and a
discrete variational inequality was formulated, solved only on the active nodes of the triangulation where
the degenerate operator can be inverted. Moreover, a lumping approximation of the L? scalar product
was introduced in the formulation in order for the discrete solution to be able to track compactly supported
solutions of (1) with a free boundary which moves with a finite speed of velocity (whose existence is discussed
in, e.g., [6]).

In this work a finite element approximation of Problem P with discontinuous elements, which is an
extension of the finite element approximation with continuous elements introduced in [4], is formulated.



Discontinuous Galerkin Finite element discretizations of the Cahn-Hilliard equation with non degenerate
mobility and a smooth or a double-well logarithmic type potential have been studied previously in [13, 18, 19].
In the present paper, the discretization with discontinuous elements is studied for the degenerate case. Note
that, since the present formulation does not depend on the particular form of the potential, but it’s based on
the fact that the singularity set of the potential and the degeneracy set of the mobility do not coincide, it can
be applied also to the degenerate CH equation with smooth potential. The well-posedness of the formulation
in d = 1,2, 3 spatial dimensions and its convergence in one spatial dimension is proved. In particular, in
order to handle the singular cellular potential, a regularized problem is introduced as an intermediate step.

The discretization with discontinuous elements, delocalizing the concept of passive and active nodes,
introduced in the case of the discretization with continuous elements, to passive and active elements of
the partition of the domain, eliminates the necessity of using a lumped mass scalar product in order to
obtain an expanding support of the discrete solution with finite velocity, thus avoiding to introduce the
lumping approximation in the variational formulation of the problem. Moreover, the discretization with
discontinuous elements is useful when advective terms are present, ensuring local mass conservation and
regularizing hyperbolic instabilities; a fully coupled model of the Cahn-Hilliard equation for cellular mixtures
coupled with transport equations will be studied in a furthcoming work.

The paper is organized as follows. In section 2 we introduce the Discontinuous Galerkin finite element
approximation of (1)—(7), showing its well posedness in d spatial dimensions and its convergence in one space
dimension. In particular, due to the singularity in the cellular potential, a regularized problem is studied
in subsection 2.1 as an intermediate step. Section 3 is devoted to the convergence analysis in one space
dimension. In Section 4 we present different numerical algorithms which can be used to solve the discrete
variational inequality, based on proper iterative solvers of the corresponding complementarity system. In
Section 5 we present some numerical simulations in two dimensions, in order to discuss the dynamics of
the spinodal decomposition and the evolution behaviour in the coarsening regime of the obtained discrete
solution and to show the validity of the proposed numerical algorithms. The final Section 6 contains a
discussion of the main results.

1.1 Notation and functional setting

For a given domain w C Q, d = 1,2,3, let’s indicate with LP(w), W™P(w), H™(w) = W™?(w) and
L?((0,T);V) the usual Lebesgue, Sobolev and Bochner spaces, (see, e.g., [2]), for a p € [1,00] and m € N,
endowed with the corresponding canonical norms and seminorms || - ||m pws || - llmws | - lmpw and |- |mw,
respectively. Throughout, (-,-), denotes the standard L? inner product over w, and < -,- >, denotes the
duality pairing between (H'(w))’ and (H'(w)). We omit the index w when w = . Let’s moreover denote
by < -,- >, the (d — 1) dimensional L?(¢) inner product on o C R4~!. With C(w), C™(I, I3), n > 0, and
Crl7%%(@r), 0 < 51,82 < 1, let’s indicate the space of continuous functions from @ to R, the space of C"
continuous functions from interval I; C R to interval Io C R, and the space of Hélder continuous functions
from wr to R with Holder exponents s; and s, in the arguments = and ¢, respectively.

Furthermore, C denotes throughout a generic positive constant independent of the unknown variables, the
discretization and the regularization parameters, the value of which might change from line to line; Cy, Cs, . . .
indicate generic positive constants whose particular value must be tracked through the calculations; C(a)
denotes a constant depending on the non-negative parameter a, such that, for C; > 0, if a < 1, there exists
a Cy > 0 such that C(ay) < Cs.

We will use the following Sobolev interpolation result, (see, e.g., [2]): let p € [1,00], m > 1,

r € [p, 0] if m—%>0,
: d_

[p, 00) ) ?f m—g—O,

[ —m=tam] i m—35 <0,



and p= 4 (117 - }_) Then there is a constant C' such that for all v € WP (w)

l10]lo,r.w < Cllollo el l0l1f o (8)

Let T, be a quasi-uniform conforming decomposition of  into disjoint open simplices K, and let’s
introduce the following discontinuous finite element spaces:

S(Q,Tn) :=={x € L*(Q) : x|x € P*(K)VK € Tp},
K(Q,Tn) ={x<€S(Q,Tn) : x >0in}

where Py (K) indicates the space of polynomials of total order 1 on K. Let’s also define the broken Sobolev

spaces
H3(Q, Th) = {v e L*(Q) :v|x € H*(K) VK € Tp},

where s = {sk } keT, i a set of positive integers, endowed with the broken norms

1/2
o = ( 3 ||v||§K,K) |

KeTy,

1

The finite element space S(£2, 7,) is a subset of H3(Q, Tp,) for any set {sx}xeT;, -

The traces of functions in H' (€2, T,) belong to the space T(T) := [[ e L*(0K), where T' := Uger, OK.
For v € HY(Q,Ty), let’s define the piecewise gradient Vv of v by (Vpv)|kx := V(v|k), for K € T,. For
q € T(T), let’s define the average {¢} and the jump [[g]] of ¢ on T := T'\ 9Q as follows. Let e be an interior
edge shared by elements K and K. Assuming that the unit normal vector n, is oriented from KT to K,
with ¢ := q|gx=, let’s set

e =a*le— a7l {adei= (a7l +alo)

For ease of writing we shall suppress the subscript e in the notations.

In the particular case of d = 1, denoting by 0 = 29 < 1 < -+ < xny = L a partition 7, of the interval [0, L],
with I,, = (2, p41), and, given a function v|7, € P1([,), denoting with v(z;}) := _lim o(z, +€) and with
v(x,) = . v(x, —¢), let’s define the jump and average of v at the endpoints of I,, as

(@)l = v(z,) —v(@y);  {v(za)} = %(v(w;) +u()))-

Let’s now define the DG SIPG isotropic and anisotropic bilinear forms, (see, e.g., [16]), By, (v, w) : S(£2, Tp,) x
S(Q,Tn) = R and By, (u;v,w) : S(Q,Trn) x S(2,Tr) x S(2,Tn) — R, which penalizes the continuity of the
discrete solutions at the interelement boundaries,

By, (v,w):= Y (Vo,Vw)k — Y [([[W]] {Vw n})e + ([w], {Vo-nc})e - %(Hvl], [[wlDels (9)

KeTn e€l’y

By (wv,w) ==Y (b(u)Vo, Vw)g = > [([[W]], {b(w)Vw - ne})e + ([w]], {b(w)Vo-n.})e  (10)

KeTs e€lp

where o is a sufficiently large positive constant. In the particular case of d = 1, denoting by h,, = 41 — Zn,
hpn—1n = max(hy_1,hyn), h = ;08X h,, let’s define the following DG SIPG isotropic and anisotropic



bilinear forms:

N-1
By, (v,w) == Y _ (V' (z),w'(x))r, (11)
n=0
- ; (Hv(ﬂfn)]]{w’(xn)} + [[w(zn)][{v" (zn)} — - [[v(ﬂcn)ﬂ[[w(wn)ﬂ)
N-1
By, (w;v,w) == Y (b(u())v' (), 0’ (2))1, (12)
. n=0 )
- <Hv(xn)]]{b(U(xn))w’(ﬂcn)} + [[w(@a)]{b(u(za))V (20)} = & [[v(zn)]][[w(wn)ﬂ>-
n=1 n—1,n
Let’s define the energy seminorm on H?(,T;,)
1/2
Hollle == <|vlin + Y vl g +Jp(v,v)> ; (13)
KeTh
where
Jp(v,v) = %([[v]],[[vﬂ)e for d > 1, (14)
Jp(v,v) =) & [[v(@n)]][[v(zn)]] ford=1.
n—1 n—1,n

On S(92,Tr), by application of the local inverse inequality (19) with m = 2, the norm (13) is equivalent to
the weaker norm
lella := (1o

Remark 1.1 The bilinear form By, (-,-) and the seminorms |||-||lc and |||-|||a have the following properties
(see, e.g., [16]):

1. Continuity: There exists a positive constant C, independent of the discretization parameter h, such
that

1/2
2 Jp<v,v>) , (15)

| B, (v, w)| < Cl[ollle [Nlwllle  Vv,w € H*(Q,Tr).

2. Coercivity: There exists a positive constant og, and for each o > og there exists a positive constant
Co = Cy(0), independent of the discretization parameter h, such that

Colllolllz < B, (v,v) Yo € S, Th).

Henceforth, we shall assume that ¢ = ¢ in the definition of the penalty parameter in (9) and (11). In the
following we will indicate both the seminorms (13) and (15) with the notation ||| - |||, meaning |||v||| = |||v]]|.
if v e H3(Q,Tp), and |||v]]| = |||v]|]a if v € S(, Th).

Analogous results will be derived and used later for the anisotropic bilinear form By (-, -).
Whenever By, (v,v) > 0 let’s also define the seminorm on H?(Q, T3,)

o[l := B, (v,v). (16)



As a consequence of remark 1.1, ||| - ||| 5 is equivalent to ||| - ||| on S(£2,T) as a seminorm.

Let Jxk be the set of local nodes of K C T, with |Jg| = d + 1, and let {quK}KeTh, j=1,...,d+1
be the standard basis functions for S(,7), with W[%K ] = K. Let’s introduce the local Lagrangian
interpolation operator 7% : C(K) — S(Q,Ts)

where xJK are the coordinates of the nodes in the set Jg. Let’s introduce also the L? projection operator

pl: L2(Q) — S(,T;,) defined by
@"(m),x) = (n:x)  Vx € S(Q, Th). (17)

We recall some well known local inverse, interpolation and trace inequalities on S(Q, Tp), (see, e.g., [15, 16]).

Lemma 1.1

—d(ﬁ—i)

IX|m.pa, ik < Chy "2 Xmpr .k VX € S(Q,Th), 1< p1 <p2<oo, m=0orl; (18)
Xlmp i < Cht IXIm—1p,5 ¥X € S(Q,Th), 1 <p<oom > 1; (19)

Lim [|(1 ~ T o,00,6 =0 Y € C(K); (20)

(T =p")nllo,ic + R =Pl < CREllm,xc V7 € H™(K), m=10r2; (21)
[|(I — ﬂ@)n”mmK < Chl_m||n||1,T,K Ve WH(K), m =0orl, r € [1,00]ifd = 1; (22)
H%H(I—w;g)n hx=0 Vne HYK) ifd=1. (23)

[olle < Cle|Y2K|~Y2(||v]|x + hic||Vo||lx) Yo e HY(K), s > 1, Ve C OK; (24)
Vv -nl|. < Cle|Y?|K|7Y2(||V||x + hi||[V?0||x) Yo e H(K), s> 2, Ye C OK; (25)

where hy = sup, ,c ||z —yl|, and in (24), (25) we have indicated, with an abuse of notation, v|. = Yov,
(Vv -n)|e = yv, with o and v1 the usual trace operators onto Sobolev spaces on the boundary of a domain.

Using (19) in (24) and (25) we get
[lv]]e < C|e|1/2|K\_1/2||v||K Vv € Pr(K), Ve C 0K (26)
Vv -nl|. < Cle|?|K|7Y?||Vo||g Vo € Pr(K), Ye C K; (27)

In the particular case d = 1 we have

(@) < Chy 2 lolln, Vo € Pr(ln), (28)
0/ ()] < Ch 22N, Vo € Py(ly), (29)

Let’s introduce also the following broken Friedrichs’ inequality, (see, e.g., [16]),
1/2
[|v]| < C(|v|i7—h + J,,(v,v)) Yo € HY(, Tp) with (v,1) = 0. (30)

Using (19), (26), (27), the fact that |e| < h% !, the regularity and quasi-uniformity of the partition Tj, the
Cauchy-Schwarz and Young inequalities we obtain

ol < Ch=Hloll, lvllls < CR7HII] Yo € S(Q, Th). (31)



Let’s define the operators Gz, : F N L2(Q) — H2(Q,Ty) and G4+ F N L*(Q) — V(,Ty), where F :=
{ve (HYQ)) < v,1 >=0}, HX(Q,Tp) := {v € H*(Q,Tz) : (v,1) =0} and V(Q, Tp) := {v" € S(Q,T3) :
(v",1) = 0}, such that

BTh (gThU’X) = (U’X) Vx € HZ(Qa’ﬁz)7 (32)

Br,,(G%,v,X) = (v,x)  Vx € S(2,Th). (33)

Existence and uniqueness of G, v and g% v, for any v € F N L%(Q), follows from the Lax-Milgram theorem
on H2(Q,Ty,) and V(Q,T1), on noting that By, (-, ) is continuous and coercive on V (2, T5) x V (£, Ty,) with
respect to the energy norm ||| - |||, and is continuous and coercive on H2($, T5) x H2(£2,Tp) with respect to
the stronger norm ||| - ||| := (Jv[ 7, + W |v[3 7, + Jp(v, v))'/2, (cf. the trace inequality (25). See, e.g., [16]).
Note that, since v € FNL%(Q), from elliptic regularity and the fact that Br, (G, v, 1) = 0, we have effectively
that Gr,,v € H2(Q, Tp).

We can define a norm on F N L?(Q) by setting

1/2
vl 7aL2() == (BTh (GT,,v, gThv)> = (v, QT,Lv)l/Z Yo € FNL*(Q). (34)

2 Discontinuous (Galerkin Finite Element approximation

In this section we introduce the finite element and time discretization of (1)-(3). While at the continuous
level Entropy estimates guarantee the positivity of the solution (see [4], in particular Estimate (2.24) and
Theorems 2.2 and 2.3 therein), at a discrete level such estimates are not straightforwardly available. In
[12], a suitable approximation of the mobility has been introduced in order to guarantee the validity of an
Entropy estimate and consequently the positivity of the solution also at a discrete level, which consists of
an harmonic average of the mobility on a structured mesh.

Following [6] and [4], let’s impose this property as a constraint through a variational inequality. In the
sequel we will show that the solution of the discrete formulation, for the discretization parameters tending
to zero, satisfies a mixed weak formulation of (1)-(3) and is thus consistent.

Let’s set At = T/N for a N € N, and ¢, = nAt, n = 1,..., N. For d = 1,2,3, starting from a datum
co € HY(Q) and )|k = 7hcy (if d = 1) or 9|k = p"(co)|x, with 0 < ¢ < 1, consider the following fully
discretized problem:

Problem P". Forn = 1,...,N, given ¢} ' € K(,Ty), find (¢}, w) € K(Q,Tz) x S(Q,7T5) such that,
for all (x,¢) € S(Q,Tn) x K(Q,Th),

cp crl 1
(h,x) By () = 0,

At (35)
VBT (e d = ci) + (1(ch) & — c) = (wip — s (ch 1), ¢ — cf)
Defining the discrete Energy functional Fy : S(Q,7;) — RT by
Pyl = 3B () + [ Lnlef) + v (e, (36)

where yg+(+) is the indicator function of the closed and convex set RT, we can rewrite, using the simmetry
of the bilinear form Br; (-, ), the second equation of system (35) as

(wp —¥3(cp 1), ¢ — i) + Fiep] < Fifg), Vo € S(Q,Th), (37)
which is equivalent to
wh —yy(cp ') € AR [ep] (38)

where 0 is the subdifferential of the convex and lower-semicontinuous function Fj. The convexity and lower-
semicontinuity properties of F are a consequence of remark 1.1 and of the properties of ¥ and yr+. Note
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Figure 1: A partition of the domain € into regions where ¢, = 0 (the colored region) and g, # 0.

that the formulation (38) represents the generalized discrete analogous of the subdifferential approach to the
standard Cahn-Hilliard equation with constraints introduced in [14]. Here that approach is generalized to
the present case. Inequality (37) will be used in (97) and (98) in order to study the convergence of a suitable
regularized problem to the original one.

Remark 2.1 Given the assumption 0 < ¢ < 1, the term (Y} (c),x — c}) in the second equation of (35)
is well defined, since we will show that |Y)|o.00c < 1 implies that |c}loco < 1 for all n > 1 (see Lemma
2.4). From now on, let’s assume that 0 < cg < 1. Notice that this is a physically-consistent assumption,
since subregions in the domains where the cellular phase concentrates against infinite cell-cell repulsion are
unphysical.

We introduce now the broken discrete Green operator of the degenerate elliptic form in the first equation of
system (35), which will be used to express the chemical potential w} in terms of % and to show the
well posedness of Problem P”. We modify the approach with continuous elements introduced in [4] to invert
the degenerate elliptic form on a proper closed and convex subset of S(, Ty).

In order to introduce the subset of S(€2,75) on which the degenerate elliptic form B, (cz_l; wy, X) can
be inverted, we must subdivide properly the partition 7" of € into elements on which czfl = 0 and elements

on which ¢} ~! # 0. Given ¢" € K(Q,Ty), let’s define a set of passive elements Ko(q") C Ty, by

K € Ko(¢") & mjeqd" = 0N 7rk/(mr{,lr()@“!h =04 (¢",¢0F) = (¢", ¢;‘\/(8K’K)) =0, (39)
for each j = 1,...,d + 1, where N (0K, K) denotes the elements in 7, that are neighbors of K through an
edge e C OK \ 09). The elements in the set K (¢") = T;, \ Ko(q") are called active elements; these elements
can be partitioned into mutually disjoint and maximally connected subsets K, (¢") = U%Zl K. (q"), for
which any couple of elements K; and K3 in K,,(¢") belongs to a maximally connected set of elements of
T" on which (¢" # 0) or (¢" = 0 A [[¢"]]e # 0) for some e C OK;, i = 1,2. In Figure 1 we show a possible
partition of the domain in regions where ¢, = 0 (the colored region) and ¢ # 0. Note that the element
M € Ky(q"), and all other elements are in K, (¢"). In particular, (¢" = 0 A [[¢"]],ss # 0) on the element 7.

Defini
efining Em(qh) _ Z Z (bf,

KEKon(a") €7, (gt

note that
Zm(qh) =1 on Km(qh). (40)



Finally we introduce the set

Vi(g") ={o" € S(Q, T") : 7l =0 A [[v"]]e = 0 Ve C K \ 09, VK € Ky(¢"), (41)
and (v, %,,(¢") =0, m=1,..., M}

Observe that any v" € S(Q,7") can be written as

o = Z Z vh(x]K)¢jK (42)

KeTh jeJk
M
—i e Y Uh(xm;wz[][ Uh}zm(qh)
KeKo(qh) i€k m=1 Km(q")

XY Y Y v ran-f (e

m=1KeK,,(¢") j€Jx K'€Ko(qh) eCOK’

where

y WD)
]ﬂmw“ T LT (43)

and 9" is the p” projection of v onto V"(¢"), i.e.

o = i >y [vh(xf ) — ]é{ m(qh)vh] o (44)

m=1 KeKn(q")i€Jx
e>

M

- o (2 — o | (oK

ED VD DD S I L R G

(@) =0 Val €ec oK'\ 09, VK’ € Ko(q"),VK € K (q"). (45)

m=1 KeK,,(q¢") j€Jx K'€Ko(q") eCOK’

Note that [[0"]]. = 0 Ve C 0K \ 09, VK € Ky(q"), and in particular

We can now define, for all ¢" € K(Q,7;) with ¢" < 1, the broken discrete anisotropic Green’s operator
?qh T Vh(g") — V"(g") such that

G
Br,,(d"; Glgn 7y0" x) = (0", X)) Vx € S(Q,Th). (46)

To show the well posedness of G?qh 7y We need the following lemma.

Lemma 2.1 There exists a positive constant o1, and for each o > o1 there exists a positive constant
Cy = C1(0), independent of the discretization parameter h, such that

Cilllolllzn < B ("5v,0) Yo e V(gh), (47)
where the anisotropic energy seminorm |||v|||» is defined as
1/2
olllgr = (||[b(qh)]1/2vv||§,n + Jp(”ﬂf)) ; (48)

Henceforth, we shall assume that o = oy in the definition of the penalty parameter in (10) and (12).



Proof. Let’s show the proof for the case d = 2,3. The proof can be adapted straightforwardly to the case d = 1.
Let’s rewrite the energy seminorm (48) and the anisotropic bilinear form (10) as follows:

Hlvlllqh:( > @ vl + Z ([[w]]; [lol)e (49)

KeKo(qh) KEKO(qh)PeaK
M o 1/2
YT B Y Y Y Y (e me) ,
mle,EK"L(qh> m=1 KlEKm(qh) KEKO(Qh)EeaKI\aK |6|
By (¢";v,0) = Y (b(g")Vv, Vo)x (50)
KeKo(qh)
o M
S Z[ [o]], {b(q )W-nene—H([[vn,uvme}+Z (b(g") Vv, Vo)

KeKo(qh) e€OK m=1K’€ K, (q")

3D YD DD SR L (R OO R (N N

m=1 K'€K,(¢") KEKq(qh) e€OK'\OK

Since v € V"(¢"), from (41) it can be seen that the first two terms on the right hand sides of equations (49) and (50)
are identically equal to zero. For this same reason we have omitted to write the contributions from the trace terms
on e € 9K' N OK in the last terms on the right hand side of (49) and (50). Using now the trace inequality (27) and
the Cauchy-Schwarz inequality for an e € K’ \ 0K shared by elements K and K~ in K,,(¢") on which ¢" # 0, we
get
1\ /2

(160 006" P nDe < O low(of s+ 10 ) () e oy
Let’s define the set K}, (¢") :=
Kt € K, (¢") and K~ € Kn(q
K € Ko(q")), we get

{K € Kn(q") : ¢"|x # 0} Analogously, for an e € 0K’ \ OK shared by elements
"M\ K7 (g"), for which ¢" = 0 A [[¢"]]e # 0 on K~ (note that K~ N K # ) for some

([[]), {b(a") Vv - me})e < Cllb(g") 0,00 ([0]1,

)(@)”QH[vnn. (52)

Using (51) and (52) in (50), using Young inequality and denoting

* . 1
bhin(@") 1= B T /K b(q")dz,

We get
1
Br, (" v.v) 52 DO CR RG22 (53)
m=1 K’'€ K, (¢")
M o_ C2|1b(a™)I1E o
bx*nin(qh)
I D D D e GAE:
m=1 K’'€K,,(¢") KEKq(qh) e€OK'\OK
Choosing
I
brin(a")
we get (47). 0

Let’s show now the well posedness of the operator G?qh T Choosing in (46) x = (;5jK, for K € Ko(q"),

j € Jx, leads to both sides vanishing, on noting (39) and (41). Choosing x = %,,(¢"), m = 1,..., M
leads to both sides of (46) vanishing. Indeed, observing that the sum of the trace terms on the boundaries
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of the elements in the set K,,(q") which are not shared with elements in Ky(g") cancels out, (which is a
consequence of the local conservativity of the method), we get

S Z[{b VGl gt - neke = Gl "l | = (07 Bl (54)

KEKo(qh) e€OK

and all the terms in (54) are identically equal to zero, due to (39) and (41).
Therefore, to prove the well posedness of the operator G?qh T Vh(g") — Vh(g") it remains to prove

uniqueness, as V"(¢") has finite dimension. If there exist two solutions Z" € V"(¢"), i = 1,2, with
BT, (q"; Zh x) = (v, x) Vx € S(Q,Th), then Z" .= Z} — Zh € V(g") satisfies, choosing x = Z" and
using lemma 2.1,

Cell|2"|I3n < Bri(¢"; 2", 2") = 0. (55)
Using (49), (39) and (41), we can rewrite (55) as

M M
3 > D %m[zhnnyz > @ EvztiE.  (56)

m=1 K€K (¢")\K, (") K€Ko(qh) e€OK/\OK m=1K'€K},(¢")

+Z Z > iz i =
m=1K'eKx (

eE@K’

As a first consequence of (56) we get that [[Z"]]. = 0in L?(e) on e € 0K'\ 0K, where K’ € K,,(¢")\ K}, (¢")
and K € Ky(q") (i.e. [[Z"]] on the boundaries of elements on which ¢" = 0 A [[¢"]]. # 0). Since Z" € Py,
we effectively have [[Z"]]. = 0. Similarly, as a second consequence of (56), since b(g") > 0 on K}, (q"),
we obtain that Z” is equal to a constant on each K7, (¢"), m = 1,...,M. Given an e € 0K’ \ 0K, where
K' € K,,,(¢")\ K}, (¢") and K € Ky(q"), shared by two elements K~ € K,,(¢")\ K},(¢") and K* € K},(¢"),
indicating Zﬁi := Z"| g+, the following facts hold:

1. Z?ﬁ |e is equal to a constant;
2. [[ZM]e =0;

3. since K~ NK # () for some K € Ko(¢"), we have from (45) that Z},_(zf ) =0 for ) € 0K~ NIK.

These facts together imply that Z" = 0 on K,,(¢"), and hence Z" = 0 on Q. Thus G?qh ) is well posed.
Note that the previous reasoning is valid only for d > 1, since in this case the set I' is connected. In the
case d = 1 we have to use (55) and the property that (Z" 1) = 0 on K,,(¢") in order to simply show that
h —
=0on [0, L].

—1

Remark 2.2 By comparing (46) with (35), choosing ¢" = ¢! and v" = % in (46), note that the
definition of the space Vh(czfl) introduces the property of a moving support of the discrete solution of (35)
with a finite speed of velocity, since the support can expand at most of a length hi locally at each time step.

Let’s proceed now by studying a regularized version of problem (35), in order to deal with the singularity
in the cellular potential and to show the well posedness of problem (35) when the regularization parameter
tends to zero.

2.1 Regularized problem

Let’s introduce the following regularization of the cellular potential near ¢ = 1: for € > 0, set

Y(1—¢€) for cp>1—g¢,
CAER . &7
1) for cf <1—e
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By expanding 1 (c}!) in (5) in a neighborhood of (1 — €) when ¢} > 1 — €, ¥ ¢ is obtained, i.e.

b)) = { ;f(lcg)c” loge+ 2(1— o) — 2(1 — ex)(1 — ) + L52(1 — )2, "
h/»
and 1y ., Le.
() LEA ) — ),
wl,e(ch) = {wll(cﬁ)’ (59)

for ¢ > 1 — € and ¢} < 1 — € respectively. Furthermore, expanding 11 ((c}) in the Taylor series around
(1 —¢), with an argument s > 1 and with € < 1, using (57), (58) and (59) we obtain

Pre() = Y1 = ) 94, (1= )5 — (1 =€) + 59 (1~ s — (1 )’

— Cc* 1 9 1—cx
(s—=(1—¢)+ (s—(1—¢) Z?

— cx*
2¢2

—(1 — ex*) (s —1)2

Hence we have that 1

— C*¥
> -
11[}176(5) - 262

where []; = max{0,-}. Introducing the concave preserving extension 1, € C1(R*) of 1, € C([0,1]),

([s —1]4)* Vs eR, (60)

oy . J (D) (g = Dipp(1) for e > 1,
valeh) = {1/;2(0;;) for 0<cp <1,

let’s set 1he(cp) := b1 () + a(c}). Note that

P1,e(r) +a(r) = —(1 — c*)loge — % + E(l —c")+ (2" — 3)] (r—1)+ (126;*)(7’ —1)? (62)

for r > 1. Since there exists a sufficiently small positive value €y such that the expression in the square
brackets in (62) is positive Ve < €y, we obtain that

1 1 —cx
- >

37 2

Ye(s) + ([s —1]4)* Vs€R, e <ep. (63)

In order to show the well posedness of Problem P”, let’s introduce the following regularized version of (35):
Problem P?. For n = 1,...,N, given ¢ ' € K(Q,75), with ¢/~" < 1 and |||c} ||| < C, find
(ch eswhy ) € K(Q,Tn) x S(, Tp) such that for all (x, ¢) € S(Q,Tn) x K(Q,Th)7

CZ@ Z_l + B (Cnfl, w? ) _ 0
At » X Tn\Cph » Yheo X) = (64)
737—}1 (cz,ev ¢ - CZ,E) + (wll,e(c’z,e)? ¢ - C;LL,E) = (wh J€ ,IZJQ(C}L )7 ¢ - C;Ll,e)
The following result shows that Problem P” is well posed.

Lemma 2.2 There ezists a solution (c}, ., wy, €) to Problem P". Moreover, the solution {ch SN is unique,

and wy, . is unique on K, (cp N, form=1,...,M,n=1,...,N.

Proof. From the first equation in system (64) and from (46) it follows that, given ¢} ' € K(Q,T3), ¢} ' < 1, a
Ch.e € K"(c}~ ') is searched, where

K" ™) = {x e K(QTa) s x =t € V(™)) (65)
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Moreover, a solution wy, . € S(£2,7r) can be expressed in terms of cj; . — 02—1 through the discrete anisotropic Green
operator (46), recalling (42), as

n—1

W = =Gl m{%% Yoo > el +2Am62 ) (66)

KeKo(cp 1) i€k
)
e

M
K,n K
1PN SRED S DI D
K, M K, .
where {“j,en}jeJK,KeKo(cZ’l)’ { M, tm=1 and {0;." €T KEKm (€)Y im=1,....M OX€ constants which express the val-

Mm=1 KK, (1) I€IK KieKo(ch 1) eCOK'

ues of wy, . on the nodes of passive elements, its average value on Km(cz_l) and its values on the nodes on boundaries
between active and passive elements respectively. Hence, Problem P” can be restated as follows:
givenc; ' € K(,Tr), withcp ™' < 1, find ¢ . € K"(c}'™") and constant Lagrange multipliers {/L;{E"}

{Am. M _) and {6;(6"} such that, for all ¢ € K(Q,Tp),

jE€JK KEKg(cp ™ty
JEJK KEKm (cp™),m=1,....M

n—1

n n cn,e —C n n
VBT, (Ch,er @ — Che) + (g(hczfl’n) [hTh} +Y1.c(che), o — ch75) (67)

(Y T ZAmez F) - 0 o)

KeKo(cp 1) I€/K

Y Y Y Y e

m= 1K€Km(CZ 1)]6]1{;{/61(0(6;11 1y eCOK’

Note that (67) represents, together with cj, . € K" (CZ_I), the Karush-Kuhn-Tucker optimality conditions, (see, e.g.
[10]), of the minimization problem

inf su Vh, e 7 +2 ,e\Uh,e + by Cn_l vh,671 68
vh,eesm,mHfﬁ,x,n,e,%e,yezo{ﬂl o+ 200 eme) 026 ) o

1 n—1, n—1 h n—1
+ EBT (Ch g(cn L7, )(’Uh e — Cp ), g<cz—1’7—h>(vh,e —Cp )

M
—Wovnd) = D D> (@ o) = D Ame(Smlen ) vne)
m=1

KeKo(cp 1) I€/K

—i DD DD DR W [qs]]nuheme}

M=l KeKyp (] 1) I€IK K/eKg(cp 1) eCOK’

with ve € K(,7r) the Lagrange multiplier of the inequality constraint. Noting the convexity of 1,c(-), remark
1.1, lemma 2.1 and the fact that ¢}~ ' € K(£,7), the primal form associated to the Lagrangian (68) is a convex,
proper, lower semi continuous and coercive function from the closed convex set K™ (cz_l) to R, and the primal
problem is stable. Hence, from the Kuhn-Tucker theorem, (see, e.g., [10]), there exist ¢/ . € K"(c}™"), solution of

. RT K,n n K,n
the primal problem, and Lagrange multipliers {s;; }jeJK,KeKo(c}fl)’ {/\m’s}f\ff:l, {05 }jeJK,KeKm(cZ’l),mzl """" o
and ve € —9xp+ (cf..), for each n. Therefore, from (66) follows the existence of a solution (cj; ., wj )n=1 to Problem
Ph
For what concerns uniqueness, if, for fixed n > 1, (67) has two solutions

K,n,i}

9 K P
(e 5" Y e werotep=1y Poedm=1 A" Y e ket ymer, ) 1= 12,

"2 and taking the difference between the

by taking ¢ = cZ? in the inequality for c), 71 and ey "1 in the inequality for cp .

,€ ,€
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two inequalities, on noting that czel — cZ? = ¢ € V'(cp™") and (41), it follows that

eh,lllE + (W,e(che) = ¥ie(end),ene)
1 n—1, ~h _n h —n
+ EBTI-L (ch 7g szlyTh)ch,evg(czfl’frh)ch,e <0

1

_n 2 n—1, ~h _n h _n
- ’y”‘ch,é”lB + AtBﬂz <Ch ’g(czflﬂﬁh)cha@g(c;ifl,'Th)ch,e) S 07

where we have used the monotonicity of ¥; .(-) in the second step. Therefore the uniqueness of cj, . follows from

remark 1.1, lemma 2.1, the fact that, since ¢, . € Vh(cz_l), (€he 1) = 0, and (30). For any § € (0,1), choosing
¢ = cp.xd[ch Sm(cy™ )] in (67), for m = 1,..., M, yields uniqueness of the Lagrange multipliers {\, . }m—1,

K,n
{6]',6 jeJK,KEKm(cZ_l),m:I,H.,
In order to pass to the limit for e — 0 in system (64), we need to deduce suitable e—independent bounds for

the solution (cj ,wy ). The following result holds.

- Hence the uniqueness result for wj, . follows from (66). O

Lemma 2.3 For every sequence € — 0, there exist a subsequence € — 0 and a ¢ € K(Q,Ty) such that
cho—cy and Ve |lg = Vep|g  fore —0,K € Th. (69)
For the case d > 1, there exists a subsequence {CZ’E,} such that, for each e € T'g,
lleh e lle = llenlle and {Vej o nete = {Vey - nele, (70)

for € — 0. For the case d = 1, there exists a subsequence {c .} such that

(65 ()] = [l (@)l and {ew(wa)} = {e)' (z)} ford —0,n=1,....N~1, (71)

where 0 =29 < 21 < -+ < xzxy = L is a partition of Ty,.
For every sequence € — 0, there exist a subsequence € — 0 and a wj € S(Q,Tp) such that

wit o = wiand  Vwj o |x = Vil for K € K, (cp™h),  fore — 0. (72)

For the case d > 1, there exists a subsequence {wﬁ’e/} such that, for each e € OK and for each ¢’ € 0K,
K e Ki(cp ™), m=1,...,M,

[wf e = [wflle  and (73)
(™ )Vup o ne}e = (b Vuh - ne e,

for € — 0. For the case d = 1, there exists a subsequence {wy; ..} such that

[[wp o ()] = [[wh (za)]] and {b(ch ") (@as)wys (a:)} = {b(cf ™) (@a)wy (@ae)}, (74)
foreé -0, n=1,....N—1,ax=1,...,N —1Ac} "(In.) #0.

Proof. Let’s start by proving stability bounds for the regularized problem (64). Choosing x = wj, . in the first
equation of (64) and ¢ = ¢}~ ' in the second equation of (64), it follows that

VBT (Ches e = e )+ (We(ehe) +P5(ch ™) che — b ™) + AtBr, (ch ™ wh e wi o) < 0.

Using now the identity 2s(s —r) = s2 —r?2 4+ (s — )% Vr,s € R, and the convexity and the concavity properties of
¥1,e(+) and ¥2(-), it follows that

n ’y n n— n n— n n
Tle s + 2Mleke = e Ml + Weleho), 1) + At By (e wh ey i) (75

< @We(eh ™D, D+ Sl Ik < C.
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From (75) and (63) it follows that
lleh,e = 1+I* < O, (76)

Let’s introduce the function
* 3 * 2 *
fre(r):=—(1—c")loge+ 5(1 —c') = 2(1 -1 =r).
Note from (58) that
n n 1-— C* n
wl,ﬁ(ch,e) = fl,E(ch,e) + ?(1 - Ch,e)27 (77)

for ¢j, . > 1 — ¢, and that there exists a value ¢y such that fi (cy ) > 0 for ¢ . > 1 — € and € < €. Calling Q. the
support of the base functions corresponding to nodes on which ¢y . > 1 — ¢, we get from (75), (77) and (76) that

(fre(ch,e), Do <C, (78)
independently on e. Since fi c(cj, ) € S(Q,Tr) and fi (e, ) > 0for ¢ . > 1—€ and € < €, using (18) it follows that
[1f1.e(chllo.ca. < CRT, (79)

independently on e. Due to the logarithmic term in fi (-), (79) implies that, for each € < €q,
Che <1, (80)

uniformly in e. It follows from (75), the fact that (cji ., 1) = (¢}~ ', 1), remark 1.1, (30) and the Bolzano-Weierstrass
theorem that there exist a subsequence {cj, .} and a ¢; € K(€2,7s) such that (69) holds.

For what concerns the convergence properties of wy, ., let’s start by using (30) on the sets Kf;(czfl), m=1,...,M,
obtaining, using lemma 2.1 and noting (75), that

= f e IE < e (Juk

< O )b (e 7 [k ellZn-1da < CAT (A ™) biwin(ch D]

g TR (1)

where Z*(czil) = ZKEKI,L(qh) EJ'EJ
Let’s take

K ) n
() ¢; . Let’s now bound fK:n(c;rl) Wy .

K(2,70) 3 ¢ = cho+ (i)
in the second equation of system (64). We get
(Whes Zm(er ™) S BT (ches Tra(eh ™)) + (el ) Smnleh ™)) + (@a(er 1), Smlen ™)) (82)
On noting that X%, (cp ') =1 on K}, (¢}~ "), m=1,..., M, and is zero elsewhere, using (9), (26), (27) and (75), the
Young inequality, the facts that % (c;' ') and 9} .(c}.) are bounded, due to (80), it follows that

[(Whe, (e ™ NI < CRTHleh el 7, +C + (%1, (che), Enlen ™)+ (83)
OIS (e oo < C+C(RT.

Now, combining (81) with (83), on noting the definition (43) , we get
l(wh e Sn (e NI C+ O™ + O (A bruin (e D] (84)
From (75) and (47) it follows that, in the case d > 1,
[[[wr llelle < Che’*(A1)72, (85)

From (84) and the fact that wj,, € S(,7,) has finite dimension we deduce that wj, . is bounded on K, (cp ),
uniformly in e. Moreover, from (85) it can be deduced that [[w}, ] is bounded for each e € I'p, uniformly in e.
Hence, it follows from (84), (85) and (75) that there exist a subsequence {wy, ./} and a wy € S(£,75) such that

(72) holds. This is valid also for the case d = 1, where (85) takes the form [[w},  (z.)]] < Chi/fl’n(At)fl/Q, for each
n=1...,N—1.
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Remark 2.3 Note that the presence of the jump terms in (10), (12) and (75) makes it possible to have a convergence
Wy o — wy, on the whole domain 2, whereas m the case of discretization with continuous elements this convergence
property is valid only on subdomanis where c; L £0 (see [4]).

From (75) and (27) we have that (in the case d > 1)
lllch.Nelle < Che’, [I{Vehe - nelelle < Ch' (86)

Hence from the Bolzano-Weierstrass theorem there exist two elements £1,£2 € P1(e) and a subsequence {cj, s} such
that, for each e € I'g,
lchelle > & and {Vcp o nete — &2, (87)

for ¢ — 0. Moreover, from (26), the second bound in (86) and an interpolation inequality (see [2]) it follows that
llcr Jle € H'?(e) < L?(e) and

hoch.erlli/ze < Cllvoci clle’*voch 18 < Cho V2. (88)

Hence, from (69), the linearity of the trace operator o : H'(K) — H'/?(e) and the bound (88), we get & = [[c}]]e.
Let’s now introduce the lifting operator (see [5]) I : L?(T'o) — S(Q, Tz), defined by

/ l(g)rdz = —/ q[7]]ds V71 € S(Q,Th). (89)
Q o

From an inverse inequality (see [5]) and the second bound in (86) it is obtained that
11{Vere - mede)llx < Ch 2 |{Veq e melelle < R (90)

From (69), the linearity of the lifting operator and bound (90) we have that there exists a subsequence {c, .} such
that
I{Vener - mete) = ({Ven - nele), (91)
for ¢ — 0. Applying the lifting operator defined in (89) to both sides of the second limit in (87) and using (91) we
get,
I{Vener -nete) = 1(&2) = 1({Vey - nete),
for ¢ — 0. Hence, it follows that & = {Vc} - nc}e. For the case d = 1, from (75) and (29) we have that

[[eh (za)]] < CRY2 L, {er(za)} < Chy M2 (92)

n—1,n> n—1,n

Hence from the Bolzano-Weierstrass theorem there exist two elements 71,72 € R and a subsequence {cj, ./} such that
l[ch.e (za)]] = m and {c;ffe/ (zn)} = m2 fore = 0,An=1,...,N — 1. (93)

From (75), the Sobolev embedding H*((I,)) CC C°([I,]), and using a lifting operator technique analogous to that

used for the case d > 1, it follows that m = [[c} (xr)]], 72 = {C;L"(mﬁ)} Note that the limit point cj € K" (c)™1).
The convergence properties (73), (74) can be obtained analogously to (70), (71), on noting that 0 < b(c; ') < 1

on K, (c;~") and using (27) and (29) on K, (cp "), using moreover (75) and (72).

Lemma 2.4 The limit point ¢} introduced in Lemma 2.3 satisfies the property that ||c}||o,00 < 1.

Proof. Since 91,c(ci ) > 0, from the Fatou’s Lemma and (75) it follows that

/hmmfzﬁle(ch6 <hmlnf/1/)1E che) <C. (94)
Q

e—0

From the convergence property (69) and from (58) it follows that

) if cp <1
liminf () ,) = 4 V1R e <1 (95)
=0 ’ 00 elsewhere.
Hence, from (95) and (94) it follows that the set {z |c(z,t) = 1} has zero measure. O
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2.2 Well posedness of Problem P”"

We are now in a position to show the well posedness of problem (35).

Theorem 2.1 Let Q C R, and let ¢) € K(Q,T3), with ¢ <1 and |||c2]||| < C. Then, for all At > 0, there
exists a solution (¢, wy) to problem (35).

Moreover, the solution {cp}N_, is unique, while w} is unique on Kp,(c}™'), form = 1,...,M and
n=1,...,N.

Proof. Let’s take the limit for ¢ — 0 in (64). Recalling the definition (36), on noting the convexity of 1 (-), it
can be introduced a regularized convex energy functional

Ficlelld = 3B o) & [ (9e(ehe) +xer (ch. )}, (96)

and rewrite system (64) as

Cz,e B 0271 n—1,_ n
T7x +B7-h (Ch ﬂwh,mx) = 07
(Wi = Pa(cn™"), 6 = che) + Frele.d < Frelgl,

for each x, ¢ € S(Q; 7). We may now pass to the limit in (97), considering the convergence properties introduced in
lemma 2.3 and the uniform boundedness of ¢ .. For any (x, ¢) € S(Q,Tn) x S(Q,Tn) C H*(Q,Tn) x H*(Q,Tr), we

have
n -1 n n—1
. Ch.e—Ch cp —Cp
1 —_ 2 = =" ;
Lr%( At ’X) ( At X))

lim BTh,(CZ_1§ Wi e, X) = BT, (ch ™ wh, X);
hm(wh € 7&&(0271)7 ¢ - Cz,e) = (wz - ¢5(0271)7 ¢ - CZ)

e—0

(97)

Since 41 ¢ is uniformly bounded and ¢}, . > 0, since moreover 1)1 ((-) — 41 (-) uniformly for € — 0, from the convergence
properties introduced in lemma 2.3, the dominated convergence theorem and the semi continuity property of the
indicator function xg+ (+), it can be deduced that

lim Fy c[cp,e] = Fi[ch];
e—0

lim F1.e[¢] = F1[¢].

Hence, the limit point (cp, wy) satisfies

Ch — CZ ! B n—1,_ n -0
(T’ )+ T (ch swh,x) =0, (98)
(wh — (e 1), ¢ — i) + Fileh] < Fi[g)]

Finally, since ||cf]]o,00 < 1 (see Lemma 2.4) and 11 (c};) is convex and Lipschitzian for ¢}, < 1, system (98) is equivalent
to system (35) (see (37)), hence the limit point (¢}, w}) is the unique solution of Problem P". O
We now proceed to obtain the energy estimates.

Lemma 2.5 (Energy estimates) Let (cjf,w)), n = 1,...,N be the solution of system (35). Then, the
following stability bounds hold:

_max|||e;]][* + (At)® ZH\ |||2+AtZBTh wy,wp) (99)
n=1 n=1

Cn—l

n Ch —
+Af2bma; G [P < cdlQlIP),

where by > MaX,—1_sN ||b(czfl)| 0,00-
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Proof. Taking the limit for € — 0 in (75) we get
%lHCZHlQB +5 |\|Ch =& HIE + (W(eR), 1) + At B, (e~ wi, wh) < (e 1), D+ (100)
Tlleh 11

Summing from n = 1 — m, for m = 1 — N, noting that 0 < ¢}, < 1 and ¥(c}) < C, that |||c}|||z < C, that
[|ck]lo,00 < 1, using a Poincaré inequality (on noting that f ¢ = f ¢j) and remark 1.1, we get the first three bounds
n (99).

n_en—l. . . .
Choosing now x = Q%L [C’l A } in the first equation of system (35), using (33), remark 1.1, lemma 2.1, (27), the
facts that b(cy ' > 0 and ||b(c]")||o,00 < 1, Cauchy-Schwarz and Young inequalities, we get

n—1 2 n n—1 2 n n—1 n n—1
C h Cp, —C Cy, —C h Cp —C
gl [E ) R B= (g () -
n—1 n h CZ n - 0271
— B (i 05 [E ) ) < S e Tkl | [k [
KETy, K
el 2\ 1/2
vo 5, s o 355 )
KeTy ecly €
n rCh — czfl 1 5 1/2
+D > Y Ve[| (- rlliz )+
At  \ e
KeTy ecTly
n n—1
o n C;, —C n— n— n n
5= it |[[on S ]| < cvnatmm e+
eclo e
OO n CZ 1 2
Summing from n = 1 — N and using the third bound in (99) we get the last bound in (99). d

Remark 2.4 Note from (100) that the function 3|||ct]||% + (¥(c), 1) is a decreasing (Lyapunov) function
for the discrete solutions. Hence the finite element and time discretization (35) has the gradient stability
property in the sense of Eyre (see [11]).

3 Convergence analysis

In this section we present the convergence analysis for the discrete scheme (35). The analysis will be restricted
to the d =1 case (see Remark 3.1).

To the sequence of discrete solutions ¢} of Problem P" it can be associated the following time continuous
approximation:

t—1tn_1 tn —t 1
Calt) = e+ e (101)
for t € [tp—1,tn], n =1, -, N, which is a family of linear time interpolants that depend on the parameters

h and At. Let’s also define the piecewise constant-in-time functions

Cir@t)=cp, O, (t)=c", (102)

for t € (tp—1,tn], n=1,---  N.
By multiplying system (35) by a C§°([0,T]) function, and integrating in time from 0 to T, it is obtained
that (Cp, W},) satisfies the following weak formulation:
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Find {Cy, Wi} € L*(0,T; K(,Ts)) x L*(0,T;S(Q,Tr)) such that, for all (x,¢) € L2(0,T;S(,Ts)) x
L2(0,T; K (2, Tn)),

T
/ [(880}1&) + Bn(C{;Wﬁyx)} dt =0,
OT t T
| bBn(C o= i)+ (e 0 - Chlar > [ W = wy(c).0— i)
with Ch(O) = C(i)z'

In order to pass to the limit in (103), for h, At — 0, and identify the system satisfied by the limit points, we
need the following results.

(103)

Lemma 3.1 Letd =1 and ¢} |1, =7} (co), with0 < co <1 and |||co||| < C. Then there exist a subsequence

of continuous and piecewise constant in time interpolants, with Cj,(0) — co strongly in H*([0, L]) as h — 0,
and functions ¢ € L>(0,T; H'([0, L])) N H*(0,T; (H' ([0, L])) ) N CZ ¥ ([0, L]7) and w € LY (0 < ¢ < 1) with
’9“’ € L (0 < c<1), such that, for (h,At) =0,

Ch, CiF — ¢ weakly in L*(0,T; H*([0, L], Ta)), (104)
Ch, CiF — ¢ uniformly on H I, x [0,T], (105)
I.€Th
ow,r ow .
Wi — w, 8xh =5 weakly in LE (0 < ¢ < 1)1, (106)

where {0 < q <1}z, = {(z,t) € [I; c7, In x [0,T]: 0 < g(x,t) < 1}.

Proof. From the definition (101) we have

2 n—1 n n—1 t— tn—l 2 n—112 (t - t’n—l)2 n n—1
A = e ™ +1ek = e~ 1= I < 2l ™1 + 2t ot — e 1

Hence, using the first bound in (99) and the parallelogram identity, we get
+
lCullI* <o, G N* < C. (107)

From (23) it follows that C,(0) — co strongly in H'([0, L]) as h — 0. This implies that f C(0) = fC, = f CF €
(0,1), and hence, by (107) and (30), that

2
|ChI| o 0,751 (10,21, 73)) < Cs (108)

and -
[[Ch(zn)])> < Ch®, fora=1,...,N. (109)
Furthermore, using (99) and the definition (101) it follows that

/0|||atchu| dt = Z/ G, dt<ZAtm <oy

T
n—1 n n
/ By, (¢, wh, wy)dt =
0
Nt N

Z By, (cp ™ wp, wi)dt < Z AtBr, (¢ Y wit, win)dt < C,

n=17tn-1 n=1
/ T

>

2

Cn_cn—l
b h} dt =

cn—l
oh |5

2

n n—1
h— Cp

- < Cbpax < C. 11

{ A ] < Cbmax < C (110)

dt<ZAtH
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Hence, we have, using (108), (110) and lemma 2.1

|‘Ch||2L°°(O,T;H1([0,L],Th)) + AtHCh‘|i]1(0,T;H1([O,L],Th))+ (111)
112
o= <c
02 L2220, 7))
and
2 2 - N
In the next step we show that the continuous 1nterp01ants Cy, are unlformly Holder continuous on []; T, I x [0,T).

The first bound in (111) gives

z2 x3 2 1/2
|Ch(z2,t) — Ch(z1,t)| = / %(s,t)ds < g — 1|2 (/ %(s,t) da:)
e O o x
S |.’£2—.’£1|1/2 % SChliEz—iEl‘l/z VCC17$2 GI;H \V/tZO,
9% || Lo 0,1:22 (1))

for each 7 = 1,..., N. In addition it follows from (8), the definition (33), remark 1.1, the Cauchy-Schwarz inequality,
(107) and the third bound in (110) that

ICh (-, t2) = Ol t1)l0.00.1, < CRIICh (-, t2) = Cu(,t2) ||V ?[|Ch (-, t2) — Ch(ﬁl)”i%
< Ch Br,, (0%, (Ch(-,t2) = Ch(-,t1)), (Ch (-, t2) — Ch (- t))H|Ch (-, t2) — Ch (-, 1)
< Ch||G%, (Ch(-,t2) — Ch( t))I[ICh (-, t2) — Cu (1)1

2 1/8

dt)

1/4
/ g%ach B ‘ SCh(tQ_tl)l/sU ’ hach(’t)
t1

<Ch 97,
< Chlta —t1)Y® Vo >t >0, (113)

for each @ = 1,..., N. From the first bound in (111) and the Sobolev embedding theorem (8) with 7 = co,m = 1,
we get that the norm of C}, is uniformly bounded on [] IeT I, x [0,T] independently on h, At and T'; moreover,

11 -
from the previous bounds we have that its C2;* ([];, <7, In x [0,77) norm is uniformly bounded independently on

h, At and T'. Hence, every sequence Cj, is uniformly bounded and equicontinuous on [, - I, x [0,T], and by the
Ascoli- Arzela theorem and (109) there exists a subsequence of Cj, such that (105) holds, with ¢ >0, |l¢]lo,00 < 1 and

Cj’ts ([0, L)7). Moreover, the first bound in (111) and (109) implies, by means of the Banach-Alaoglu theorem
and the fact that H'([0, L)) is the subset of H*([0, L], 75) characterized by interelement continuity , that this same
subsequence satisfies (104).

From the fact that
+,0CH

Ch—CF=(@t—tH) =2 o tE(bnoitn), n 21,
we deduce, using the second bound in (111) and taking ¢; = ¢ in (113), that

ICh |2
HCh - Ch HLOO(O T;H1([0,L],73)) < (At) H

|Ch — C | oo (T, x[0,77) < c(an's.

||L°°(0 l(0,0),7)) < CAL

Hence, the same convergence results (105) and (104) hold for the piecewise constant interpolants C’,jf.
We now show the compactness of {W,"}, on compact subsets of {0 < ¢ < 1}. For any & > 0, let’s set

D(‘{Th = {(z,t) € H I, x [0,T] : 6 < c(z,t) < 1},
I, E€Th

Dy t):={ze [] In:0<clzt)<1}.
I,€Ty
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From the uniform convergence (105) it follows that, for a fixed § > 0, there exists a h(§) € RT such that, for all
h < h(9),
0 < Cj(z,t) <min{20,1} V(x,t) € D 7., (114)
1
g0 < CH(z,t) <1 Y(at)e D;Th.

From the third bound in (111) and from (114) we have

5 oW, |? _
bmin(g) (A+ ’ BZE dxdt S /D+ b(C’h )
$Th 7

%' h
where bmin(0) := mins<.<1 b(z).
From (114) we have that for all A < h(d) and for a.e. ¢t € (0,7)

2
dadt < C, (115)

ow,f
ox

o(-t) = C;(.,t) + éHUZZ(i;;l)l e K(2,Tn), Vnh € LQ(O,T;S(Q,T;L)),

with supp(n™) cc D} iy
T Th
Choosing such ¢ in the second equation of system (103) yields, Vh < h(d), that

T T
[ ity + @i v v a= [ vt (1)
0 0
We introduce now a cut-off function 85 € C§° (D7 - ) such that
297/ h
05(,t)=1 on Dyr (t), 0<0s(t) <L (117)

1
2

Noting that, since ¢ € C

1

2:5([0, L]7), it follows that C¢ < |z2 — z1|Y? for x1, 20 € D;Th \D;{Th, we can choose a
0s(-,t) such that

IVOs(-,1)] < C6~2. (118)

Since 03W," € L?(), and there exists an h1(5) < h(5) such that supp(p"(03W;")) C supp(93W;") cC DY -
4.

h < hi(8), we can choose i = p"(#2W,}) in (116). Using the definition (17), the fact that ||C;f|jo,cc < 1 and that
¥i(-) € CY([0,1)), i = 1,2, the regularity of 65, remark 1.1, the estimates (107), (112) and the following inequality,
obtained from (21) and (24),

for all

(T =p")nll| < Clnlv,7, ¥n € H'([0, L), Ta), (119)

we get
T
/ (Wit " (02 ))dt = / 62(WiF ) 2dudt
0 [0,L]7
T
/ [an (" @Wi) + WA(CF) +w;<c,:>,ph<e§vvm>} dt
0
T 5 T
sc/o |\|c;||||eaw,f|1,n+c/0 NG+ ENOsWit || 20,2109

2

dxdt.

ow,f
ox

< CA+ 6 )0sW | p2 (0,000 + C/+
iy

Now, using a Young inequality and bound (115), it follows that
/ 03 (W,H)2dzdt < C(8)". (120)
[0,L]1

Therefore, combining (120) and (115) and recalling the definition of 65(-,t), it follows that, for all § > 0,
+ -1
[|W, I\Lz(oyT;Hl(D;Th iy SCWO77) VR < hi(é). (121)

Applying the Banach Alaoglu theorem on compact subsets of the set {0 < ¢ < 1}7; and using (112) we get finally
(106). O
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Remark 3.1 In the case d = 1 the uniform convergence (105), together with the convergence result (106),
makes it possible to calculate the h, At — 0 limit of the degenerate elliptic term in the first equation of
system (103) on the set {0 < ¢ < 1}g,. To the best of our knowledge, in the case d > 1 there does not
exist in literature a convergence result which shows the convergence of the discrete solution of (103) to the
continuous solution of a weak formulation of (1).

We can now obtain the limit equations of system (103) as (h, At) — (0,0). Indeed, setting f_._,(, )dt :=

fOT( , )+ (1) dt, we have

Theorem 3.1 The limit point (c,w) of lemma 3.1 satisfies the weak formulation

/()T<g(tj’”>d”/o<c<l<b< 5 gn)dto vy € L2(0,75 H' (0, L)),

dc 00
= 2 \a / 0\dt — O\dt = 0
| a()ur [ weoa- [ woa-o
W0 e 120, H ([0, 1]).

(122)

with ¢(-,0) = ¢o(+), and with supp(f) C {0 < c < 1}.
Proof. Let’s choose n € H'(0,T; H'([0,L])) and 6 € L?(0,T;H"([0, L])), with supp() C D;Th. Choosing

Xltn = 7fn, ¢lr, = 70 in (103), considering (116), (11), (12) and using the fact that [[n(zx)] = [[0(za)]] =
[7"(n(za))]] = [[7"(0(za))]] = O, for @ = 1,...,N — 1, where 7" is the global continuous interpolant, we rewrite
(103) as
TaC), = [T W o
/0 ok ,n>dt+Z/O (b(Ch) il ,%)Iidt
n=0 n
N-1

X [ (0 eon{scr e Qe a= 3 | " (Gt

tn ow,r a A
/| 1(b<ch> LA *mﬁn))lidt

(123)

Y C R (G T

0.
+/O () + 04(C)), 0>dt—/ (Wi, 0)dt =

0

tn ack o N
/t I’y( Eratie @—m 9))1,dt

n

/ (i @ 0 = xt, 00w b )at

1 n=1 n

N tn
(WL () + 45 (Cry), 6 — n"6)dt — Z/ (W0 — 0Vt

n=1"tn-1

Let’s start from considering the first equation of system (123). The left hand side converges to the limit, for h, At — 0,

(e D)en 1) = (e 000 = [ e e [ (052,50 (120
For the first term we have
/j(%,n)dt: f/OT<ch, 8t)dt+(Ch( ), 0(-,T)) = (Ca(-, 0),n(-,0)). (125)
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From the uniform convergence (105) and the regularity of 7 we deduce the first limit term in (124). For the second
term, we write the domain of integration as [, .. In x [0,T] = (HlﬁeTh I x [0,T) \D;Th> U Dy 7. . On noting
the third bound in (111) and (114), we get

Z/ (b(ch)aW an)d dt‘ (126)
1me7, Migemn, I_ﬁX[O’T]\D;r,Th 0z 8

+
[CCmE

b(C)) /2 B
||( (Ch )) ||L°Q(H1n€771 Iﬁx[O,T]\D({Th) L2(0.T:L2((0.0).T3))

1m0l L2 0,758 (j0,L1,73,)) < C(bmax(25))1/2|\77|\L2(0,T;H1([0,L],Th)),
where bmax(26) = maxo<.<25 b(z), for all h < h(d). Next, we write

> /D+ (b(Ch)ag; g”>d dt = (127)

IneTy ' Psm,

3 /+ (()82/ 6’7)d dt+ Z/ ( — b(c )]82; gn)d dt

I €Ty Dé,Th I €Ty

Due to the uniform convergence (105), the Lipshitz continuity of b() and the bound (115) it follows, concerning the
second term on the right hand side of equation (127), that

> [ (e - sen B 3 )doar| <

+
In€Th Dé,Th

— ow,f
1060~ b@lamoarn 3 ([ |2 doat Yl o170 (128)
IR €Ty D(S,T
<Cpb mm( NHIB(C ) = b(e)|zoe 0,210 1Ml L2 0,11 (0,21, 73, )) — O for b, At — 0. (129)
Hence, from (106), (127) and (128), we get
(9VV+ on Ow On
fi A . 1
Z/ <(h 5 a)ddt—>/<c<1< )axa)ddt or h, At — 0 (130)

I5€Ty

For the third term, let’s consider for a moment n € L*(0,T; H([0, L])) N H*(0,T; L*((0, L))) — C([0,T], H*([0, L])).
Using (112), (25) and the Cauchy-Schwarz inequality we get

3 2 ] DO ) O ) b ) ar| < (131)
= [ (e

N— T 1/2
Z mas, £ (Ch (2a))hn 2 / (lnﬁ,fﬁ +h2 ) <ChY? 50 for h—0,
A= 0

where bumax,+(C), (zn)) := max[b(C, 7(%%))71)(0{(%2))]-
Note. It should be sufficient to consider n € L?(0,T; H*([0, L], Tx))NH* (0, T; L*((0, L))) or n € L*(0, T; H**([0, L], T»))N
H'(0,T; L*((0, L))). Moreover, from (131), it should be sufficient to consider |n|e,r; ~ h™".

Considering (126), (130) and (131) for all 4 > 0, on noting that bmax(2d) — 0 as § — 0, we get (124) for
n € L*(0,T; H*([0, L)) N H*(0,T; L*((0, L))) — C([0,T), H*([0, L])). Note that (124) for n € H*(0,T; H'([0, L)))
can be recovered by density arguments.

We now show that the terms in the right hand side of the first equation of system (123) converge to zero for
(h, At) — 0. Let’s denote these terms by the notation Zi, - - - ,Zs.
Taking an integration by parts in time, considering (105), (22), the regularity of n and the Cauchy-Schwarz inequality

we get
T 2
\L\sch(/ ||Oh|\2dt) (Z/ 19 ||1dt)
0

+ CRI[Ch (T InC Tl + CRIICR (S 0)[[HInC )l < Chllnlla o,mm1 (2) = 0 (132)
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Using the third bound in (111), (23) and the Cauchy-Schwarz inequality we can write

|Z2| < (133)

2 2 OW = 0 nove )
I1®(Cr ) lpee 0,210 [1(B(C ) WHL%O,T;L%(O,L),T;L) Z H%(ﬁ—ﬂlﬁn)ﬂlﬁdt

< Clln = 7" nllz2 0,71 (0,23) — 0.
Restricting ton € L*(0,T; H*([0, L)))NH' (0, T; L*((0, L))), using (112), (25), (22) and the Cauchy-Schwarz inequality
we get
N-1

T 1/2
[T < Ch Y b 5 C n) i 2 [ (h|n|) o, (134)
=0 0

Hence, the first equation of system (123) converges to the limit, for h, At — 0,

(et ) = el 000 = [ Ghae+ [ (bG8 51 )ar = (135)

Since, from lemma 3.1, b(c)%% € L*(0 < ¢ < 1)7,, from (131) we deduce that ¢ € H'(0,T;(H"([0,L]))’), and the
first equation in (122) is valid. Moreover, due to the uniform convergence (105), ¢(-,0) = co(-).
We consider now the second equation in (123). The left hand side converges to the limit, for A, At — 0,

oc 60) / ,
Y =—, =— |dt + P c,9dt—/ w, 0)dt,
~/0<c<1 (837 Oz 0<c<1( ().6) 0<c<1( )
V6 € L*(0,T; H' (Q)) with supp(#) C D . (136)

The first and the fourth terms of the second equation in (123) converges to the first and the third terms of (136) as
a direct consequence of the convergence results (104) and (106). Restricting to 6§ € L*(0,T; H*([0, L])), using (109),
(25) and the Cauchy-Schwarz inequality we get

>/ (1t @nn{ S} )ar| < s
Chy " h ' /OT<|9

From the facts that ¢1(-) € C'([0,1)), ¥2(-) € C*([0,1]), that C¥ > 0, ||C|lo,.0 < 1 and from the uniform
convergence (105) we have that

N-1

1/2
1o+ hi_l,ﬁw@,,ﬁ) <Ch'? =0 forh—0.

T
[ wien +vsen v - w;<c>1,e>dt] <
CllY1(CF) = 10| 0,10 101 L2 (0, 214y + ClIY(C ) = ()| oo (10,232 101 L2 (0, £17) — O-

Hence the third term on the left hand side of (123) converges to the second term in (136).
We now show that the terms in the right hand side converge to zero for (h,7) — 0. Let’s denote these terms
by the notation Zi,--- ,Z4. Using the first bound in (111), (23) and the Cauchy-Schwarz inequality it can be
deduced, similarly to (133), that [Z:| — 0. Restricting to 8 € L*(0,T; H?([0, L])), using (109), (25), (22) and the
Cauchy-Schwarz inequality we deduce, similarly to (134), that |Zo| — 0. Using the facts that ¢1(-) € C*([0,1)),
Pa(-) € C'([0,1]), that CF > 0, ||CE||o,00 < 1, the first bound in (111), the bound (121), (22) and the Cauchy-
Schwarz inequality, on noting that supp(8) C D we deduce that [Z3| — 0 and |Z4| — 0.

Collecting (135) and (136) we obtain (122). O

4 Algorithms for solving the variational inequality

In this section we propose different algorithms for solving the variational inequality at each time level in
Problem P".
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4.1 Algorithm 1

The first algorithm proposed is based on solving directly the KKT conditions of the functional (68) without
regularization, (i.e. with e = 0). A null space method is used, i.e. the KKT system is reduced onto the null
space of the operator associated to the equality constraints imposed on the nodes of passive elements and
on the nodes on boundaries between active and passive elements.

Let’s introduce the following reduced matrices:

My =Y (61,0F); Ay = Br (0, ¢)); Ag
K

ij BTh(CZﬂ%(bf(wa); (138)

)

forj=1,...,d+1,K € Ky(cp™"), with wf dec oK' K e Ko(cp™"). These are the matrices of the

algebraic formulation of system (35) reduced on the domain Q \ Ko(c)'™ '), with homogeneous Dirichlet

boundary conditions on the internal boundaries 0K, K € K| (czfl). Indicating with o5, the vector of com-
ponents v, (1), for a generic v, € S(Q,Ty), we can express wj = K wi(zX) ok, e = DK cp(xf) ol
= YK czfl(mJK)gzﬁjK, forj=1,...,d+ LK e K (e}, with xf ¢eC K K ¢ Ko(c}™"), in the
first equation of (35), and obtain, on noting that Ac:—l is invertible, that
wh = _LA—I M(En _ En—l)
b At e T

Substituting this relation in the second inequality of (35), we get
n n n 1 A— \ [ =T n—
B, (chy ¢ — ci) + ( ¥i(ch) + Z AL MG | + (e -
At K Ch
1 _ _
5 3 |agt ot o) 0 s
I h
Let’s now introduce the symmetric and positive definite matrix
1 _
=A+ —MA M.
@ A A

Inequality (139) is equivalent to the following complementarity problem:
(140)

where A is the vector of Lagrange multipliers of the inequality contstraint @ > 0. System (140) can be
solved by a preconditioned accelerated gradient method.
We finally derive the following algorithm:
Require: ag >0, ¢} ' wi™' J = {j € Jk, K € Ko(c} ") A (jeJg, K € Kp(ci™),m=1,....M, z; €
e COK', K' € Ko(cp ")}

Step 1
for £ > 0 do
Initialization
CZ’O — 02—17 w;lz,O — ’U)Z_l;

Find ¢;""™ € K(Q, 7;) such that:
if j € J' then
n,k+1 n—
T () = e ),
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else
_nk+1 &% o (di -1 141
¢y =max| 0,67 — ag(diag(@)) ™ x (141)

{QcZ’“+M¢’1(cZ’k) M(w @ - EAC; e 1>] )
J

end if

if [|c; T — ¢"%]0.00 < 1076 then

cp < ¢, 7 break.

end for
Step 2 Find wj, € S, such that:

wy" = _EAC_Z M(e -

The acceleration parameter a4, is dinamically chosen by a projected search in such a way that the functional
associated to (140) is decreased at each iterative step k (see e.g. [1], chapter 12, for details). Note that,
since the operator acting on EZ’k in the square bracket in (141) is continuous and strictly monotone, the
projection map defined in (141) has a unique fixed point (see e.g. [17], chapter 2, for details). The main
drawback of Algorithm 1 is the necessity of assembling and calculating the inverse of the matrix A et at
each time step, which renders the algorithm very time demanding. Another drawback is the presence of
the non linearity in (140), which makes the complementarity problem non linear and the convergence of the
map (141) quite slow. In order to deal with the latter problem, we formulate in the following subsection an
alternative algorithm.

4.2 Algorithm 2

The second algorithm proposed is based on solving the complementarity problem (140) by means of a Newton
like method. Let’s introduce the symmetric and positive definite matrix

Qiin := Q + VY (cf)M

and the vector

V() = Qe + NIV () + M(w;wz ) A )

The following algorithm is derived:
Require: ag > 0, ¢ " wp ™", J =={j € Jx, K € Ko(c} VA (j € Jk, K € Kpp(c} "), m=1,....M, z; €
e COK', K' € KO( e 1))},
Step 1
for £ > 0 do
Initialization

. _n,0
n 0 Cn71 wn,O _ wnfl, 30 0 if Ch i > 0
h h »Yh T Yh » N -n,0 -n,0
Ve ) if ¢ =0.

Find ¢""™ € K(Q, 75) such that:
if j € J' then
n,k+1 —
ep " (@) T (),
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else

for [ > 0 do
Initialization
A0 =0
Ac?’“‘l = max (O ch] + Ac — ay(diag(Qin)) ™+ Qun At + Vf(EZ’k) — )\k] ) — EZ?, (142)
J

if ||AchLH — AchL||p oo < 1076 then
AcF «— AckLt1: break.

ANk 0 if Ac > 0,
)\j = _n,k k- ko
leAc —|—Vf( )j —)\ if ch =0.
end if
end for

oy L cZ’k + Ack,
Mt = 3k ANF,

end if

if [|e T — ¢X|0.00 < 1076 then
cpy ch KL ; break.
end if
end for
Step 2 Find wj, € S, such that:

The acceleration parameter «; is dinamically chosen such that (142) defines a steepest-descent gradient
method (see e.g. [15], chapter 2, for details). Note that, thanks to the definition of passive elements (39),
A) > 0if & /= 0and AX¥ > 0 if Ac¥ = 0. The main drawback of Algorithm 2 is the necessity of assembling

and calculating the inverse of the matrlx A n at each time step, which again renders the algorithm very

time demanding. In order to deal with this problem we formulate in the following subsection an alternative
algorithm.

4.3 Algorithm 3

The third algorithm proposed is the generalization to discontinuous elements of the splitting algorithm
proposed in [6].
The following algorithm is formulated:
Require: p > 0 (a relaxation parameter), ag > 0, 0271710271, J ={j e Jk, K € Ko(czfl) A (j €
i, K € Kp(c) ™), m=1,...,M, z; €e COK', K' € Ko(c} ")) };

for £k > 0 do
Initialization
n,0 n—1 n,0 _ n-—1,
Cp =6 Wy =Wy
Step 1 Find Z™* € S(Q,T;,) such that Yq € S(2, Tr):
(Z"*,q) = (e, q) = nABr (" @) + (Wh(eh ™) — wi, @));

Step 2 Find ¢}’ kL2 K (,Tp) such that:
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if j € J' then
R () e (ay)

else
for [ > 0 do
Initialization 120
_n,k+ s _n,k
Chnj =y
AT _ oy <07 A2 o (diag(V)) ™ (143)
Méz,k+1/2,l + MM'(/Ji (Ez,kJrl/Q,l) _ MZn’k] )
J
if ||CZ’]C"'1/2’L+1 — cZ’k'irl/Q’LHQC>O < 1079 then
cZ’k+1/2 — cZ’kH/Q’LH; break.
end if
end for
end if
Step 3 Find (¢} wi ™) € S(Q,Th) x S(Q,Th), Yg € S(, Th), such that:

C’ﬂakJrl Cnfl . . .
) 1 )
(= BEL ) = B (i *g) — Bry (¢ el )

At h 7Q) + BTh<wh
n,k n,k n— n,k n,k+1/2 n
(M q) + plA By, (6F ) + (04 (cp=h) — T g) = (2e KT = 2k g).

if [|c; 5T — ¢"%]o.00 < 1076 then
(chyswpy) < (CZ’K-H, wZ’KH); break.
end if
end for

The acceleration parameter «; is dinamically chosen by a projected search in such a way that the functional

1 nk+1/20 nk+1/2, n,k+1/2,1 ok k1720
S (e IR oy (MR, 1) — (27, Gt

is decreased at each iterative step [ (see e.g. [1], chapter 12, for details). Note that, since the operator acting
on EZ’k'H/ >l in the square bracket in (143) is continuous and strictly monotone, the projection map defined
in (143) has a unique fixed point (see e.g. [17], chapter 2, for details). The present algorith does not require

the necessity of assembling and calculating the inverse of the matrix Aczfl at each time step, and, since in

(143) no elliptic term is present, the projection step (143) can be solved element by element independently.
These features make Algorithm 3 much faster than Algorithm 1 and 2, even if it converges more slowly, since
it requires the convergence of the fixed point iteration associated to the splitting step.

5 Numerical results

In this section we investigate the evolution dynamics of the solution of Problem P" with an initial con-
centration characterized by a small uncorrelated white noise over a constant value cg, for different average
values ¢y < ¢ and homogeneous Neumann boundary conditions for the 2 — d case. In these cases the system
undergoes a spinodal decomposition and evolves, after a transitory regime, towards an equilibrium state
consisting of regions which are rich (¢ ~ ¢*) or empty (¢ = 0) of cells.

Moreover, we also study the evolution for long time scales of the solution of a test case with an initial
condition of cross-like shape.

28



We report results of numerical tests in which Algorithm 3 has been implemented, even if we have tested
also Algorithms 1 and 2 on the three proposed test cases for the spinodal decomposition dynamics. Even if
Algorithms 1 and 2 solves directly, by a preconditioned projected gradient method, the original variational
inequality, whereas Algorithm 3 solves it indirectly through a splitting method, Algorithm 3 has the advantage
that it doesn’t need to assemble and invert the degenerate elliptic operator on its proper domain at each
time step and it can be solved element by element independently, needing much less computational resources
than Algorithms 1 and 2. In the perspective of a parallel implementation of Algorithms 1 and 2, their faster
convergence should make them more performing than Algorithm 3.

Note that an approximative analogue of the sets Ko(c} ') and K (c}~') has been introduced where
cz_l > 1079 is meant for cz_l > 0. We remark that this approximation introduces a small error in the mass
conservation of the algorithms.

Note moreover from Remark 2.2 that the discrete solution is able to track compactly supported solutions
of (1) with a free boundary which moves with a finite speed of velocity if

1
At = Chyin, C < , (144)
maXKeTh maxpg vsupp,K

where Ay = minge7, hx and vgupp. = —(1 — (¢} 1)) (Vyw})|k (see, e.g., [8] for the definition of the
expanding velocity of the cancerous cells). In the implementation of Algorithms 1, 2 and 3 the condition
(144) is checked at each time step.

5.1 Spinodal decomposition

Let’s consider three test cases in which the initial value c¢g is chosen to be a small uniformly distributed
random perturbation around the values cg = 0.05, ¢g = ¢*/2 = 0.3 and ¢o = 0.36. We consider homogeneous
Neumann boundary conditions. We set v = 0.000196 and At = 10y. The relaxation parameter is chosen
to be p = 1/2, and a9 = 1/2. The domain is Q = (=3,3) x (—3,3), and a uniform partition of 32-by-32
triangular elements is introduced. The results are collected in Figures 2, 3, 4, showing that the system
exhibits two kinds of subregions after a transitory regime, one empty in cells, i.e. ¢ = 0, and the other rich in
cells, with ¢ ~ ¢*. The initial separation of the two phases is fast compared to the overall growth timescale
of the segregated pattern.

In Figures 2, 3, 4 it can be observed that if ¢g < ¢*/2 (resp. ¢ > ¢*/2) then the segregated solution is
made of isolated clusters of cells (resp. voids), while if ¢y = ¢*/2 the system forms maze-like patterns and the
domain is equally spaced in subregions rich in each phase. These behaviours reply the main features of the
phase order dynamics as predicted by the classical theory of coarsening in systems with a locally conserved
order parameter, described, e.g., in [7, §].

Check also that the mass, i.e. the value of (¢}, 1), is conserved up to a small error, and that the value of
the Energy 3 By, (¢, cy) + (¥(ct), 1) decreases.

5.2 Evolution of a cross-like shape

In this test case an initial datum cg is chosen given by a piecewise constant function whose jump set has
the shape of a cross, with values ¢y = 0.55 inside the cross and ¢y = 0 outside it. Homogeneous Neumann
boundary conditions are considered. We set v = 0.000196 and At = 10 in the initial stages of the evolution,
in which the concentration relaxes fastly to the equilibrium value cx, and At = 50~ in the late coarsening
stages. The relaxation parameter is chosen to be = 1/2, and ap = 1/2. The domain is Q = (—3,3)x (-3, 3),
and a uniform partition of 64-by-64 triangular elements is introduced. The results are collected in Figure 5,
showing as expected that the system evolves to a steady state exhibiting a circular interface (see, e.g., [7]
for a description of the coarsening dynamics associated to the degenerate CH equation).

Check also that the mass, i.e. the value of (¢}, 1), is conserved up to a small error, and that the value of
the Energy 3By, (¢, cy) + (¥(ci), 1) decreases.
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co = 0.05
Mass = 0.0496701; Energy = 35.9991 |gpValue Mass = 0.0496711; Energy = 35.9991 |gpValue
Y L]

W0.0615447
m0.0663878

m0.0712308
m0.0760739
m0.0809169
mo.

(b) t = 1.0586.
Mass = 0.0558241; Energy = 35.9816 |gpValue

(c) t = 6.28004.

Figure 2: Values of ¢(x,y) for ¢g = 0.05 at different instants of time. The values of mass and energy are
reported. The values of the parameters are v = 0.000196, ¢* = 0.6 and At = 10~.

6 Conclusions

This work investigated a discontinuous Galerkin finite element approximation of a degenerate CahnHilliard
equation with a single-well potential, which models the evolution and growth of biological cells such as solid
tumors. In contrast to the models studied in the literature, where the degeneracy and the singularity sets
coincide, here the degeneracy set is {¢ = 0,¢ = 1} and the singularity set is {¢ = 1}. This constitutive choice
introduces further complications, since the singularity in ¢ = 1 does not guarantee that ¢ > 0 and at the
discrete level no Entropy estimates are straightforwardly available to guarantee the positivity of the solution.

Unlike the standard discontinuous finite element methods proposed in the literature for the non degenerate
CH equation, the discontinuous Galerkin method proposed here for the degenerate case is non standard
and consists of a discrete variational inequality, in which the positivity of the solution is imposed as a
constraint, solved on the active elements of the triangulation on which the degenerate elliptic operator can
be inverted. The proposed discretization method does not require the additional approximation of the mass
scalar products by a lumping procedure, which was needed in the approximation with continuous elements
in order to select the physical solutions with compact support and moving boundary from the ones with
fixed support.

A suitable formulation of the discrete variational inequality with discontinuous elements has been pro-
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Co = 0.3

Mass = 0.29802; Energy = 35.8377 lsoValue Mass = 0.29802; Energy = 35.8367 lsoValue

Y ¥,/

m0.16254
m0.18209
2016

0.279795

0.298336

(a) t = 0. (b) t = 0.0196.

lsoValue

2940
324272
35
38
41
4430
asn:

ocounn

(c) t = 0.317716.

Figure 3: Values of ¢(x,y) for ¢y = 0.3 at different instants of time. The values of mass and energy are
reported. The values of the parameters are v = 0.000196, ¢* = 0.6 and At = 10+.

posed, proving the existence and uniqueness of the discrete solution, using a regularization approach. More-
over, the convergence in one space dimension of the discrete solution to the weak solution of the continuous
problem has been established.

Three numerical algorithms have been proposed to solve the discrete variational inequality, based on
different iterative solvers of the corresponding complementarity system. In particular, the Algorithms 1 and
2 solves directly, by a preconditioned projected gradient method, the original variational inequality, whereas
Algorithm 3 solves it indirectly through a splitting method, which is a generalization to discontinuous
elements of the one proposed in [6]. Algorithm 3 has the advantage that it can be solved element by
element independently, but as a disadvantage it needs the convergence of a further fixed point iteration
associated to the splitting step. Algorithms 1 and 2 converge faster than Algorithm 3, but they require
heavy computational resources in order to assemble and invert the degenerate elliptic operator on its proper
domain at each time step.

Finally, some numerical results for different test cases in two space dimensions have been reported in
order to discuss the validity of the proposed numerical algoritms. It is found that the dynamics of the
spinodal decomposition for the discrete solution is analogous to the one obtained in standard phase ordering
dynamics. In fact the geometry of the segregated domains is driven by the initial value of the concentration,
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co = 0.36
lsoValue Mass = 0.35905; Energy = 35.7489 lsoValue
7 &Y > y <>

(o215, I
1Co—
oo
pard = 2

3
3
K|

38
40
4

4

(b) t = 0.0784.
Mass = 0.370005; Energy = 35.6913 lsoValue

(c) t = 1.1076.

Figure 4: Values of ¢(x,y) for ¢g = 0.36 at different instants of time. The values of mass and energy are
reported. The values of the parameters are v = 0.000196, ¢* = 0.6 and At = 10+.

with the appearance of isolated clusters of cells for ¢y < ¢*/2, maze-like patterns for ¢y = ¢*/2, and isolated
clasters void in cells for ¢*/2 < ¢g < . A different feature of this model concerns the evolution and growth
of single domains in the coarsening regime of the dynamics. As expected, the evolution of a single domain
with a cross-like shape to a steady state with constant curvature has been highlighted.

A further development of this work will concern the error analysis of the discrete solution, which will be
presented in a forthcoming paper.
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Mass = 0.032853; Energy = 35.9685 leoValue Mass = 0.0330521; Energy = 35.9682 |snyajue
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W0.275 W0 289837
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Figure 5: Values of c¢(z,y) for different instant of times with an condition given by a piecewise constant
function with cross like shape, with values ¢y = 0.55 inside the cross and ¢y = 0 outside it. The values of the
parameters are v = 0.000196, ¢* = 0.6, At = 10 at first stages of simulation and At = 50 for later stages.
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