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Unione Sovietica 218 bis, Torino, 10134, Italy; c Bocconi Institute for Data Science and
Analytics, Bocconi University, Via Röntgen 1, Milano, 20136, Italy

ABSTRACT
Spatio-temporal data often exhibit non-Gaussian behaviour, heteroscedasticity and
skeweness. Such data are, for example, highly prevalent in environmental and ecolog-
ical sciences. In this work, we propose a semiparametric model for space-time quan-
tile regression. The estimation functional incorporates roughness penalties based on
differential operators over both the spatial and temporal dimensions. We study the
theoretical properties of the model, proving the consistency and asymptotic nor-
mality of the associated estimators. To evaluate the effectiveness of the proposed
method, we conduct simulation studies, bench-marking it against state-of-the-art
techniques. Finally, we apply the model to analyse the space-time evolution of ni-
trogen dioxide concentration in the Lombardy region (Italy). The analyses of this
pollutant are of primarily importance for informing policies aimed at improving air
quality.

KEYWORDS
Smoothing with roughness penalties, Spatio-temporal data, Functional data
analysis

1. Introduction

In this work we focus on spatio-temporal data where the main interest is in analysing
non-standard tail behaviours, rather than mean behaviours, of the phenomenon under
study. Many real-world phenomena, especially in environmental and meteorological
sciences, involve data characterised by heteroscedasticity, skewed distributions, and
significant local variations over space and time. A key example is air pollutant concen-
tration measurements, where the dispersion is strongly influenced by human factors,
like population density and traffic, as well as geographical and climatic features, such as
altitude, geographical conformation and air circulation, leading to complex spatial dis-
tributions, characterized by strong skewness and heteroscedasticity. Figure 1 presents
an example of these data, showing Nitrogen Dioxide (NO2) concentration data, col-
lected by the Agenzia Regionale per la Protezione dell’Ambiente (ARPA), across the
Lombardy region of Italy, over three different days. The highest concentrations are
observed in the metropolitan area of Milano, followed by Brescia and its surroundings,
while the mountain regions have lower values, reflecting a complex spatial pattern.
In the study of pollutant concentrations, experts do not primarily concentrate on the
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Figure 1. Collected data at the ARPA sensors on the days 5-9-13 December 2018.

average behaviour, but rather on quantile levels, to capture extreme characteristics of
the underlying process.

In today’s literature, several approaches have been proposed to investigate quan-
tiles of complex spatio-temporal phenomena. Some of them, like the Bayesian models
proposed by Reich (2012) and Das and Ghosal (2017), assume the quantile function
to be linear with respect to the time dimension. Moreover, these methodologies em-
ploy separable space and time coefficients, without accounting for interaction terms.
These simplifying assumptions, however, might be too restrictive for more complicated
problems, such as the environmental example discussed above.

Sylvan et al. (2015) addresses scenarios involving complex space-time interactions,
but only under the assumption that data are collected on space-time lattices—implying
that observations are arranged in regularly spaced blocks, a condition rarely met in
real-world applications. Other models, like the hierarchical Bayesian approach intro-
duced by Castillo-Mateo et al. (2023), incorporate the temporal dependence through
autoregressive functions, trying to capture the intertwined temporal relationships oc-
curring at the specified quantile level.

Deb et al. (2024) introduces a nonparametric quantile model for space-time de-
pendent data, modeling the spatial dependence by directly specifying the covariance
matrix of the data generating process, which could be a limitation in scenarios where
a parametric form of the covariance is not available. Furthermore, we point out that
all these methods omit a discussion of the missing data problem. In addition to these
methods, various space-time linear regression models, such as those proposed by Au-
gustin et al. (2013) and Marra et al. (2012), can be extended to accommodate for the
quantile analysis.

In this work, we propose a semiparametric regression model tailored for the quantile
analysis of spatio-temporal data. The model belongs to the family of Spatial Regression
models with Partial Differential Equation regularisation, reviewed by Sangalli (2021).
This family of models permits to analyse complex spatial phenomena, being able to
incorporate fundamental information about the spatial domain of interest and the
physics of the phenomenon under study; see also, e.g., Sangalli et al. (2013) and
Azzimonti, Sangalli, et al. (2015). In order to study the quantiles of space-time data,
we extend the nonparametric model explored by Castiglione et al. (2025) for space-only
data, introducing two roughness penalties, that promote smoothness of the process in
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space and time. Moreover, we include a parametric term, to explore the dependence
of the variable of interest on space-time varying covariates. The proposed model can
appropriately account for missing data. This is an important modeling feature when
dealing with space-time data. Indeed, data recorded by sensors, like meteorological
and climate control units and environmental measuring stations, often exhibit missing
entries, due to malfunctioning of the device or other specific conditions.

We first study the theoretical properties of the considered model, proving existence,
consistency and asymptotic normality of the corresponding spatio-temporal semipara-
metric quantile estimators. We then illustrate by simulation studies the advantages of
the proposed model over state-of-the-art competitors. Finally, we apply the model to
the analysis of daily concentrations of NO2 across the Lombardy region.

The article is organised as follows. Section 2 introduces the proposed semiparamet-
ric model for space-time quantile regression. Section 3 presents the estimation proce-
dure. Section 4 examines the asymptotic properties of the detailed estimators. Section
5 reports three simulation studies that illustrate the performances of the presented
method. Section 6 comments on the application to the study of the NO2 concentrations
over the Lombardy region. Finally, Section 7 discusses possible future developments.

2. Mathematical framework

Let {pi}i=1,...,n be a set of n spatial locations over a bounded spatial domain D ⊂ R2,
and {tj}j=1,...,m be a set of m time points in a time interval [0, T ] ⊂ R. Let
{yij}i=1,...,n,j=1,...,m be the realisations of a real random variable Yij , measured at
the space-time location (pi, tj). Let xij be a vector of q space-time varying covari-
ates, also measured at the spatio-temporal location (pi, tj). Assume that Yij has ab-
solutely continuous distribution with unknown conditional probability density func-
tion πYij |xij ,pi,tj , cumulative distribution function ΠYij |xij ,pi,tj and quantile function
QYij |xij ,pi,tj (α) = inf{y ∈ R : ΠYij |xij ,pi,tj (y) ≥ α} for any probability level α ∈ (0, 1).

We define the following semiparametric spatio-temporal model for the α−quantile
of Yij

QYij |xij ,pi,tj (α) = x⊤
ijβα + fα(pi, tj), i = 1, ..., n, j = 1, ...,m, (1)

where fα : D × [0, T ] → R is the unknown field describing the non-linear spatio-
temporal relationship of the α-quantile function with respect to the space-time coor-
dinates (p, t), and βα ∈ Rq is the unknown vector of regression coefficients indicating
the effect of the covariates on the α-quantile of the response variable.

Since missing data are highly prevalent in spatio-temporal real-world applications,
it is crucial to carefully take them into account when modelling data. To this end, we
first define the set of indices of observed data as

O = {(i, j) : yij is observed, i = 1, ..., n, j = 1, ...,m },

and we denote by |O| its cardinality. We then propose to estimate the unknown vector
βα and field fα by minimising the following penalised functional

Jα(f,β) =
1

|O|
∑

(i,j)∈O

ρα(yij − x⊤
ijβ − f(pi, tj)) + P (f), (2)
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where the first term involves the so-called pinball loss ρα(x) := 1
2 |x| + (α − 1

2)x, a
data fidelity criterion tailored for quantile regression problems (see, e.g., Koenker and
Bassett [1978]), while the second term is a roughness penalty functional quantifying
the smoothness of the spatio-temporal field f . Here, in particular, in analogy with
the space-time linear regression models considered, e.g., by Marra et al. (2012) and
Augustin et al. (2013), we consider the penalty term

P (f) =
λD
2

∫ T

0

∫
D
(∆f)2dp dt +

λT
2

∫ T

0

∫
D

(
∂2f

∂t2

)2

dp dt, (3)

where λD > 0 and λT > 0 are two positive smoothing parameters, weighting the
penalty in space and time respectively, and ∆f is the Laplacian operator, defined as
∆f = ∂2f/dp21 + ∂2f/dp22. Note that the employment of the Laplacian operator cor-
responds to isotropic regularisation in space. However, the model could be extended
to penalty terms based on a Partial Differential Equation, encoding problem-specific
information about the underlying phenomenon, in analogy to the space-only case ex-
plored in Castiglione et al. (2025).

2.1. Functional embedding of the estimation problem

We now define the proper functional embedding space in which the problem is formu-
lated, in order to state its properties. Denote by Hd(D) the Sobolev space of order
d, i.e., the space of functions in L2(D) having d weak derivatives in L2(D), and by
∥v∥2Hd(D) its norm. Formally,

Hd(D) = {f ∈ L2(D) : Dkf ∈ L2(D), ∀|k| ≤ d},

∥v∥2Hd(D) =

∫
D
v2 +

∫
D

∑
1≤|k|≤d

|Dkv|2 =
∫
D

∑
0≤|k|≤d

|Dkv|2,

where Dkf is the k−th weak partial derivative of f . Let L2(0, T ;H2(D)) be the space
of square integrable functions from the interval [0, T ] into the Hilbert spaceH2(D), and
let L2(0, T ;L2(D)) be the analogous space where the functions take value in L2(D).
We define the functional space

V =

{
f ∈ L2(0, T ;H2(D)) :

∂2f

∂t2
∈ L2(0, T ;L2(D)),∇f · ν = 0 on ∂D × (0, T ]

}
,

where ν is the outward unit normal vector to ∂D, and the corresponding norm

∥f∥2V =

∫ ⊤

0
∥f(t)∥2H2(D)dt+

∫ ⊤

0

∥∥∥∥∂2f(t)∂t2

∥∥∥∥2
L2(D)

dt.

Note that, in the space V we are considering homogeneous Neumann boundary con-
ditions (i.e., ∇f · ν = 0 on ∂D × (0, T ]), that are the natural boundary conditions
for this kind of problems; see, e.g., Arnone, Sangalli, et al. (2023). However, different
boundary conditions could also be considered, including Dirichlet, Robin and mixed
boundary conditions; we refer to the work of Azzimonti, Sangalli, et al. (2015) for a
detailed treatment in the linear regression setting.
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2.2. Characterization of the estimation problem

We aim to find the semiparametric estimator (f̂α, β̂α) ∈ V × Rq such that

(f̂α, β̂α) = argmin
(f,β)∈V×Rq

Jα(f,β) (4)

where Jα(f,β) is the functional in equation (2). We denote by Vα the space of

solutions to the estimation problem (4), i.e., Vα = {(f̂α, β̂α) ∈ V × Rq : Jα(f̂ , β̂) =
inf(f,β)∈V×Rq Jα(f,β)}. The following proposition states the existence of a solution to
this estimation problem.

Proposition 2.1. The space Vα is a non-empty, closed, convex set.

The proof is deferred to the Appendix A.1.

In contrast with the linear and generalised linear models, discussed, e.g., in Sangalli
et al. (2013) and Wilhelm and Sangalli (2016), the proposed quantile regression model
does not posses a unique solution. See also Castiglione et al. (2025) for a discussion in
the space-only case. However, we can state the following characterisation.

Proposition 2.2. Any solution (f̂α, β̂α) ∈ Vα is a global minimiser of functional (2).

The proof is deferred to the Appendix A.1. It should be noted that, even if the
estimator (f̂α, β̂α) exists and is a global minimum, an explicit solution is not available
in closed form. We thus need to proceed via iterative numerical optimization, how
detailed in the following section.

3. Estimation procedure

3.1. Functional EM algorithm

Since the estimation problem does not admit a closed-form solution, we approximate it
by using of the Expectation-Maximisation (EM) algorithm (see, e.g., Dempster et al.
[1977]). The latter is an iterative algorithm characterised by a monotonic convergence

property ensuring that, in the limit, it converges to a solution (f̂α, β̂α) ∈ Vα. Specifi-
cally, such algorithm can be used owing to the result proved in Yu and Moyeed (2001),
which states that minimising the pinball loss function is equivalent to maximising the
likelihood of an Asymmetric Laplace model.

Let y denote the vector collecting the observed data, X the matrix collecting the

covariate vectors, z(k) = y−(1−2α)|y−Xβ
(k)
α −f

(k)
α,n| the vector of pseudo-observations,

W (k) = diag(w(k)) a working weight matrix with 1/w(k) = 2|O||y−Xβ
(k)
α − f

(k)
α,n|, and

finally fn the vector of evaluations of the spatio-temporal field f at the observed spatio-
temporal locations, i.e. fn = {f(pi, tj)}(i,j)∈O, as detailed in Section 3.2. Then, as
shown in Appendix A.3, exploiting the Gaussian-Exponential stochastic representation
of the Asymmetric Laplace likelihood, and following the EM strategy, at each iteration
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of the algorithm we minimise a functional J
(k)
α (f,β), given by

J (k)
α (f,β) =(z(k) −Xβ − fn)

⊤W (k)(z(k) −Xβ − fn) + P (f). (5)

The latter functional J
(k)
α plays the role of a local quadratic approximation of the

functional Jα(f,β) in a neighborhood of (f
(k)
α ,β

(k)
α ), namely the solution at the k-th

iteration of the algorithm.

Owing to the quadratic nature of J
(k)
α (f,β), the EM algorithm can be interpreted

as a Functional Penalised Iterative Reweighted Least Squares (FPIRLS), as discussed
in Wilhelm and Sangalli (2016) in a generalised linear setting. Specifically, at each
iteration k, the minimisation problem can be characterized via a convenient mean
variational form, alike in Arnone, Sangalli, et al. (2023), by appropriately considering
the weight matrix W and the vector of pseudo-observations z. Moreover, this charac-
terization allows to infer the method’s computational cost from the cost of the linear
regression model discussed in Arnone, De Falco, et al. (2023), as the latter constitutes
a single iteration of our iterative scheme.

It should be noted that the minimisation of functional (5), for f ∈ V and β ∈ Rq,
is an infinite-dimensional problem, that does not admit a closed form solution. In
the next section, we introduce a convenient finite-dimensional discretisation of this
estimation problem.

3.2. From an infinite to a finite-dimensional problem

To discretise the functional (5), we rely on a time-by-space tensorisation based on a
convenient space-time basis system. In particular, in the spatial dimension we con-
sider a set of N piece-wise linear polynomial basis functions defined over a regu-
lar triangulation Dτ of the domain D, named finite elements, and we indicate it by
{ψ1(p), ..., ψN (p)}. This choice is particularly convenient when the phenomenon man-
ifests a strongly localised skewed signal, or is observed on a non-convex domain, situ-
ations in which classical tensorised basis fail to obtain good approximations. For the
temporal dimension, instead, we consider a set {φ1(t), ..., φM (t)} of M cubic B-spline
basis functions over the interval [0, T ]. We highlight that the selection of N and M ,
which determine the resolution of the space-time discretisation, involves a trade-off
between accuracy and computational efficiency. The mesh must be sufficiently refined
to accurately capture local features, while avoiding excessive computational costs, as
discussed in Azzimonti, Nobile, et al. (2014).

Let Ψ = {ψh(pi)}i,h ∈ Rn×N be the matrix of evaluations of the N finite element
basis on the n spatial locations {p1, ...,pn} and Φ = {ϕk(tj)}j,k ∈ Rm×M the matrix of
evaluations of the M temporal basis on the m time instants {t1, ..., tm}. Thus, fα can

be expanded as fα(p, t) =
∑N

h=1

∑M
k=1 fhkψh(p)φk(t). Using the Kronecker product

Φ ⊗ Ψ, and the vector of coefficients fα ∈ RNM , we can write fα,n = (Φ ⊗ Ψ)fα. To
account for the missingness structure of the data, we define A as the matrix obtained
from Φ⊗Ψ where the (i+nj)-th row is removed if the datum at (pi, tj) is not available.

We can thus write the discretised version of the functional in (5) as

J (k)
α (βα, fα) = (z(k) −Xβα −Afα)

⊤W (k)(z(k) −Xβα −Afα) + f⊤α P fα, (6)

where P is the overall penalty matrix, whose expression is detailed in Appendix A.4.
Following analogous derivations as those in Arnone, Sangalli, et al. (2023), set H(k) =
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X(XTW (k)X)−1XTW and Q(k) =W (k)(I|O|−H), where I|O| is the identity matrix of

dimension |O|. It can be proved that, the estimator (f̃α, β̃α) ∈ RNM × Rq minimising
the discretised functional in (6), at each iteration of the FPIRLS algorithm, exists
unique and has closed-form solution

f̃α = T−1A⊤Q(k)z(k),

β̃α =
(
X⊤W (k)X

)−1
X⊤W (k)(z(k) −Af̃α),

(7)

where T = A⊤QA+ P .
It is worth to notice that, thanks to the monotonicity property of the EM algorithm

(see, e.g., Lange [2016]), for k large enough, the finite dimensional solution (f̃α, β̃α)

approximately reaches its steady-state at (f̂α, β̂α), the true minimum of Jα.

3.3. Modified generalised cross validation criterion

The smoothing parameters λD and λT weight the amount of regularity we impose on
the solution f̂α in the spatial and temporal dimensions, respectively. Their appropriate
choice is crucial to obtain accurate estimates and avoid overfitting issues. In the space-
only framework explored in Castiglione et al. (2025), the single smoothing parameter λ
is selected through the minimisation of an approximated Generalised Cross-Validation
(GCV) score, defined via the pinball loss function ρα. Nevertheless, such procedure
suffers of instability in more complex scenarios, like the spatio-temporal case, due to
the non-differentiability of such function and the complex interaction between space
and time. This issue is well-known in literature, indeed many works have proposed
modified expressions of the pinball loss, to regularize its non-differentiable point, and
obtain more stable results; see, e.g., Nychka et al. (1995), Shin et al. (2022) and Nortier
(2021). Specifically, we rely on the smoothed expression of the pinball loss proposed
in Fasiolo et al. (2021a), i.e.,

ρ∗α,ε(x) = (α− 1)x+ ε log(1 + exp(xε )),

where the parameter ε > 0 regulates the amount of approximation enforced on the
pinball loss, with higher values imposing a smoother approximation.
The smoothing parameters λD and λT are thus selected minimising the modified GCV
score defined as

GCV (λD, λT ) =
∑

(i,j)∈O

ρ∗α,ε(yij − x⊤
ijβ̂α − f̂α(pi, tj))

|O| − df
, (8)

where (f̂α, β̂α) are the estimates obtained from the last step of the EM algorithm, df
are the corresponding effective degrees of freedom of the model, computed as df =
q + tr(S), and S is the smoothing matrix defined as S = AT−1A⊤Q. We notice that
the GCV score in (8) implicitly depends on (λD, λT ) through the parameter estimates
and the effective degrees of freedom.
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4. Asymptotic properties

We now study the asymptotic properties of the estimators presented in (7). We here
indicate by fα ∈ V the true α-quantile field, by gα = ∆fα the laplacian of fα, and by
fα and gα the vectors of their evaluations at the knots of the basis expansion tensorised
as explained in the previous section. Moreover, we denote by βα the vector of coef-
ficients expressing the true relation between the set of covariates and the α-quantile.
Furthermore, we define the completed design matrix C = [X,A] ∈ R|O|×(q+NM). For
simplicity, we denote by cij the row of the matrix C referring to the spatio-temporal
location (pi, tj), and by aij the corresponding row of the matrix A. We define the
following NM ×NM matrices

D0,|O| = α(1− α)
1

|O|
∑

(i,j)∈O

cijc
⊤
ij , D1,|O| =

1

|O|
∑

(i,j)∈O

πijcijc
⊤
ij ,

where the weights πij = πYij |xij ,pi,tj (QYij |xij ,pi,tj (α)) for (i, j) ∈ O depend on the true

conditional distribution of Yij |xi,j ,pi, tj . Let
˜̃R1 be the (q+NM)× (q+NM) matrix

having R̃1 in the south-east block and all zeros elsewhere. Similarly, we define the

(q + NM) vectors ˜̃gα = (0q,gα)
⊤ and ˜̃hα = (0q,hα)

⊤, where hα = (Pt ⊗ R0)fα. For

the explicit definitions of R̃1,
˜̃R1 and (Pt ⊗R0), see the Appendix A.4.

We now present a set of sufficient regularity conditions that ensure the consistency
and asymptotic normality of the discretised α−quantile estimator, under the assump-
tion that the censoring mechanism is independent of the value of the field f to be
estimated.

Assumption 1. There exist two positive constants π− and π+, bounded away from 0
and ∞, such that π− < πij < π+, for any (pi, tj) ∈ O.

Assumption 2. The discretisation matrix A and the covariate matrix X are full-rank
matrices. Moreover, X is such that ||X||∞ < +∞, where we use ||X||∞ = maxk,l |xkl|.

Assumption 3. There exist two positive definite matrices D0 and D1 such that
D0,|O| → D0 and D1,|O| → D1 as |O| → ∞.

Such assumptions generalise to the semiparametric spatio-temporal setting here
tackled those considered by Castiglione et al. (2025) in the simpler nonparametric
space-only case, as well as in other discussions of the asymptotic analysis of quantile
estimators found in the literature, see, e.g., Koenker (2005). Specifically, Assumption
1 together with Assumption 2, ensures the non-singularity of the matrices D0,|O| and
D1,|O|. Finally, the existence of a non-singular limit for the matrices D0,|O| and D1,|O|
is assured by Assumption 3.

Under Assumptions 1, 2 and 3 we can now state the consistency of the finite-
dimensional α-quantile estimator. The proof is deferred to Appendix A.5.

Proposition 4.1. Let θ̂α = (β̂α, f̂α) be the α-quantile estimator. Under Assumptions

1, 2, 3 and assuming that λD
√

|O| → λD and λT
√

|O| → λT , for some finite values

λD, λT , then θ̂α is a consistent estimator for θα = (βα, fα), such that ||θ̂α − θα|| =
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Op(|O|−1/2). Moreover, under the same assumptions, the α-quantile estimator θ̂α has
the following asymptotic distribution√

|O|(θ̂α − θα)
d−→ Nq+NM (µ,Σ),

with µ = λDD
−1
1

˜̃R⊤
1
˜̃gα−λTD−1

1
˜̃hα and Σ = D−1

1 D0D
−1
1 . Moreover, if λD = o(|O|−1/2)

and λT = o(|O|−1/2) then the estimator θ̂α is asymptotically unbiased.

5. Simulation studies

In this section we discuss three simulation studies showing the performance of the pro-
posed method, named Spatio-Temporal Quantile Regression with Partial Differential
Equation regularisation (STQR-PDE). Specifically, Section 5.1 details the data gen-
eration process, Section 5.2 presents competing techniques, and Section 5.3 discusses
the results obtained.

5.1. Data generation

We consider heteroscedastic data generated according to the model

yij = x⊤
ijβ + µ(pi, tj) + ε(pi, tj), (9)

where ε(pi, tj) ∼ N(0, σ2(p, t)), for pi ∈ [0, 1] × [0, 1] and tj ∈ [0, 1]. The function
µ(p, t) is shown in the top panel of Figure 2, and its analytical expression is reported
in Appendix B, while the spatio-temporal standard deviation surface σ2(p, t) is dis-
played in the bottom panel of Figure 2, and is defined as σ(p, t) = 0.1e0.5|µ(p,t)|. The
considered nonparametric term µ(p, t) exhibits strong localised features and rapid vari-
ations, both in the space and time dimension, making it very challenging to capture
its behaviour. We consider two independent random covariates: the first with normal
distribution with mean 0 and variance 0.25; the second one with exponential distribu-
tion with mean 20. The corresponding unknown coefficients are β1 = 1 and β2 = 2.
We consider n = 100 spatial locations, randomly sampled from a [0, 1]× [0, 1] regular
grid, and an equally spaced grid of 21 sampling time points across the time interval
[0, 1]. Building on this setup, we examine three simulation scenarios. The first scenario
uses the complete dataset, while the other two incorporate missing data to assess the
robustness of our method under incomplete observations. Specifically, we implement
two censoring schemes: scheme a, which assumes missingness is independent in both
time and space, and scheme b, where missingness is dependent on both dimensions.
The latter is inherently more challenging, as it results in entire regions of the spatio-
temporal domain being unobserved. A detailed discussion of these censoring schemes
is provided in Arnone, Sangalli, et al. (2023). For both missing-data scenarios, we con-
sider a censoring proportion of p = 50%, which is substantial given the relatively small
size of the dataset. Figure 3 illustrates the spatial distribution of the data at three
selected time instants across the different simulation scenarios. On the other hand,
Figure 4 presents the temporal evolution of the data, comparing the different scenar-
ios. These visualisations clearly show as censoring scheme a results in missing values
that are randomly distributed in both space and time, whereas censoring scheme b
produces a structured pattern of missingness, leading to entire unobserved regions in
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the spatio-temporal domain. Finally, we repeat each data generation 50 times, and we
analyse three different levels of α, namely α = 10%, 50%, 90%.

t=0 t=0.5 t=1

µ
(p
,t
)

σ
(p
,t
)

Figure 2. Mean function µ(p, t) (top panel) and standard deviation function σ(p, t) (bottom panel), displayed

at three time instants.
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Figure 3. Spatial distribution of the simulated data. Each column corresponds to different time instants and
each row corresponds to different simulation scenarios.
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Figure 4. Temporal trend of the simulated data in the three different simulation scenarios. The figure shows

the temporal profiles of all spatial locations, where observations at consecutive time points are connected by
lines. Three time trends, corresponding to three random locations, are highlighted in colours.

5.2. Competing methods

We compare the proposed STQR-PDE model with alternative methods from the lit-
erature. Specifically, we consider the quantile version of the spatio-temporal model
presented in Augustin et al. (2013) and in Marra et al. (2012). Alike the proposed
STQR-PDE model, these techniques adopt a cubic B-spline basis for the discretisa-
tion in time. For the space discretisation, instead, following the discussion in Augustin
et al. (2013), we rely alternatively on the soap film smoother, proposed by Wood et al.
(2008), or on the thin plate spline basis proposed in Wahba (1990). We refer to these
two alternative techniques with the acronyms SOAP and TPS, respectively.

We also explored modified versions of these models, incorporating a location-scale
calibration term to address the heteroscedasticity of the phenomenon, as described in
Fasiolo et al. (2021a). However, these model variants did not show any improvement
over the corresponding traditional methods in this setting, and as such, we decided
to exclude them from the discussion in Section 5.3. The competing techniques are
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implemented through the R function qgam of the qgam package, developed by Fasiolo
et al. (2021b). Instead, STQR-PDE is implemented in the fdaPDE library available in
the GitHub repository (Palummo et al. [2025]). All the methods rely on the GCV pro-
cedure to properly select the smoothing parameters. Specifically, STQR-PDE employs
the modified GCV criterion discussed in Section 3.3. Unfortunately, the other methods
cited in Introduction lack publicly available code and are therefore also omitted from
this comparison study.

The competing methods are compared in terms of Root Mean Squared Error
(RMSE), computed as

RMSE(β̂i) = |β̂i − βi|, RMSE(f̂α) =

√∫ T

0

∫
D
(fα(p, t)− f̂α(p, t))2dpdt

for the parametric and the nonparametric term, respectively, where fα denotes the
nonparametric contribution of the α-quantile, and the corresponding RMSE is com-
puted numerically on a fine grid over the spatio-temporal domain. We also compute
the RMSE for the overall semiparametric α-quantile estimate, as

RMSE(Q̂α) =

√√√√ n∑
i=1

m∑
j=1

(Qα(pi, tj)− (Q̂α(pi, tj)))2

nm

over the set of spatio-temporal locations.

5.3. Results

In this section we discuss the results obtained in the three described simulation set-
tings. Figure 5 shows the nonparametric contribution of the 90%-quantile, namely
f0.90, and the corresponding estimates provided by the compared techniques, at three
time instants, in the case of complete observed data. It is worth noting that the true
f0.90 closely resembles the function µ depicted in Figure 2, as the standard devia-
tion field is a function of the mean itself. A visual inspection of the figure does not
highlight a clear best estimate. However, it is possible to notice that TPS produces
oversmoothed isolines and tends to overshoot the higher picks in the true f0.90. On
the opposite, SOAP tends to underestimate the true f0.90, as it is clear from the large
dark region in the first time instant. Figure 6 shows the temporal evolution of f0.90
in a fixed spatial location in the center of the spatial domain, and the corresponding
estimates by the competing methods, again highlighting that TPS tends to produce
higher picks, while SOAP underestimate the true f0.90.

In order to quantify the differences in performances between the methods, Figure
7 reports the RMSE obtained by TPS, SOAP and the proposed STQR-PDE, in the
three simulation data settings. The top two rows, report the RMSE of Q̂α and f̂α.
We see that STQR-PDE provides the best estimates in all the simulation scenarios
and for all the analysed quantile levels. Indeed, the proposed method always achieves
significantly lower values of RMSE, both for the overall estimate and for the estimate
of the nonparametric term alone. Moreover, the RMSE ranges across the different
simulation scenarios confirm that censoring scheme b is the most challenging, yielding
higher RMSE values for all methods. Nevertheless, performance differences between
the methods remain substantial, with results consistently favouring STQR-PDE. The
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Figure 5. Nonparametric contribution of the 90%-quantile in the setting of complete observed data. Each

column corresponds to different time instants. The first row shows the true f0.90 and the subsequent rows

the estimates f̂90 obtained by the competing methods: quantile regression based on a Thin-Plate-Spline basis
in space (TPS); quantile regression based on a Soap film basis in space (SOAP), and the proposed Spatio-

Temporal Quantile Regression with Partial Differential Equation regularisation (STQR-PDE).

bottom two rows of Figure 7 reports the RMSE of β̂1 and β̂2, indicating mostly com-
parable estimates for the parametric terms across all the simulation settings (with a
slight advantage for the TPS method for some levels, that is though associated with
the worst overall RMSE by this technique).
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6. A semiparametric space-time quantile regression model for air quality
data

In this section, we analyse the temporal evolution of the nitrogen dioxide (NO2) con-
centration across the Lombardy region, in the north of Italy, utilising the proposed
semiparametric STQR-PDE model. NO2 is a highly toxic gas, primarily driven by
human activities, such as traffic, energy production, domestic heating, and wastew-
ater management; see, e.g., Salama et al. (2022). Additionally, NO2 is a short-lived
pollutant with rapidly varying concentrations, making the analysis of temporal trends
essential to understand how pollutant levels may vary across different days, like week-
ends and public holidays, when work-related traffic diminishes, and people tend to
leave large urban areas. This analysis can reveal critical dynamics, and inform air
quality policies aimed at protecting public health, as NO2 exposure is linked to severe
respiratory issues and increased risk of premature death; see, e.g., California Air Re-
sources Board (2023).
In this study, we specifically focus on NO2 levels in Lombardy, one of the most crit-
ical regions for air quality in Italy and Europe, due to limited air circulation, dense
industrial activity, and extensive urbanisation. For example, the overpopulation in the
metropolitan area of Milan leads to poor air quality primarily driven by emissions from
traffic and domestic heating. Therefore, monitoring NO2 concentrations in Lombardy
is crucial to prevent dangerous levels of this toxic substance.

6.1. Description

In this study, we analyse NO2 data collected during the winter period 1st−23th Decem-
ber 2018, by 84 monitoring stations managed by Agenzia Regionale per la Protezione
dell’Ambiente (ARPA), across the Lombardy region. The data are available in Regione
Lombardia (Open Data, Regione Lombardia [2024]). To investigate the temporal trend
of the pollutant, and to focus on the most concerning conditions, we aggregate the
daily data at each spatial location, taking the highest measurement. Figure 1 illus-
trates these data over three days in the considered period, while Figure 8 displays the
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Figure 8. Temporal trend of the NO2 measurements in the three cities: Milano (dark yellow), Cremona (dark

cian) and Sondrio (dark purple).

temporal trend for each monitoring station. The profiles highlighted in color corre-
spond to three monitoring stations, representative of the heterogeneity of Lombardy’s
territory, namely the cities of Milano, Cremona and Sondrio: Milano is the largest
urban center, with the highest population density and traffic levels; Cremona is a key
industrial hub, hosting numerous food industries; Sondrio is a small mountain town in
the Alps, with low population density, except during holidays, and limited industrial
activity. These visualisations confirm the region’s heterogeneity, with Milano showing
the greatest variability and critical values. We also observe that missing data can occur
at different locations depending on the day, though the overall proportion of missing
values is minimal for these specific data, under 1%, resulting in a total number of 1914
observed values.

To enhance our analysis, we also consider two spatial covariates, known to affect
air pollutant concentrations: population density and altitude. Indeed, densely popu-
lated areas, such as major urban centers, often experience higher pollutant levels due
to increased emissions. We utilise population density data (in 1000 inhab/km2) from
Istituto Nazionale di Statistica, for all 1506 municipalities in Lombardy, accessible by
Geoportale Lombardia (Geoportale della Lombardia [2023]). In particular, as shown
in Figure 9, we reconstruct a smooth population density field using a mild smoothing
obtained through Spatial Regression model with Partial Differential Equation (PDE)
regularisation, implemented in fdaPDE (see, e.g., Sangalli [2021]). On the other hand,
altitude plays also an important role in explaining the spatial distribution of NO2.
Indeed flat areas, unlike mountainous regions, are more prone to air stagnation, which
generally leads to higher concentrations of air pollutants. The altitude map of Lom-
bardy, expressed in log(meters), is provided by the Digital Terrein Model (Geoportale
della Lombardia [2023]), and depicted in the right panel of Figure 9.

6.2. Exploring the NO2 concentration via STQR-PDE

We apply a semiparametric STQR-PDE model to analyse the temporal trend of NO2

concentration in the period 1st − 23th December 2018, using the population density
and the altitude as covariates. Our analysis focuses on the 99% quantile to examine
the right tail of the pollutant distribution, representing the most severe scenario for
public health. As expected, the population density gives a positive contribution to
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Figure 9. Left: population density field (in log(1000inhab/km2)), darker colors correspond to higher density.
Right: Digital Terrein Model (in log(meters)), darker colors correspond to lower altitude. Both variables are

displayed on a logarithmic scale for visualisation purposes.

NO2 concentration, with an estimated coefficient β̂population = 0.947, while the altitude

provides a beneficial effect, with a coefficient β̂altitude = −2.018.
Figures 10 and 11 display the estimated 99% quantile, over time and space. In par-

ticular, Figure 10 illustrates the temporal evolution of the estimated 99% quantile
fields, in the three municipalities of Milano, Cremona and Sondrio. The NO2 concen-
tration in Milano exhibits the highest values and variability, displaying a clear weekly
pattern. Notably, weekends (1-2, 8-9, 15-16, and 22-23 December) show lower con-
centrations, coherently with the lower work-related traffic and tendency of people to
leave the city during weekends. This effect is particularly pronounced during the days
7-8-9 December, with 7th December being a bank holiday in Milano. During these days
there is a significant decrease in the pollutant levels, that also benefits to subsequent
days. Conversely, the maximum value is reached in Milano on the working day 13th

December, with a NO2 concentration nearly reaching 200µg, which corresponds to
the hourly maximum threshold set by ARPA. The significant decrease in NO2 levels
observed both in Milano and in Cremona towards the end of the considered period
is likely linked to heavy rainfall occurred across the whole Po Valley during those
days. Moreover, we notice as our method effectively captures complex spatio-temporal
interactions, as evidenced by the three curves reflecting non-linear trends.

Figure 11 permits to explore the spatial distribution of NO2. This figure shows the
99% quantile estimate in three days: the 5th, 9th and 13th of December. The figure
also highlights the concerning situation in Milano, where pollutant concentrations are
significantly higher than in the rest of the region. Visual analysis confirms the localised
beneficial effect of the bank holiday in Milano, with a reduced peak observed on the
9th December, consistent with the previously discussed time trend analysis.

7. Discussion

In this work we have proposed an innovative semiparametric model for space-time
quantile regression. The STQR-PDE model has proven to be a useful tool for explor-
ing complex space-time phenomena, characterised by non-standard tail distributions
and local outliers, with a focus on high-order quantiles rather than the mean. The
benefits of this model are demonstrated through its application to NO2 concentration
analysis in Lombardy, where the data clearly shows a significant right-skewed distri-
bution, which is central to our investigation. The model provides valuable insights
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Figure 10. Time trend of the estimated 99% quantile in the three cities: Milano (dark yellow), Cremona

(dark cian) and Sondrio (dark purple).
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Figure 11. Estimated 99% spatial quantile surfaces of NO2, in the days 5-9-13 December (same days as in

Figure 1).

into the spatio-temporal dynamics of this issue, revealing crucial correlations between
pollutant concentration, morphological factors, and human behaviours, such as peo-
ple leaving the city during weekends or holidays. These relationships are essential in
the environmental sector, forming a foundation for policymakers to develop effective
regulations, aimed at addressing this urgent issue and enhancing the health of the
local population. Additionally, STQR-PDE exhibites competitive advantages in sim-
ulations compared to existing techniques, both with fully observed data and under
various missing data structures.

The proposed method offers several directions for future extensions. One potential
development goes towards the use of physics-informed penalties, as shown, in a linear
regression setting, by Arnone, Azzimonti, et al. (2019) and in the space-only model
of Castiglione et al. (2025). Another significant challenge in quantile regression is
the simultaneous estimation of multiple quantile levels. When each quantile level is
estimated independently, as is commonly done in standard quantile regression settings,
there is no guarantee that the resulting quantile curves will respect the monotonicity
property, potentially leading to the so-called crossing problem. This issue could be
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addressed by developing appropriate strategies to prevent the crossing problem, as
shown, for instance, by Bondell et al. (2010) and He et al. (2002) in more classical
quantile regression settings.
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8. Appendices

Appendix A. Mathematical framework

A.1. Proof of Proposition 2.1

In order to prove the existence of a solution to the estimation problem stated in eq.
4, we first define the space containing the pairs (f,β) of our interest and some related
properties.

Definition A.1. Let S be the space of pairs (f,β) such that f ∈ V and β ∈ Rq,
namely

S = {(f,β) : f ∈ V,β ∈ Rq}.

The addition and multiplication operations within the space S are defined as follows

(f1,β1) + (f2,β2) = (f1 + f2,β1 + β2), ∀f1, f2 ∈ V,β1,β2 ∈ Rq,

a(f,β) = (af, aβ), ∀f ∈ V,β ∈ Rq, a ∈ R.

Finally, we define the notion of convergence in the space S as

(fn,βn) → (f,β) in S ⇐⇒
{
fn → f in V
βn → β in Rq , ∀{(fn,βn)} ⊂ S.

Given the above definitions, we proceed relying on the characterisation reported
in Proposition 6.5.1 in Lange (2016), followed also in Castiglione et al. (2025), which
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states that any continuous convex function defined over a closed and convex domain
achieves its minimum values within the domain. Therefore, Vα is non-empty provided
that S is closed and convex and Jα is continuous and convex.

We first prove that S is closed and convex. The closedness of S follows from the
closedness of the spaces V and Rq. Specifically, V is closed owing to the vector space
structure of the space V , ensured in its turn by the vector structure of the two Sobolev
spaces appearing in its definition, plus the continuity of the differential operator B.
On the other hand, the space Rq is closed by definition. Moreover, S is also convex
holding

a(f1,β1) + (1− a)(f2,β2) = (af1, aβ1) + ((1− a)f2, (1− a)β2) =

= (af1 + (1− a)f2, aβ1 + (1− a)β2) ∈ S,

for any f1, f2 ∈ V,β1,β2 ∈ Rq, a ∈ [0, 1], where we used the convexity and vector space
properties of Rq and V , which are ensured by the vector space structure of Rq and V
and the linearity of the differential operator B. Moving to the continuity and convexity
of the functional Jα, we can observe that: ρα is continuous and convex, see, e.g. Koenker

and Bassett (1978);
∫ T
0

∫
D(∆f)

2dpdt ,
∫ T
0

∫
D(∂

2f/∂t2)2dpdt are continuous as proved
in Arnone, Azzimonti, et al. (2019). These directly prove our thesis. Thus, both the
statements hold meaning that the space Vα is not empty.

Finally we are left to prove that Vα is closed and convex. To this end, we define the
sublevel set as

Vα(τ) = {v ∈ S : Jα(v) ≤ τ} ∀τ : Vα(τ) ̸= ∅.

This set is convex since for any u, v ∈ Vα(τ) and a ∈ [0, 1] we have

Jα(au+(1−a)v) ≤ aJα(u)+(1−a)Jα(v) ≤ aτ+(1−a)τ = τ ∀u, v ∈ Vα(τ), ∀a ∈ [0, 1],

which implies au + (1 − a)v ∈ Vα(τ), where we used the convexity of the functional
Jα. Moreover, the sublevel set is also closed thanks to the continuity of the functional
Jα. Thus, the thesis follows by showing that Vα can be written as a sublevel set for a
proper level. Indeed,

Vα = {(f̂α, β̂α) : Jα(f̂α, β̂α) = inf
(f,β)∈S

Jα(f,β)} = Vα(τ
∗),

with τ∗ = Jα(f
∗,β∗) for some (f∗,β∗) ∈ S. This concludes the proof.

A.2. Proof of Proposition 2.2

With the same notation of Proof A.1, consider a pair (f̃α, β̃α) ∈ Vα, that is (f̃α, β̃α)
is a solution to Equation 4. The space of solutions can be written as

Vα = {(f̂α, β̂α) : Jα(f̂α, β̂α) = inf
(f,β)∈S

Jα(f,β)},

namely (f̃α, β̃α) is infimum for Jα. This means that (f̃α, β̃α) is a global minimizer of
Jα, which concludes the proof.
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A.3. Details on the EM algorithm

As we have anticipated in Section 3.1, in this work we rely on a functional version of
the EM algorithm in order to approximate the estimation problem stated in eq. 4 into
a sequence of simpler problems having a more tractable representation.

The derivation of the proposed EM algorithm builds upon the result proved in Yu
and Moyeed (2001), which guarantees that solving the estimation problem is equiv-
alent to maximise the penalised log-likelihood Asymmetric Laplace of the following
semiparametric model with AL error, as shown in Kotz et al. (2001)

Yij = x⊤
ijβ + f(pi, tj) + ϵij with ϵij ∼ AL(α, 0, 1), i = 1, .., n, j = 1, ..,m, (A1)

where AL(α, µ, σ) is the Asymmetric Laplace law with shape α ∈ R, location µ ∈ R
and scale σ ∈ R+ parameters. The error terms {ϵij}i,j are assumed to be independent
and identically distributed as in Arnone, Azzimonti, et al. (2019). Then, leveraging
the location-scale mixture representation of the AL law we can write

ϵij |νij ∼ N(a1νij , a
2
2νij) , νij ∼ Exp(1),

where N(·, ·) is the univariate Gaussian law and while Exp(·) is the Exponential law.
The parameters defining the Gaussian distribution are non-stochastic constants deter-
mined by the probability level α as a1 =

1−2α
α(1−α) and a2 =

2
α(1−α) . Thus, the augmented

log-likelihood of model (A1) reads as follows

lα(f, νij , yij) = −1

2
log(2a22νij)−

(yij − x⊤
ijβ − f(pi, tj)− a1νij)

2

2a22νij
− νij .

Combining such augmented representation of the Asymmetric Laplace model with
the two PDE regularisation terms in (1), we obtain the penalised completed log-
likelihood as

lα(f,β;ν,y) =

n∑
i=1

m∑
j=1

lα(f,β; νij , yij)+

− λDν

2

∫ T

0

∫
D
(∆f)2 +

λT ν

2

∫ T

0

∫
D

(
∂2f

∂t2

)2

.

(A2)

At this point, we can maximise the penalised log-likelihood (A2) via the EM algo-
rithm. Specifically, the E-step computes its expected value which can be proved to be

equal to −1/2J
(k)
α (f,β), whose definition is given in (5). Finally, the M-step consists

in the maximisation of such expected value. For more details on this functional version
of the EM algorithm we refer to Castiglione et al. (2025).

A.4. Discretisation matrices

In this section, we provide the definitions of the discretisation matrices used in Section
3.2. Let ψ be the vector collecting the N Finite Element Method (FEM) basis func-
tions, and φ the vector collecting the M temporal basis. We define the mass, stiffness
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and penalty matrices in space as

R0 =

∫
D
ψψ⊤, R1 =

∫
D
∇ψ∇ψ⊤, PS = R⊤

1 R
−1
0 R1.

For the time discretisation, instead, we set

Rt =

∫ ⊤

0
φφ⊤, PT =

∫ ⊤

0

∂2φ

∂t2
∂2φ⊤

∂t2

as the mass and penalty time matrix, respectively.
Moreover, we indicate by R̃0 and R̃1 the extensions to the spatio-temporal setting

of the mass and stiffness matrices defined as

R̃0 = Rt ⊗R0, R̃1 = Rt ⊗R1

Finally, combining the space and time dimension we define the overall penalty ma-
trix, following the work in Arnone, Sangalli, et al. (2023), as

P = λD(Rt ⊗ PS) + λT (PT ⊗R0).

A.5. Proof of Proposition 4.1

In this section we prove the consistency of the α-quantile estimator presented in Section
3.2. For the sake of simplicity we will denote by ν the cardinality of the set of observed
data, i.e. ν = |O| Let Jα(β, f) = 1/|ν|

∑
(i,j)∈O ρα(yij − x⊤

ijβ −A⊤
ijf) + λD/2Ps(f) +

λT /2Pt(f) be the finite element discretisation of the objective functional written in (2).
The discretisation of the two penalty terms can be expressed as Ps(f) = f⊤(Rt ⊗Ps)f
and Pt(f) = f⊤(Pt ⊗ R0)f following the definitions given in Arnone, Sangalli, et al.
(2023). Proceeding as done in Castiglione et al. (2025), we introduce the quantile
residual εij = yij − c⊤ijθα and the reparametrisation δ =

√
ν(θ − θα), so that we can

write the reparametrised scaled objective functional as

νJα(δ/
√
ν + θα) =

∑
(i,j)∈O

{ρα(εij − c⊤ijδ/
√
ν)− ρα(εij)}+

+
λDν

2
Ps(δ/

√
ν + θα) +

λT ν

2
Pt(δ/

√
ν + θα),

where it is worth noting that the penalty terms truly depend only on f . Once we
have introduced this reparametrisation, it is easy to show that minising Jα(·) with
respect to θ is equivalent to minimise it with respect to δ, with solution equal to
δ̂α =

√
ν(θ̂α − θα). Thus, we study the asymptotic properties of δ̂α to then discuss

the limiting behaviour of θ̂α. We first focus on the data misfit term of the functional,
denoted by Sα(δ), and we apply the decomposition used in Knight (1998), so that
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Sα(δ) = S′
α(δ) + S′′

α(δ), with

S′
α(δ) =

1

2
√
ν

∑
(i,j)∈O

[(−c⊤ijδ)(1(εij>0) − 1(εij<0)) + (1− 2α)(−c⊤ijδ)],

S′′
α(δ) =

∑
(i,j)∈O

∫ c⊤
ijδ/

√
ν

0
(1(εij≤t) − 1(εij≤0))dt.

To study the asymptotic behaviour of S′
α(δ) we can observe that 1(εij<0) and 1(εij>0)

are a sequence of independent Bernoulli random variables with parameter α and 1−α,
respectively. So, it is easy to verify that

E[S′
α(δ)] = 0, Var[S′

α(δ)] = α(1− α)
1

4ν

∑
(i,j)∈O

(c⊤ijδ)
2 =

1

4ν
δ⊤D0,νδ.

Thus, exploiting the central limit theorem we can write S′
α(δ) = δ⊤ην + op(1), with

ην ∼ Nq+NM (0, D0,ν). Moving to S′′
α(δ), we can compute its expected value and

approximate it by a second order Taylor expansion around δ = 0, obtaining

E[S′′
α(δ)] =

∑
(i,j)∈O

∫ c⊤
ijδ/

√
ν

0
(Πεij |pi,tj (t)− α)dt =

=
1

2ν

∑
(i,j)∈O

πεij |pi,tj (0)(c
⊤
ijδ)

2 +
1

ν3/2

∑
(i,j)∈O

O(|c⊤ijδ|3) =

=
1

2
δ⊤D1,νδ +O(||δ||3/

√
ν),

where, the residual term O(||δ||3/
√
ν) converges to 0, and owing to Assumption 1,

πij = πεij |pi,tj (0) is bounded for any (i, j) ∈ O. Moving to the analysis of the variance
we exploit the upper bound recalled in Castiglione et al. (2025), so that

Var[S′′
α(δ)] ≤

1√
ν

sup
(i,j)∈O

|cij |||δ||E[S′′
α(δ)] = O(ν−1/2).

Therefore, S′′
α(δ) converges in probability to its mean and it can be written as

S′′
α(δ) = δ⊤D1,νδ/2 + op(1).
We now move to the analysis of the two non-stochastic penalty terms. Since they

depend only on the nonparametric vector f , we will refer with δf to the subvector of

δ associated to f . Moreover, we define P̃s = Rt ⊗ Ps = R̃⊤
1 R̃

−1
0 R̃1, P̃t = Pt ⊗ R0 and

we recall that gα = R̃−1
0 R̃1fα. Thus, we can write the reparametrised penalty terms as

νPs(δf/
√
ν + fα) = ν{(δf/

√
ν + fα)

⊤P̃s(δf/
√
ν + fα)} = δ⊤f P̃sδf + 2

√
νδ⊤f R̃

⊤
1 gα + νf⊤α P̃sfα,

νPt(δf/
√
ν + fα) = ν{(δf/

√
ν + fα)

⊤P̃t(δf/
√
ν + fα)} = δ⊤f P̃tδf + 2

√
νδ⊤f P̃tfα + νf⊤α P̃tfα.

In order to write the above expressions in terms of the whole vector δ/
√
ν + θα, we

rely on the completed matrices ˜̃Ps,
˜̃Pt,

˜̃R1 and completed vectors ˜̃gα,
˜̃hα as defined
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in Section 4. Therefore, we can rewrite the reparametrised penalty terms as

νPs(δ/
√
ν + θα) = δ⊤ ˜̃Psδ + 2

√
νδ⊤ ˜̃R⊤

1
˜̃gα + νθ⊤

α
˜̃Psθα,

νPt(δ/
√
ν + θα) = δ⊤ ˜̃Ptδ + 2

√
νδ⊤ ˜̃hα + νθ⊤

α
˜̃Ptθα.

Putting all the terms together and for ν sufficiently large we can write the functional
as

νJα(δ
√
ν + θα) =

1

2
δ⊤D1,νδ − δ⊤ην +

λD
2

δ⊤ ˜̃Psδ + λD
√
νδ⊤ ˜̃R⊤

1
˜̃gα+

+
λT
2
δ⊤ ˜̃Ptδ + λT

√
νδ⊤˜̃lα + op(1).

Owing to Assumption 2, the matrix D1,ν is positive definite, therefore the functional

Jα(δ
√
ν + θα) is convex and admits a unique minimiser δ̂α given by

δ̂α = (D1,ν + λD
˜̃Ps + λT

˜̃Pt)
−1(ην − λD

√
ν ˜̃R⊤

1
˜̃gα − λT

√
ν ˜̃hα) + op(1).

Consequently, δ̂α has asymptotic normal distribution with the following mean and
variance

E[δ̂α] = −(D1,ν + λD
˜̃Ps + λT

˜̃Pt)
−1(λD

√
ν ˜̃R⊤

1
˜̃gα + λT

√
ν ˜̃hα) + o(1),

Var[δ̂α] = (D1,ν + λD
˜̃Ps + λT

˜̃Pt)
−1D0,ν(D1,ν + λD

˜̃Ps + λT
˜̃Pt)

−1 + o(1).

We can now derive the asymptotic bias and variance of the estimator θ̂α as Bias[θ̂α] =

E[δ̂α]/
√
ν and Var[θ̂α] = Var[δ̂α]/ν. Proceeding as done in Castiglione et al. (2025),

we approximate the bias of the estimator via a second-order Taylor expansion around
(λD, λT ) = (0, 0), obtaining

Bias[θ̂α] =− λDD
−1
1,ν

˜̃R⊤
1
˜̃gα − λTD

−1
1,ν

˜̃hα + λ2DD
−1
1,ν

˜̃PsD
−1
1,ν

˜̃R⊤
1
˜̃gα+

+ λ2TD
−1
1,ν

˜̃PtD
−1
1,ν

˜̃hα + λDλTD
−1
1,ν

˜̃PtD
−1
1,ν

˜̃R⊤
1
˜̃gα+

+O(λ3D) +O(λ3T ) +O(λ2DλT ) +O(λDλ
2
T ) + o(ν−1/2),

which is, Bias[θ̂α] = O(λD)+O(λT )+O(λDλT )+o(ν
1/2). Applying the same strategy

to the variance term we obtain

Var[θ̂α] =
1

ν
D−1

1,νD0,νD
−1
1,ν +

2λD
ν
D−1

1,ν
˜̃Ps(D

−1
1,νD0,νD

−1
1,ν) +

2λT
ν
D−1

1,ν
˜̃Pt(D

−1
1,νD0,νD

−1
1,ν)+

+O(λ2D) +O(λ2T ) +O(λDλT ) + o(ν−1),

which is, Var[θ̂α] = O(ν−1) + O(λDν
−1) + O(λT ν

−1). Relying on the expressions for
the asymptotic bias and variance just computed, and assuming that λD

√
ν → λD and

λT
√
ν → λT for some finite values λD, λT , we can write the asymptotic distribution

of the estimator θ̂α as

√
ν(θ̂α − θα)

d−→ Nq+NM (−λDD−1
1

˜̃R⊤
1
˜̃gα − λTD

−1
1

˜̃hα, D
−1
1 D0D

−1
1 ).
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Moreover, assuming that λD = o(ν−1/2) and λT = o(ν−1/2), then the estimator θ̂α

is asymptotically unbiased. Finally, in order to prove the consistency of the estimator
we analyse its Mean Squared Error (MSE), obtaining

MSE(θ̂α) = Var[θ̂α] + Bias[θ̂α]Bias[θ̂α]
⊤ =

= O(ν−1) +O(λDν
−1) +O(λT ν

−1)+

+O(λ2D) +O(λ2T ) +O(λDλT ) +O(λ2DλT ) +O(λDλ
2
T ).

Therefore, the estimator is proved to be consistent for any λD = O(ν−1/2) and λT =
O(ν−1/2), with a convergent MSE with rate equal to O(ν−1/2).

Appendix B. Simulation studies

In this section we report the analytical expressions of the smooth field µ(p, t) used in
the data generation model described in Section 5.1. The mean field is the one proposed
in Arnone, Sangalli, et al. (2023) and it is defined as:

µ(x, y, t) = sin

(
2π

(
coe(y)x cos

(
9

5tf
t− 2

)
− y sin

(
9

5tf
t− 2

)))
·

cos

(
2π

(
coe(y)x cos

(
9

5tf
t− 2 +

π

2

)
+ coe(x)y sin

(
π

2

(
9

5tf
t− 2

))))
,

where coe(x) = 1/2 sin(5πx)e−x2

+ 1.
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