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Abstract

We propose a method for the analysis of functional data with com-
plex dependencies, such as spatially dependent curves or time dependent
surfaces, over highly textured domains. The models are based on the
idea of regression with partial differential regularizations. We focus in
particular on a separable space-time version of the model. Among the
various modelling features, the proposed method is able to deal with spa-
tial domains featuring peninsulas, islands and other complex geometries.
Space-varying covariate information is included in the model via a semi-
parametric framework. The proposed method is compared via simulation
studies to other spatio-temporal techniques and it is applied to the anal-
ysis of the annual production of waste in the towns of Venice province.

Keywords: Space-time model; Differential regularization; Finite ele-
ments

1 Introduction

In this work we deal with spatio-temporal data distributed over a spatial domain
which presents complex geometries. That is, the irregular shape of the domain
influences the phenomenon under study and there are important geographical
elements within the boundary such as islands and peninsulas that impact the
distribution of the data. We refer to such domains as textured.

As an illustrative example, consider the estimation of the temporal evolution
of the amount of per capita municipal waste produced in the towns of Venice
province. Figure 1 shows the Venice province, with dots indicating town centers,
including municipalities and other tourist localities of particular relevance. The
province boundary is shown by a red line, highlighting the irregular shape of
the province geographical borders and its complex coastlines, with the Venice
lagoon partly enclosed by elongated peninsulas and small islands.
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Figure 1: Spatial domain and locations of the Venice waste data with the
province boundary shown by the red line.

The data are measurements from 1997 to 2011 of the yearly amount of per
capita municipal waste (total kg divided by the number of municipality resi-
dents) and are provided by the Arpav, the Agenzia regionale per la prevenzione
e protezione ambientale del Veneto. Figure 2 shows the temporal evolution of
the production of per capita waste in the towns of Venice province and Figure
3 is a bubble plot of the data at a fixed year, 2006.
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Figure 2: Temporal evolution of the yearly per capita production (kg per resi-
dent) of municipal waste in the towns of Venice province.
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Figure 3: Per capita production (kg per resident) of municipal waste in the
towns of Venice province in 2006.

The phenomenon portrayed by these data is expressed differently in different
parts of the domain. Consider for instance the two towns of Cavallino-Treporti
(in the peninsula at the north-east of Venice) and Quarto d’Altino (north of
Venice), indicated by black dots in Figure 3. The temporal evolution of the pro-
duction of per capita municipal waste in the two towns, highlighted in Figure 2,
is rather different, with values high and more strongly increasing in the seaside
and tourist town of Cavallino-Treporti, opposed to the lower and less strongly
increasing values measured in hinterland town of Quarto d’Altino. These two
towns are close in terms of their geodesic distance, but they are actually sep-
arated by the Venice lagoon. Hence, appropriately accounting for the shape
of the domain, characterized for instance by a strong concavity formed by the
lagoon, is crucial to accurately handle these data.

The temporal evolutions of the amount of per capita municipal waste can
be considered as spatially dependent one-dimensional functional data. Various
methods have been recently proposed to handle such data. Starting from the
pioneering work of Goulard and Voltz [1993], kriging prediction methods for
stationary spatial functional data are developed in Delicado et al. [2010], Nerini
et al. [2010] and Giraldo et al. [2011]. Recent techniques developing universal
kriging approaches for spatially dependent functional data are offered by Ca-
ballero et al. [2013], Menafoglio et al. [2013] and Menafoglio et al. [2014]. An
extension of kriging for functional data which takes into account the presence of
covariates is developed in Ignaccolo et al. [2014]. The same data can be also con-
sidered in a more classical space-time data framework. An extensive literature
on spatio-temporal models has been produced; we refer the reader to Cressie
and Wikle [2011] and references therein. On the other hand, these methods are
not well suited for the context we are here considering because they do not take
into account the shape of the domain; for instance these methods would smooth
across concave boundary regions, thus closely linking data points that are in
fact far apart by land connections.

Recent methods for the analysis of spatio-temporal data that instead specif-
ically account for the the geometry of the domain of interest are described in
Augustin et al. [2013] and Marra et al. [2012]. These models are based on the
spatial smoother proposed by Wood et al. [2008]. Here, we extend the spa-
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tial models with differential regularization described in Ramsay [2002], Sangalli
et al. [2013] and Azzimonti et al. [2014] to time dependent data, and propose a
Spatio-Temporal regression model with Partial Differential Equations regular-
ization (ST-PDE). The model is implemented in R [R Core Team, 2014].

The paper is organized as follows. Section 2 describes the ST-PDE model.
Section 3 shows the numerical implementation of the model. Section 4 illustrates
the extension of the model for the inclusion of space-varying covariates. Section
5 compares via simulation studies the ST-PDE model to other spatio-temporal
prediction techniques. Section 6 shows the application of the proposed method
to the analysis of the per capita municipal waste in the Venice province. Section
7 outline some possible model extensions. Finally, some additional comments
on the model are given in the Appendix.

2 Data and model

Let {pi = (xi, yi); i = 1, ..., n} be a set of n spatial points on a bounded regular
domain Ω ⊂ R2 and {tj ; j = 1, ...,m} be a set of m time instants in a time
interval [T1, T2] ⊂ R. Let zij be the value of a real-valued variable observed at
point pi and time tj . The spatial domain Ω is the province of Venice, the spatial
locations pi are the towns, the time instants tj are the years between 1997 and
2011 and the variable of interest zij is the amount of the annual production of
per capita municipal waste in year tj at the town location pi. The data zij are
a sampling of space dependent temporal curves. Equivalently, they can be seen
as a sampling of time dependent surfaces on Ω.

We assume that {zij ; i = 1, ..., n; j = 1, ...,m} are noisy observations of an
underlying spatio-temporal smooth function f(p, t):

zij = f(pi, tj) + εij i = 1, ..., n, j = 1, ...,m, (1)

where {εij ; i = 1, ..., n; j = 1, ...m} are independently distributed residuals with
mean zero and constant variance σ2.

We use a separable model for the spatio-temporal field f(p, t) by representing
it as an expansion on a separable space-time basis system. We hence estimate
f(p, t) by minimizing a penalized sum of square error functional J(f), where
the penalization takes into account separately the regularity of the function in
the spatial and temporal domains.

Specifically, let {ϕk(t); k = 1, ...,M} be a set of M basis functions defined on
[T1, T2] and {ψl(p); l = 1, ..., N} a set of N basis functions defined on Ω. Then,
we can express the spatio-temporal field f in the following basis expansions:

f(p, t) =

M∑
k=1

ak(p) ϕk(t) (2)

=

N∑
l=1

bl(t) ψl(p) (3)

=

N∑
l=1

M∑
k=1

clk ψl(p) ϕk(t) (4)
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where {ak(p); k = 1, ...,M} are the spatially varying coefficients of the expan-
sion on the temporal basis, {bl(t); l = 1, ..., N} are the temporally varying coef-
ficients of the expansion on the spatial basis and {clk; l = 1, ..., N ; k = 1, ...,M}
are the coefficients of the expansion on the separable spatio-temporal basis.

Various choices for the regularizing terms in space and in time are possible.
In this work, following Ramsay [2002], Wood et al. [2008] and Sangalli et al.
[2013], we use the spatial roughness penalty

JS (g(p)) =

∫
Ω

(
∆g(p)

)2

dp, (5)

where g : Ω→ R and the Laplacian ∆g(p) = ∂2g
∂x2 (p) + ∂2g

∂y2 (p) provides a simple
measure of the local curvature of g. Other possible choices for spatial roughness
penalties are, for instance, that associated with thin plate splines, given by∫
R2( ∂

2g
∂x2 (p))2+2( ∂2g

∂x∂y (p))2+( ∂
2g
∂y2 (p))2dp, or a penalization involving more com-

plex partial differential operators describing prior knowledge on the phenomenon
under study (see, e.g., Azzimonti et al. [2014]).

There are several possibilities for the temporal roughness penalties. We
adopt the classical penalty

JT (h(t)) =

∫ T2

T1

(drh(t)

dtr

)2

dt (6)

where h : [T1, T2]→ R. See, e.g., Ramsay and Silverman [2005], Chapter 5, for
details.

In analogy to the models developed by Augustin et al. [2013] and Marra
et al. [2012], the spatial penalty JS is directly applied to the M spatially vary-
ing coefficients ak(p) in the basis expansion (2), and the temporal penalty JT
is directly applied to the N temporally varying coefficients bl(t) in the basis ex-
pansion (3). The field f is thus estimated by minimizing the following penalized
sum of square error criterion:

J(f) =

n∑
i=1

m∑
j=1

(
zij − f(pi, tj)

)2
+

+ λS

M∑
k=1

∫
Ω

(
∆(ak(p))

)2

dp + λT

N∑
l=1

∫ T2

T1

(drbl(t)
dtr

)2

dt , (7)

where λS > 0 and λT > 0 are two smoothing parameters that weight the
penalizations respectively in space and time. The choice of these parameters
will be discussed in Section 3.3. The Appendix provides further explanation for
the form of the penalized sum of square error functional J here considered.

3 Numerical implementation of the model

3.1 Choice of the basis systems in space and time

Various possible bases can be used for the expansions in the spatial and temporal
domains. In this work, we use in space a finite element basis on a triangula-
tion Ωτ of the spatial domain Ω of interest. This choice leads to a efficient
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discretization of the functional J and allows an accurate account of the shape
of the spatial domain.

We illustrate the construction of such basis on Venice domain. Before build-
ing the basis, we simplify the original spatial domain represented in Figure 1,
excluding the coastal uninhabited regions and the smaller islands, and keeping
in the domain of study only the four major islands: Venice, Murano (at the
north-east of Venice), Lido di Venezia (at the south-east of Venice) and Pellest-
rina (at the south of Lido). We then smooth the boundary of the domain with
regression splines. Finally, we obtain a piecewise linear boundary, sub-sampling
from this smooth curve so that the features characterizing the domain are pre-
served. Figure 4 shows the simplified boundary of Venice province, while Figure
5 shows the detail around the city of Venice. This region is particularly inter-
esting since it shows the four islands we keep in the domain. Here the domain
includes four bridges: one linking Venice to the continent and the others linking
some of the islands between themselves; the first one is an actual bridge with
a road and a railway, while the other bridges represent regular and frequent
ferries among the islands.
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Figure 4: Simplified boundary of
the Venice province.
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Figure 5: Detail of the simplified
boundary of the Venice province.

A triangulation of the resulting simplified domain is then obtained using the
R package RTriangle [Shewchuk, 1996]. In particular, we start from a Delau-
nay triangulation, constrained within the simplified boundary, where each of
the town locations and each point defining the simplified boundary become a
triangle vertex. A more regular mesh is then obtained with additional vertices,
imposing a maximum value to the triangle areas. Figure 6 displays the resulting
triangulation of Venice province. For this application, here and in Section 6,
instead of using as coordinates the latitude and longitude, we employ the UTM
coordinate system, which allows to compute the distance between two points on
the Earth’s surface by means of the Euclidean distance instead of the geodesic
distance.
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Figure 6: Triangulation of the Venice province.

The finite element basis is composed by globally continuous functions that
coincides with a polynomial of a certain degree on each element of the domain
triangulation. In particular we use here a linear finite element basis, which is
composed by piecewise linear basis functions. Each basis function is associated
to a vertex of the triangulation, and has value 1 at that vertex and 0 at all other
vertices. Figure 7 shows an example of linear basis function.

Figure 7: Example of linear finite element basis function.

We use a cubic B-spline basis for time with penalization of the second deriva-
tive. Other basis systems may turn out to be more appropriate in other applica-
tive contexts. For instance, Fourier basis are well suited to the case of cyclic
data, possibly with penalization of the harmonic acceleration operator, instead
of the order r derivative considered in (6).

3.2 Discretization of the penalized sum-of-square error
functional

Let z be the vector of length nm of observed values at the n×m spatio-temporal
locations, f the vector of length nm of evaluations of the spatio-temporal func-
tion f at the n×m spatio-temporal locations, and c the vector of length NM of
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coefficients of the basis expansion (4) of the spatio-temporal field f , with entries
ordered as follows

z =



z11

...
z1m

z21

...
z2m

...
znm


f =



f(p1, t1)
...

f(p1, tm)
f(p2, t1)

...
f(p2, tm)

...
f(pn, tm)


c =



c11

...
c1M
c21

...
c2M

...
cNM


.

Let Ψ be the n ×N matrix of the evaluations of the N spatial basis functions
in the n space locations {pi; i = 1, ..., n},

Ψ =


ψ1(p1) ψ2(p1) . . . ψN (p1)
ψ1(p2) ψ2(p2) . . . ψN (p2)

...
... . . .

...
ψ1(pn) ψ2(pn) . . . ψN (pn)

 .
Moreover, define the vectors of length N of the spatial basis functions ψ, and
of their first order partial derivatives ψx and ψy, by

ψ =


ψ1

ψ2

...
ψN

 ψx =


∂ψ1/∂x
∂ψ2/∂x

...
∂ψN/∂x

 ψy =


∂ψ1/∂y
∂ψ2/∂y

...
∂ψN/∂y

 .
Analogously, let Φ be the m×M matrix of the evaluations of the M temporal
basis functions in the m time instants {tj ; j = 1, ...,m}:

Φ =


ϕ1(t1) ϕ2(t1) . . . ϕM (t1)
ϕ1(t2) ϕ2(t2) . . . ϕM (t2)

...
... . . .

...
ϕ1(tm) ϕ2(tm) . . . ϕM (tm)

 .
Moreover, define the vectors of length M of the temporal basis functions ϕ, and
of their second order derivatives ϕtt, by

ϕ =


ϕ1

ϕ2

...
ϕM

 ϕtt =


d2ϕ1/dt

2

d2ϕ2/dt
2

...
d2ϕM/dt

2

 .
Consider the nm × NM matrix B = Ψ ⊗ Φ, where ⊗ denotes the Kronecker
product. Then f = Bc. Moreover, denote by IK the identity matrix of dimen-
sion K. Then, we may rewrite the sum of square error functional J in (7) as

J = (z−Bc)T (z−Bc) + λSc
T (PS ⊗ IM )c + λT c

T (IN ⊗ PT )c

= (z−Bc)T (z−Bc) + cTPc ,
(8)
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where PS and PT are the matrix discretizations of the integrals of the spatial
and temporal penalization terms, and P is the overall penalty P = λS (PS ⊗
IM ) + λT (IN ⊗ PT ).

The matrix PT is obtained by direct discretization of the temporal penalty
term in (6) and (7):

PT =

∫ T2

T1

ϕttϕ
T
tt;

see Ramsay and Silverman [2005] for details. For the matrix PS , following
Ramsay [2002] and Sangalli et al. [2013], we consider a computationally efficient
discretization of the spatial penalty term in (5) and (7), that does not involve
the computation of second order derivatives of the basis functions, but only of
first order derivatives. This discretization is given by PS = R1R

−1
0 R1, where

R0 =

∫
Ωτ

ψψT , R1 =

∫
Ωτ

(ψxψ
T
x +ψyψ

T
y ),

and it is based on a variational characterization of the estimation problem; see
Ramsay [2002] for details. This formulation uses the Neumann condition at
the boundary of the domain of interest implying zero flow across the boundary.
Various other boundary conditions are possible; see Sangalli et al. [2013]. As
shown in Azzimonti et al. [2014], in the finite element space used to discretize
the problem, the matrix PS is in fact equivalent to the penalty matrix that
would be obtained as direct discretization of the penalty term in (5) and (7)
and involving the computation of second order derivatives.

Finally, the coefficients vector ĉ that minimizes the functional J in (8) is
computed deriving J with respect to c and setting the derivative equal to 0,
obtaining

ĉ = (BTB + P )−1BT z.

3.3 Properties of the estimator

The estimator ĉ is linear in the observed data values z, and has a typical pe-
nalized least-square form. Since E[z] = f and V ar[z] = σ2Inm, we obtain

E[ĉ] = (BTB + P )−1BT f ,

V ar[ĉ] = σ2(BTB + P )−1BTB(BTB + P )−1.

Consider the vector B(p, t) = ψ(p)T ⊗ ϕ(t)T of evaluations of the separable
basis system at the spatio-temporal location (p, t), with p ∈ Ω and t ∈ [T1, T2].
The estimate of the field f at this generic location is thus given by

f̂(p, t) = B(p, t)ĉ = B(p, t)(BTB + P )−1BT z

and its mean and expected values are given by

E[f̂(p, t)] = B(p, t)(BTB + P )−1BT f

V ar[f̂(p, t)] = σ2B(p, t)(BTB + P )−1BTB(BTB + P )−1B(p, t)T .

(9)

The smoothing matrix

S = B(BTB + P )−1BT

9



maps the vector of observed values z to the vector of fitted values ẑ = f̂ = Sz.
The trace of the smoothing matrix constitutes a commonly used measure of the
equivalent degrees of freedom for linear estimators. We can thus estimate σ2 by

σ̂2 =
1

nm− tr(S)
(z− ẑ)T (z− ẑ). (10)

This estimate of the error variance, plugged into (9), can be used to compute
approximate pointwise confidence intervals for f. Moreover, the value of a new
observation at location point pn+1 and time instant tm+1 can be predicted
by ẑn+1 m+1 = f̂(pn+1, tm+1), and approximate prediction intervals may be
constructed.

Finally, the values of the smoothing parameters λS and λT may be chosen
via Generalized Cross-Validation (GCV), searching for the values of λS , λT that
minimize

GCV (λS , λT ) =
nm

(nm− tr(S))2
(z− ẑ)T (z− ẑ).

4 Model with covariates

The model described above can be easily extended to include space-time varying
covariates. Consider the semi-parametric generalized additive model

zij = wT
ij β + f(pi, tj) + εij i = 1, ..., n, j = 1, ...,m, (11)

where wij is a vector of q covariates associated to the observation zij , at location
pi and time instant tj , and β is a vector of q regression coefficients. We can
jointly estimate the vector of regression coefficient β and the spatio-temporal
field f by minimizing the following penalized sum of square errors criterion

J(f,β) =

n∑
i=1

m∑
j=1

(
zij −wT

ij β − f(pi, tj)
)2

+

+ λS

M∑
k=1

∫
Ω

(
∆(ak(p))

)2

dp + λT

N∑
l=1

∫ T2

T1

(d2bl(t)

dt2

)2

dt . (12)

Let W be the nm × q matrix containing the vectors {wij ; i = 1, ..., n; j =
1, ...,m}:

W =



wT
11

wT
12
...

wT
1m

wT
21
...

wT
2m
...

wT
nm


.

Let HW be the matrix that projects orthogonally on the space generated by
the columns of W , i.e. HW = W (WTW )−1WT and let Q = Inm −HW . The
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discretization of the functional J(f,β) in (12) is given by

J = (z−Wβ −Bc)T (z−Wβ −Bc) + cTPc .

To compute the estimates of the vector of regression coefficients β and of the
vector c of coefficients of the basis expansion of the spatio-temporal field f , we
compute the first partial derivatives of J with respect to β and c, and set them
equal to zero, getting the following explicit solution of the estimation problem:

β̂ = (WTW )−1WT (z−Bĉ),

ĉ = (BTQB + P )−1BTQz.

The estimator ĉ has a penalized least-square form; given ĉ, the estimator β̂ has
a least square form.

4.1 Properties of the estimator

Let Sf = B(BTQB + P )−1BTQ, so that

β̂ = (WTW )−1WT (I − Sf )z.

Since E[z] = Wβ + f and V ar[z] = σ2Inm, and exploiting the fact that the
matrix Q is idempotent and QW = 0, we obtain

E[ĉ] = (BTQB + P )−1BTQf ,

V ar[ĉ] = σ2(BTQB + P )−1BTQB(BTQB + P )−1

and

E[β̂] = β + (WTW )−1WT (I − Sf )f

V ar[β̂] = σ2(WTW )−1 + σ2(WTW )−1WTSfS
T
f W (WTW )−1.

(13)

The estimate of the field f and its distributional properties follow as for the
model without covariates. The smoothing matrix S, such that ẑ = Sz, is now
given by

S = HW +QSf .

The trace of this matrix is given by tr(S) = q + tr(Sf ) and measures the edf of
this estimator, given by the sum of the q degrees of freedom corresponding to the
parametric part of the model and the tr(Sf ) degrees of freedom corresponding to
the non-parametric part of the model. We can estimate σ2 as in (10). Given this
estimate, it is possible to construct approximate pointwise confidence intervals
for f as in the case without covariates. Moreover, using σ̂2 in (13), it is now also
possible to compute approximate confidence intervals for β. Finally, the value
of a new observation at location point pn+1 and time instant tm+1 and with
associated covariates wn+1 m+1 can be predicted by ẑn+1 m+1 = wT

n+1 m+1 β̂ +

f̂(pn+1, tm+1), and approximate prediction intervals may be constructed.
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5 Simulation studies

We present some simulation studies and compare the proposed model with three
other approaches to spatio-temporal field estimation.

The first method is spatio-temporal kriging with a separable variogram
marginally gaussian in space and exponential in time, chosen among a num-
ber of possible variogram models, with parameters estimated from the empiri-
cal variogram. This method is implemented using the function krigeST of the
R package gstat [Pebesma, 2004]. We then consider two separable space-time
models presented in Augustin et al. [2013] and Marra et al. [2012]. One model
adopt a thin plate spline basis in space and a cubic spline basis in time, and
minimizes a functional analogous to (7), where the spatial penalty is replaced
by the thin plate spline energy recalled in Section 2. The other model uses
the soap film smoothing described in Wood et al. [2008] in space and a cubic
spline basis in time, and minimize the same functional in (7). The two latter
methods are implemented using the function gam of the R package mgcv [Wood,
2006]. Finally, for these two methods, as well as for the model here proposed,
the values of the smoothing parameters λS , λT are chosen via GCV.

5.1 Simulation study without covariates

We apply the methods to simulated data on a C-shaped spatial domain, consid-
ering the spatial test function g, used for instance in Ramsay [2002], Wood et al.
[2008] and Sangalli et al. [2013], that is shown in the top left panel of Figure
8. We then construct a spatio-temporal test function f in the following way:
f(p, t) = g(p) cos(t). We sample 200 spatial locations uniformly in the C-shaped
domain at 9 time instants equally spaced from 0 to π . We simulate the data
from model (1), with a gaussian noise with mean 0 and standard deviation 1.

Figure 8 shows in the first column the spatio-temporal test function at five
time instants, in the second column the simulated data, and in the follow-
ing columns the corresponding estimates obtained by spatio-temporal kriging
(KRIG), the separable space-time model using thin plate spline (TPS), the sep-
arable space-time model using soap film smoothing (SOAP), and the separable
space-time model here proposed (ST-PDE).

Figure 9 shows the boxplots of the Root Mean Square Errors (RMSE) of the
space-time field estimates given by the four methods over 50 replicates of the
noise generation. The RMSE is computed over a fine grid of the spatio-temporal
domain (step 0.05 in space and π/24 in time).

A visual inspection of the RMSE shows that SOAP and ST-PDE methods
give better estimates than KRIG and TPS. The reason for this comparative
advantage is apparent from Figure 8. In fact, the KRIG and TPS methods,
that do not take into account the shape of the domain and smooth across the
two arms of the C-shaped domain, provide poor estimates of the field when the
true f is characterized by high values in one of the two C arms and low values
in the other arm. The best estimates are provided by the ST-PDE model.
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Figure 9: Simulation study without covariates. Boxplots of the RMSE of the
estimates of the spatio-temporal field obtained by the four tested methods:
spatio-temporal kriging (KRIG), separable space-time model using thin plate
spline (TPS), separable space-time model using soap film smoothing (SOAP)
and ST-PDE.

5.2 Simulation study with covariates

Within the same simulation setting described in Section 5.1, we also perform
a study including space-time varying covariates. Specifically, for each simula-
tion replicates, independently for each data location pi and time instant tj , we
sample a covariate wij from a normal distribution, with mean 0 and variance 1.
We then generate data from model (11), setting β = 1. The other simulation
specifications are as in Section 5.1. We here compare the proposed ST-PDE
method to the separable space-time model using thin plate spline (TPS) and
separable space-time model using soap film smoothing (SOAP). We do not in-
stead consider the spatio-temporal kriging because the function krigeST of the
R package gstat cannot handle covariates.

Figure 10 shows the boxplots of the Root Mean Square Errors (RMSE) of
the space-time field estimate over the 50 simulation replicates. The RMSE is
computed over the same fine grid of the spatio-temporal domain used in Section
5.1. Likewise in the simulation study without covariates, SOAP and ST-PDE,
that account for the shape of the domain, provide better estimates than TPS,
that is instead blind to the domain structure. The best estimates are provided
by the ST-PDE model.

The RMSE of the estimates of β over the 50 replicates are instead comparable
for the three methods: 0.025 for TPS, 0.024 for both SOAP and ST-PDE. In
the first simulation replicate, the approximate 95% confidence interval for the
parameter β associated to the ST-PDE estimate is given by [0.99, 1.09].

14



Figure 10: Simulation study with covariates. Boxplots of the RMSE of the
estimates of the spatio-temporal field obtained by the three methods tested:
separable space-time model using thin plate spline (TPS), separable space-time
model using soap film smoothing (SOAP) and ST-PDE.

6 Application to the analysis of the production
of waste in Venice province

We apply the ST-PDE method to the dataset of annual amount of per capita
municipal waste produced in the Venice province.

6.1 The Venice waste dataset

Open Data Veneto1 provides the gross and per capita annual amount of munic-
ipal waste produced in each municipality of the Venice province in the period
from 1997 to 2011. We here consider for the analysis the annual yearly per
capita municipal waste, in kg per municipality resident.

Municipal waste includes that produced in houses and public areas, but does
not include special waste, i.e. industrial, agricultural, construction and demoli-
tion waste, or hazardous waste, for which there are special disposal programs.
Therefore, the data refer only to the urban area of the municipality, whilst they
do not refer to the agricultural or industrial areas in the municipality territories.
Since no data identifying the urbanized areas of the municipalities is available,
we face here two possible simplifications of the problem. We can either partition
the Venice province in the municipality territories and attribute each datum to
the whole territory of its municipality, or assign each datum to a point repre-
senting the center of the municipality. We here adopt the second simplification.
The spatial coordinates of the town centers are available online2. As mentioned
in Section 3, latitude and longitude are converted into UTM coordinate system.

In some cases there are localities which do not constitute a municipality
on their own, but are under the jurisdiction of another town. Some of these
localities are not negligible for the problem under analysis due to their tourist
relevance and their location on the domain; for this reason we add them to the

1http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-
1997-2011

2http://www.dossier.net/utilities/coordinate-geografiche/
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data. Specifically, we include the seaside town of Bibione, the eastern most
village indicated in Figure 1. This popular vacation destination falls under the
jurisdiction of the municipality of San Michele al Tagliamento, north west of
Bibione; the waste data considered for Bibione are a replicate of the data of San
Michele al Tagliamento. Moreover, we replicate the data of Venice in the islands
of Murano, Lido di Venezia and Pellestrina, because of their tourist relevance
and the particular shape of the domain.

Since intuition suggests that the production of waste is affected by tourism,
we include in the model a covariate which accounts for it. Specifically we con-
sider the number of beds in accommodation facilities (such as hotels, bed and
breakfast, guest houses, campings, etc.) divided by the number of residents.
This ratio may be as large as 7 in some tourist towns by the sea. The number
of beds in accommodation facilities is provided by Istat3, the Italian national
institute for statistics.

6.2 Analysis of Venice waste data by ST-PDE

Figure 11 shows the estimated spatio-temporal field at fixed time instants. The
estimate for the coefficient β is 30.56 meaning that one more unit in the ratio
between the number of beds in accommodation facilities and the number of re-
sidents is estimated to increase the yearly per capita production of waste by
residents by about 30kg. The estimated spatial field f shows the highest values,
across the years, in correspondence of the coastline, around the towns of Bibione,
Lido di Jesolo and Cavallino-Treporti. These higher values may be due to a type
of tourism that is not captured by the available covariate, such as daily tourists
who do not stay overnight, and vacationers who either own or rent vacation
houses. The higher values of the field are also probably due to the presence of
many seasonal workers, working in accommodation facilities, restaurants, cafés,
shops, beach resorts and other services, who are not residents of these towns.

Although Venice is one of the most visited cities in Italy, and this tourism
is active all year round, the production of per capita waste in Venice appears
to be lower than in other nearby tourist localities by the seaside. This might
be partly explained by the fact that the tourist activities in Venice are not so
highly characterized by seasonality as in the smaller seaside villages, and people
working in tourist activities in Venice are more likely to be themselves residents
of this large city.

3http://www.istat.it/it/archivio/113712
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Figure 11: Estimated spatio-temporal field for the Venice waste data (yearly
per capita production) at fixed time instants.
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Figure 12: Temporal evolution of the estimated spatio-temporal field for the
Venice waste data (yearly per capita production) at fixed spatial locations.

It is significant to notice how the estimated function does not smooth across
concave boundaries. For example, the area of the city of Quarto d’Altino and
the one around the city of Cavallino-Treporti show different ranges of values.
Indeed, even though the two towns are geographically close, they are separated
by the Venetian lagoon. This difference is evident also from the first two panels
of Figure 12, which shows the estimated spatio-temporal field at fixed localities:
Quarto d’Altino, Cavallino-Treporti, Venice and Bibione. In these plots the red
dots are obtained subtracting from the data the estimated contribution by the
covariate, i.e. β̂wij .

The temporal evolution plots in Figure 12 show the ability of the method
to capture the temporal trend of the phenomenon. The method provides good
estimates also for the municipality of Cavallino-Treporti, which presents a strong
variation of per capita waste over the year. The large increase of the per capita
waste of Cavallino-Treporti is partly explained by the fact that, during the first
years of this study, this town was under the jurisdiction of Venice, while the
data for this new municipality are available only from 2002. In particular, the
data for Cavallino-Treporti for years 1997 to 2001 are a replicate of the data of
the municipality of Venice. Nevertheless, the strong variation in the data is well
captured by the estimated function.

18



7 Model extensions

Various extensions of the proposed model are possible. Areal data can be han-
dled similarly to Azzimonti et al. [2014]. Following the approach presented in
the latter work, it is also possible to include a priori information available on
the phenomenon under study, using more complex differential regularizations
modelling the space and time behavior of the phenomenon. This also allows
to account for non-stationarities and anisotropies in space and time. Along the
same lines, a non-separable version of the model, with a unique regularization
that jointly involves space and time, could be considered. Finally, data dis-
tributed over curved domains, instead of over planar domains, could be handled
as described in Ettinger et al. [2012].

Acknowledgments: We are grateful to Alessandra Menafoglio for interesting
discussion on this work.

Appendix

A About the penalized sum of square error cri-
terion

Ideally, we would like to estimate the spatio-temporal field f(p, t) minimizing
the following penalized sum of square error criterion

J̃(f) =

n∑
i=1

m∑
j=1

(
zij − f(pi, tj)

)2
+

+ λS

∫ T2

T1

∫
Ω

(
∆f(p, t)

)2

dpdt+ λT

∫
Ω

∫ T2

T1

(∂2f(p, t)

∂t2

)2

dtdp, (14)

where the spatial and temporal penalties are applied to the function f(p, t) and
integrated, respectively, over the temporal and spatial domain.
We here show that the functional J(f) in (7) constitutes indeed the discretiza-
tion of the functional J̃(f) in (14) if the field f is represented by a separable
space-time basis expansion where both the spatial and the temporal basis sys-
tems are orthonormal.

In fact, using the basis expansion for f given in (2), we can rewrite the
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spatial penalty in (14) as follows∫ T2

T1

∫
Ω

(
∆f(p, t)

)2

dp dt =

∫ T2

T1

∫
Ω

(
∆
( M∑
k=1

ak(p)ϕk(t)
))2

dpdt

=

∫ T2

T1

∫
Ω

( M∑
k=1

∆ak(p)ϕk(t)
)2

dpdt

=

∫ T2

T1

∫
Ω

( M∑
k=1

∆ak(p)ϕk(t)
)( M∑

h=1

∆ah(p)ϕh(t)
)
dpdt

=

∫ T2

T1

∫
Ω

( M∑
k=1

M∑
h=1

∆ak(p)∆ah(p)ϕk(t)ϕh(t)
)
dpdt

=

M∑
k=1

M∑
h=1

∫
Ω

∆ak(p)∆ah(p)dp

∫ T2

T1

ϕk(t)ϕh(t)dt.

This discretization is equivalent to the one considered in (7) if the temporal

basis is orthonormal, since in this case the quantity
∫ T2

T1
ϕk(t)ϕh(t)dt is equal to

1 if k = h and 0 otherwise.
Analogously, using the basis expansion for f given in (3), we can rewrite the
temporal penalty (14) as follows∫

Ω

∫ T2

T1

(∂2f(p, t)

∂t2

)2

dtdp =

∫
Ω

∫ T2

T1

(∂2
∑N
l=1 bl(t)ψl(p)

∂t2

)2

dtdp

=

∫
Ω

∫ T2

T1

( N∑
l=1

d2bl(t)

dt2
ψl(p)

)2

dtdp

=

∫
Ω

∫ T2

T1

( N∑
l=1

d2bl(t)

dt2
ψl(p)

)( N∑
h=1

d2bh(t)

dt2
ψh(p)

)
dtdp

=

∫
Ω

∫ T2

T1

( N∑
l=1

N∑
h=1

d2bl(t)

dt2
d2bh(t)

dt2
ψl(p)ψh(p)

)
dtdp

=

N∑
l=1

N∑
h=1

∫ T2

T1

d2bl(t)

dt2
d2bh(t)

dt2
dt

∫
Ω

ψl(p)ψh(p)dp.

This discretization is equivalent to the one considered in the functional (7) if the
spatial basis is orthonormal, since in that case the quantity

∫
Ω
ψl(p)ψh(p)dpt

is equal to 1 if l = h and 0 otherwise.
In this work we use basis systems which are computationally efficient but

not orthonormal. Nevertheless, the basis systems considered are sparse, so that

the terms
∫ T2

T1
ϕk(t)ϕl(t) dt and

∫
Ω
ψl(p)ψk(p)dp are nonzero only for a few

couples of indexes (l, k).
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D. Nerini, P. Monestiez, and C. Manté. Cokriging for spatial functional data.
Journal of Multivariate Analysis, 101(2):409–418, 2010.

E. J. Pebesma. Multivariable geostatistics in S: the gstat package. Computers
& Geosciences, 30:683–691, 2004.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014. URL http:

//www.R-project.org/.

21

http://www.R-project.org/
http://www.R-project.org/


J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 2005.

T. Ramsay. Spline smoothing over difficult regions. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 64(2):307–319, 2002.

L. M. Sangalli, J. O. Ramsay, and T. O. Ramsay. Spatial spline regression mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 75(4):681–703, 2013.

J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay
triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in
Computer Science, pages 203–222. Springer-Verlag, may 1996. From the First
ACM Workshop on Applied Computational Geometry.

S. Wood. Generalized additive models: an introduction with R. CRC press,
2006.

S. N. Wood, M. V. Bravington, and S. L. Hedley. Soap film smoothing. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):
931–955, 2008.

22



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

31/2015 Pini, A.; Vantini, S.; Colombo, D.; Colosimo, B. M.; Previtali, B.
Domain-selective functional ANOVA for process analysis via signal data: the
remote monitoring in laser welding

32/2015 Agasisti,T.; Ieva, F.; Masci, C.;Paganoni, A.M.
Does class matter more than school? Evidence from a multilevel statistical
analysis on Italian junior secondary school students

33/2015 Fumagalli, A; Pasquale, L; Zonca, S.; Micheletti, S.
An upscaling procedure for fractured reservoirs with non-matching grids

30/2015 Pini, A.; Vantini, S.
Interval-wise testing for functional data

29/2015 Antonietti, P.F.; Cangiani, A.; Collis, J.; Dong, Z.; Georgoulis, E.H.; Giani, S.; Houston, P.
Review of Discontinuous Galerkin Finite Element Methods for Partial
Differential Equations on Complicated Domains

28/2015 Taffetani, M.; Ciarletta, P.
Beading instability in soft cylindrical gels with capillary energy: weakly
non-linear analysis and numerical simulations

25/2015 Del Pra, M.; Fumagalli, A.; Scotti, A.
Well posedness of fully coupled fracture/bulk Darcy flow with XFEM

27/2015 Marron, J.S.; Ramsay, J.O.; Sangalli, L.M.; Srivastava, A.
Functional Data Analysis of Amplitude and Phase Variation

26/2015 Tagliabue, A.; Dede', L.; Quarteroni, A.
Nitsche’s Method for Parabolic Partial Differential Equations with Mixed
Time Varying Boundary Conditions

24/2015 Bonaventura, L:
Local Exponential Methods: a domain decomposition approach to
exponential time integration of PDE.


	qmox34-copertina
	mox-201562211638
	qmox34-terza_di_copertina

