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Abstract

We introduce a spectral collocation method for the discretization of
the shallow water equations on a one dimensional semi-infinite domain,
employing suitably rescaled Laguerre basis functions to obtain an accurate
description of the solutions on finite regions of arbitrary size. The time
discretization is based on a semi-implicit, semi-Lagrangian approach that
allows to handle the highly inhomogeneous node distribution without loss
of efficiency. The method is first validated on standard test cases and then
applied to the implementation of absorbing open boundary conditions by
coupling the semi-infinite domain to a finite size domain on which the same
equations are discretized by standard finite volume methods. Numerical
experiments show that the proposed approach does not produce significant
spurious reflections at the interface between the finite and infinite domain,
thus providing a reliable tool for absorbing boundary conditions.
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1 Introduction

In this paper we introduce a pseudo–spectral method based on Laguerre
functions expansions for the approximation of wave propagation problems
on semi–infinite domains.

The purpose of this development is twofold. On one hand, in many en-
vironmental applications it is of interest to consider computational domains
that span over very different length scales. In climate modelling, increasing
attention has been devoted to stratospheric phenomena, see e.g. [12, 15],
which requires to extend vertically the typical computational domain of
standard climate models by a substantial amount. In an early attempt to
use Laguerre basis functions for the vertical discretization of the equations
of atmospheric flow, Francis [10] reported that they “entail a computational
penalty that more than compensates for the advantages gained by using an-
alytic vertical representation”. It is therefore of interest to assess whether,
with the theoretical and computational resources currently at our disposal,
spectral or pseudo–spectral approaches can be used to devise accurate and
efficient discretizations for domains with arbitrarily large length scales. We
do so considering as model equations the one dimensional shallow water
equations, that provide a standard model for wave propagation problems.
Regarding the numerical discretization, a semi–implicit, semi–Lagrangian
approach, see e.g. [6, 29, 33], has been chosen because of its well–known ef-
ficiency and accuracy features and because a large number of environmental
models use these time discretization techniques.

On the other hand, for computational reasons it is common to restrict
the simulation to a bounded domain of interest and to apply some kind of
open boundary condition to let waves propagate out of the computational
domain. Since conventional boundary conditions such as rigid lids or con-
stant pressure surfaces entail total reflection of wave energy, two classical
approaches to this problem, radiative boundary conditions and absorbing
(or sponge) layers, have been extensively applied in the last three decades
to atmospheric models for numerical weather prediction and climate, see
e.g. the reviews [14, 28]. In this respect, the other main goal of this work is
the use of Laguerre spectral methods for the implementation of absorbing
layer boundary conditions, by coupling discretizations on domains of finite
size to Laguerre spectral methods. If a relatively small number of nodes is
employed, an efficient approach to absorbing boundary conditions can be
achieved, that allows to account for large absorbing regions at a relatively
low computational cost. The coupling approach is based on imposing con-
tinuity of the mass fluxes at the interface between the bounded and the
unbounded domain. The same idea can be in principle extended to couple
the Laguerre spectral method to an arbitrary discretization on the bounded
domain. In this first attempt, an explicit finite volume discretization has
been considered for the finite size domain. Numerical tests show that spu-
rious reflections due to the proposed coupling approach have very small
amplitude and allow to use the proposed method, at least for environmen-
tal applications, with no substantial loss of accuracy with respect to single
domain discretizations.

The rest of the paper is organized as follows. Section 2 contains a review
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of the main results concerning polynomial approximations and interpolation
on semi–infinite domains by scaled Laguerre functions. In section 3 a spec-
tral collocation method based on scaled Laguerre functions is introduced,
in order to show that the shallow water equations can be approximated
accurately and efficiently on semi–infinite domains by extensions of semi–
implicit, semi–Lagrangian methods that are customary in many environ-
mental applications. Different numerical approaches to the approximation
of open boundary conditions are reviewed and discussed in section 4, with
special attention to absorbing boundary conditions. The semi–infinite dis-
cretization is then coupled to a finite volume discretization of the shallow
water equations on a finite size domain, as detailed in section 5. Section
6 contains the results of a number of numerical tests. A first goal of these
tests is to validate the pseudo–spectral, semi–implicit and semi–Lagrangian
discretization approach on semi–infinite domains as an independent tool.
The coupling approach is then validated, by comparison of the coupled fi-
nite volume/pseudo–spectral model results to those of reference runs of the
finite volume model on a single domain. Finally, absorbing boundary con-
ditions are validated, as implemented in the context of the coupled finite
volume/pseudo–spectral model. Numerical simulations show that a reason-
able number of spectral base functions is sufficient to reach the accuracy
necessary for practical implementations of open boundary conditions, along
with an accurate treatment of the solution behaviour at infinity. Some con-
clusions on the present work are drawn in section 7, where the perspectives
for further development of this approach are also discussed.

2 Laguerre polynomials and functions on the

half line

Laguerre polynomials and functions are a classical tool for polynomial
approximations on semi–infinite domains, see e.g. [4]. In–depth analysis
has been carried out to assess the efficiency and accuracy properties of these
systems in spectral discretizations of initial and boundary–value problems
(see [30, 35] and the review in [32]). More recently, the introduction of
scaled Laguerre polynomials and functions has enabled to approximate so-
lutions with different asymptotic behaviours [34]. We recall here the main
results for scaled Laguerre functions. A more extensive review of the results
on approximation, quadrature rules, interpolation and spectral differentia-
tion can be found in [2].

Let ωβ(x) = e−βx, β > 0, be a weight function on R
+. Scaled La-

guerre polynomials (shortly, SLPs)
{

L
(β)
n

}
n∈N

are a system of orthogonal

polynomials in L2
ωβ

(R+), that is:

∫ +∞

0

L
(β)
n (x)L (β)

m (x)ωβ(x)dx =
1

β
δnm, n,m ∈ N.

Scaled Laguerre functions (SLFs)
{

L̂
(β)

n

}
n∈N

are defined by:

L̂
(β)

n (x) = e−βx/2
L

(β)
n (x).
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SLFs are orthogonal in L2(R+), that is:

∫ +∞

0

L̂
(β)

n (x)L̂ (β)
m (x)ωβ(x)dx =

1

β
δnm, n,m ∈ N.

Since
{

L̂
(β)

n

}
n∈N

is a complete orthogonal basis of L2(R+), any function

can be expanded in series of SLFs, namely:

Su =
∞∑

k=0

ûkL̂
(β)

k , SNu =

N∑

k=0

ûkL̂
(β)

k ,

ûk = β
(
u, L̂

(β)
k

)
,

where SNu and ûk are the N–th order truncated of Su and the k–th
Fourier–Laguerre coefficient, and (·, ·) is the dot product in L2(R+). We

remark that in our case we will set β =
1

L
, where L stands for a typi-

cal length scale in the application of interest. If semi–infinite domains are
considered, one will have β ≪ 1.

Since we focus on problems on semi–infinite domains, we use Gauss–
Radau quadrature formulas (see e.g. [27, 31]), whose nodes include the
left endpoint of the domain. Referring to integrations on the half line
I = [0,+∞), the scaled Gauss–Laguerre–Radau quadrature rule based on
SLFs reads as follows:

∫ +∞

0

p(x)dx =

N∑

j=0

p
(
x
(β)
j

)
ω̂
(β)
j ∀p ∈ P̂

(β)
2N ,

where:

x
(β)
0 = 0,

{
x
(β)
j

}N

j=1
are the zeros of ∂xL

(β)
N+1(x);

ω
(β)
j =

eβx
(β)
j

β(N + 1)
[
L

(β)
N (x

(β)
j )
]2 , 0 ≤ j ≤ N ,

and:
P̂
(β)
N (I) =

{
u | u = ve−βx/2, v ∈ PN

}
,

where PN (I) is the space of polynomials of degree at most N in I. As for
the efficient computation of nodes and weights, see the discussion in [2].

Next, we define the interpolation operator Î
(β)
N : C([0,+∞)) → P̂

(β)
N by:

Î
(β)
N u(x) =

N∑

n=0

ũ(β)
n L̂

(β)
n (x) ∈ P̂

(β)
N ,

the coefficients
{
ũ
(β)
n

}N

n=0
being determined by the forward discrete trans-

form:

ũ(β)
n =

N∑

j=0

u
(
x
(β)
j

)
L̂

(β)
n

(
x
(β)
j

)
ω̂
(β)
j 0 ≤ j ≤ N.
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Results on convergence of the interpolation error can be found in [34].

The definition of Î
(β)
N u(x) given above enables also to define a discrete

derivative of u, using the analytical derivative of the interpolating polyno-
mial, that is, see [31]:

u(m) = D̂m
β u, m ≥ 1,

where:

D̂β =

[(
d̂β

)
ij

]

i,j=0,...,N

=

[(
ĥβ

)′
j

(
x
(β)
i

)]

i,j=0,...,N

, (1)

u(m) =
(
u(m)(x0), u

(m)(x1), . . . , u
(m)(xN )

)T
, u = u(0),

{
(ĥβ)j(x)

}N

j=0
being the Lagrange interpolation functions relative to the

nodes
{
x
(β)
j

}N

j=0
, defined by the interpolation conditions:

(
ĥβ

)
j
∈ P̂

(β)
N ,

(
ĥβ

)
j

(
x
(β)
i

)
= δij 0 ≤ i, j ≤ N.

Lagrange interpolation functions can be easily computed from Lagrange

interpolation polynomials relative to
{
x
(β)
j

}N

j=0
by:

(
ĥβ

)
j
(x) =

e−βx/2

e−βx
(β)
j

/2
(hβ)j (x).

In particular, the derivative reads:

(
ĥβ

)′
j

(
x
(β)
i

)
=

e−βx
(β)
i

/2

e−βx
(β)
j

/2

[(
ĥβ

)′
j

(
x
(β)
i

)
− β

2
δij

]
.

Therefore, the entries of the differentiation matrix (1) have the following
form:

(
d̂β

)
ij
=





L̂
(β)

N+1

(
x
(β)
i

)

(
x
(β)
i − x

(β)
j

)
L̂

(β)
N+1

(
x
(β)
j

) if i 6= j

0 if i = j 6= 0

−β
N + 1

2
if i = j = 0

3 A semi-implicit, semi-Lagrangian spectral

collocation method for the shallow water equa-

tions on semi-infinite domains

The shallow water equations describe waves arising from perturbations
of the free surface of a shallow layer of fluid within a constant gravitational
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field, see e.g. [6, 7]. In the spatial and temporal domain R
+ × R

+ they
read:





∂η

∂t
+

∂(Hu)

∂x
+ γη = 0 x ∈ R

+, t > 0 (2a)

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
+ γu = 0 x ∈ R

+, t > 0 (2b)

∂(Hu)

∂x
(0, t) = f(t) (2c)

η(x, 0) = η0(x) (2d)

u(x, 0) = u0(x) (2e)

together with initial conditions and, e.g., Neumann boundary conditions
on the fluid discharge at the left endpoint. Other boundary conditions
could also be considered. Above, η represents the water surface elevation
measured from the undisturbed water surface z = 0, H = zb + η the to-
tal water depth, and zb the water depth measured from the undisturbed
water surface, see figure 1. Moreover, we have already taken into account
a damping reaction term in both equations, that will be used to represent
the absorbing layer.
As for the continuity equation (2a), we discretize it with θ–method in

x

z

H = η + zb

z = η

z = −zb

0

Figure 1: Vertical section of free–surface flow.

time and spectral collocation in space. On the other hand, the advective
nonlinearity in the momentum equation (2b) is discretized by adopting a
semi–Lagrangian approach (for a review see e.g. [33]). The value of the so-
lution at time n+1 at the mesh points is expressed in terms of the solution
values at time n at those points that within a single step are transported
by the flow onto the computational mesh, i.e.:

∂u

∂t
+ u

∂u

∂x
=

Du

Dt
≈ un+1 − un

∗

∆t
,

where un
∗ = un (x∗) and x∗ denotes the foot of the characteristic, that can

be determined by numerical solution of the equation:

dx

dt
= un(x)
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backward in time with initial data equal to the mesh nodes. This equation
is solved by a simple forward Euler method combined with a substepping
approach (see e.g. [6]), while the the velocity values at the point x∗ can be
retrieved for instance by cubic interpolation, that is:

(un
∗ )i ≈





i+1∑

k=i−2

u
(
x
(β)
k

) i+1∏

j=i−2
j 6=k

x∗ − x
(β)
j

x
(β)
k − x

(β)
j

if un
i ≥ 0

i+2∑

k=i−1

u
(
x
(β)
k

) i+2∏

j=i−1
j 6=k

x∗ − x
(β)
j

x
(β)
k − x

(β)
j

if un
i < 0

The total depth variable H in the mass flux expression (2a) is treated
explicitly, which amounts to a linearization in time.

With a semi–Lagrangian discretization of the material derivative in the
momentum equation, the θ–method in time, spectral collocation in space
discretization of the system (2a–2e) is:




(
ηn+1
N − ηnN

∆t
+ θ

∂

∂x

(
Hn

Nun+1
N

)
+ (1− θ)

∂

∂x
(Hn

Nun
N ) + γηn+1

N

)(
x
(β)
j

)
= 0

(
un+1
N − (un

N )
∗

∆t
+ gθ

∂ηn+1
N

∂x
+ g(1− θ)

∂ηnN
∂x

+ γun+1
N

)(
x
(β)
j

)
= 0

∂Hn
Nun+1

N

∂x
(x

(β)
0 ) = fn+1

η0N = η0,N ∈ P̂
(β)
N

u0
N = u0,N ∈ P̂

(β)
N

the first two equations holding for any j = 1, . . . , N . As seen above, if
a function u(x) is identified by the vector containing its values in the

scaled Gauss–Laguerre-Radau collocation nodes, i.e. u =
[
u
(
x
(β)
j

)]N
j=0

,

the derivative of u(x) with respect to x is approximated by the vector ob-
tained multiplying u by the pseudo–spectral differentiation matrix, that is
u′ = D̂βu, where, dropping from now on the hat on Dβ :

(Dβ)ij =
(
ĥβ

)′
j

(
x
(β)
i

)
i, j = 0, . . . , N.

Therefore:

u′(xi) =

N∑

j=1

(ĥβ)
′
j(xi)u (xj) i = 1, . . . , N,

which can be expressed in matrix notation as û′ = (Dβ)N û, where u and
the matrix Dβ are split in the following way:

u =




u0

û


 , Dβ =




(Dβ)00 d̆β

d̂β (Dβ)N


 .
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Moreover, the boundary condition reads collocationwise as:

(dβ)
0Hn

Nun+1
N =

[
(Dβ)00

(
Hn

Nun+1
N

)
0
+ d̆β

(
Ĥ

n

N ûn+1
N

)]
= fn+1, (3)

where Ĥ
n

N = diag
{[

(Hn
N )i
]N
i=1

}
,

Hn
N =




(Hn
N )0 0 · · · 0
0
... Ĥ

n

N

0


 .

and (dβ)
0 denotes the first row of the matrix Dβ . These discrete boundary

conditions imply that:

(1 + γ0∆t)
(
ηn+1
N

)
0
= (ηnN )0 −∆t

[
θfn+1 + (1− θ)fn

]

(1 + γ0∆t)
(
un+1
N

)
0
= (un

N )0 − g∆tθ
[
(Dβ)00

(
ηn+1
N

)
0
+ d̆βη̂

n+1
N

]

−g∆t(1− θ)
[
(Dβ)00 (η

n
N )0 + d̆βη̂

n
N

]
,

where γ0 = γ(x
(β)
0 ). Furthermore, setting:

Γ = diag

{[
γ(x

(β)
i )
]N
i=1

}
, IΓ = IN +∆tΓ,

the discrete equations for the internal nodes read:





IΓ û
n+1
N = (ûn

N )∗ − g∆tθ
[
(Dβ)N η̂

n+1
N + d̂β

(
ηn+1
N

)
0

]

−g∆t (1− θ)
[
(Dβ)N η̂

n
N + d̂β (η

n
N )0

]

IΓ η̂
n+1
N = η̂

n
N − θ∆t

[
(Dβ)N Ĥn

N ûn+1
N + d̂β

(
Hn

Nun+1
N

)
0

]

− (1− θ)∆t
[
(Dβ)N Ĥn

N ûn
N + d̂β (H

n
Nun

N )0

]

(4)

where (ûn
N )

∗
=
{[

(un
N )

∗

]
i

}
i=1,...,N

.

Replacing ûn+1
N , (ηn+1

N )0 and (un+1
N )0 in the second equation one obtains,

for the elevation at the internal nodes:

IΓ η̂
n+1
N = η̂

n
N

− θ∆t

{
(Dβ)N Ĥn

NI−1
Γ

{
(ûn

N )∗ − g∆tθ (Dη)
n+1
N − g∆t (1− θ) (Dη)

n
N

}

+ d̂β
(Hn

N )0
1 + γ0∆t

{
(un

N )0 − g∆tθ (Dη)
n+1
0 − g∆t(1− θ) (Dη)

n
0

}}

− (1− θ)∆t
[
(Dβ)N Ĥn

N ûn
N + d̂β (H

n
Nun

N )0

]
,

where:

(Dη)
n
N = (Dβ)N η̂

n
N + d̂β (η

n
N )0 , (Dη)

n
0 = (Dβ)00 (η

n
N )0 + d̆βη̂

n
N .
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After further reductions, the linear system for the elevation internal nodes
reads:

{
IΓ − θ2g∆t2G

}
η̂
n+1
N =

{
IN + θ(1− θ)g∆t2G

}
η̂
n
N

− θ∆t (Dβ)N Ĥn
NI−1

Γ (ûn
N )∗ + θ2g∆t2

(
ηn+1
N

)
0
G0

− (1− θ)∆t (Dβ)N Ĥn
N ûn

N (5)

−∆t (Hn
N )0 (u

n
N )0 d̂β

(
1 + (1− θ)γ0∆t

1 + γ0∆t

)

+ θ(1− θ)g∆t2 (ηnN )0 G0,

where:

G = (Dβ)N Ĥn
NI−1

Γ (Dβ)N +
(Hn

N )0
1 + γ0∆t

d̂βd̆β ,

G0 = (Dβ)N Ĥn
NI−1

Γ d̂β +
(Hn

N )0
1 + γ0∆t

(Dβ)00 d̂β .

Replacing this expression in the equation for the velocity in (4) gives the
solution of the problem at time n+ 1.

4 Open boundary conditions

The problem of open boundary conditions arises whenever wave prop-
agation in unbounded domains has to be modeled. If there is no physical
boundary on which boundary conditions can be imposed, one must intro-
duce an artificial boundary B to encompass the finite region of interest and
separate it from the external space. However, as the artificial boundary
has no physical counterpart, it must be transparent to the passage of waves
propagating in either direction, and no spurious phenomena such as reflec-
tion of outgoing waves into the finite computational domain should occur.
Referring for example to atmospheric modelling, outgoing waves reflected
by the top boundaries can spread to the region of interest and corrupt the
numerical solution, see e.g. [23]. Therefore, an accurate analytical and
numerical design of the boundary conditions on B has to be developed.
Critical issues in this context involve stability, accuracy, efficiency and ease
of implementation of the numerical method approximating the problem in
the unbounded domain (for a review see e.g. [14]).

Early suggestions for boundary conditions at the artificial “ceiling” in
atmospheric models include setting the vertical velocity to zero at some fi-
nite height or, in a pressure coordinate, at p = 0 (infinite height). However,
both solutions entail total energy reflection or lead to ill–posed formulations
(see [28]). Thus, it is in this context that the two most popular approaches
to the problem, radiation boundary conditions and absorbing/sponge lay-

ers, have been developed. The basic idea of the radiation or characteristic
boundary conditions (see [9, 16]) is that disturbances propagate across B
as waves that can be described by a simplification of the full model dy-
namics (see also [18]). On the other hand, relaxation methods extend the
computational domain to allow disturbances to leave and penetrate into a
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limited region (the absorbing layer) where they can be damped by viscous
or reaction terms towards the external solution, see e.g. [8, 19, 20]. If the
external solution is zero, this approach amounts to introduce a damping
term in the layer (see also [17]).

The choice of the relaxation coefficient is a trade–off between the aim to
damp efficiently outgoing perturbances on one side and limited spatial res-
olution, which does not allow for high spatial variations of wave amplitude,
on the other. Various functional forms for the parameters have been tested
but, as pointed out in [24], the choice of these coefficients and the thickness
of the layer have been often directed by empirical criteria. Moreover, a
major drawback of this approach is its high computational cost, as con-
siderable effort must be put into simulation of modified equations outside
the area of interest, see [14]. Advanced versions of sponge layer formula-
tions have also been developed (see e.g. [25]), leading to perfectly matched

layers, which split variables into contributions parallel and perpendicular
to the boundary, introducing parallel and perpendicular velocity damping
coefficients.

A different approach to the problem is given by the use of infinite ele-
ments, that have been widely employed in numerical models of wave prop-
agation phenomena from scattering or radiating objects, see e.g. [1, 11].
Similar to finite element, infinite element formulations are local, but their
shape functions are chosen to mimic the asymptotic behaviour of the solu-
tion at infinity. A clear advantage of such discretizations is the sparseness
of the coefficient matrices, while stability and ill–conditioning are seen as
critical factors in determining their utility. In particular, the accuracy of an
infinite element relies on the choice of the shape functions towards infinity
and the order of approximation. On the other hand, infinite elements can
be used to discretize the whole exterior domain without truncating it, and
from the point of view of open boundaries, they can be seen as a local ab-
sorbing boundary condition. In this context, usually there is also an inner
conventional finite element mesh close to the object, the choice of the loca-
tion of the interface between the two meshes being critical to the accuracy
properties of a coupled finite/infinite elements discretization.

Our collocation formulation with scaled Laguerre functions tackles the
problem from a different perspective. While the shape functions of infinite
elements formulations are obtained by the ones of finite elements either
by mapping or by multiplication by decay functions, in our approach the
equations are directly approximated in the semi–infinite domain out of the
artificial boundary. On one hand, this method enjoys spectral accuracy,
which is helpful if an appropriate description is sought for the solution in
the semi–infinite domain. On the other hand, the use of a small number
of base functions (i.e. collocation nodes) would significantly reduce the
whole computational cost and, ultimately, yield a more efficient tool for
the treatment of open boundary conditions.
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5 Coupling finite size and semi-infinite do-

mains

We describe a classical finite–volume method for the numerical approx-
imation of the shallow water equations in a finite domain and show how
to attach to this discretization a spectral discretization on a half line, in
order to employ the obtained setting as an absorbing boundary condition.
To this end, the finite volume discretization is used as an example, being a
standard approximation technique for the shallow water equations [22], and
we remark that different methods can be employed in the finite domain.
The conservative formulation of shallow water equations reads:

∂U

∂t
+

∂F (U)

∂x
= 0, (6)

where:

U =

[
H
Hu

]
, F (U) =

[
Hu

Hu2 +
1

2
gH2

]
.

U is the vector of the conserved quantities (depth and discharge), F (U) is
the flux function.
We want to solve (6) in the spatial and temporal domain [x1, x2] × [0, T ].
We divide the interval [x1, x2] in Nx cells of uniform length ∆x, denoted
by [xi− 1

2
, xi+ 1

2
], i = 1, . . . , Nx, the centres of the cells being the points xi,

i = 1, ..., Nx.
The numerical solution is approximated by cell averages of the solution
over grid cells. These averages are then updated at each time step through
the fluxes crossing the cell boundary points xi− 1

2
, xi+ 1

2
, the interfaces.

As for the time discretization, we use a uniform mesh tn = n∆t, n =
0, . . . , T/∆t and a fully explicit method. We define Un

i , the numerical
approximation to the cell average at time tn over the i–th cell, by:

Un
i ≈ 1

∆x

∫ x
i+1

2

x
i− 1

2

U (x, tn) dx,

and the approximation to the flux at the interface xi− 1
2
by:

Fn
i− 1

2
≈ 1

∆t

∫ tn+1

tn
F
(
U
(
xi− 1

2
, t
))

dt.

Fn
i− 1

2

is the numerical flux. A finite volume method in conservation form

reads
(
see e.g. [21]

)
:

Un+1
i = Un

i − ∆t

∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
. (7)

An example is the finite volume method obtained by Lax Friedrichs’ nu-
merical flux:

Fn
i− 1

2
=

1

2

(
F
(
Un

i−1

)
+ F (Un

i )
)
− ∆x

2∆t

(
Un

i −Un
i−1

)
.
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We refer to [21] for a detailed discussion on Godunov’s method, Roe lin-
earization and its higher–order extensions with slope limiters applied to
shallow water equations.
Next, in order to use the spectral semi–infinite discretization described in
section 3 as an absorbing layer to extend the finite domain discretization,
we need a strategy to couple the two domains, that is, to connect the right
endpoint of the finite domain to the left endpoint of the semi–infinite one,
the contact point being the interface. A representation of the coupling
setting is displayed in figure 2.

x 3

2

x 1

2

xNx+ 1

2

x2x1 xNx

x
(β)
0 x

(β)
1 x

(β)
2 x

(β)
3 x

(β)
4

Figure 2: Nodes (circles) and cell interfaces (ticks) of the finite interval discretization, along
with the nodes (squares) of the semi–infinite part.

Multidomain discretizations for hyperbolic problems involve suitable con-
ditions on the fluxes or the characteristic variables at the interface between
the two domains. For a detailed discussion on the topic we refer to [5, 26].
In our case, we found that a simple condition on continuity of the mass flux
is sufficient for the interface to be transparent as waves pass through it. On
one hand, this proves to be an effective way to couple the semi–infinite dis-
cretization with a flux–based finite volume scheme; on the other hand, this
approach enables to use the semi–implicit method in the semi–infinite do-
main and does not force us to use a characteristic–based numerical scheme,
as we should have done when using a classical characteristic coupling. Re-
calling the discrete formulation (3) of the Neumann boundary condition for
the semi–infinite part:

(dβ)
0Hn

Nun+1
N =

[
(Dβ)00

(
Hn

Nun+1
N

)
0
+ d̆β

(
Ĥ

n

N ûn+1
N

)]
= fn+1,

the coupling is obtained assuming that fn+1 is computed from the values
of the bounded domain. For simplicity, to obtain this approximation we
use a first–order one–sided finite difference formula, i.e. we impose:

fn+1 =
(hu)n+1 (xNx)− (hu)n+1 (xNx−1)

∆x
, (8)

where ∆x is the finite domain uniform grid spacing. The quantities on the
right hand side of (8) result from time advancing the finite volume scheme
according to (7).
Dually, the numerical flux at the last interface of the left domain xNx+1/2

is computed taking as right states the depth and discharge values at the
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left endpoint x
(β)
0 of the the semi–infinite domain.

Therefore, the solution of the coupled scheme entails the execution of the
following algorithm:

For each tn, n = 0, . . . , T/∆t− 1:

1. Advance the finite volume scheme by (7), having computed Fn
Nx+ 1

2

assuming a right state:

Un
Nx+1 =

(
h
(
x
(β)
0

)
, h
(
x
(β)
0

)
u
(
x
(β)
0

))
.

2. Compute:

fn+1 =
(hu)n+1 (xNx)− (hu)n+1 (xNx−1)

∆x
,

and replace it in:

(dβ)
0Hn

Nun+1
N =

[
(Dβ)00

(
Hn

Nun+1
N

)
0
+ d̆β

(
Ĥ

n

N ûn+1
N

)]
= fn+1.

3. Advance the spectral collocation scheme by solving system (4).

6 Numerical tests

In the sequel we present the results obtained with the numerical schemes
described above. First, we deal with the spectral discretization, and test
the accuracy of a stand–alone spectral collocation approximation of shal-
low water equations described in section 3. Next, we validate the coupling
approach described in section 5 by matching a semi–infinite spectral dis-
cretization with a standard finite volume approximation of the shallow wa-
ter equations and compare the results with those of a full finite volume
approximation, showing that the interface is sufficiently transparent to the
the propagation of waves. These results will give motivation for the use
of the spectral semi–infinite discretization as an absorbing layer for the
approximation of open boundary conditions for waves departing from the
finite domain. In particular, we show that a reasonable number of spectral
base functions to the right of the artificial interface is sufficient to damp
the waves without reflections either at the interface or at infinity.
Given two functions uN and u defined on Ω, we denote the absolute and
relative Lp error of uN with respect to u by:

Eabs
p (uN ) = ‖u− uN‖p ∀ 1 ≤ p ≤ ∞

Erel
p (uN ) =

‖u− uN‖p
‖u‖p

∀ 1 ≤ p ≤ ∞

where:

‖u‖p =

(∫

Ω

|u|p dx
)1/p

∀ 1 ≤ p < ∞

‖u‖∞ = supx∈Ω |u(x)| .
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We also denote, for a vector u = {uj}Nj=1:

‖u‖p =


∑

j

|uj |p



1/p

∀ 1 ≤ p < ∞

‖u‖∞ = maxj (|uj |) .

Finally, we denote the global Courant number for a discretization Ij of a
spatial interval Ω by:

C = ∆tmax
j

[∣∣un
j + cnj

∣∣
∆xj

]
,

where un
j is the velocity computed by the numerical scheme at time tn in

the j–th cell, and cnj =
√
gHn

j .

6.1 Validation of the spectral collocation method

The objective of these first set of tests is to validate the use of scaled
Laguerre functions to approximate hyperbolic initial boundary–value prob-
lems. To this end, we show the results obtained with the spectral collocation
discretization of the shallow water equations in a semi–infinite domain. In
particular, for simplicity an implicit Euler time discretization is adopted.
As for the domain data, setting β = 10−3 and N = 100 internal nodes, one

has x
(β)
N = 3.77·105 m. We consider homogeneous Neumann boundary con-

dition on the discharge, i.e. expression (2c) with f = 0. As initial condition
on the free surface elevation, we consider a bell–shaped perturbation:

η0(x) = η̃ exp

[
−
(
x− x0

σ

)2
]
, (9)

that is, a Gaussian hump of amplitude η̃ centred in x = x0 with a standard
deviation σ. The initial velocity is set to zero. Specifically, the hump is
centred at x0 = 80000 m, with σ = 20000 m. We solve the shallow water
equations with the following data:

T = 15000 s, ∆t = 6 s, H̄ = 10 m, u = 0 m/s, η̃ = 0.3 m.

The corresponding global Courant number is 1.635. Figure 3 shows the
initial depth, figure 4 its evolution under the numerical scheme. The hump
splits into two crests propagating at the correct velocity c =

√
gH. When

the left crest reaches the left endpoint, it is reflected rightwards. In order
to show that the present scheme correctly reproduces the wave propagation
process, we report in figure 5 a zoom on the right–going wave, computed by
the semi–implicit semi–Lagrangian scheme (solid black line), as well as a
reference solution computed by a standard finite-volume solver (dashed red
line). Furthermore, the condition numbers of the matrix relative to system
(5) for different choices of the number of nodes are displayed in table 1,
showing that no conditioning problem arises.
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Figure 3: Initial depth for validation of spectral–collocation scheme.
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Figure 4: Evolution of an initial Gaussian depth perturbation with implicit Euler–spectral
collocation scheme, C ≈ 1.64, homogeneous Neumann boundary conditions.
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Figure 5: Detail of the comparison of the solution computed by the spectral–collocation
method (solid black) with a reference discretization (dashed red)

N 4 8 16 32 64 128 180

K2 1.008 1.03 1.1 1.39 2.53 7.03 12.88

Table 1: Condition numbers of the matrix of the system (5) for spectral–collocation approxi-
mation of shallow water equations, homogeneous Neumann boundary conditions.

Next, in order to use the semi–infinite discretization as an absorbing
layer, we consider the shallow water equations with nonzero damping coef-
ficient. In particular, we consider homogeneous Neumann boundary condi-
tions and the following damping function:

γ(x) = γD(∆γ,α,w, L0, x),

where:

γ(x) = γD(∆γ,α,w, L0, x) :=
∆γ

1 + exp

(
αL0 − x

σ

) .

For this test case:

L0 = 4 · 105 m, α = 0.7, ∆γ = 0.005, w = L0/2,

so that the damping function is centred in x = 280000 m (see figure 6).
Moreover, now T = 40000 s, ∆t = 16 s, so that C ≈ 4.88. Figure 7 shows
the results of the evolution of the initial hump; as in figure 4, the left crest
is reflected at the left endpoint, but now the right–going one is damped as
expected until all the perturbations are negligible, as can be seen by the
plot of the depth at final time.
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Figure 6: Damping coefficient for spectral–collocation scheme validation.
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Figure 7: Evolution of an initial Gaussian depth perturbation with implicit Euler–spectral
collocation scheme with damping, C ≈ 4.88, homogeneous Neumann boundary conditions.
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6.2 Validation of the coupling approach

To test the accuracy of the coupling strategy described in section 5, we
compare the coupled finite/semi–infinite discretization with a stand–alone
finite volume approximation. To this end, we consider again the initial con-
dition (9) on free surface elevation for the shallow water model, the initial
velocity being again set to zero. We compare the results of a full finite
volume approximation with the ones of the coupled finite volume/spectral
collocation approximation, considering the full finite volume scheme as the
reference solution. We recall that the finite volume approximation is per-
formed on the conservative formulation of the shallow water equations (see
above, Eqs. (6) and (7)) with Lax–Friedrichs’, Godunov–Roe or minmod
slope–limited spatial second order numerical fluxes (see e.g. [21]). As for
the spectral part, the spectral collocation scheme described in section 3 is
used for space discretization, using cubic interpolation for the reconstruc-
tion of the velocity at the foot of the characteristics in the semi–Lagrangian
method.

In this setting, the aim is to show that no spurious phenomena occur as
a wave travelling in either direction crosses the interface. Indeed, we check
that in the finite domain the relative error of the coupled discretization with
respect to the full finite volume one is small enough to validate the coupling
approach. The lack of spurious phenomena arising from the interface will
give a motivation for the use of the spectral semi–infinite discretization as
a possible alternative to standard absorbing layers.
We consider the coupled approximation described in section 5, with the
following data:

η̃ = 1 m, H0
N = 10 m, x 1

2
= 0, xNx+ 1

2
= x

(β)
0 = 10000 m,

β = 1/400, Nx = 1250, N = 180, x
(β)
N = 2.86 · 105 m,

where we recall that x 1
2
is the left endpoint of the finite domain, xNx+ 1

2
=

x
(β)
0 is the interface between the two domains, Nx is the number of cells

of the finite volume discretization of the left domain, N is the number of

nodes of the spectral semi–infinite collocation approximation, x
(β)
N is the

rightmost spectral node. The parameters must be set up so that the semi–
infinite domain grid spacing is of the same order of the finite volume grid
spacing at the interface, that is:

xNx+ 1
2
− xNx− 1

2
≈ x

(β)
1 − x

(β)
0 .

Indeed, several numerical tests (not reported here) show that if the above
condition is violated, spurious reflections are more likely to occur at the
interface, corrupting the solution in the finite domain.

Test 1

We centre the initial perturbation at x0 = 12000 m, to the right of the
interface. Figure 8 shows the initial depth for two different values of σ.
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Figure 8: Initial depth perturbations for test 1 (left) and 2 (right).
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Figure 9: Comparison of coupled (solid black) and full finite volume (dashed red) schemes’
computed depth (left) and velocity (right).

Table 2: Test 1 results, C ≈ 0.6, σ = 500 m.

θ = 1 θ = 0.6

LF GD SL–MM LF GD SL–MM

Erel

1

η 1.49E-04 1.33E-04 2.23E-04 2.62E-04 1.92E-04 1.93E-04

u 0.034 0.03 0.05 0.059 0.044 0.0044

Erel

2

η 3.19E-04 3.15E-04 4.99E-04 5.74E-04 4.22E-04 4.36E-04

u 0.027 0.026 0.04 0.0027 0.0027 0.0028

Erel
∞

η 0.0012 0.0012 0.0024 0.0021 0.0018 0.0018

u 0.029 0.027 0.051 3.93E-04 3.47E-04 3.41E-04
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Table 3: Test 1 results, C ≈ 0.6, σ = 1000 m.

θ = 1 θ = 0.6

LF GD SL–MM LF GD SL–MM

Erel

1

η 5.9E-05 5.1E-05 6.92E-05 1.09E-04 4.6E-05 2.1E-05

u 0.0067 0.0058 0.008 0.012 0.005 0.0024

Erel

2

η 1.07E-04 9.22E-05 1.41E-04 2.02E-04 8.71E-05 4.06E-05

u 0.0062 0.0053 0.008 6.47E-04 2.79E-04 1.3E-04

Erel
∞

η 2.91E-04 2.42E-04 4.54E-04 5.93E-04 2.28E-04 1.26E-04

u 0.0063 0.0051 0.01 5.55E-05 2.16E-05 1.18E-05

We apply the coupling algorithm described in section 5 until the final
time T = 400 s. The initial hump splits into two waves travelling in opposite
directions. The left crest crosses the interface and, propagating at the
correct velocity

√
gH ≈ 10 m/s, reaches at t = T the point x ≈ 8000 m,

whereas the right crest symmetrically travels the same length in the positive
direction.

The coupled configuration is compared with a full finite volume approx-
imation in a domain 20 km wide with the same initial data. Grid spacing
has been suitably chosen so that the first 10 km are covered by the same
number of nodes of the finite part of the coupled scheme, i.e. Nx = 1250 in
the first 10 km. In view of the use of the coupled discretization to simulate
open boundary conditions, we want reflections into the finite domain gen-
erated at the interface to be minimized. Table 2 shows, for σ = 500 m and
C ≈ 0.6 (T/∆t = 840) , the L1, L2 and L∞ errors on free surface elevation
and velocity in the first 10 km computed by the coupled model relative to
the same quantities computed by the full finite volume discretization, taken
as reference. We consider different choices (Lax–Friedrichs, Godunov–Roe,
minmod slope limited) of the numerical flux for the finite volume approx-
imations, with fully implicit (θ = 1) and semi–implicit (θ = 0.6) time
discretizations of the coupled scheme.

Results for the longer wavelength case (σ = 1000 m) are reported in ta-
ble 3, while figure 9 shows comparison of computed final depth and velocity
at the final time by the coupled and full finite volume schemes. For this
example, we considered C ≈ 0.9, θ = 1, σ = 1000 m and Lax–Friedrichs
flux. For all practical purposes, the solution computed by the coupled for-
mulation approximates well the one computed by the reference method.
Further tests with other values of the Courant number, leading to compa-
rable results, are reported in [2]. Relative errors are higher for the shorter
wave and for the velocity variable. Nonetheless, on the whole they are all
acceptable in an environmental modelling context, cfr. e.g. [29].

Test 2

In this second test we centre the initial perturbation η0, again with
η̃ = 1 m, at x0 = 5000 m, i.e. in the finite domain, see figure 8. We
run the coupled and the full finite volume scheme taking as final time
T = 1000 s. At this time, as c =

√
gH ≈ 10 m/s, all the waves are out
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of the finite domain, since a transmissive boundary condition is applied
at the left endpoint of the finite domain. Therefore, the elevation and
velocity variables are expected to be zero in the finite domain. The other
parameters are the same as in the previous case. This test aims to check
that no spurious waves are generated at the interface. Absolute L1, L2

and L∞ errors for C ≈ 0.3 (T/∆t = 4200) are reported in table 4 for
σ = 500 m, in table 5 for σ = 1000 m. L1 and L2 errors have been rescaled
by the domain length and its square root, respectively, to obtain average
values. Further test cases are reported in [2].

Table 4: Test 2 results, C ≈ 0.3, σ = 500 m.

θ = 1 θ = 0.6

LF GD SL–MM LF GD SL–MM

Erel

1

η 7.5E-04 9.4E-04 1.41E-03 8.95E-04 1.25E-03 1.8E-03

u 7.4E-04 9.3E-04 1.4E-03 8.8E-04 1.24E-03 1.7E-03

Erel

2

η 3.1E-03 3.9E-03 5.2E-03 3.7E-03 5.7E-03 6.5E-03

u 3E-03 3.8E-03 5.1E-03 3.7E-03 5.6E-03 6.5E-03

Erel
∞

η 0.028 0.032 0.034 0.037 0.256 0.045

u 0.028 0.032 0.033 0.037 0.257 0.045

Table 5: Test 2 results, C ≈ 0.3, σ = 1000 m.

θ = 1 θ = 0.6

LF GD SL–MM LF GD SL–MM

Erel

1

η 1.7E-05 4.7E-05 6.2E-05 2E-05 6.1E-05 8.2E-05

u 1.6E-05 4.6E-05 6.2E-05 2E-05 6.1E-05 8.1E-05

Erel

2

η 1.2E-04 3.3E-04 3.9E-04 1.5E-04 4.4E-04 5.2E-04

u 1.2E-04 3.3E-04 3.9E-04 1.5E-04 4.3E-04 5.2E-04

Erel
∞

η 0.0025 0.0053 0.0053 0.0033 0.007 0.0071

u 0.0023 0.0052 0.0053 0.0031 0.0069 0.007

6.3 Validation of the efficiency for absorbing boundary

conditions

In the previous tests we have validated the coupling strategy by showing
that the amplitude of reflected waves at the interface is small, carrying out
our analysis in the idealized situation of a high number of nodes. Our
ultimate purpose, though, is to use the coupled discretization to implement
absorbing layer–type open boundary conditions, and here we present the
numerical results obtained in this direction. In our case, the absorbing
layer is simulated by a damping reaction coefficient placed in the semi–
infinite part. Specifically, we want to show that, on one hand, reducing
the number of spectral collocation nodes the coupling strategy does not
give rise to numerical instability at the interface, on the other hand, that
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waves can be effectively damped in the semi–infinite domain in a finite
time interval towards the external solution, that we assume to be zero
both for the elevation and the velocity. To this end, we consider again a
finite domain of length 10 km and evolve through the interface an initially
motionless Gaussian elevation perturbation given by (9), with η̃ = 1 m
and H0

N ≡ 10 m. We expect both elevation and velocity to be damped
by the the relaxation term which, however, should not produce spurious
waves neither in the finite nor in the semi–infinite part. The performance
of this new absorbing layer open boundary condition is assessed in terms
of maximum values of residual elevation and velocity after the damping.

For simplicity we consider only the case of the implicit Euler method
(θ = 1), Lax–Friedrichs flux for the finite volume approximation and linear
interpolation for the computation of the characteristics in semi–Lagrangian
method. For a decreasing number of nodes, we report the maximum norm
of the elevation and velocity vector for the two wavelengths σ = 500 m and
σ = 1000 m and two central values x01 = 4000 m, x02 = 7000 m for the
initial perturbation. Furthermore, to compare results we take T = 5000 s
as a final time. In each test, the grid spacing in the semi–infinite part is
set by tuning the value of β; as above, the resulting grid spacing must be
of the same order of the finite volume grid spacing at the interface, that is:

xNx+ 1
2
− xNx− 1

2
≈ x

(β)
1 − x

(β)
0 .

We recall that the damping is modeled by the coefficient:

γ(x) = γD(∆γ,α,w, L0, x),

a sigmoid of width w centred in x = αL0 connecting the values 0 and ∆γ.

In our case we set L0 ≈ x
(β)
N , and w = L0/2. The value of α is set according

to the domain length, in order to let the damping process begin around the
point x0 = 30000 m, which, for the present test, corresponds approximately
to t = T/2.

N = 40

Setting L = 800 (β = 0.00125), we impose L0 ≈ x
(β)
N ≈ 1.15 · 105 m,

α = 0.6, Nx = 100 and T/∆t = 2000, so that C ≈ 0.3. Elevation and
absolute velocity values are reported in table 6. Residual values are small
in both cases, with better results for the shorter wavelength case. Moreover,
as expected, a stronger damping entails smaller final values, whereas the
initial position of the wave seems not to have a clear influence on the residual
elevation and velocity after the damping.
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∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 4.6E-03 5.32E-03 2.43E-03 2.73E-03

1000 7.72E-03 1.10E-02 3.51E-03 5.05E-03

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 3.39E-03 8.85E-03 1.45E-03 4.23E-03

1000 8.52E-03 1.33E-02 4.06E-03 6.15E-03

Table 6: Maximum elevation (above) and velocity (below) norm, N = 40.

N = 30

Taking again L = 800 (β = 0.00125), we have L0 ≈ x
(β)
N ≈ 8.48 · 104 m

and we take α = 0.65, T/∆t = 2000, Nx = 100, so that C ≈ 0.25. Elevation
and absolute velocity values are reported in table 7. As before, results are
better for the shorter wavelength and for a stronger damping.

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 6.02E-03 1.24E-02 4.09E-03 8.58E-03

1000 9.82E-03 1.78E-02 7.33E-03 1.3E-02

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 6.25E-03 6.56E-03 3.01E-03 3.35E-03

1000 1.04E-02 1.31E-02 4.94E-03 9.86E-03

Table 7: Maximum elevation (above) and velocity (below) norm, N = 30.

N = 20

Choosing again L = 800 (β = 0.00125), we have L0 ≈ x
(β)
N ≈ 5.47 ·

104 m, α = 0.7, and we assume T/∆t = 1200, Nx = 55, so that C ≈ 0.25.
Elevation and absolute velocity values are reported in table 8. As before,
results are better for the shorter wave and for a stronger damping, though
the coarser resolution in the last part of the semi–infinite domain makes
the damping process less effective.
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∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 3.87E-03 3.46E-03 1.38E-03 1.77E-03

1000 8.85E-03 8.08E-03 2.75E-03 4.05E-03

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 6.26E-03 1.31E-02 4.98E-03 6.66E-03

1000 9.92E-03 2.19E-02 9.02E-03 1.16E-02

Table 8: Maximum elevation (above) and velocity (below) norm, N = 20.

N = 10

In this last test, the parameters are slightly modified because of the very
coarse grid in the semi–infinite part. We take L = 700 (β = 0.00143), so

that L0 ≈ x
(β)
N ≈ 2.22 · 104 m and α = 0.7, T/∆t = 2500, Nx = 60, so that

C ≈ 0.1. Elevation and absolute velocity values are in table 9. As before,
results are better for the shorter wave and for a stronger damping.

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 2.85E-03 3.81E-03 3.48E-03 2.45E-03

1000 7.25E-03 6.16E-03 8.64E-03 4.58E-03

∆γ = 1 ∆γ = 2

x01 x02 x01 x02

σ
500 4.7E-03 1.89E-03 3.59E-03 2.16E-03

1000 1.18E-02 4.31E-03 1.05E-03 3.54E-03

Table 9: Maximum elevation (above) and velocity (below) norm, N = 10.

These results on the use of the semi–infinite discretization as an absorb-
ing layer, especially in the case of few nodes, will make possible an extensive
comparison with currently used absorbing layers, see e.g. [20, 24]. Here we
only remark that standard layers are very thin with respect to the finite
domain length, whereas our scaled approach would enable to represent a
larger semi–infinite part approximately at the same computational cost,
e.g. employing the same number of nodes.

7 Conclusions and future work

In this work we have introduced a numerical method based on Laguerre
functions expansions for the approximation of wave propagation problems
on semi–infinite domains. In particular, a semi–implicit, semi–Lagrangian
discretization has been developed for the one dimensional shallow water
equations on semi–infinite domains, along with a coupling approach based
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on imposing continuity of mass fluxes at the interface between the bounded
and unbounded domain. The semi–implicit, semi–Lagrangian approach has
been chosen because of its well known efficiency and accuracy features and
because a large number of environmental models use these time discretiza-
tion techniques. On the other hand, an explicit finite volume discretization
has been considered for the finite size domain. Furthermore, by coupling
discretizations on domains of finite size to Laguerre spectral methods em-
ploying a relatively small number of nodes, an efficient approach to absorb-
ing boundary conditions has been achieved, that allows to account for large
absorbing regions at a relatively low computational cost.

A number of numerical tests has been carried out. Firstly, the pseudo–
spectral, semi–implicit, semi–Lagrangian discretization on semi–infinite do-
mains has been validated. Moreover, we have shown that spurious reflec-
tions due to the proposed coupling approach have very small amplitude and
allow to use the method, at least for environmental applications, with no
substantial loss of accuracy with respect to single domain discretizations.
Next, absorbing boundary conditions have been validated, as implemented
in the context of the coupled finite volume/pseudo–spectral model. Numer-
ical simulations have shown that a relatively small number of Laguerre base
functions is sufficient to reach the accuracy necessary for practical imple-
mentations of open boundary conditions, along with an accurate treatment
of the solution behaviour at infinity.

The obtained results appear to confirm that this approach to absorbing
layer boundary conditions is advantageous for a number of reasons. It is
therefore of interest to consider various natural extensions of the present
work, in order to exploit the proposed technique in practical applications.

First, the semi–implicit, semi–Lagrangian pseudo–spectral method on
semi–infinite domains can be coupled to different discretizations on the
finite size domain; in particular, efficient and commonly used semi–implicit,
semi–Lagrangian techniques could be considered in the finite domain, based
on either a finite difference or finite element spatial discretization.

Next, two dimensional discretizations of the shallow water equations can
be developed, in which a semi–infinite strip is discretized using Laguerre
basis functions in the x direction and some other discretization approach
in the y direction. For example, tensor product–based multi–dimensional
polynomial spaces as in [35] could be employed, or, more simply, finite dif-
ference or finite volume discretizations could be used. This would naturally
lead to a comparison with the results in [20, 24] on two dimensional test
cases.

Finally, coupling two dimensional vertical strips to vertical slice atmo-
spheric models could be considered, see e.g. [3, 13], for the purpose of
assessing the effectiveness of this approach in the case of vertically propa-
gating gravity waves. The main target of this further development would be
the comparison of the standard absorbing layer approaches (see e.g. [17]) to
those built following the ideas proposed in this work. For these numerical
models, the extension of the necessary upper absorbing layer is known to
increase with the increase in horizontal resolution, thus leading to an extra
computational cost that can be especially high for models employing height
based coordinates, such as many high resolution numerical weather predic-
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tion models. Hence, it would be interesting to assess whether a substantial
decrease of the computational cost for these models can be achieved by
extending the techniques proposed in this work.
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absorbing layers for shallow water models. Ocean Dynamics, 60:65–79,
2010.

27



[25] I.M. Navon, B. Neta, and M. Y. Hussaini. A perfectly matched layer
approach to the linearized shallow water equations models. Monthly

Weather Review, 132(6):1369–1378, 2004.

[26] A. Quarteroni. Domain decomposition methods for systems of con-
servation laws; spectral collocation approximations. SIAM Journal on

Scientific and Statistical Computing, 11(6):1029–1052, 1990.

[27] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics.
Springer, Berlin Heidelberg, second edition, 2007.

[28] P.J. Rasch. Toward atmospheres without tops: Absorbing upper
boundary conditions for numerical models. Quarterly Journal of the

Royal Meteorological Society, 112:1195–1218, 1986.

[29] G. Rosatti, D. Cesari, and L. Bonaventura. Semi–implicit, semi–
Lagrangian modelling for environmental problems on staggered Carte-
sian grids with cut cells. Journal of Computational Physics,
204(1):353–377, 2005.

[30] J. Shen. Stable and efficient spectral methods in unbounded do-
mains using Laguerre functions. SIAM Journal on Numerical Analysis,
38:1113–1133, 2001.

[31] J. Shen and T. Tang. Spectral and high order methods with applications.
Science Press, Beijing, 2006.

[32] J. Shen and L.-L. Wang. Some recent advances on spectral methods
for unbounded domains. Communications in Computational Physics,
5:195–241, 2009.
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