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Abstract

Upscaling of geological models for reservoir simulation is an active and
important area of research. In particular, we are interested in reservoirs
where the rock matrix exhibits an intricate network of fractures, which
usually act as a preferential path to the flow. Accounting for fractures’
contribution in the simulation of a reservoir is of paramount importance.
Here, we have focused on obtaining effective parameters (e.g. transmissi-
bility) on a 3D computational grid on the reservoir scale, that account for
the presence, at a finer spatial scale, of fractures, and network of fractures.
We have, essentially, followed the idea illustrated in [24], yet this work has
some notable aspects of innovation in the way the procedure has been imple-
mented, and in its capability to consider rather general corner-point grids,
like the ones normally used in reservoir simulations in the industry, and
complex and realistic fracture networks. In particular, novel contribution
is the employment of EDFM for computing fracture-fracture and matrix-
fracture transmissibilities, with a remarkable gain in speed-up. The output
is in form of transmissibility that can be used for reservoir simulations
with software like Eclipse, Intersect, or GPRS. The results demonstrate
the effectiveness and computational efficiency of the numerical procedure,
and of the developed software, which is now ready for further testing and
industrialization.
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1 Introduction

Reservoir simulation is widely applied in the petroleum industry for the predic-
tion and management of reservoir performance. A primary input to the flow
simulator is the geological description of the reservoir, which is typically in the
form of a high resolution geocellular model containing petrophysical (e.g. poros-
ity and permeability) data [11]. Geocellular models are commonly built as geo-
statistical realizations constrained to data of different types and scales. These
models are often generated at high levels of resolution because it is well es-
tablished that fine scale features can impact reservoir performance significantly.
Since the high level of detail of the geocellular models significantly exceeds the
capabilities of standard reservoir simulators, procedures are required to coarsen
the reservoir description to scales more suitable for flow computation. Such
procedures are commonly referred to as “upscaling” or “scale up” techniques.
There are a variety of different approaches to upscaling geological models for
reservoir simulation. A key issue with any upscaling procedure is how well the
coarsened (upscaled) model replicates important aspects of the fine scale flow
behaviour, such as total injection or production rate, average pressure or satu-
ration throughout the reservoir, and breakthrough times of injected fluids.

The accurate modeling of flow through complex networks of thousands of in-
tersecting fractures in a reservoir is important for many types of problems related
to the oil industry. Considering the scientific literature, there are, however, a
large number of challenges associated with predicting the flow through fractured
systems. An example is the development of reliable and efficient mathematical
models to describe the fractures networks from their geological representation
and the flow through those networks and the rock matrix. Since the permeabil-
ity of the fractures is typically orders of magnitudes greater than that of the
rock matrix, water, oil, and gas flow preferably in networks of fractures. An
efficient and effective modeling of fluid flows in fractured media is a complex
task due to this highly heterogeneous nature of the flow processes. Naturally
fractured reservoirs have two distinct porosities, one associated with the matrix
rock and another one associated with the fractures. Even if fractured reservoirs
consist of irregular fractures, they can be represented by equivalent homoge-
neous Dual-Porosity (DP) systems [36]. The Discrete Fracture Model (DFM)
represents one of the most accurate methodologies for accurately describing flow
in fracture networks as it entails the direct numerical simulation of flow through
the fractured porous media. Using DFM, the rock matrix and fractures are rep-
resented explicitly and Darcy flow equations are solved. However, one of the
major drawbacks of this method is the high computational cost. Nevertheless,
there has been an increasing interest of the scientific community as well as of the
reservoir engineering community in DFM as a result also of the availability of
more powerful computers and more effective discretization techniques [26, 23].
Although DFMs are becoming more and more efficient, the application of these
methods at field scale is not currently realistic. Yet they are a valid tool to
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perform a numerical upscaling.
On the other hand, traditional homogenisation techniques are not suitable

for fractured systems because the spatial scales are not highly separated, and
the topology of fractures may strongly affect the apparent (upscaled) perme-
ability. A numerical upscaling technique based on the numerical solution of the
fracture network and matrix flow at a “local” fine scale is preferable. The fluid
that flows in fractures, matrix, and between matrix and fractures has different
characteristics. Moreover, fracture distribution in subsurface formations usually
displays significant variations in connectivity and size over the formation. Large
and strongly connected fractures are typically located near bedding planes and
fault zones, while small and disconnected fractures are usually located away
from those regions. The variation in fracture properties, especially fracture con-
nectivity, requires modelling different fracture zones using different numerical
treatments to achieve sufficiently accurate upscaling results. Since fracture per-
meability is extremely high in comparison with matrix permeability, a reasonable
assumption is that the flow in fractures reaches a pseudo-steady state (constant
rate of change of pressure) just after the global flow starts. Transfer functions
or shape factors ([35]), can thus be derived to couple the fluid flow in the matrix
and fractures based on the fracture characterization, and are used to propagate
the fine-scale information to the coarse-scale reservoir simulation. The assump-
tion of instantaneous pseudo-steady state is not valid if the coarse grid block is
large, or the matrix permeability is small, which is usually the case in field-scale
reservoir simulations. The authors in [18, 20] introduced a systematic upscaling
methodology that constructs a generalized DP model from fine-scale discrete
fracture characterizations. This technique, referred to as Multiple Sub-Region
(MSR) method, introduces local subregions to resolve dynamics within the ma-
trix, and provides appropriate coarse-scale parameters that describe fracture-
fracture, matrix-fracture, and matrix-matrix flow. Unlike the DP approach, in
which the number of subregions inside each coarse block is reduced to one in ad-
dition to that accounting for the fractures, the MSR approach can be viewed as a
generalization. In fact, several transmissibility terms are computed to represent
both the interaction between fracture and matrix, and the dynamic inside the
matrix, whereas, in the DP method, only one term related to fracture-fracture
(block-to-block) and one term related to fracture-matrix (within block) flow is
computed. The MSR approach provides a more realistic characterization of the
flux exchange between matrix and fractures since the construction of the sub-
regions reflects the actual fracture distribution. Moreover, with more than one
subregion in each coarse block, MSR is capable of modeling more accurately the
effects of transients inside the matrix. The upscaled properties, in particular the
transmissibility, are computed by solving locally a continuity equation for the
pressure, obtained by plugging Darcy’s law into the mass conservation equation.
Extensions of the aforementioned works are discussed in [21, 19], where addi-
tional connections between the sub-regions of the coarse cells add considered
leading to a Dual-Porosity/Dual-Permeability (DPDK) model.
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In this work, we have developed an accurate description of fracture networks
to obtain an upscaled representation of the porous medium system through the
use of a MSR technique. We have addressed the three dimensional problem di-
rectly and considered corner-point grids, typically met in reservoir simulations.
The aim was to enable the computation of flow in the upscaled grid (at reservoir
scale) by the computation of appropriate transmissibility between fracture and
matrix, among fractures, and among different matrix blocks. This has required
solving different methodological and implementation issues, which are described
in the following sections. In more detail, our original contributions are: i) a
detailed theoretical analysis of the time-dependent problem introduced in [24]
to obtain the subregions, which shows that it is equivalent to a suitable station-
ary problem; ii) the numerical evidence that the steady problem introduced in
[24] does actually yield different subregions in the case of non-highly connected
fractures and, in this case, the time-dependent problem it is preferable; iii) the
employment of EDFM to compute the fracture-fracture, matrix-fracture, and
matrix-matrix transmissibilities in every coarse cell, with a considerable saving
on the computational cost, due to the use of a Cartesian mesh built runtime.
The overall procedure has been implemented in a software, in the form of a li-
brary (MSR-UpscalingLib), and an application (MSR-Upscaling) allows to run
the simulations of all the test cases.

This paper starts with an introduction to the Darcy equations and to their
numerical discretization through a two-point finite volume scheme in Section 2.
The EDFM method is recalled in Section 3, along with the its efficient and
effective implementation. Section 4 describes the upscaling procedure and the
special features which we have devised, i.e. the multiple sub-region approach,
and the treatment of the communication between two adjacent cells. A numeri-
cal assessment of the whole procedure is provided in Section 5. In particular, we
address the comparison between the computational cost to build a constrained
Delaunay mesh and the EDFM method for a sample of fractures, the differences
for creating the sub-regions between two possible mathematical models, the as-
sessment of the upscaling procedure by increasing the number of sub-regions,
the comparison between the proposed approach and a standard software used
in oil industries. Some conclusions and an outlook for future developments are
gathered in Section 6.

2 Governing equations

Let Ω ⊂ RN , for N = 2 or 3, be the physical domain, which represents the whole
reservoir. To ease the presentation, we require that Ω be a regular domain with
Lipschitz boundary, denoted by ∂Ω with unit outward normal n∂Ω. The reservoir
is considered as a porous domain saturated by a liquid, e.g. water. We suppose
that it is possible to define in Ω the representative elementary volume (REV),
see, e.g. [4], such that the Darcy equation can be applied to describe the fluid
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flow inside the domain. We are interested in computing the steady pressure field
p in the whole domain Ω governed by the following Darcy system of equations

u+
Λ

µ
∇p = 0

∇ · u = q
in Ω

p = 0 on ∂Ω.

(1)

In the previous system, u is the Darcy velocity or the flux, q is a source/sink
term, Λ is the permeability matrix, which is a symmetric and positive definite
tensor, i.e. Λ ∈ RN×N , and µ is the viscosity of the liquid. For simplicity, we have
supposed that system (1) is supplemented with Dirichlet boundary conditions
to ensure well posedeness(see, e.g. [8] for a detailed analysis of this problem).
We have chosen a numerical scheme that requires recasting system (1) in its
primal formulation, where only the pressure field p is considered as an unknown.
Instead of considering system (1), we thus solve the following problem −∇ ·

Λ

µ
∇p = q in Ω

p = 0 on ∂Ω.
(2)

2.1 Reduced model for fractures

Several assumptions are in order. We suppose that the aperture d of the fractures
is several orders of magnitude smaller than their other characteristic sizes and
porous medium grid size. Moreover the permeability of the fractures may be
several order of magnitude different from the permeability of the surrounding
porous medium. We consider the reduced model approximation, described in
[28, 3, 10], assuming that the fractures are represented by objects of co-dimension
one: surfaces for N = 3 or lines for N = 2. For simplicity, we introduce the
governing equations by considering a single fracture γ ⊂ Ω which cuts off entirely
the reservoir and the surrounding porous medium Ωm such that γ = Ω \ Ωm.
The rock matrix can be split in two disjoint domains Ω1 and Ω2 divided by the
fracture such that Ωm = Ω1 ∪ Ω2 (see Figure 1 for an example. In this section,

n∂Ω

Ω2

Ω1

γ

n

Figure 1: Domain cut by a single fracture γ approximated as a line of co-
dimension one.

we indicate with a subscript 1 or 2 the restriction of the quantities defined in Ωm

to Ω1 and Ω2, respectively. The variables defined on the fracture γ are referred
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to as “reduced” and will be indicated with a hat ·̂. Moreover, we introduce the
tangential operators as

∇τ := (I − n⊗ n)∇ and ∇τ · := (I − n⊗ n) : ∇,

where n is the unit outward normal to γ, pointing from Ω1 to Ω2. The perme-
ability inside the fracture is assumed to be orthogonal in its intrinsic reference
system, i.e.

Λ = λn,γn⊗ n+ λτ ,γ (I − n⊗ n) in γ,

where λn,γ is the permeability across the fracture and λτ ,γ is the permeability
along the fracture. Thus, the reduced model is given by the following set of
equations 

−∇ · Λ

µ
∇p = q in Ωm

−∇τ ·
λ̂

µ̂
∇τ p̂ = q̂ + 4λγ

(
{{p}}γ − p̂

)
in γ,

(3a)

where λ̂ := dλτ ,γ is the effective tangential permeability and the average operator
is defined by {{p}}γ := (p1 + p2) /2. The previous system is coupled with the
following interface conditions between Ωm and γ

−Λ

µ
∇p1 · n = 2λγ (p1 − p̂)

−Λ

µ
∇p2 · n = 2λγ (p̂− p2)

on γ, (3b)

with λγ := λn,γ/d the effective normal permeability. To generalize system (3) to
the case of several fractures, we suppose that the reservoir Ω can be split in two
disjoint subsets: Ωf ⊂ Ω, which represents the fractures set of the reservoir, and
Ωm ⊂ Ω, which represents the rock matrix of the reservoir. Thanks to the pre-
vious assumptions, domain Ωf consists of the union of Nf , possibly intersecting,

objects of co-dimension one, each indicated by γi, such that Ωf = ∪Nfi=1γi. We
indicate by a subscript the quantities introduced previously for a single fracture.
Given a fracture γi it is still possible to define the two portions of Ωm defined on
the same and on the opposite sides of the fracture normal to γi. To couple the
problems in Ωm and in Ωf , we consider the following interface conditions (see
[2, 1] for instance), between intersecting fractures

p̂i = p̂j

− λ̂i
µ̂
∇τ i p̂i · τ i = − λ̂j

µ̂
∇τ j p̂j · τ j

on γi, γj for i 6= j, (4a)
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and the condition at each internal tip of the fractures

− λ̂i
µ̂
∇τ i p̂i · τ i = 0 for ∂γi \ ∂Ω. (4b)

For a more general type of coupling conditions between intersecting fractures, we
refer to [16, 17], while for a detailed description of the condition on the fractures
tips, see e.g. [3]. Problem (3), written for each fracture γi, coupled with (4)
represents the global set of equations that describe the pressure field inside the
whole reservoir Ω.

Remark 1. Even though, in this work, the permeability of each fracture takes
values which much larger than the permeability of the rock matrix, the proposed
model can also handle fractures that behave either like barriers or as a preferen-
tial path for the flow, or even more complex situations. However, in our case,
the porous media flow tends to focus along the fractures and inside the fractures
networks (see [6, 5] for an approximation where only the fractures networks are
considered).

2.2 Numerical approximation

To solve the problem numerically, we resort to the classical two-point finite vol-
ume scheme, see [13] for a detailed description. This is justified by its local mass
conservation property, and by the resulting M-matrix property of the stiffness
matrix. Moreover, it can be easily used to solve single as well as multi-phase
flows, and it is one of the fastest scheme available in the literature for solving
diffusive partial differential equations. We introduce the scheme for a general
grid cell, then the application to a particular problem is straightforward. For
each cell K of the computational grid, the scheme can be written as∑

σ∈EK

Fσ,K(p) =

∫
K
qdx,

where EK is the set of facets (edges in 2D and faces in 3D) σ of the cell K,
and Fσ,K is the two-point flux approximation of the diffusive operator across the
facet σ. Given two adjacent cells, K and L, sharing the facet σ, we enforce the
local conservation of mass through σ: Fσ,K(p)+Fσ,L(p) = 0. The two-point flux
scheme approximate the flux in the following way:

Fσ(p) :=
TKL
µ

(pK − pL) , (5)

where pK and pL are the pressures in the cells K and L, respectively. Since
TKL = TLK , with this definition, the conservation of mass is automatically sat-
isfied. In (5), we have introduced the transmissibility TKL between adjacent
cells, which is the main ingredient of the two-point flux approximation scheme.
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σ

xσ

K
L

xLxK
nK,σ

nL,σ

Figure 2: Some notation used to define Fσ and TKL.

The computation of the transmissibility is based on some geometrical quantities
of the two cells K and L, as well as on the permeability tensor. The transmis-
sibility can be computed through the following formula:

TKL =
TKTL
TK + TL

, (6)

where TK and TL are the so called “half transmissibilities” related to the cells
K and L, respectively. These objects, referring to the notation in Figure 2, can
be computed by

TK :=
(xK − xσ)>

‖xK − xσ‖22
ΛnK,σ |σ| , (7)

with nK,σ the unit outward normal to σ ∈ EK , xK the centre of mass of the cell
K, and xσ the centroid of the facet σ.

2.3 Virtual fracture cells

Another possible approach, commonly used in the approximation via DFM, is
based on the construction of an additional mesh consisting of virtual fracture
cells to discretize the problem in each fracture (see [15] for a detailed presenta-
tion and analysis of this approach). The advantage of this method is to avoid
the construction of the tangential operators and the imposition of the coupling
conditions of problem (3) approximating equation (2) in the whole domain Ω.
The virtual fracture cells are obtained by extrusion of fracture facets along their
normal direction by a thickness ±d/2. The global mesh is obtained by the union
of the mesh which discretizes the rock matrix and the mesh comprising the vir-
tual fracture cells (see Figure 3 as an example of the construction of virtual
fracture cells).

Remark 2. In practice, the virtual fracture cells are never constructed explicitly,
but only introduced to compute the geometric quantities required by the two-point
approximation.

Remark 3. In Appendix A, we show the equivalence, when employing the two-
point scheme, between the discrete version of (3) and (2) discretized using the
virtual fracture cells. Therefore, the implementation of the two approaches does
provide the same results.
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Figure 3: Example of the construction of virtual fracture cells.

3 Embedded discrete fracture model

To solve problem (3) as well as (2) with a two-point finite volume scheme, a
discretization of both porous medium and fractures is required. We focus our
attention on complex three-dimensional problems. A representation of the com-
putational grid with a conforming mesh that adapts to the fractures may be very
complex to generate, due to the small angles that may occur at the intersection
of two or more fractures. Moreover, this procedure could generate many very
small elements that could badly affect the numerical solution. Finally, since
the typical grids used in the commercial reservoir softwares are the so-called
corner-point grids, it is convenient to employ such kind of grid in order to easily
interface with these programs.

In order to avoid having to build a conforming mesh and to alleviate the
computational cost, we rely on the methodology first introduced by [26] and ex-
panded in [32, 31]. This method, known has Embedded Discrete Fracture Model
(EDFM), allows one to generate the fractures mesh and porous medium grid in-
dependently, thus avoiding the need for a conforming mesh and allowing one to
use corner-point grids. Fractures, which are approximated with planar quadri-

Figure 4: Example of fractures mesh generated with EDFM. It is required only
to compute the intersections between the fractures and between each fracture
with the coarse cell.

laterals, are meshed so that each corner-point cell that they intersect contains
one and only one fracture cell per fracture. Intersections between fractures are
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computed, but do not affect the meshing strategy of either fractures or corner-
point grid. They are instead used to compute transmissibilities between different
fracture cells (see Figure 4 for an example).

To each matrix cell and to each fracture cell a degree of freedom is assigned.
This means that transmissibilities between matrix and fracture cells, as well as
those between different fracture cells need be computed.

The first step towards computing all transmissibilities is to actually mesh
the fractures. This means individuating the corner point cells intersected by
each fracture, and computing the polygons resulting from the intersection of the
fracture with each cell. The vertices V of each polygon are the union of three

Figure 5: The three types of points found by intersecting a fracture, in grey,
with a corner-point cell: Vi in red, Vf in green, and Ve in blue. The resulting
fracture cell is the one with the blue edges.

sets of points: fracture vertices lying inside the element Vi, intersections between
an element face and a fracture edge Vf , and intersections between an element
edge and the fracture Ve

V = Vi ∪ Vf ∪ Ve,

(see Figure 5 for an example). The second and third set of points, Vf and Ve, can
be found by computing the intersections between a line segment, the fracture
edge or the element edge, respectively, and a bilinear surface, the element face
or the fracture. Given the parametrization of a bilinear surface of vertices a, b,
c, and d

r(u, v) = v(ub+ (1− u)a) + (1− v)(uc+ (1− u)d),

finding the intersections with a line segment

s(t) = tp+ (1− t)q,

with endpoints p and q, means solving the non-linear system

r(u, v) = s(t),

which can be solved explicitly avoiding the need for iterative methods. Lastly,
testing whether a fracture vertex lies inside a trilinear element, i.e. finding Vi,
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can be done using a ray-tracing algorithm. In particular, we can build a line
segment going from the element parametric centre to the point whose position
we want to check. We can then count the total number of intersections between
this segment and each element face, again, by finding the intersection between
a line and a bilinear surface. An odd number of intersections means that the
point is outside the element, an even number means that it is inside, as stated
by the ray casting algorithm.

To reduce the number of corner-point cells to be tested for intersections with
a specific fracture, a search structure on the corner-point grid can be used. For
this purpose, we chose an ADTree, which, given the bounding box of a fracture,
provides a possible list of cells that it intersects.

The intersections between different fracture cells, required to compute trans-
missibilities, are instead found by intersecting the edges of one fracture with
the surface of the other. Since we already know in which corner-point cell each
fracture cell falls, we can restrict the computation of intersections to those in
the same corner-point cell, thus greatly reducing the computational cost.

Remark 4. Because corner point cells are represented as trilinear elements,
their faces are bilinear surfaces. Actually, their intersections with a fracture are
therefore not linear. In order to avoid having to deal with complex geometric
objects and to be able to use simple closed-formed formulas to compute trans-
missibilities, these intersections are, however, approximated with line segments.

Once we have defined all fracture cells and found the intersections between
them, we can proceed to compute the transmissibilities. Let us denote with
AΣ the surface area of the fracture cell Σ contained in a matrix block K, with
di its aperture and with nΣ the unit normal vector to the fracture surface.
The transmissibility between a matrix cell and a fracture cell contained in it is
computed using the formula proposed in [26]:

TKΣ = A
n>ΣΛ · nΣ

dKΣ
,

where dKΣ denotes the average distance between a generic point of the fracture
cell and the fracture plane. Transmissibility between two fracture cells, Σ and
Θ, is instead computed similarly to (6):

TΣΘ =
TΣTΘ

TΣ + TΘ
. (8)

We consider now two adjacent fracture cells sharing the interface σ. However,
σ is the representation of two distinct facesi, σΘ and σΣ, with their own nor-
mals nσΘ and nσΣ , respectively. The half transmissibilities, TΣ and TΘ, are
computed locally and are given by the formula derived from the two-point flux
approximation found in [23]

TΘ =
|σΘ|λidi (xσΘ − xΘ) · nσΘ

dΘσΘ
‖xσΘ − xΘ‖2

.
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A similar formula can be provided for TΣ. In the previous formula λi, di and
xi are the permeability, aperture and centre of mass, respectivedly, of fracture
cell Θ, xσΘ is the centroid of σΘ, and dΘσΘ

is the average distance between a
generic point of Θ and σΘ, computed by

dΘσΘ
=

1

|Θ|

∫
Θ
‖xσΘ − x‖2dx.

A similar formula can be used for Σ. For fracture cells Σi belonging to different
fractures γi and intersecting each other on line segment s, the half transmissi-
bility is instead computed as

TΣi =
|s|λidi
dΣis

,

where dΣis is the average distance of a generic point of Σi to the line to which
s belongs. EDFM has multiple advantages that come in handy to make the

Figure 6: Example of complex fracture configuration meshed with EDFM: 4670
fractures immersed in a 7× 7× 60 corner-point grid.

MSR upscaling methodology as robust and fast as possible. On the one hand,
its ability to handle complex fracture geometries (see Figure 6 as an example)
allows us to handle virtually any configuration. On the other hand, its speed in
generating meshes and computing transmissibilities makes it particularly suit-
able to be used in a scenario like that of Multiple Sub-Regions upscaling, where
a multitude of problems need be solved, and where it can also help in identifying
fracture networks, i.e. all those fracture cells that are somehow connected one
to another.

4 Upscaling procedure

In the case of real applications, where thousands of fractures are considered, it
is very costly to construct a conforming mesh with a good quality to approx-
imate and solve problem (2) with the virtual fracture cells. Moreover, due to
the uncertainty in the underground, it can be necessary to perform multiple sce-
nario analyse by changing the fractures position, thus making unreasonable and
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unaffordable building a different mesh for each realization. For these reasons,
we have chosen a different strategy to solve the global problem, considering an
upscaling technique to derive effective model parameters, at a coarser scale level,
which accurately represent the fine scale model. An exhaustive presentation of
the classical upscaling techniques, both numerical and analytical, in unfractured
porous media, can be found in [11]. Nevertheless, in this work we focus our
attention on fractured reservoirs. The main idea of the numerical upscaling is to
consider a global coarse grid G which describes the upscaled reservoir and that it
is geometrically independent of the fractures Ωf . Typically, G is a corner-point
grid, which represents the different sedimentary layers of the reservoir (see Figure
7 as an example of G). The upscaling procedure computes the following upscaled

Figure 7: Example of a coarse grid in a fractured reservoir.

proprieties: the transmissibility between adjacent coarse blocks, the depth, and
the porous volume of each coarse block. However, the methods described in [11],
as many other techniques proposed in the literature, do not explicitly consider
the presence of the fractures. For this reason, we have considered the upscaling
procedure proposed in [24, 18].

To ease the presentation we recall the basic ideas of the upscaling scheme,
extended by adding a matrix-matrix connection between coarse cells.

4.1 Multiple sub-regions

In this section, we present the upscaling procedure proposed by [24]. Considering
two adjacent coarse cells of the global mesh G, the main assumption of the
scheme is that the flow across the two cells takes place only through the fractures
networks and not through the porous medium. This hypotheses is motivated by
the fracture permeability, which is several order of magnitude greater than the
permeability of the rock matrix. Moreover, we assume that the interchange of
flow between the fractures and the rock matrix is localized only inside each coarse
cell. The method of multiple sub-regions, introduced in the aforementioned work,
considers a sub-division of each coarse cell to enhance the description of the
porous medium and to obtain better results. The resulting degrees of freedom
(d.o.f.s) of the coarse model are associated with each coarse cell and represent
the pressure inside the local fractures networks and the pressure in each sub-
region of the rock matrix. Following the idea proposed in [24], the upscaled
model could be sketched with a graph, where each node represents a degree
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of freedom, and each link represents the connection, i.e. , the transmissbility,
between the degrees of freedom (see Figure 8). In the sequel, to compute the
upscaled quantities we solve local problems involving single cells, or pairs of
cells. Considering a general coarse block K ∈ G, we need to build a finer grid,
indicated byMK , composed by CK polyhedra in 3D, polygons in 2D, or briefly
cells, indicated by k, such that

K =

CK⋃
i=1

ki,

which is used to solve the local problems. In the case when two adjacent coarse
blocks K,L ∈ G are involved in the computation, we construct the fine mesh,
indicated by MKL, as the union of each sub-mesh MKL = MK ∪ML. The
interface ΓKL between K and L is then honoured by the discretization and, for
simplicity, we require that the resulting mesh be conforming. In each pair of
coarse cells it is possible to identify a set of local networks of fractures with
NKL elements. We indicate by N i

KL the mesh associated with the discretization
of the i-th local network of fractures inside the pair of cells K and L. The global
set of fractures for pair of cells is denoted by NKL. We have

NKL =

NKL⋃
i=1

N i
KL and N i

KL ∩N
j
KL = ∅ for i 6= j.

We indicate also by N i
K and NK the restriction of N i

KL and NKL to the single
coarse cell K, respectively. We indicate by EA the set of edges of the mesh A,
indicated in the subscript. Finally, given an edge σ, we denote by Mσ the set
of cells having σ as an edge.

Figure 8: The graph represents three coarse cells in which each of them contains
a system of fractures and three porous matrix sub-regions. The communication
between the coarse cells occurs only through the fractures.

4.1.1 Inter-cell upscaled transmissibility

To compute the upscaled transmissibility between two coarse blocks K,L ∈ G,
which represents the link between the coarse degrees of freedom associated with
the local fractures sets of the two cells, we solve a diffusion problem where a
pressure gradient is imposed across the boundary of the cell. In practice, we
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Figure 9: Schematic example of the local problem used to compute the upscaled
fracture-fracture transmissibility through the interface of the coarse cells. The
interface between the coarse cells is depicted in blue.

solve the system of equations (2), by the virtual fracture cells approach, with
boundary conditions defined as in Figure 9. The upscaling procedure is based on
the formula (5), where averaged and global quantities are considered. Once the
numerical solution is computed, it is possible to calculate the average pressure on
each coarse cell and the flux across the coarse cells interface. The number of local
networks of fractures which actually cross the interface ΓKL is indicated by NΓ

KL.
We sort the local networks of fractures such that, for a given j = 1, . . . , NΓ

KL,

we have N j
KL = N j

K ∪N
j
L. For each local network of fractures of the coarse cell

K the averaged pressure pjK is computed by

pjK =

∑
k∈N jK

|k| pk∑
k∈N jK

|k|
for j = 1, . . . , NΓ

KL,

and analogously fo L. It is important to remark that only the fracture cells are
involved in the computation of pjK and pjL. The total flux, indicated by F jKL,

through each fractures network N j
KL across the interface between the two cells

is computed by

F jKL(p) =
∑
σ∈EjΓ

Tkl (pk − pl) for j = 1, . . . , NΓ
KL,

where EjΓ := EN jK ∩EN jL is the set of the interface edges. In the previous formula,

we have assumed that, given N j
KL = N j

K ∪ N
j
L, every fine cell k ∈ Mσ belongs

to N j
K and every cell l ∈Mσ belongs to L. Finally, the upscaled transmissibility

between K and L can be computed considering

TKL = µ

NΓ
KL∑
j=1

∣∣∣∣∣ F jKL(p)

pjK − p
j
L

∣∣∣∣∣ .
This case is represented by the graph in Figure 10.

4.1.2 Intra-cell uspcaled transmissibility

Once the upscaled transmissibility is computed for each pair of cells in the coarse
grid, the multiple sub-regions subdivides each single coarse cell K ∈ G into

15



Figure 10: Graph that represents the connections between the coarse cells. Each
node represents the system of fracture inside the coarse cell, while each link
between the nodes represents the connection, i.e. the transmissibility.

several parts and computes the upscaled transmissibility between the degrees
of freedom associated with the fractures set of the cell and the first sub-region,
as well as the transmissibilities between a sub-region and the subsequent one.
To divide the coarse cell, the authors of [24] propose two different strategies,
claiming that they provide equivalent results. However, this is true only if the
fractures set, local to the coarse cell, is connected (see the numerical experiments
reported in Subsection 5.2). The first strategy considers the compressible single-
phase flow equation for the generic coarse cell K ∈ G

φc
∂p

∂t
−∇ · Λ

µ
∇p = qf in K for t > 0

−Λ

µ
∇p · nK = 0 on ∂K for t > 0

p = 0 in K for t = 0,

(9)

where φ is the porosity, c the compressibility and qf is a piecewise constant source
term strictly positive inside the fractures and zero elsewhere (see Figure 11 for
a representation of the problem). This equation is solved until a pseudo-steady
state is reached, i.e. until the following condition is fulfilled

∂p

∂t
= c1 = const.

Finding the pseudo-steady state of problem (9) is equivalent to finding the so-
lution of a suitable stationary problem, as detailed in Appendix B. Moreover,
problem (9), is weakly coercive and the numerical errors accumulated during the
temporal loop may alter the computed solution. In the following tests, we will
consider only the stationary formulation of problem (9). To numerically solve
problem (9), we consider again a fine mesh MK built from K, and we use the
two-point flux approximation to compute the numerical solution. We consider
SK sub-regions for the coarse cell K ∈ G. The last sub-region is related to the
fractures set. The other SK −1 are defined through the iso-pressure contours on
the fine gridMK . Thanks to the characteristics of problem (9), each sub-region
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is linked between the previous and the subsequent one. Once the sub-regions
are defined, it is possible to compute the transmissibility between each pair of
sub-regions considering a proper generalization of formula (5). We indicate by
Mi

K the cells of the fine mesh MK related to the sub-region i and by E iK the
edges related toMi

K . We consider also the set of edges between two sub-regions

as E i,i+1
K = E iK ∩ E

i+1
K . Finally, we set MSK

K = NK and ESK−1,SK
K = NK . We

compute the mean pressure for each sub-region i as

piK =

∑
k∈Mi

K
|k| pk∑

k∈Mi
K
|k|

for i = 1, . . . , SK ,

as well as the flux between the sub-regions i and i+ 1 as

F i,i+1
K (p) =

∑
σ∈Ei,i+1

K

Tkl (pk − pl) for i = 1, . . . , SK − 1,

where we have assumed that every fine cell k ∈Mi
K and l ∈Mi+1

K . The upscaled
transmissibiliy between the sub-regions i and i+ 1 is computed by

T i,i+1
K = µ

∣∣∣∣∣ F i,i+1
K (p)

piK − p
i+1
K

∣∣∣∣∣ .
Following [24], to define the sub-regions of a coarse cell K ∈ G, it is possible
to consider instead of problem (9) another problem that we refer to as “fixed-
pressure” approach. We consider the pressure field, numerical solution to the
following stationary problem

−∇ · Λ

µ
∇p = q in K \ NK

p = p0 in NK

−Λ

µ
∇p · nK = 0 on ∂K \ NK ,

(10)

where the source term is constant everywhere in the porous matrix and is zero
inside the fractures, whereas in the fractures the solution is fixed and constant
everywhere. To ease implementation, it is possible to choose p0 = 0 and q <
0. Figure 12 represents by a graph the case of a single coarse cell with the
fractures and the subregions. Once the sub-regions are defined, the upscaled
transmissibilities among them are computed as in the previous strategy.

In the aforementioned work, the authors claim that the two approaches give
qualitatively equivalent results, however we will show in Section 5.2 that this is
not always true in the case of disconnected networks of fractures.

Remark 5. The fractures that are fully-immersed, i.e. , the fractures that are
contained only in one coarse cell, are considered as part of the sub-region in
which they belong to.
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Figure 11: Schematic example of the local problem used to compute the upscaled
fracture-matrix and matrix-matrix transmissibilities.

Figure 12: Graph that represents the connections between the system of frac-
tures and the sub-regions of a single coarse cell. The link between the node
related to the fractures and the first sub-region represents the fracture-matrix
transmissibility, while the remaining links represent the transmissibility between
subsequent sub-regions.

Remark 6. The assumption that each sub-region is linked between its previ-
ous and subsequent sub-region does not apply in the pseudo-steady approach (or
its equivalent steady-state formulation). By considering the “fixed-pressure” ap-
proach, the same effect may occur when the local mesh is not fine enough. In
these cases, we allow that each sub-region can be linked to all the others sub-
regions.

4.2 Matrix-matrix comunication

In this section, we present a new algorithm to deal with disconnected networks
of fractures in the upscaling procedure. Disconnected networks of fractures oc-
cur when there are pairs of coarse cells where the local set of fractures does
not intersect the interface between the coarse cells. In this case, the previous
algorithm does not compute any upscaled transmissibility since one of the hy-
potheses of the standard multiple sub-regions method is that the flow, between
adjacent coarse cells, takes place only through the fractures. Figure 13 shows
this kind of configurations. In particular, we subdivide them into three cases:
both cells do not contain any fracture; only one cell contains the fractures; both
cells contain fractures but they do not cut the common interface. Besides these
cases, for a more accurate representation, we extend the procedure described
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Figure 13: Examples of the four possible configurations of pair of coarse cells in
which we consider the matrix-matrix connection.

below also in the case in which the common interface is cut by the fractures.
To handle these cases, we take advantage of the created sub-regions during

the computation of the upscaled transmissibilities inside each coarse cell. Given
a pair of adjacent coarse cells, where their networks of fractures are disconnected,
we solve the diffusion problem (2), where a pressure gradient is imposed across
their boundary, as depicted in Figure 9. Once the solution is obtained, we
compute the transmissibilities between each sub-region of the first coarse cell
which faces, through the interface between the coarse cells, any sub-regions of
the other coarse cell. An example is given in Figure 13 (bottom left), where
the sub-regions of a pair of coarse cells are represented. The graph depicts the
logical connections between the d.o.f.s associated with the sub-regions: the sub-
regions of the left cell (indicated with 1) are linked to the sub-regions of the
right cell (indicated with 2). For each link we have a transmissibility value.
Considering the two fine meshesMK andML associated with the pair of coarse
cells K and L ∈ M, it is possible to define the sub-regions as explained in the
previous section obtaining SK and SL sub-regions for the two coarse cells K and
L, respectively. As in the previous section, the upscaled transmissibility is based
on a proper generalization of equation (5). We compute the mean pressure for
each sub-region i of the coarse cell K as

piK =

∑
k∈Mi

K
|k| pk∑

k∈Mi
K
|k|

,

and analogously for the coarse cell L. We indicate the set of edges of the sub-
region i of the coarse cell K which faces the sub-region s of the coarse cell L as
E i,sKL. The total flux, indicated by F i,sKL, through the interface between the cells
of the sub-region i, referred to the coarse cell K, and the sub-region s, referred
to the coarse cell L, is computed by

F i,sKL(p) =
∑

σ∈Ei,sKL

Tkl (pk − pl) ,
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where every fine cell k ∈Mσ belongs to the sub-region i of the coarse cell K, and
every fine cell l ∈ Mσ belongs to the sub-region s of the coarse cell L. Finally,
the upscaled transmissibility between the sub-region i of the coarse cell K and
the sub-region s of the coarse cell L can be computed considering

T i,sKL = µ

∣∣∣∣∣ F i,sKL(p)

piK − psL

∣∣∣∣∣ .
It is important to notice that the procedure does not increase the number of
degrees of freedom but only their connections. In the particular case when one
of the two coarse cells does not contain fractures, as represented in Figure 13
(top right), we assume that the latter has only one sub-region and the upscaling
algorithm remains the same. All the sub-regions, facing the interface between
the coarse cells of the left coarse cell are connected with the unique sub-region of
the right coarse cell. This procedure is particular important in the “boundary”
of a fractures network to allow the spreading of the flow in the neighbouring
coarse cells, and to link different networks of fractures.

To complete the upscaling procedure for a general reservoir, as in Figure 7,
it is possible that some pairs of coarse cells do not contain any fracture. In this
case, we consider the standard formula (6) and (7), with the geometric properties
related to the coarse mesh M. This case is represented by the graph shown in
Figure Figure 13 (top left). The degrees of freedom related to the fractures are
not considered, and for each coarse cell there is a single d.o.f. associated with the
unique matrix sub-region, i.e. , the entire coarse cell. Hence, the link between
the coarse cells is due to the flow through the porous matrix.

Finally, to improve the accuracy of the procedure, we compute the matrix-
matrix transmissibility also in the case of pair of cells in which the common
interface is fractured. Indeed, though most of the flow go through the fractures,
the interface area associated with the porous matrix may be very large with
respect to the one related to the fractures, so that the flow transmitted by
the matrix may be significant. An example of this case is shown in Figure 13
(bottom right): besides the fracture-fracture trasmissibility, a communication
between the sub-regions of the two coarse cells is taken into account.

Remark 7. To speed up the resolution in the implementation of the algorithm
it is possible to avoid the computation of the transmissibilities among the sub-
regions if the local set of fractures belongs to the same global network of fractures.
This hypotheses is reasonable since the transmissibility of the fractures is several
orders of magnitude greater than the transmissibility of the rock matrix.

5 Numerical examples

In this section, we present several numerical examples to assess the performance
of the method presented in the previous sections.
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Figure 14: Left: mesh built with a constrained Delaunay algorithm. Right:
Cartesian grid used for EDFM.

5.1 Computational efficiency of EDFM

We present a comparison of the computational cost between EDFM, introduced
in Section 3, and a classical constrained Delaunay approach with a procedure
to agglomerate triangular elements into quadrilaterals. In particular, we assess
the computational time for the construction of the grid and the assembly of the
stiffness matrix for a local problem. In this test we consider only two-dimensional
meshes. Since the domain is a square, to construct the grid for EFDM we have
considered a Cartesian grid with the same number of rock matrix cells as the
Delaunay grid. We notice from Figure 14 that the grid created by the constrained
Delaunay algorithm is matching with all the fractures and has many elements
near the fractures. The rock matrix cells are 137780 and 136160 for the EDFM
and Delaunay grids, respectively. The fracture faces are 27110 and 45225 for the
EDFM and Delaunay grids, respectively. The computational cost for the mesh
construction is 1.577s for EDFM and 427s for constrained Delaunay, while the
cost of assembly stiffness matrix is 0.202s for EDFM and 0.438s for constrained
Delaunay. It is evident that the main computational cost in the simulation is
due to the mesh generation. The cost for the mesh construction in the case of
EDFM includes the generation of the Cartesian grid and the algorithm which
computes all the intersections between the fractures and the rock matrix, and
among the fractures. The cost to assembly the stiffness matrix is comparable in
both approaches. We highlight that in the case of realistic and three-dimensional
domains, the discrepancy between the approaches is more evident.

Remark 8. A more complete comparison, to verify the efficiency of EDFM
among other grid generation techniques, has to include also the simplification
techniques for complex networks of fractures. See for example [27, 29].

Remark 9. In all the following test cases, the fine grid for each coarse cell is
constructed via a tensor product of the one-dimensional grids of their edges. See
Figure 15 for some examples.
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Figure 15: Examples of fine grids from single coarse cells. From the left: general
hexahedron with bilinear surfaces and degenerate hexahedron with one, two, and
three pillars pinched. The case of two opposite pinched pillars is not considered.

Figure 16: Representation of the sub-regions when the pseudo-steady problem
is considered or when the pressure is imposed inside the fractures. In the left
block the fractures are more connected than in the right block.

5.2 Comparison of single-cell solution

We compare the two strategies to compute the sub-regions given by the problems
(9) and (10). In the following tests we assume four sub-regions for the porous
matrix.

Connected networks of fractures We consider a coarse cell where all the
fractures are connected. The computed sub-regions of the two approaches are
represented in the left part of Figure 16. We clearly see that, in this case, the
computed sub-regions are qualitatively equivalent. In Table 1 we report the
values of the computed upscaled transmissibilities. We notice that the values
are similar for the two strategies.

Disconnected networks of fractures We consider a second test case where
the fractures are less connected than the previous test case. The computed sub-
regions of the two approaches are represented in the right part of Figure 16.

Problem 9 Problem 10

fractures-red 123.47 122.18
red-green 11.94 11.85
green-cyan 12.37 12.34
cyan-blue 4.32 4.3

Table 1: Comparison of the upscaled transmissibilities among the sub-regions
defined in the left part of Figure 16.
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Problem 9 Problem 10

fractures-red 190 92.24
fractures-green 9.62 -
red-green 6.87 10.20
green-cyan 11.88 8.76
cyan-blue 6.61 4.05

Table 2: Comparison of the upscaled transmissibilities among the sub-regions
defined in the right part of Figure 16.

I

P

Figure 17: Coarse mesh and fractures used to assess the multiple sub-regions
technique.

We see that, in this case, the sub-regions are very different and the sub-region
related to the fractures is connected with two different sub-regions. In Table 2
we report the values of the computed upscaled transmissibilities. We notice that
the values are completely different for the two strategies.

In conclusion, problem (9) provides a different weight to each fracture net-
work inside the cell, whereas problem (10) treats all the fractures with the same
weight. In the particular case in which the coarse cell is fully connected in a
unique network, the two problems behave in the same way.

5.3 Assessment of the upscaling procedure

In this part we test the effect of increasing the number of porous matrix sub-
regions against a reference solution, to verify a better approximation when the
number of sub-regions increases. We consider the domain Ω = (0, 100)2 rep-
resented in Figure 17 where the fractures and the coarse mesh are depicted.
The latter is composed by 5 × 5 Cartesian cells. The fractures permeability
is six order of magnitude greater than the rock matrix permeability, and the
fractures thickness is on the order of centimetres. To validate the upscaling pro-
cedure, the computed upscaled transmissibilities are used in an incompressible
two-phase flow simulation in presence of two wells. The reservoir and fractures
are completely filled with oil. We assume no-flow boundary conditions for all
the reservoir. Water is pumped in at a constant rate in the injection well, I,
while the production well, P is operating at a constant pressure. Both wells
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Figure 18: FOE for increasing numbers of sub-regions compared with a reference
solution. MSR1 stands for multiple sub-region with one porous matrix sub-
region. MSR2 and MSR3 are defined analogously.

are completed in fracture. The reference solution is computed by using EDFM
with the additional matrix-matrix transmissibility obtaining a dual porosity-
dual permeability model on a finer mesh comprising 100 × 100 Cartesian cells.
The reference two-phase flow has been simulated using [22]. To compute the
upscaled solutions, the upscaled transmissibilities are employed in the general
purpose reservoir simulator (GPRS) [9]. In Figure 18, we show the field oil
efficiency (FOE), defined as

FOEt =
OIPt=0 −OIPt

OIPt=0
,

where OIP is the so-called oil-in-place, which refers to the total oil content of
a reservoir. It is evident that increasing the number of sub-regions the upscaled
solution approaches the reference solution. However, the convergence rate is not
constant through all time steps.

5.4 Comparison with a standard industrial simulator

In this section, we compare the result obtained with the upscaling procedure and
[33], considered as a standard simulation tool in oil industry, against a reference
solution. The upscaling considers only one porous matrix sub-region since, as
shown in the previous part, increasing the number of sub-regions, we expect a
better representation of the coarse solution. The test domain is represented in
Figure 19, where the fractures and the 20 × 20 coarse mesh are represented.
The permeability ratio as well as the fractures thickness are the same as in the
previous test case. The reference solution is computed as in the previous test
case. [33] uses the geometry-based Oda’s method [30], to compute a representa-
tive permeability tensors initially defined in the discrete fracture network. The
Kazemi formula is used to compute the transmissibility between the fractures
and the rock matrix [25]. As in the previous test case we consider an incom-
pressible two-phase flow simulation where the reservoir and the fractures are
filled with oil. Water is pumped in at a constant rate in the injection well, I,
whereas the production well, P is operating at a constant pressure. Both wells
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Figure 19: Coarse mesh and fractures for the comparison between the upscaling
procedure and [33].
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Figure 20: Comparison of the field oil efficiency for the Upscaling, [33] and the
reference solution.

are completed in fracture. For the computation of the saturation field, we use
[12] for both the upscaling and [33] solutions and [22] for the reference solution.
The comparison of the FOE for the three approaches is reported in Figure 20.
In the beginning of the simulation the three solutions are comparable. However,
after 400 days the solution computed using upscaling approximates better the
reference solution than the one computed using [33]. In Figure 21, the oil sat-
uration profile for the three methods is provided at the same time level. Even
though the upscaled solution shows a delay compared to the reference solution,
it is able to better recover the oil dynamic than [33].

6 Conclusions

In this work, we presented a novel efficient upscaling procedure to derive a
coarse scale model for a natural fractured reservoir. The main objective of
the proposed scheme is to compute the upscaled parameters in an efficient and
effective way. These parameters are computed via local problems which involve
single or pair of coarse cells. To achieve a good efficiency, we have considered,
in the solution of these problems, a non-conforming coupling between the bulk
grid and the fracture grids by means of the embedded discrete fracture model
method. As the numerical tests show, the upscaled problem turns out to be a
reasonable and correct approximation for this class of problems. Moreover, the
methodology introduced yields better results than the standard software used in
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Figure 21: Representation of the oil saturation in the porous matrix at the same
time level. Reference solution (left), solution obtained using [33] (center), and
solution obtained using the upscaling (right).

oil industry to solve similar problems. In a forthcoming work, we will introduce a
parallelization of the global algorithm to increase the efficiency and applicability
to real problems.
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A Discrete equivalence

In this section, we prove the discrete equivalence between problem (3) and (1),
where the virtual fracture cell technique is used to discretize the fracture prob-
lem. Let us assume that the permeability tensor inside the rock matrix can be
simplified to a scalar field, i.e. introducing λ, we have Λ = λI. We assume
also that the mobility be unitary. Moreover, we suppose that the grid fulfil the
following super-admissible condition: given a cell K with one of its facet σ, we
require that

nK,σ =
xK − xσ
dK,σ

, (11)

where dK,σ is the orthogonal distance between xK and the facet σ (see [13, 14]
for a detailed presentation of this kind of condition). Meshes fulfilling condition
(11) are quite generals and include Cartesian grids, triangular meshes with the
so called “strict Delaunay condition”, i.e. the closure of the circumscribed circle
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Figure 22: Schematic example of the nomenclature used to define Fσ.

to each triangle of the mesh does not contain any other triangle of the mesh, and
many others. To prove the discrete equivalence, we consider one single fracture.
The extension to complex networks of fractures is trivial. The notation refers to
a two-dimensional problem, but an extensions to a higher dimension is possible.

The result is trivially true for cells not in contact with the fracture. Then
we focus our attention on the cells close to the fracture γ, and to the fracture
itself. We consider a cell of the rock matrix K, on the opposite side along the
normal n of the fracture, such that one of its facets is shared with the fracture
γ. We indicate this facet by σγ (see Figure 22 for an example of the notation).
We consider a finite volume approximation of the fist equation in system (3a) in
the cell K

−
∫
K
∇ · λ∇p1dx = −

∑
σ∈EK

∫
σ
λ∇p1 · nσdσ =

= −
∑

σ∈EK\σγ

∫
σ
λ∇p1 · nσdσ − 2

∫
σγ

λγ (p̂− p1) dσ, (12)

where the first equation of system (3b) is used in the last step. We consider now
another cell of the rock matrix, L, on the same side along the normal n of the
fracture. We require that the cell L have σγ as one of its facets, so L is “on the
other side of the fracture” of K. As in the case of K, we consider the integral
form of the first equation in system (3a) for the cell K:

−
∫
L
∇ · λ∇p2dx = −

∑
σ∈EL

∫
σ
λ∇p2 · nσdσ =

= −
∑

σ∈EL\σγ

∫
σ
λ∇p2 · nσdσ − 2

∫
σγ

λγ (p̂− p2) dσ, (13)

where the second equation of system (3b) is used in the last step, and we used
also the fact that nσγ = −n. The approximation by a two-point flux approx-
imation of the facets which do not belong to the fracture in (12) and (13) is
straightforward. We consider only the discretization of the last integrals of the
aforementioned equations. In this case, we have to build a proper approxima-
tion of the discrete pressure at the facet σγ . The choice is based on the scheme
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Figure 23: Schematic example of the notation used to define the flux for fracture
computations.

adopted: we assume a linear variation of the pressure from the value at the
centre of K to the value at the facet σγ . Thus we have

p1|σγ =

λ

dK,σγ
p1 +

λn,γ
d/2

p̂

λ

dK,σγ
+
λn,γ
d/2

=

λ

dK,σγ
p1 + 2λγ p̂

λ

dK,σγ
+ 2λγ

.

Plugging this expression in the last integral of (12), we obtain its fully discrete
form

−2

∫
σγ

λγ (p̂− p1) dσ = − |σγ |
2λγ

λ

dK,σγ

2λγ +
λ

dK,σγ

(p̂− p1) . (14)

A similar expression can be derived for the cell L which involves p2 as well as p̂.
Plug the expression in the last integral of (13) we obtain its fully discrete form

−2

∫
σγ

λγ (p̂− p2) dσ = − |σγ |
2λγ

λ

dL,σγ

2λγ +
λ

dL,σγ

(p̂− p2) . (15)

We consider now the discretization of the fracture γ by the two-point flux scheme.
We consider a pair of facing facets σ and θ of the fault discretization. Unless the
fracture is a straight line, we need to define two distinct unit outward normals
to their common ridge ξ and, in our case, they coincide, possibly up to a sign,
with the corresponding tangential vectors τ σ and τ θ, respectively (see Figure 23
for an example). The left-hand side of the second equation of system (3a) is
discretized in the following way:

−
∫
ξ
λ̂∇τ · p̂nξdξ = Tσθ (p̂σ − p̂θ) .

Since xσ − xξ = τ σ |σ| /2 and xθ − xξ = τ θ |θ| /2, the half and full transmissi-
bilities are computed by

Tσ = 2
λ̂

|σ|
and Tθ = 2

λ̂

|θ|
and Tσθ =

2λ̂

|σ|+ |θ|
.
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Figure 24: Schematic example of the notation used to define the flux for fracture-
matrix computations in presence of virtual fracture cells.

Consider a single facet σ of the fracture discretization: the right hand-side of
the second equation of system (3a) can be easily computed noticing that∫

σ
q̂dσ + 4

∫
σ
λγ

(
{{p}}γ − p̂

)
dσ =

∫
σ
q̂dσ+

+2

∫
σ
λγ (p1 − p̂) dσ + 2

∫
σ
λσ (p2 − p̂) dσ.

From equations (14) and (15) we have the balance of flux across each fracture
facet. We consider now the second approach, discretizing equation (1) using
the virtual fracture cells. The fracture facets are extruded by ±d/2 along their
normal direction, and included in the computation of the scheme. The geomet-
rical quantities are computed locally and no modifications are perform on rock
matrix cells which face the fracture, i.e. no volume reduction (see Figure 24
for an example of construction of virtual fracture cells). Considering a cell K
facing the fracture with facet σγ and the associated virtual fracture cell Σ, the
discretization through a two-point flux approximation gives

−
∫
K
∇ · λ∇p1dx = −

∑
σ∈EK\σγ

∫
σ
λ∇p1 · ndσ+

−
∫
σγ

λ∇p1 · nσγdσ.

The summation in the previous expression is a standard application of the
scheme. The last term can be discretized using the two-point approximation but
with the geometrical properties computed locally. Using the super-admissible
condition, the transmissibilities are

TK = λ
|σγ |
dK,σγ

and TΣ = 2λγ |σγ | .

the transmissibility between the cells K and Σ gives the same expression as (14).
We consider now the approximation of (1) given two virtual fracture cells Σ and
Θ with common facets ξΣ and ξΘ. These cells are based on two fracture facets
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Figure 25: Schematic example of the notation used to define the flux for fracture
computations in presence of virtual fracture cells.

σ and θ, respectively. We conventionally denote their common interface by σ,
even though it is not well geometrically uniquely defined. In practice, σ is the
representation of two distinct facets, σΘ and σΣ, with their own normals, nσΘ

and nσΣ , respectively (see Figure 25 for an example). The flux between them is
given by

−
∫
σ
λ∇p · nσdσ = TΣΘ (pΣ − pΘ) ,

while the transmissibilities are computed locally as

TΣ = 2
λ̂

|σ|
and TΘ = 2

λ̂

|θ|
and TΣΘ =

2λ̂

|σ|+ |θ|
.

If, in this last method, the unknowns in the fracture are indicated by p̂, we obtain
a discrete equivalence between the two approaches since the transmissibilities
between correspondent unknowns are equal.

B Pseudo-steady state problem

In this section, we present a detailed and rigorous derivation of the well posedness
of system (9) and the equivalence between the solution at the pseudo-steady state
and the solution of a suitable stationary problem. Let Ω be an open bounded
and regular subset of RN with N = 2 or N = 3. We focus our attention on the
following problem 

φc
∂p

∂t
−∇ · Λ

µ
∇p = q in Ω for t > 0

−Λ

µ
∇p · n = 0 on ∂Ω for t > 0

p = 0 in Ω for t = 0,

(16)

where ν ∈ L∞(Ω) and is bounded away from zero, q ∈ L2(Ω) and n is the unit
outward normal to ∂Ω. The source function q is defined by

q(x) =

{
qf if x ∈ Ωf

0 otherwise
,
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with qf ∈ R+. We indicate with A the self-adjoint differential operator Ap =

−∇ · Λ

µ
∇p with domain DA = {u ∈ H1(Ω) :

Λ

µ
∇p · n = 0 on ∂Ω}. Thus the

differential problem (16) may be written as

φc
∂p

∂t
+Ap = q in Ω for t > 0. (17)

Thanks to Gauss’s theorem and the boundary conditions, the following property
holds.

Property 1. For all u ∈ DA ∫
Ω
Au = 0.

Moreover, we can also prove

Property 2. The stationary problem

Ap = q − C with C =
φ∫
Ω φ

∫
Ω
q (18)

admits a unique solution in the class of equivalence H1(Ω)/R.

Proof. It is a straightforward application of the Fredholm alternative and the
property of A.

Property 3. The eigenfunction problem

Awi = λiwi (19)

admits a countable number of eigen-pairs (wi, λi), i = 0, 1, 2, · · · , with λi ∈ R
and 0 = λ0 < λ1 < λ2 < · · · . The eigenfunctions wi ∈ DA are assumed to be
scaled such that ||wi||L2(Ω) = 1, and w0 =

√
|Ω|−1. The {wi}i≥0 form a Hilbert

basis of DA.

Proof. It is a well known result, see [34].

We also observe that, from (19), the properties of the eigenvalues, Proposition
1, and the definition of w0, it holds that∫

Ω
wi = 0, i = 1, 2, . . . ,

∫
Ω
w0 =

√
|Ω|. (20)

Let p ∈ DA be a particular solution of (18), for instance we may fix
∫

Ω p = 0.
Thanks to Property 3, we have the following result.
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Property 4. The solution of (17) is given by

p = p+ Ct+

∞∑
i=0

ciλie
−λitwi, (21)

for certain ci ∈ R.

Proof. It is sufficient to substitute the expression (21) in (17). The ci are deter-
mined through the initial condition, i.e., by enforcing that p = 0 at t = 0. This

yields p +
∞∑
i=0

ciwi = 0, that is the ci, for i ≥ 0 are the unique coefficients of

−p ∈ DA with respect to the basis {wi}i≥0. The convergence of the series in
H1(Ω) is thus guaranteed by the fact that wi ∈ H1(Ω). Moreover, it is a well
known result that the solution is unique for t ∈ [0, T ) for any T > 0, see for
instance [7].

Note that the representation of p given above is not unique. We have arbi-
trarily chosen p with zero mean. Yet, the solution is unique for t ∈ [0, T ). Of
course a different choice of p will entail different values of ci. In particular, due

the choice made for p, and using (20), from the relation p +
∞∑
i=0

ciwi = 0 we

obtain that c0 = 0 in (21).
We consider the limiting solution of (17) for t→∞. The solution exhibits a

blow-up, yet we may state the following result.

Property 5. For p = p(x, t) solution of (21) we have

lim
t→∞

∂p

∂t
= C =

φ∫
Ω φ

∫
Ω
q.

Moreover

lim
t→∞

Λ

µ
∇p =

Λ

µ
∇p ∈ L2(Ω).

Proof. For the first statement it is sufficient to take the time derivative of p in
(21) and recall that the λi, i ≥ 1 are positive, while c0 = 0. The proof of the
second statement derives from the fact that A is symmetric and self-adjoint, the
stability estimate of parabolic problems (theorem of Hille-Yosida) and the first
statement.

In the light of the previous results, we define p as the pseudo-stationary
solution. Since it belongs to H1(Ω)\R it is in fact known modulo a constant. The
constant may be fixed by choosing, as done above, the zero mean representant.

The quantity −Λ

µ
∇p represents the pseudo-stationary flux and is independent

of the chosen representation too.
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[1] Clarisse Alboin, Jérôme Jaffré, Jean E. Roberts, and Christophe Serres.
Modeling fractures as interfaces for flow and transport in porous media.
In Fluid flow and transport in porous media: mathematical and numerical
treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages
13–24. Amer. Math. Soc., Providence, RI, 2002.

[2] Laila Amir, Michel Kern, Vincent Martin, and Jean E. Roberts.
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