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Abstract

This work gives an overview of an innovative class of methods for the analysis of spatial and
of functional data observed over complicated two-dimensional domains. This class is based
on regression with regularizing terms involving partial differential equations. The associated
estimation problems are solved resorting to advanced numerical analysis techniques. The
synergical interplay of approaches from statistics, applied mathematics and engineering endows
the methods with important advantages with respect to the available techniques, and makes
them able to accurately deal with data structures for which the classical techniques are unfit.
Spatial regression with differential regularization is illustrated via applications to the analysis
of eco-color doppler measurements of blood-flow velocity, and to functional magnetic resonance
imaging signals associated with neural connectivity in the cerebral cortex.

Keywords: functional data analysis, spatial data analysis, high dimensional and complex data,
partial differential equations, finite elements.

1 Introduction
This work reviews an innovative class of methods for the analysis of data that display complicated
spatial or spatio-temporal dependencies. The complexity in the structure of spatial or spatio-
temporal variation may be due to different reasons. In some cases, the complexity originates from
the complex physics of the phenomenon under study. As an illustrative application, we will discuss
the study of the velocity field of blood flow in human arteries, with data from eco-color doppler
and magnetic resonance imaging. In other cases, the complexity is due to an external source that
generates strong anisotropies and non-stationarities in the observed quantity of interest; this is
the case, for instance, of streams or prevailing winds in the analysis of environmental and climate
data. In yet other cases, the complex spatial variation might be influenced by the complicated
conformation of the domain where the data are observed. As an example, Figure 1 shows the
spatial distribution of all the crimes reported in 2012 in the city of Portland, Oregon, USA, each
crime location being indicated by a dot. The domain of interest for this application, i.e., the
territory of the municipality, is characterized by a strong concavity, generated by the presence
of the Willamette river that cuts the city in two parts, connected by a few bridges downtown.
As apparent in the figure, the variation of the phenomenon is not smooth across the river: in
the north of the municipality, for instance, a rather high criminality affects the area East of the
river, while a very low criminality is observed on the West of the Willamette river; this sharp
difference cannot be fully explained by population density and other census information. For this
reason, when analysing these data, it is important to also take appropriately into account the
domain conformation. In other applied problems the domain is a two-dimensional manifold. Data
distributed over non-planar domains with complicated geometries are in fact nowadays common in
varied contexts. Figure 2 illustrates an example from the neurosciences, concerning the study of
high-dimensional neuroimaging signals associated with neuronal activity in the cerebral cortex, a
highly convoluted thin sheet of neural tissue that constitutes the outermost part of the brain, and
where most neural activity is focused; see the left panel in Figure 2. Due to the highly convoluted
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nature of the cortex, functionally distinct areas, that are far apart along the cortex, may in turn
be close in three-dimensional space. For this reason, neglecting the morphology of the cortex may
lead to totally inaccurate estimates. Moreover, it is often crucial to comply with specific conditions
that characterize the phenomenon at the boundaries of the spatial domain. As an example, in the
already mentioned study of the velocity of blood flow, the domain of interest is the quasi-circular
section of an artery and there are some physiological constraints at the boundaries of this domain:
the blood flow is indeed confined within this domain and its velocity is zero at the arterial wall, the
boundaries of the spatial domain, due to the friction between the blood particles and the arterial
wall.

Figure 1: Left: Spatial distribution of crimes over the city of Portland, Oregon, USA: each dot indicates
the location of one of more crimes (data from the Real-Time Crime Forecasting Challenge of the National
Institute of Justice https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge). The fig-
ure shows that criminality does not vary smoothly across the river. This is particularly apparent in the
north of the municipality, where the high criminality in the East of the river is opposed to a low criminality
in the West of the river; this sharp difference cannot be fully explained by population density or other
census information. Right: triangulation of the domain.

Figure 2: Left: Triangulated surface approximating the left hemisphere of the cerebral cortex of a template
brain. Right: functional connectivity map obtained from a functional magnetic resonance imaging scan on
a healthy subject (data from the Human Connectome Project Essen et al., 2012).

This work focuses entirely on a specific class of models we have recently been developing (in
Sangalli et al., 2013; Azzimonti et al., 2014, 2015; Wilhelm and Sangalli, 2016; Ettinger et al., 2016;
Wilhelm et al., 2016; Lila et al., 2016; Bernardi et al., 2017, 2018; Arnone et al., 2019), that we name
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Spatial Regression with Partial Differential Equation regularization: SR-PDE. These are regression
methods with regularization terms that involve a Partial Differential Equation (PDE). PDEs are
extensively employed in most fields of sciences and engineering to model complex phenomena
behaviors. Their inclusion as regularizing terms in a spatial regression model establishes a novel way
of defining spatial variation, offering an important alternative to the classical paradigm in spatial
data analysis. The differential regularization permits to model the spatial and spatio-temporal
variation in a highly rich and flexible manner, that can naturally render varied forms of anisotropy
and non-stationarity, and that can be driven by problem-specific knowledge. Moreover, SR-PDE
can accurately and efficiently deal with data distributed over complex spatial domains, such as
domains with strong concavities or holes, and non-planar domains with complicated geometries;
in fact, it considers distances within the domain of interest, naturally complying with boundaries
and non-Euclidean geometries. Furthermore, it is able to account for specific conditions at the
boundaries of the domain of interest. SR-PDE also permits the definition of principal component
analysis techniques, thus enabling population studies of complicated spatial signals.

All this is made possible by a synergistic interplay of approaches and ideas from statistics,
applied mathematics and engineering. The estimation problem in SR-PDE is solved resorting to
numerical analysis techniques, such as finite element analysis or isogeometric analysis (see,e.g.,
the textbooks Ciarlet, 2002; Cottrell and Bazilevs, 2009). These techniques also ensure the high
computational efficiency of the methods.

SR-PDE methods are implemented in the R package fdaPDE (Lila et al., 2020), available from
CRAN (R Core Team, 2020).

The remainder of the paper is organized as follows. Section 2 briefly offers the essential back-
ground literature. Section 3 introduces the general form of SR-PDE, discuss the modelling of space
variation through the differential regularization (Section 3.1), the inclusion of boundary conditions
(Section 3.2), and the characterization of SR-PDE infinite dimensional estimation problem (Section
3.3). Section 4 reviews the use of numerical techniques to solve the estimation problem. Section
5 derives some properties of the estimators. Section 6 outlines a few model extensions, including
different sampling schemes (Section 6.1), generalized linear models (Section 6.2), models for spatio-
temporal data (Section 6.3) and for data observed over non-planar domains (Section 6.4). Section
7 describes a first case study concerning the analysis of blood-flow velocity. Section 8 reviews
a regularized functional principal component analysis method that relies on SR-PDE. Section 9
briefly presents a study of neuroimaing signals measuring cortical connectivity on a population of
healthy subjects. Section 10 draws some concluding remarks.

2 Background literature
This article reviews progress to date on a very specific class of models, SR-PDE. This research line
is across spatial data analysis and functional data analysis; moreover, the basic form of SR-PDE is
a special case of a nonparametric/semiparametric model with quadratic differential regularization.
This section gives some essential classical references of these important areas of statistics, setting
the background for the proposed models. Moreover, it points to other recent proposals to handle
data over complicated domains.

2.1 Spatial data analysis
Spatial data analysis is one the main branches of statistics and has played a leading role in the
development of models and methods for the analysis of spatially (and spatio-temporal) distributed
data, with a vast literature (see, e.g., the textbooks Cressie, 2015; Cressie and Wikle, 2011; Diggle
and Ribeiro, 2007), and extensive software produced (see, e.g., Bivand et al., 2013). Most ap-
proaches to spatial data analysis are designed for data scattered over regular domains. See Section
2.4 for some proposals that try to overcome this limitation.

In the classical spatial data analysis approach, the unknown spatial field is assumed to be
stochastic and the covariance of the stochastic field is used to model the second order spatial
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dependence of the phenomenon under study. Instead, in the proposed SR-PDE, the unknown
spatial field is assumed to be deterministic and the spatial structure of the phenomenon is modelled
via the PDE in the regularizing term.

2.2 Functional data analysis
Functional data analysis is concerned with samples whose atoms are noisy measurements of func-
tions (see, e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Kokoszka and Reimherr,
2017). The connection between the proposed class of models and functional data analysis is made
explicit in Section 8, that reviews a functional principal component method for samples of functions
over complicated two-dimensional domains, based on SR-PDE. More generally, the use of differ-
ential regularizations is widespread in functional data analysis. In particular, Ramsay and Hooker
(2017) describes similar approaches to the one here proposed, but in simpler one-dimensional set-
tings and using ordinary differential equations.

Moreover, there is a very active area of research across spatial data analysis and functional
data analysis. Some classical spatial data analysis methods such as kriging have been extended
to deal with functional data (see, e.g., the reviews and collections in Delicado et al., 2010; Mateu
and Romano, 2017; Menafoglio and Secchi, 2017; Martínez-Hernández and Genton, 2020). SR-PDE
contributes to the literature on spatial functional data analysis by proposing innovative approaches
for the study of spatially distributed data, that are influenced by the literature on functional data
analysis. Moreover, the method extension discussed in Section 6.3 explicitly targets spatially
dependent functional data.

2.3 Nonparametric and semiparametric models with quadratic differen-
tial regularization

Various forms of nonparametric smoothers and of semiparametric models with quadratic differential
regularization have been proposed in the literature, and their properties have been thoroughly
studied in a well established literature (see, e.g., the textbooks by Green and Silverman, 1994;
Eubank, 1999; Bickel et al., 1998; Härdle et al., 2004, and references therein). With respect to these
models, SR-PDE features more general regularizing terms, which can involve linear second-order
PDEs with space-varying second order, first order and zero order differential operators, and space-
varying forcing terms, instead of the simple differential operators, constant over space, typically
considered by classical smoothers and semiparametric models. Moreover, as emphasized in the
Introduction, SR-PDE considers spatial domains with complex shapes, both planar and curved,
and complies with general forms of boundary conditions. Such high flexibility comes at the price
of a higher analytic complexity of the proposed models. The solution to the estimation problem
in SR-PDE is not explicitly available, differently from classical smoothers and semiparametric
models with differential regularization. Advanced numerical analysis techniques are needed to
obtain approximate solutions.

2.4 Data over complex domains
The problem of handling data over non-trivial planar domains, appropriately taking into account
the shape of the domain, has recently attracted an increasing interest, and some techniques have
been proposed to tackle this issue. Regularized least-square smoothing methods, that can handle
data on complex planar domains, include: FELsplines (Ramsay, 2002); soap film smoothing (Wood
et al., 2008); bivariate splines over triangulations (see, e.g., Lai and Schumaker, 2007; Guillas and
Lai, 2010; Ettinger et al., 2012; Lai and Wang, 2013); low-rank thin-plate spline approximations
(Wang and Ranalli, 2007; Scott-Hayward et al., 2014); SR-PDE (see, e.g., Sangalli et al., 2013;
Azzimonti et al., 2015; Bernardi et al., 2017), that in turn expands the methods introduced by
Ramsay (2002). Within the kriging framework, some proposals to address data distributed over
complex planar domains have been advanced by ? and Menafoglio et al. (2018, 2021). Moreover,
the stochastic PDE approach introduced by Lindgren et al. (2011) can handle data over irregularly
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shaped domains, and the same holds for the intrinsic Gaussian processes in Niu et al. (2019).
Soap film smoothing (Wood et al., 2008), the stochastic PDE approach (Bakka et al., 2019) and
the kriging technique in ? comply with some boundary conditions. As detailed in Section 3.2,
SR-PDE can handle general forms of boundary conditions (see, e.g., Azzimonti et al., 2014).

As for techniques to fit data on non-planar domains, there is a very active literature concerning
random fields on spheres; see, e.g., Gneiting (2013); Castruccio and Stein (2013); Jeong and Jun
(2015); Porcu et al. (2016, 2018) and references therein. Moreover, the methods proposed by
Lindgren et al. (2011) and by Niu et al. (2019) can deal with more general forms of non-planar
domains. Regularized least-square smoothing methods able to fit data scattered on spheres include
Wahba (1981); Baramidze et al. (2006); Lai et al. (2009), while Duchamp and Stuetzle (2003) and
SR-PDE (Ettinger et al., 2016; Lila et al., 2016; Wilhelm et al., 2016) work on general non-planar
domains. Finally, other smoothing methods over general non-planar domains include nearest-
neighborhood techniques (see, e.g., Hagler et al., 2006) and heat-kernel smoothing (see, e.g., Chung
et al., 2005, 2017, and references therein).

3 Spatial regression with differential regularization
This section introduces SR-PDE in its most basic formulation, while subsequent sections present
various extensions. Consider n locations p1, . . . ,pn over a spatial domain Ω ⊂ R2, with boundary
∂Ω ∈ C2. At location pi we observe a variable of interest zi ∈ R, and possibly also a set of covariates
wi ∈ Rq. We consider the following semiparametric generalized additive model:

zi = wt
iβ + f(pi) + εi, i = 1, . . . , n (1)

where β ∈ Rq is an unknown vector of regression coefficients, that describes the effect of the
covariates on the mean of the variable of interest, f : D → R is an unknown deterministic field,
that captures the spatial structure of the phenomenon under study, and ε1, . . . , εn are uncorrelated
errors, with zero mean and finite variance. In Sangalli et al. (2013) we propose to estimate the
unknown β and f by minimizing the regularized sum-of-square-error functional

n∑
i=1

(
zi −w>i β − f(pi)

)2
+ λ

∫
Ω

(
∆f
)2
dp (2)

where λ is a positive smoothing parameter and ∆ denotes the Laplace operator. To define this
partial differential operator, consider a generic function f : Ω→ R. Denote the gradient of f by

∇f(p) :=

(
∂f

∂p1
(p),

∂f

∂p2
(p)

)>
where > is the transpose operator. Moreover, given a vector field f =

(
f1(p), f2(p)

)>
: Ω → R2,

define the divergence of the vector field as

div f(p) :=
∂f1

∂p1
(p) +

∂f2

∂p2
(p).

Then, the Laplacian of f is defined as

∆f(p) := div∇f(p) =
∂2f

∂p2
1

(p) +
∂2f

∂p2
2

(p). (3)

The Laplace operator provides a simple measure of the local curvature of the field f. Higher values
of the smooothing parameter λ result in smoother estimates of f , while lower values of λ lead to
more data-adapted estimates. It should be noticed that the Laplacian is invariant with respect
to rigid transformations (rotations, translations and reflections) of the spatial coordinates; this
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ensures that the resulting smoothness of the estimate is independent of the arbitrary orientation
of the coordinate system.

The functional (2) is well defined for β ∈ Rq and f ∈ H2(Ω), where H2(Ω) is the Sobolev space
of functions h : Ω → R such that h and its first and second derivatives are in L2(Ω); see, e.g.,
Rudin (1991).

When covariates are not available, model (1) is replaced by

zi = f(pi) + εi, i = 1, . . . , n

and f can be estimated by minimizing (2), or another of the estimation functionals considered in
the following sections, but omitting −w>i β in the least-square term. In the following we consider
the more general model that includes covariates, briefly commenting on simplifications for the
model without covariates.

3.1 Modelling problem-specific information via a partial differential equa-
tion

Assume that some problem-specific information is available, coming for instance from the physics,
mechanics, chemistry or morphology of the phenomenon under study, and that this information
can be formalized in terms of a PDE Lf = u. Specifically, on the base of the problem-specific
information, we assume that the misfit Lf − u is small, though we do not require it to be null.
Then, it makes sense to estimate the unknown β and f minimizing the functional

n∑
i=1

(
zi −w>i β − f(pi)

)2
+ λ

∫
Ω

(
Lf − u

)2
dp (4)

that trades-off a data fidelity criterion, the least-square term, and a model-fidelity criterion, the
misfit with respect to the PDE (see Azzimonti et al., 2015, 2014).

(a)

●

●

●

●

●

●

●

●

●

●

(b)

●

●

●

●

●

●

●

●

●

●

(c)

●

●

●

●

●

●

●

●

●

●

(d)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e)

●

●

●

●

●

●

●

●

●

●

(f)

●

●

●

●

●

●

●

●

●

●

(g)

●

●

●

●

●

●

●

●

●

●

(h)

●

●

●

●

●

●

●

●

●

●

Figure 3: (a): Isotropic diffusion field. (b) and (c): anisotropic diffusion fields with different directions and
intensities of the anisotropy. (d): non-stationary isotropic diffusion field. (e) non-stationary anisotropic
diffusion field. (f) and (g): transport fields with different directions and intensities of the transport. (h):
non-stationary transport field.

The regularizing term enables a very rich modelling of spatial variation. In particular, L is a
general linear differential operator, including, for instance, second order, first order and zero order
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differential operators. Consider a symmetric and positive definite matrix K = {Kij} ∈ R2×2,
named diffusion tensor, a vector b = {bj} ∈ R2, named transport vector, and a positive scalar
c ∈ R+, named reaction term. The differential operator L can include: a second order differential
operator such as the divergence of the gradient, i.e.,

div(K∇f) =
∂

∂p1

(
K11

∂f

∂p1
+K12

∂f

∂p2

)
+

∂

∂p2

(
K21

∂f

∂p1
+K22

∂f

∂p2

)
,

a first order differential operator such as the gradient, i.e.,

b · ∇f = b1
∂f

∂p1
+ b2

∂f

∂p2
,

and a zero order differential operator such as cf . We thus consider general differential operators
of the form

Lf = −div(K∇f) + b · ∇f + cf. (5)

Furthermore, K, b and c can vary over space, i.e., K = K(p), b = b(p) and c = c(p). The three
operators composing (5) model various forms of anisotropy and non-stationarity. The diffusion term
−div(K∇f) produces a smoothing in all the directions. WhenK is a multiple of the identity matrix
I, this term induces an isotropic smoothing effect; otherwise it induces an anisotropic smoothing
with a preferential direction identified by the first eigenvector of K, with a degree of anisotropy
controlled by the ratio between the two eigenvalues of k. Figure 3 visualizes the diffusion term via
ellipses whose axes are oriented according to the eigenvectors of K and with lengths proportional
to the corresponding eigenvalues: panel (a) visualizes an isotropic and stationary diffusion; panels
(b) and (c) provide two examples of anisotropic diffusion, with different directions and intensities of
the anisotropy; panel (d) shows a non-stationarity isotropic case and panel (e) a non-stationarity
anisotropic case. The transport term b · ∇f produces a smoothing toward a unique direction,
identified by b. This is visualized in Figure 3: panels (f) and (g) display two transport fields
with different directions and intensities; panel (h) presents a non-stationary transport field. The
reaction term cf induces shrinkage of the field to zero; this effect can as well be non-stationary.

The forcing term u ∈ L2(Ω) can either be a null function u = 0 (so-called homogeneous case),
or u 6= 0 (non-homogeneous case), even further increasing the flexibility in the modelling of spatial
variation. In the following sections, for simplicity of exposition, we consider the homogeneous
case, and only briefly comment on changes required by non-homogeneous forcing terms. We refer
the reader to Azzimonti et al. (2014, 2015); Arnone et al. (2019) for details on handling non-
homogeneous forcing terms.

For K = I, b = 0, c = 0 and u = 0 we get the special case corresponding to (2), where the
regularization with the Laplacian ∆f implies a stationary and isotropic smoothing.

It should be pointed out that we are not here interested in looking for the PDE solution that
is closest to the data, as done for instance with an analogous approach by Xun et al. (2013). In
fact, we do not make the assumption that the unknown field satisfies the PDE. Rather, we use the
PDE as a powerful tool to model spatial variation, as described above.

3.2 Boundary conditions
Moreover, when the domain Ω has a boundary ∂Ω, there can be problem-specific conditions that
f satisfies at ∂Ω. SR-PDE handles different types of boundary conditions, including: Dirichlet
conditions, that fix the value of f at ∂Ω; Neumann conditions, that fix the value of its normal
derivative, hence governing the flow across ∂Ω; Robin conditions, that are linear combinations of
the above conditions. Moreover, different conditions may be imposed on different portions, ΓD,
ΓN , ΓR, of ∂Ω, yielding a partition of the boundary. Denoting by ν the outward unit normal
vector to ∂Ω, we can summarize the admissible boundary conditions as f = γD on ΓD,

K∇f · ν = γN on ΓN ,
K∇f · ν + χf = γR on ΓR,
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Figure 4: Linear finite element basis on planar triangulation (left) and on non-planar triangulation (right).

where the functions γD, γN , γR, and the portions of the boundary ΓD, ΓN , and ΓR must satisfy
some regularity conditions to ensure that the estimation functional is well-defined (Azzimonti
et al., 2014). The boundary conditions are said homogeneous when the functions γD, γN , γR
are constant zero functions. For simplicity of exposition, in the following sections we consider
homogeneous Dirichlet or Neumann conditions; see Azzimonti et al. (2014) for details on how to
handle other boundary conditions.

In several applications the ability to comply with specific boundary conditions is crucial to
obtain meaningful estimates. An illustrative example in this respect is given in Section 7.

3.3 Characterization of the solution to the estimation problem
The functionals in (2) and (4) are well defined for β ∈ Rq and f ∈ H2(Ω). Moreover, when the
domain is bounded, the use of appropriate boundary conditions guarantees the uniqueness of the
solution (see, e.g., Sangalli et al., 2013; Azzimonti et al., 2014, for details). We denote by V (Ω)
the subspace of H2(Ω) with the chosen boundary conditions.

Set z := (z1, . . . , zn)>, the vector of observed data values, and, for any function v : Ω→ R, set
vn := (v(p1), . . . , v(pn))>, the vector of evaluations of v at the n spatial locations. Moreover, if
covariates are present, let W denote the n × q matrix having the q covariates w>i observed at pi
in the ith row, and assume W has full rank. Moreover, set Q := I −W (W>W )−1W>, the matrix
that projects into the orthogonal complement of Rn with respect to the subspace of Rn spanned
by the columns of W .

The following proposition characterizes the solution to the estimation problem, under homo-
geneous boundary conditions and forcing terms (see Azzimonti et al. (2014) for non-homogeneous
boundary conditions and forcing terms).

Proposition 1. There exists a unique pair of estimators (β̂ ∈ Rq, f̂ ∈ V (Ω)) which minimize (4).
Moreover,

β̂ = (W>W )−1W>(z− f̂n) (6)

and f̂ satisfies

v>n Q f̂n + λ

∫
Ω

(Lv)(Lf̂) = v>n Q z, ∀v ∈ V (Ω). (7)

In the model without covariates, f̂ satisfies a problem like (7), but where Q does not appear
(or, equivalently, it is replaced by the identity matrix).
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4 Numerical solution of the estimation problem
The fourth order differential problem (7) cannot be solved analytically. We hence use advanced
numerical discretization procedures. Here we briefly review the discretization based on a mixed
finite element formulation. Wilhelm et al. (2016) describes instead an alternative discretization by
isogeometric analysis with non-uniform rational B-splines.

The numerical discretization reduces the estimation problem to the solution of a linear system.
The spatial domain Ω is represented by an appropriate mesh, and the functions over Ω are approx-
imated by a finite system of bases defined on this mesh. This permits to consider spatial domains
with complex shapes.

4.1 Construction of the mesh
Convenient meshes of the spatial domain are obtained by constrained Delaunay triangulation; this
is a generalization of the Delaunay triangulation (see, e.g., Hjelle and Dæhlen, 2006) that enables
the definition of the boundary of the domain, forcing the required segments into the triangulation.
The triangulated domain is denoted by ΩT , where T is the set of all the triangles. It is important
to note that the mesh nodes can differ from the data locations.

The R package fdaPDE (Lila et al., 2020) provides functions to construct the mesh, such as
create.mesh.2D, that creates the mesh starting from a set of points to be used as triangle vertices
and/or a set of edges to be used as boundary. The package also contains functions to refine the
mesh, such as refine.mesh.2D, whose options allows to specify the maximal allowed triangle area
and/or the minimal allowed triangle angle. The right panel of Figure 1 shows a mesh of the
municipality of Portland. The triangulation has been obtained starting from the boundary and
refining it according to criteria of maximal allowed triangle area and minimal allowed triangle
angle. The mesh is able to very well represent this complicated domain, accurately rendering the
Willamette river, that cuts through the city, and other detailed features. The package fdaPDE also
handles non-planar triangular meshes, such as the one in the left panel of Figure 2, that represents
the left hemisphere of the cerebral cortex of a template brain.

In general, the mesh should be fine enough to capture the features in the signal. For medium
sample sizes, a regular mesh having a number of nodes higher than the number of data, but of
the same order of magnitude, typically works efficiently. Triangles having too acute angles should
be avoided (setting for instance a minimum angle of 25 degrees in the refinement function), as
they may be associated with numerical instability. For data displaying highly localized features,
it may be convenient to consider data-driven meshes, that may be constructed starting from (a
subsample of) the data locations. Such data-driven meshes permit to capture strongly localized
features, while being parsimonious (i.e., using a limited number of mesh nodes) and thus requiring
a lower computational cost.

4.2 Finite elements
Finite elements provide bases for globally continuous, piecewise polynomial functions; see, e.g.,
Ciarlet (2002); Quarteroni (2017) for an introduction to finite elements. The finite element space
V rT (Ω), with r ∈ {1, 2, . . .}, is defined as the space of continuous functions over ΩT that are
polynomials of degree r once restricted to any triangle in T . It is convenient to introduce the
nodes of the triangulation, ξ1, . . . , ξNT . In the case of linear finite elements, the nodes are given
by the vertices of the triangles in T . In the case of quadratic finite elements, the nodes also include
the middle points of the triangle edges. For higher orders r, the nodes include also other specific
points of the triangles. It is then possible to define a set of NT basis functions ψ1, . . . , ψNT ,
associated with these nodes, and spanning the finite element space. In particular, for each node
ξj , j ∈ {1, . . . , NT }, the basis ψj is defined as a locally supported piecewise polynomial function of
the desired order r, taking value 1 at the node ξj , and value 0 at all other nodes, i.e., ψj(ξi) = δji,
where δji = 1 if j = i and δji = 0 if j 6= i. Figure 4 displays linear finite element bases over a
planar and over a non-planar triangulation.
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Let ψ = (ψ1, . . . , ψNT )> be the NT -vector of the basis functions. Then any function v ∈
V rT (Ω) can be represented as an expansion on this basis system, i.e., v(p) = v>ψ(p), where
v = (v1, . . . , vNT ) is the vector of coefficients of the basis expansion. It turns out that v =

(v(ξ1), . . . , v(ξNT ))
>
, i.e., the vector of coefficients of the basis expansion is given by the vector of

evaluations of v at the NT nodes of the mesh. In fact, v(ξi) =
∑NT
j=1 vjψj(ξi) =

∑NT
j=1 vjδij = vi.

This property is computationally very convenient.
Homogeneous boundary conditions on ΓD can be simply enforced discarding the finite element

bases associated with nodes in ΓD.
The function create.FEM.basis of fdaPDE constructs a finite element basis of the desired order

(linear and quadrating finite elements are currently implemented), requiring as imput the mesh.

4.3 Solution of the estimation problem using finite elements
Denote by Ψ the n×NT matrix having as entries the evaluations of the NT basis functions at the
n data locations:

Ψ =

ψ1(p1) . . . ψNT (p1)
...

...
...

ψ1(pn) . . . ψNT (pn)

 .
Note that vn = (v(p1), . . . , v(pn))>, the vector of evaluations of v at the n spatial locations, and
v = (v(ξ1), . . . , v(ξNT ))

>
, the vector of evaluations of v at the NT mesh nodes, are related by

vn = Ψv. Moreover, let R0 and R1 be the following NT ×NT matrices:

R0 =

∫
ΩT

ψψ>

R1 =

∫
ΩT

(
∇ψ>K∇ψ +∇ψ>bψ> + cψψ>

)
Proposition 2 states that, with the introduction of the finite element space, the estimation problem
becomes a linear system.

Proposition 2. There exists a unique pair of estimators (β̂ ∈ Rq, f̂ ∈ VT (Ω)) which solve the
discrete counterpart of the estimation problem. Moreover,

β̂ = (W>W )−1W>(z− f̂n)

and f̂ = f̂>ψ, with f̂ satisfying[
−Ψ>QΨ λR>1
λR1 λR0

] [
f̂
g

]
=

[
−Ψ>Q z

0

]
. (8)

The system (8) is of order 2NT , so it can be very large. On the other hand, it is highly
sparse: R0 and R1 are in fact highly sparse matrices because most of the cross-products of the
basis functions and of their partial derivatives are null, due to local support of the bases. As an
example, the triangulation of the municipality of Portland in Figure 1 has 492 nodes and only
about 2% of the entries of R0 and R1 are non-zero. For this reason, the solution of (8) is fast.

From Proposition 2, we get that

f̂ = f̂>ψ with f̂ = (Ψ>QΨ + λP )−1Ψ>Q z (9)

where the positive definite matrix P := R>1 R
−1
0 R1 discretizes the regularizing term in (4). This

approximation of the regularization only involves first order derivatives. In fact, in the mixed
finite element approach here considered, the fourth order problem (7) is rewritten as a system of
two coupled second order problems; integrating by parts against test functions, these second order
problems are hence reformulated in a version that only involves first order derivatives. See, e.g.,
Azzimonti et al. (2015) for details.
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For non-homogeneous forcing terms u ∈ L2(Ω), u 6= 0, the vector 0 in the right hand side of (8)
is replaced by λu, where u is the discretization of the forcing term u, i.e., u = (u(ξ1), . . . , u(ξN ))>.
For the model without covariates, f̂ is as in (8) and (9) with Q = I.

SR-PDE estimates can be obtained by the function smooth.FEM of the package fdaPDE (Lila
et al., 2020). The option PDE.parameters of this function permits to specify the parameters K,
b, c and u of the PDE in the regularizing term; its default value corresponds to the regularization
of the Laplace operator.

5 Properties of the estimators

The estimators β̂ and f̂ are linear in the observed data values z. S denote the n × n matrix
S := Ψ(Ψ>QΨ + λP )−1Ψ>Q. Then, β̂ = (W>W )−1W>

{
I − S

}
z and f̂n = S z. Assuming that

the random errors ε1, . . . , εn in model (1) are uncorrelated, with zero mean and finite constant
variance σ2, we can readily derive

E[β̂] = β + (W>W )−1W>
(
I − S

)
fn (10)

V ar(β̂) = σ2(W>W )−1 + σ2(W>W )−1W>
{
S S>

}
W (W>W )−1

and

E[f̂n] = S fn (11)

V ar(f̂n) = σ2 S S>.

Moreover, consider the field estimator f̂ at the generic location p ∈ Ω:

f̂(p) = ψ(p)t(ΨtQΨ + λP )−1ΨtQz.

Its mean and variance/covariance are given by

E[f̂(p)] = ψ(p)t(ΨtQΨ + λP )−1ΨtQfn (12)

V ar[f̂(p)] = σ2ψ(p)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + λP )−1ψ(p)

Cov[f̂(p1), f̂(p2)] = σ2ψ(p1)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + P )−1ψ(p2).

for any p,p1,p2 ∈ Ω. As highlighted by the expressions above, the first order structure of the field
estimator, the mean of f̂ , as well as its second order structure, the covariance of f̂ , depend on the
regularization being considered.

A new observation at pn+1, having covariates wn+1, can be predicted by

ẑn+1 = w>n+1β̂ + f̂(pn+1) = w>n+1β̂ + f̂>ψ(pn+1),

and the mean and variance of this estimator can be analogously derived.
The vector of fitted values at the n data locations ẑ = W β̂+ f̂n = (I −Q+QS) z is also linear

in the observations z. The trace of the linear operator that takes from the observed to the fitted
values, tr(I − Q + QS) = q + tr(S), can be taken as equivalent degrees of freedom of the model
(see, e.g., Buja et al., 1989). The equivalent degrees of freedom are thus given by the sum of q, the
number of covariates, and tr(S), the equivalent degrees of freedom of the the field estimator. An
estimator of σ2 is given by

σ̂2 =
1

n− (q + tr(S))

(
z− ẑ

)>(
z− ẑ

)
.
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It is possible to automatically select the smoothing parameter λ using for instance k-fold cross
validation or Generalized-Cross-Validation (Craven and Wahba, 7879):

GCV (λ) =
1

n
(
1− (q + tr(S))/n

)2 (z− ẑ
)>(

z− ẑ
)
.

Expressions (10), (11) and (12) point out that the estimators are biased. Specifically, β̂ is biased
as a result of the bias affecting f̂ . The bias of f̂ in turn has two sources: the discretization and
the regularization. The bias due to the discretization is common to any nonparametric estimator
that employs a basis expansion. The bias due to the regularization is common to any penalized
regression estimator, and affects also the infinite-dimensional estimators in Proposition 1, not only
their discrete counterparts: unless the true function f satisfies exactly the PDE in the regularizing
term (hence annihilating the penalty term), this term induces in fact a bias. Simulations show
that this bias might be appreciable in small sample scenarios, especially under particularly irregular
sampling designs. Azzimonti et al. (2014), considering for simplicity an SR-PDE model without
covariates, investigates the convergence of the bias of the finite element estimator, with respect to
the size of the triangulation. Arnone et al. (2020), always considering a model without covariates,
and assuming other simplifying hypothesis, derives some preliminary results on the consistency of
the methods.

SR-PDE has been thoroughly tested under various simulated settings (with and without covari-
ates, with true fields generated parametrically or randomly, with uncorrelated and correlated noise,
with various signal-to-noise ratios, sampling sizes and sampling designs), and compared to kriging
and to other regularized regression estimators such as those based on thin-plate splines or soap film
smoothing (see, e.g., Sangalli et al., 2013; Azzimonti et al., 2014; Bernardi et al., 2017; Ettinger
et al., 2016; Bernardi et al., 2018; Arnone et al., 2019). In all the simulation studies, the esti-
mates provided by SR-PDE, in correspondence of the smoothing parameter automatically selected
by GCV or by k-fold cross validation, have always shown comparative advantages with respect
to the alternatives, especially in the cases of irregularly shaped domains and of fields exhibiting
complicated localized features.

6 Model extensions

6.1 Areal data
Instead of so-called geostatistical data, i.e., data observed at point-wise locations p1, . . . ,pn, we can
consider data referred to areal sub-domains of Ω. Specifically, let D1, . . . , Dn be n disjoint spatial
sub-domains of Ω. In such case, the model must involve areal evaluations of the unknown field f.
Depending on the data and problem being considered, these areal evaluations can for instance be
either mean evaluations or integral evaluations of f. For instance, we may assume the model

zi = w>i β +
1

|Di|

∫
Di

f + εi i = 1, . . . , n

where |Di| denotes the area of Di, and ε1, . . . , εn are uncorrelated zero-mean errors with V ar(εi) ∝
1
|Di| . In such case, β and f are estimated minimizing the regularized weighted sum-of-square-error
functional

n∑
i=1

|Di|
(
zi −w>i β −

1

|Di|

∫
Di

f

)2

+ λ

∫
Ω

(
Lf − u

)2

See Azzimonti et al. (2015) for details. Areal data can be handled in the function smooth.FEM
of fdaPDE, specifying the option incidence.matrix to identify D1, . . . , Dn over the triangulated
domain.
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6.2 Generalized linear model
The sum of square error in (2) can be interpreted as a Gaussian (negative) log-likelihood. Indeed,
the model in Section 3 can be extended to any distribution in the exponential family, via a Gen-
eralized Linear Model framework (see, e.g., Hastie and Tibshirani, 1990; McCullagh and Nelder,
1989). Let Z1, . . . , Zn be independent random variable having a distribution that belongs to the
exponential family. In Wilhelm and Sangalli (2016) we model the expected value of Zi, at location
pi and with covariates wi (whenever available), by

g
(
E(Zi)

)
= θi(β, f) = w>i β + f(pi)

where g is the canonical link function associated with the considered distribution. We thus estimate
β and f maximizing the penalized log-likelihood

n∑
i=1

l(zi; θi(β, f))−λ
∫

Ω

(
Lf − u

)2

dp (13)

where l(; θ) is the log-likelihood for the considered distribution. This of course coincides with the
minimization of the regularized least-squares in (2) when the considered distribution is Gaussian.
This generalization significantly broadens the possible applications of SR-PDE, since most of the
(continuous and discrete) well-known distributions belong to the exponential family. The functional
in (13) is then optimized through iterative penalized least-squares. We refer the interested reader
to Wilhelm and Sangalli (2016) for details. The generalized linear version of SR-PDE can be
implemented specifying the option family of the function smooth.FEM of fdaPDE.

6.3 Spatio temporal models
SR-PDE can also handle spatio-temporal data and spatially dependent functional data (Delicado
et al., 2010; Mateu and Romano, 2017; Menafoglio and Secchi, 2017). To this aim, let T denote the
temporal domain of interest and consider the field f defined over Ω×T . Different sampling designs
may be considered, with point-wise or areal observations in space, and point-wise or interval obser-
vations in time, leading to different least-square terms (or, equivalently, different likelihood terms
in a generalized linear framework). See Arnone et al. (2019) for details. As for the regularization,
we can consider two separate terms

λS

∫
T

∫
Ω

(
Lf − u

)2

dpdt+ λT

∫
Ω

∫
T

(∂2f

∂t2

)2

dtdp; (14)

the first penalty in (14) regularizes the field in space, likewise in (4), while the second penalty
regularizes the field in time, considering the classical regularization of second derivative. In the
simple case where L is the Laplace operator, this model is considered by Bernardi et al. (2017).
Analogous models are also considered by Marra et al. (2012) and Augustin et al. (2013). Alter-
natively, as detailed in Arnone et al. (2019), the regularization can be based on the misfit with
respect to a time-dependent PDE, jointly modelling the spatio-temporal behavior,

λ

∫
T

∫
Ω

(∂f
∂t

+ Lf − u
)2

dpdt. (15)

See Arnone et al. (2019) for details. An application of this model is shown in Section 7.
Depending on whether the regularization in (14) or the one in (15) is considered, convenient

discretizations of the estimation problem involve finite elements in space, and either splines or finite
differences in time. Appropriately stacking the data observed at the nm spatio-temporal locations
in the vector z, and correspondingly defining the vector of evaluations of f at the same nm spatio-
temporal locations fnm, the covariate matrix W and the matrix Q = I −W (W>W )−1W>, it is
possible to obtain the estimators

β̂ = (W>W )−1W>(z− f̂nm)

f̂ = (Ψ̃>QΨ̃ + P̃ )−1Ψ̃>Q z
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where Ψ̃ contains the evaluations of the spatial and temporal basis functions at the nm spatio-
temporal locations, P̃ is the discretization of the considered regularizing term, either (14) or (15),
also including the corresponding smoothing parameters, and f̂ is the vector of basis expansion
coefficients that returns the estimate of the spatio-temporal field. Hence, the estimators have the
same form as in Section 3, and it is possible to derive their properties along the same lines as in
Section 5. See Bernardi et al. (2017) and Arnone et al. (2019) for details.

Both methods are implemented in the function smooth.FEM.time of fdaPDE. This function has
similar options as smooth.FEM. For instance, the option PDE.parameters permits to specify the
parameters of the PDE in the regularizing term; the option incidence.matrix allows to handle
areal data in space.

6.4 Non-planar domains
As mentioned in the Introduction, SR-PDE can as well deal with data whose locations lie on
non-planar bi-dimensional domains. Specifically, let M be a general bi-dimensional Riemmanian
manifold, and let p1, . . . ,pn ∈ M be the n data locations where the variables z1, . . . , zn, and,
whenever available, also the covariates w1, . . . ,wn, are observed. The field f is now defined on
the manifold domain, f : M → R. In this case, the differential operator in the regularizing
term must be appropriately referred to the manifold domain M. In particular, in Ettinger et al.
(2016); Lila et al. (2016); Wilhelm et al. (2016); Dassi et al. (2015), we consider the Laplace-
Beltrami operator, ∆Mf , a generalization of the standard Laplacian to functions f defined on a
non-planar domainM. To define ∆Mf it is necessary to compute the gradient operator ∇M and
the divergence operator divM overM (see, e.g., Jost, 2017). Then, the Laplace-Beltrami operator
is defined as ∆Mf = divM∇Mf. Alike to the standard Laplacian, ∆Mf yields a measure of the
local curvature of the function f, defined on the non-planar domainM. This operator reduces to
the Laplace operator in (3) ifM ⊂ R2. We hence assume the same semiparametric model in (1)
and estimate the unknown β and f by minimizing the regularized sum-of-square-error functional
as in (2), with the standard Laplacian replaced by the Laplace-Beltrami, i.e.,

n∑
i=1

(
zi −w>i β − f(pi)

)2
+ λ

∫
M

(∆Mf)
2
dp.

The Laplace-Beltrami is also invariant with respect to rigid transformations of the coordinates of
the non-planar domain. Hence, the use of ∆Mf in the penalty guarantees that the concept of
smoothness is independent of the orientation ofM and of the coordinate system.

Both closed bi-dimensional domains as well as bounded bi-dimensional domains can be con-
sidered (for bounded domains, appropriate boundary conditions must be considered to guarantee
uniqueness of the solution). The discretization of the estimation problem and the properties of the
estimators follow as in the case of planar domains. Lila et al. (2016) describes the discretization via
finite elements defined over non-planar triangulations. The left panel of Figure 2 displays a non-
planar triangulation and the right panel of Figure 4 provides an example of linear finite element
basis on a non-planar triangulation. The function smooth.FEM of fdaPDE can handle data over
non-planar triangulations. An alternative discretization by isogeometric analysis with non-uniform
rational B-splines is given in Wilhelm et al. (2016).

7 Illustrative case study: analysis of blood-flow velocity field
from eco-color doppler data

We consider a problem that has arisen within the research project Mathematics for Carotid En-
darterectomy @ MOX, concerning the analysis of the velocity field of blood flow in sections of
carotid arteries, with data obtained from Magnetic Resonance Imaging (MRI) and Echo-Color
Doppler (ECD) (see Azzimonti et al., 2015; Arnone et al., 2019, for details). The project ex-
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plored the role of vessel morphology and of blood fluid dynamics on the onset and progression of
atherosclerotic plaques.

Figure 5: Echo-color doppler acquisition of blood flow velocity over beam 3; see Figures 6 and 8.
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Figure 6: Left: ECD measuraments are taken at a cross-section of the Common Carotid Artery (CCA),
2 cm before the bifurcation of the CCA in Internal Carotid Artery (ICA) and External Carotid Artery
(ECA). The ECD signal is acquired in 7 beams, located in the cross shaped pattern shown at the cross-
section. Right: Cross-section of the common carotid artery, as reconstructed from MRI data, with the
seven beams where the ECD signal is taken. The color correspond to the mean velocity over the beam at
systolic peak. The figure also highlights the physiological boundary conditions: the velocity of blood-flow
is zero at the arterial wall, due to the friction between the wall and the blood particles.

Figure 5 displays one ECD image from the study. The upper part of this image shows the
ultrasound scan of the vessel; the small gray box indicates the beam where the velocity of blood
particles is acquired. The lower part of the same image displays the measured blood flow velocity
over the time lapse of about three heart-beats. The solid red line superimposed to this signal shows
the mean velocity.

The study starts from ECD measurements of the velocity of the blood flow, at a cross-section of
the common carotid artery located 2 cm before the bifurcation of the carotid, for patients having
a high-grade stenosis (> 70%) at the carotid bifurcation. The left panel of Figure 6 displays
a schematic carotid artery: the lower part of this draw shows the cross-section where the ECD
measurements are taken; specifically, the ECD signal is acquired over 7 beams displayed in a
cross-shaped pattern. The right panel of the same figure shows a zoom of this cross-section: the
quasi-circular patient-specific profile of the section is reconstructed from MRI data; the seven
beams where the ECD signal is measured are colored according to the mean velocity of blood
particles at systolic peak. Figure 8 shows the mean velocity over the seven beams during one
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heart-beat. The seven temporal profiles have different shapes, some displaying two peaks during
the systolic phase, with the highest velocities attained in the second peak, and others displaying
only one peak, earlier in time.
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Figure 7: Left: estimate of the blood-flow velocity field at systolic peak, obtained by SR-PDE, imposing
the appropriate boundary conditions (i.e.: zero velocity at the arterial wall), but using L = ∆ (stationary
isotropic estimate in space). Right: estimate of the blood-flow velocity field at systolic peak, obtained by
SR-PDE, imposing the appropriate boundary conditions and using the differential operator L suggested
by problem-specific information, with the diffusion and transport fields shown in Figure 9 (non-stationary
anisotropic estimate in space).
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Figure 8: Left. Mean blood-flow velocity recorded over the seven acquisition beams. Different numbers
and colors identify the signal over each beam. Right. Temporal profiles of the estimated mean blood-flow
velocity, evaluated at the centers of the beams.

The first goal of the project consisted in accurately estimating, for each of the patients involved
in the study, the time-dependent blood-flow velocity field over the whole carotid cross-section,
starting from the ECD measurements, and from the reconstructions of patient-specific artery sec-
tions obtained from MRI data. This application though features some peculiarities, that hinder
the applicability techniques for spatio-temporal data and for spatially dependent functional data.
Firstly, in this problem the domain shape, the carotid cross section, strongly influences the phe-
nomenon under study: the blood flow is in fact confined within the artery, whose shape heavily
reflects on the blood flow velocity field. Secondly, there are specific conditions at the boundaries
of this domain: in fact, the velocity of the blood flow is is zero at the arterial wall, due to the
friction between the wall and the blood particles. Thirdly, the irregular pattern of the observations,
shown in the right panel of Figure 6, misleads stationary and isotropic methods, that yield non-
physiological estimates. Figure 7 illustrates this issue, displaying the estimate of the blood-flow
velocity field at systolic peak that is obtained by SR-PDE, imposing the appropriate boundary
condition and using a regularizing term that involves the stationary and isotropic differential op-
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Figure 9: Left: Triangulation of the patient-specific cross-section of the carotid. Center: non-stationary
anisotropic diffusion tensor field K, that induces a smoothing along concentric circles. Right: non-
stationary transport field b, that induces a smoothing from the center of the artery section to the arterial
wall.

time = 0 time = 0.054 time = 0.146time = 0.100

time = 0.192 time = 0.238 time = 0.330time = 0.284

time = 0.376 time = 0.460 time = 0.575

Figure 10: Estimate of the velocity field of the blood flow obtained by SR-PDE imposing the appropriate
boundary conditions and using the differential operator L suggested by problem-specific information, with
the diffusion and transport fields shown in Figure 9. The bottom right panel displays the orientation of
the artery cross-section.
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erator L = ∆: penalizing the local curvature of the field pull the solution toward a plane where
data are missing, returning non-physiological estimates with rhomboidal isolines.

On the other hand, we can here take advantage of an advanced problem-specific information
about the phenomenon under study, concerning fluid dynamics and hemodynamics (see, e.g., For-
maggia et al., 2009). This information can be appropriately formalized into a PDE, along with the
physiological boundary conditions. Specifically, we can consider the parabolic PDE ∂f/∂t+Lf = 0,
where L includes a nonstationary anisotropic diffusion tensor that induces a smoothing along con-
centric circles (Figure 9, center) and a nonstationary transport field that induces a smoothing in
the radial direction, from the center of the artery to the arterial wall (Figure 9, right); the reac-
tion term and the forcing term are instead not required by this application (see Azzimonti et al.,
2015; Arnone et al., 2019, for the details). The right panel of Figure 7 displays the estimate of the
blood-flow velocity field at systolic peak, obtained by SR-PDE, imposing the appropriate boundary
condition and with a regularizing term that involves the non-stationary anisotropic differential op-
erator L illustrated above. This estimate efficiently incorporates the problem-specific information
and yields a realistic estimate, that displays physiological isolines, unaffected by the cross-shaped
pattern of the observations. Figure 10 shows the estimate at some temporal instants. The veloc-
ity field strongly varies in shape during the heartbeat, exhibiting asymmetries and eccentricities.
These features are of particular interest to the medical doctors, that investigate their relationship
with atherosclerosis. The left panel in Figure8 shows the temporal profiles of the estimated veloc-
ity, evaluated at the central point of each beam. A visual comparison with the original data in the
right panel of the same figure highlights that the estimate captures very well the main features of
the ECD signals.

8 Population studies: a principal component analysis method
based on SR-PDE

In this section we consider population studies. Consider a sample of m realizations of the field,
z1, . . . , zm, corresponding to m statistical units, where zj := (zj1, . . . , zjn)> and zji is the value
of the variable of interest observed for the j-th statistical unit at location pi. For simplicity of
exposition, we assume that the m realizations of the signal are observed at the same locations
p1, . . . ,pn; later we shall remove such assumption. We are now interested in exploring the vari-
ability in the sample. Zhou and Pan (2014) proposes a method for Principal Component Analysis
(PCA) of data spatially distributed over planar domains with irregular shape; the authors in par-
ticular consider a mixed effect model where the principal components are represented by splines
over triangulations. Here we review the method described in Lila et al. (2016), that is instead
based on a regularized low rank approximation of PCA, and leverages directly on SR-PDE. The
method is implemented in the function FPCA.FEM of fdaPDE; it can tackle signals over complicated
domains, as those considered in the previous sections.

To this aim, we formulate PCA in a functional data analysis framework. Denote by D the spatial
domain of interest, either planar or curved. Consider the space L2(D) = {f : D → R s.t.

∫
D f

2 <
∞}, of square integrable functions on D, , equipped with its standard inner product 〈f, g〉 =

∫
D f g

and norm ‖f‖2 =
∫
D f

2, where f, g ∈ L2(D). Consider the random field Z(·) taking values in
L2(D), with mean µ(·) = E[Z(·)] and finite second moment, i.e.,

∫
D E(Z2)dp < ∞; moreover

assume that its covariance Σ(p,q) = E[(Z(p)−µ(p))(Z(q)−µ(q))] is square-integrable. Mercer’s
Lemma (Riesz and Sz.-Nagy, 1990) ensures that there exist a non-increasing sequence of eigenvalues
{ζj}j=1,2,... of Σ, and an orthonormal sequence of corresponding eigenfunctions {fj}j=1,2,... such
that ∫

D
Σ(p,q)fj(p)dp = ζjfj(q) ∀q ∈ D (16)

and that Σ(p,q) =
∑∞
j=1 ζjfj(p)fj(q) for each p,q ∈ D. Hence, the random field Z can be

expressed as Z(·) = µ(·) +
∑∞
j=1 ujfj(·), where uj = 〈Z −µ, fj〉 are uncorrelated random variables,

named scores. This is the so-called Karhunen-Loève expansion of Z.
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The orthonormal functions f1, f2, . . . ∈ L2(D) are named principal components of the random
variable Z. These functions identify the strongest modes of variations of Z. Specifically, f1 solves
the following maximization problem

f1 = argmax
f : ‖f‖ = 1

V ar 〈Z, f〉

while fd, for d > 1, solves an analogous maximization problem, but with the added constraint of
being orthogonal to previous principal components, i.e.,

fd = argmax
f : ‖f‖ = 1

〈f, fj〉 = 0 ∀j < d

V ar〈Z, f〉.

Now, suppose m realizations z1(·), . . . , zm(·) of Z(·) were available, observed for any p ∈ D
and without error. Then we could compute the sample mean µ̂(p) = 1

m

∑m
j=1 zj(p) and sample

covariance Σ̂(p,q) = 1
m

∑m
j=1[(zj(p) − µ̂(p))(zj(q) − µ̂(q))], for any p,q ∈ D, and we could find

the estimates f̂1, f̂2, . . . , f̂d of the first d principal components solving (numerically) the eigenvalue
problem (16), but with the true covariance replaced by the sample covariance, i.e.∫

D
Σ̂(p,q)̂fj(p)dp = ζ̂j f̂j(q) ∀q ∈ D. (17)

Unfortunately, it is impossible to have realizations of the random field Z observed for any p ∈ D
and without noise; only discrete and noisy realizations of Z can be observed. The classical approach
in functional data analysis is thus the following: first, smooth estimates of each single realization
of the signal, ẑ1(·), . . . , ẑm(·), are obtained, through some appropriate smoothing procedure; then,
these estimates are used to compute the sample mean µ̂ and sample covariance Σ̂, and hence the
estimates f̂1, f̂2, . . . , f̂d of the first d principal components are obtained solving numerically problem
(17). This is the so-called pre-smoothing approach.

Instead, in Lila et al. (2016) we propose an alternative method for the estimation of the principal
components, inspired by approaches based on regularized functional PCA (fPCA), developed for the
case of functional data over one-dimensional domains by, e.g., Rice and Silverman (1991); Silverman
(1996); Huang et al. (2008). The proposed approach relies on another characterization of principal
components, known as best κ basis approximation property. Namely, for any κ = 1, 2, . . . , the first
κ principal components satisfy

(fj)
κ
j=1 =

argmin
({fj}κj=1:〈fj ,fl〉=δjl)

E
∫
D

{
Z − µ−

κ∑
j=1

〈Z, fj〉fj
}2 (18)

If we consider κ = 1 and we take data already centered around the mean, the empirical version of
the minimization functional in (18) is given by

1

n

1

m

m∑
j=1

n∑
i=1

(
zji − ujf(pi)

)2 (19)

that involves row data, without requiring any presmoothing. We can thus estimate the first prin-
cipal component and associated score minimizing a regularized sum-of-square-error functional,
involving the least-square criterion (19) and a regularizing term that encourages smoothness of f .
This regularizing term can for instance involve ∆Df, where ∆D denotes the Laplace or Laplace-
Beltrami operator, depending on whether D is a planar or non-planar domain. This suggests to
estimate the first principal component function f and the associated score vector u = (u1, . . . , um)>

by minimizing
m∑
j=1

n∑
i=1

(
zji − ujf(pi)

)2
+ λ

∫
D
(∆Df)2 (20)
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over u ∈ Rm such that u>u = 1, and f ∈ H2(D), with boundary conditions in case D has
boundaries. In particular, setting the constraint u>u = 1 makes the representation unique, without
the need to impose that f has unitary norm. Subsequent principal component functions are
extracted sequentially by removing previous principal components from the data matrix Z, whose
j-th row is given by zj .

The minimization of (20) can be performed via an iterative algorithm that alternates the
estimation of the scores u given the principal component f, and the estimation of the principal
component f given the scores u. Specifically, the two steps of the algorithm are as follows:
Step 1: u given f. The unitary norm vector u that minimizes the functional in (20) for a fixed f
is given by

u =
Zfn
‖Zfn‖

where fn =
(
f(p1) . . . , f(pn)

)> constitutes the loading vector. The expression for the scores is thus
analogous to the one obtained in the multivariate setting.
Step 2: f given u. For a fixed u with unitary norm, let yi denote the i-th entry of the vector
y = Z>u. Then, finding f that minimizes (20), for the fixed u, is equivalent to finding f that
minimizes

n∑
i=1

(
yi − f(pi)

)2
+ λ

∫
D
(∆Df)2.

This is the tipical SR-PDE problem (without covariates), that has been described in detail in the
previous sections.

The principal components and scores can then be rescaled to obtain principal components with
unitary norms.

Missing data can as well be considered. Specifically, assume that the j-th statistical unit
zj := (zj1, . . . , zjnj )

>, is observed at locations pj1, . . . ,pjnj . Then, the least-square term in (20)
can be replaced by

m∑
j=1

nj∑
i=1

(
zji − ujf(pji)

)2
while the regularizing term is left unchanged. Similar sparse designs can be considered for the
spatio-temporal problems in Section 6.3.

9 Illustrative case study: analysis of neural connectivity on
the cortical surface

This section illustrates a case study concerning the analysis of high-dimensional neuroimaging
signals associated with neural activity in the cerebral cortex. The main goal is to explore the main
neural connectivity patterns in a population of healthy subjects. The analyzed data come from the
Human Connectome Project (Essen et al., 2012), and are obtained from resting-state functional
Magnetic Resonance Imaging (fMRI) on 491 subjects. The fMRI signal measures neural activity
through changes in the concentration of deoxy-hemoglobin, associated with energy use by neural
cells. As standard practice in the neuroimaging community, the signal of each individual is mapped
to a common template of cortex, to enable multi-subject analyses. Figure 2 shows a triangular
mesh representing the cortical surface of a template brain, where the signals of all subjects are
projected. The figure highlights the highly convoluted morphology of the cortex. Still today, the
most part of neuroimaging studies are carried out either neglecting the spatial dependence in the
signal, or employing standard methods that rely on the Euclidean distance, hence disregarding the
complicated morphology of the cortex. As mentioned in the Introduction, this may nonetheless
lead to inaccurate estimates. There is nowadays a growing awareness of the need to include the
complex brain morphology, to advance our still limited knowledge about brain functioning (see,
e.g., Glasser et al., 2013, and references therein). This has generated a strong momentum in the

20



international community for the development of methods able to accurately analyze data arising
from these complex imaging scans. Lila et al. (2016) offers in this respect a first technique for
population studies of signals referred to bi-dimensional manifold domains.

multivariate PCA presmoothing PCA regularized fPCA

Figure 11: Estimates of the first (top), second (center) and third (bottom) principal components, obtained
by multivariate PCA (left), pre-smoothing followed by multivariate PCA (center), and the proposed fPCA
based on SR-PDE (right).

The analysis is focused on functional connectivity maps, computed from fMRI data. In partic-
ular, we select a region of interest on the cortex template. This is the area whose behaviour, as
compared to the rest of the cortical surface, is of interest for the investigator. In the current study
we select a region of interest in the precuneus, an area of the cerebral cortex devoted to higher
mental processes. For each subject we then compute the functional connectivity map with respect
to the region of interest (see, e.g., Lila et al., 2016); this map highlights the areas of the cortex
that are more highly connected to the selected region of interest. A snapshot of the functional
connectivity map for the chosen region of interest, for one subject in the study, is shown in the
right panel of Figure 2.

We now wish to explore the main modes of variation of these functional connectivity maps
among the different subjects. The last colum of Figure 11 shows the first three principal compo-
nents estimated by the proposed regularized fPCA, and compares the estimates to those obtained
by standard multivariate PCA on the data matrix Z, and to those obtained by the classical pres-
moothing approach, respectively shown in the first column and second column of the same figure.
The smoothing parameters in the proposed regularized fPCA and in the presmoothing approach are
chosen via cross-validation. As highlighted by Figure 11, the three principal components estimated
by multivariate PCA display a strong local variability. This is due to the fact that the sample
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size is too small with respect to the very high dimensionality of the data; moreover, multivariate
PCA completely disregard the morphology of the domain, since spatial information is ignored by
this approach. Both the presmoothing approach and the proposed regularized fPCA instead re-
turn smooth principal components. On the other hand, the presmoothing approach, smooth out
sharpe changes in the modes of variations, returning estimates that miss some localized features,
apparent in the estimates provided by multivariate PCA and by regularized fPCA. As an example,
the third principal components estimated by multivariate PCA and by regularized fPCA display
corresponding localized areas with high values (displayed in red) or low values (displayed in blue),
that are instead missing in the corresponding estimate yielded by presmoothing PCA. By contrary,
the presmoothing approach appears to introduce some artifacts: for instance the third principal
component estimated by presmoothing PCA displays high values in the upper part of the plot,
that do not find matches in the multivariate PCA and regularized fPCA estimates. In summary,
the proposed regularized fPCA is able to combine the desired smoothness with the capacity to
represent highly localized features of the modes of variation.

10 Discussion
Although the study of the theoretical properties of SR-PDE is still ongoing, and much remains to
be done in this respect, this methodology has already shown to be very promising, and capable
to handle complex applied problems. Moreover, its flexible framework permits numerous models
extensions, for instance considering higher dimensional domains (such as three-dimensional spatial
domains with complicated shapes) and density estimation problems (Ferraccioli et al., 2021).

As highlighted in this article, SR-PDE is based on a very rich blend of approaches from pure and
applied mathematics, and from engineering. This endows the methods with remarkable advantages
with respect to the available techniques and makes them able to accurately deal with data structures
for which the classical methods are unfit. Moreover, leveraging on advanced numerical analysis
techniques ensures that the methods are computational highly efficient. We are sure that SR-PDE
will gain popularity, proving highly valuable in a number of applied domains.
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