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Abstract

In this paper we propose a new, purely algebraic, Petrov-Galerkin reduced basis (RB) method to
solve the parametrized Stokes equations, where parameters serve to identify the (variable) domain
geometry. Our method is obtained as an algebraic least squares reduced basis (aLS-RB) method,
and improves the existing RB methods for Stokes equations in several directions. First of all, it does
not require to enrich the velocity space, as often done when dealing with a velocity-pressure for-
mulation, relying on a Petrov-Galerkin RB method rather than on a Galerkin RB (G-RB) method.
Then, it exploits a suitable approximation of the matrix-norm in the definition of the (global)
supremizing operator. The proposed method also provides a fully automated procedure to assem-
ble and solve the RB problem, able to treat any kind of parametrization, and we rigorously prove
the stability of the resulting aLS-RB problem (in the sense of a suitable inf-sup condition). Next,
we introduce a coarse aLSRB (caLSRB) method, which is obtained by employing an approximated
RB test space, and further improves the efficiency of the aLSRB method both offline and online. We
provide numerical comparisons between the proposed methods and the current state-of-art G-RB
methods. The new approach results in a more convenient option both during the offline and the
online stage of computation, as shown by the numerical results.

1 Introduction
Solving saddle-point problems depending on a set of input parameters is a relevant task in sev-
eral engineering contexts. In this work, as a special instance of such a problem, we consider the
parametrized Stokes equations, which describe a steady viscous incompressible fluid when nonlin-
ear convective terms are neglected. The numerical solution of the Stokes equations is in general a
challenging task and a variety of methods have been proposed for their numerical approximation,
see e.g. [20, 30, 34]. Here we deal with the efficient solution, by means of the reduced basis (RB)
method, of parametrized steady Stokes equations

−νµ∆~uµ +∇pµ = ~fµ in Ωµ

∇ · ~uµ = 0 in Ωµ

+ boundary conditions
(1)

modeling the velocity ~uµ and the pressure pµ of a viscous incompressible fluid with viscosity νµ
in a domain Ωµ ⊂ Rd, d = 2, 3. The vector of parameters µ describes physical and/or geometrical
properties of the system, whereas ~fµ is the known right hand side collecting all the problem data;
system (1) must be supplied with proper boundary conditions, which may also depend on µ.

In particular, we are interested in the efficient solution of (1) for several (say, thousands)
instances of µ. This requirement – arising, e.g., when dealing with uncertainty quantification,
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sensitivity analysis or PDE-constrained optimization – makes usual high-fidelity approximation
techniques, such as the finite element (FE) method, extremely expensive, if not computationally
unaffordable. Such a task can be more easily tackled by means of reduced-order modeling (ROM)
techniques, such as the reduced basis (RB) method we focus on to deal with (1).

1.1 Existing RB methods for Stokes equations
The main idea of the RB method for parameter dependent partial differential equations (PDEs)
is to approximate their solution by a linear combination of few global basis functions, obtained
from a set of FE solutions (or snapshots) corresponding to different parameter values [32, 22]. This
strategy is pursued in two stages: an offline phase and an online phase. In the former, we construct
a RB space VN of dimension N � Nh obtained by (properly orthonormalized) linear combinations
of FE solutions of the parametrized PDE computed for different parameter values. In the latter, we
require the projection of the residual of the FE problem onto the RB test space to vanish, obtaining
a small problem which replaces the original high-fidelity FE problem.

Initially applied to linear elliptic PDEs, the RB method has been extended to saddle-point
problems such as the Stokes equations, and extensively investigated in the past decade; a non-
exhaustive list includes, among others: Stokes flows featuring affine [37, 21, 36] and nonaffine
parameter dependence [35]; Navier-Stokes (NS) flows [17, 33, 18, 24]; parametrized optimal control
problems [29] or shape optimization problems [26]. In all these cases, the RB method relies on:

1. a (weak) greedy algorithm for the incremental construction of the RB space, performed by
selecting a new basis function for the velocity and the pressure at each step upon the use of
a residual-based a posteriori error estimator.

2. a Galerkin projection onto the RB space to generate the RB problem (G-RB method).

Of course, this is not the only available choice. Regarding point 1., proper orthogonal decom-
position (POD), rather than greedy algorithms, can be used to build the RB space. When such
a strategy is employed, a set of FE solutions, called snapshots, are computed and the RB spaces
for the velocity and the pressure are constructed, either jointly or separately, by performing the
singular value decomposition of the resulting snapshot matrices, [3, 8, 12, 19, 23, 39]. This option
has been considered, e.g., in [4] where two-dimensional Navier-Stokes flows on simple geometries
affinely parametrized have been treated.

Concerning point 2., a more general Petrov-Galerkin (rather than Galerkin) projection – such
as in the case of a least-squares (LS) method – can be performed, choosing a test space different
from the trial space, see e.g. [14, 16]. This option has been first explored in the case of two-
dimensional, affinely parametrized Stokes problems on simple geometries in [1]. In these works
parameter-dependent domains Ωµ were obtained as images of a reference domain Ω0 through a
parameter-dependent map whose expression was known analytically. This is a relevant limitation
toward the application of RB methods to more general domains with varying shape, not necessarily
obtained in an explicit way from a priori known, parametrized deformations1.

What makes the RB approximation of parametrized Stokes equations hard is ensuring the sta-
bility of the resulting RB problem. Indeed, it is well-known that in the FE case an inf-sup condition
must be satisfied at the finite dimensional level to ensure the well-posedness of the numerical prob-
lem. This condition is fulfilled, for instance, if either P2 − P1 (Taylor-Hood) couples of FE spaces
are used for discretizing the velocity and pressure fields, respectively, which is the FE discretization
technique used in this work. Concerning the stability of the RB approximation, a stable couple of
reduced subspaces for velocity and pressure, satisfying an equivalent inf-sup condition at the re-
duced level, ensures that the RB Stokes problem is well-posed. This property is not automatically
fulfilled if the RB problem is constructed through a Galerkin projection employing RB spaces made
solely of orthonormalized solutions of (1) obtained for different values of parameters. To overcome
this shortcoming, two strategies have been designed.

A. The velocity space can be augmented by means of a set of enriching basis functions computed
through the pressure supremizing operator, which depends on the divergence term. This
yields a RB problem with additional degrees of freedom for the velocity field (as many as

1The proposed strategy can be meant as a step towards the efficient reduction of fluid-structure interaction problems,
where domain deformations are computed through a structural problem coupled with a fluid one.
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the pressure variable), see [36] for the details. In presence of µ-dependent domains, the
supremizing operator is µ-dependent, so that to recover computational efficiency (and avoid
the construction of the pressure supremizing operator online, for each µ), an offline enrichment
is employed. This strategy leads to a RB problem which is inf-sup stable in practice, but whose
well-posedness is not rigorously proven. Such a framework has been originally introduced in
conjunction with a (weak) greedy algorithm [37, 21, 36], and later for the POD case. In
the former case, for each selected pressure basis, a supremizing function is used to augment
the velocity space. In the latter case, however, the basis functions are not directly related
to any precise µ instance, so that a set of enriching functions for the velocity space must
be computed in advance starting from pressure snapshots, then applying POD to build the
enriching basis [4]. A priori, it is not clear how many supremizing functions are needed to
stabilize the problem; taking as many of them as the number of velocity and pressure basis
is a working rule of thumb. Galerkin projection is employed to build a ROM in the case of
unsteady Navier-Stokes equations, too – without, however, dealing with physical/geometrical
parameters – in [12], where the employed divergence-free velocity basis functions ensure the
well-posedness of the reduced problem. In the problems we focus on, instead, stability is not
automatically guaranteed since we deal with parametrized domains and the resulting velocity
basis functions are not, in principle, divergence-free.

B. We can exploit a Petrov-Galerkin (PG) method [1, 32] to build an automatically stable RB
problem, relying, for instance, on the least squares (LS) method. The resulting LS-RB method
uses a test space which is obtained as the image of the RB space through a global supremizing
operator involving both velocity and pressure fields. This approach leads to an automatically
stable RB problem, which satisfies the required inf-sup condition [32]. However, the existing
formulation of the LS-RB method for Stokes equations proposed in [1] presumes the existence
of an explicit µ−dependent function which enables to recast the problem on a reference
domain. Without this function available, as in the case where domain deformation results
from the solution of a further FE problem, the computational work to build the RB problem
is unbearable, see Section 3.2.2.

Eventually, in the case a stabilized finite element discretization (like, e.g., a P1 − P1 Streamline
Upwind Petrov-Galerkin (SUPG) finite element method) is employed, the resulting Galerkin RB
approximation is well-posed; neither an enrichment of the velocity space, nor a LS-RB formulation,
are necessary to ensure the stability of the corresponding RB system. This option, however, is not
the focus of our current investigation.

1.2 Novelties of the proposed approach
In this work we propose a new family of purely algebraic PG-RB methods to address large-scale
parametrized Stokes equations in domains with varying geometry. Our method can be seen as an
algebraic LS-RB method; for this reason we refer to it as aLS-RB method. The aLS-RB method
extends and improves the existing RB methods for Stokes equations in several directions, potentially
becoming a paradigm for the efficient construction of a stable and accurate RB method for Stokes
equations and, more generally speaking, weakly coercive problems. Indeed:

1. it relies on POD for the construction of the RB spaces for velocity and pressure; however, like
in the greedy case, an exponential decay of the residuals with respect to N is obtained;

2. it does not need an enrichment of the velocity space, by relying on a Petrov-Galerkin method;

3. it exploits suitable approximations of the matrix-norm to define the supremizing operator;

4. the resulting aLS-RB problem rigorously is inf-sup stable;

5. it does not require an analytical map between a reference and the physical domain Ωµ;

6. it provides a fully automated procedure to assemble and solve the RB problem, able to treat
any kind of parametrization.

When an affine decomposition of the RB arrays is employed, the aLSRB approximation leads to
a formulation which depends quadratically on the number of affine terms of the RB matrix and
the right hand side. To further enhance the efficiency of the method, we propose a coarse aLSRB
(caLSRB) option, where a suitable approximation of the RB matrix is employed when defining the
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RB test space. The resulting caLSRB approximation enjoys the same accuracy of the one provided
by the aLSRB method, but allows a more efficient assembling phase, since it depends linearly - and
not quadratically - on the number of affine terms, similarly to the Galerkin case.

The paper is organized as follows. After recalling in Section 2 the Stokes equations and their FE
approximation, in Section 3 we introduce their RB approximation, highlighting how to construct a
stable RB method either using Galerkin or Petrov-Galerkin projections. In Section 4, we present
the new (c)aLS-RB methods and analyse the well-posedness of the resulting RB formulations,
showing that each of them satisfies an inf-sup condition. To enhance the efficiency of the proposed
methods, discrete empirical interpolation method (DEIM) [5, 15], and Matrix DEIM (M-DEIM)
[28] are employed to find an affine approximation of the (generally nonaffine) right hand sides and
matrices. In Section 6 we present numerical results obtained with the different RB methods on a
three-dimensional Stokes problem defined over parameter-dependent domains whose deformations
with respect to a reference domain are not necessarily known analytically. In Section 7 we finally
draw some conclusions.

2 Parametrized Stokes equations: setting and preliminaries
In this section we introduce the Stokes equations in parametrized domains, their weak formulation,
and their FE approximation. Concerning notation, hereon we denote scalar fields by lower case
letters, as a ∈ R, vector fields with an arrow, as ~a ∈ Rd, for d = 2, 3, vectors (like finite elements
vectors) by bold lower case letters, as a ∈ Rn, and matrices by bold capital letters, as A ∈ Rn×n.
We denote by (·, ·)2 the Euclidean scalar product and by K2(A) the condition number of A with
respect the Euclidean norm. Moreover, given a symmetric and positive definite matrix Y ∈ Rn×n,
we denote by (·, ·)Y the scalar product and by ‖·‖Y the norm defined as (a,b)Y = aTYb ∀a, b ∈ Rn
and ‖a‖Y =

√
(a,a)Y ∀a ∈ Rn, respectively. We also denote by KY(A) the condition number of

A with respect to ‖ · ‖Y. Finally, we indicate by D ⊂ Rl, l ∈ N the parameter space and by µ ∈ D
a vector of parameters; the superscript µ highlights µ-dependence.

Given a µ−dependent domain Ωµ ⊂ Rd, d = 2, 3, such that ∂Ωµ = Γµ
out ∪ Γµ

in ∪ Γµ
w, Γ̊µ

out∩Γ̊µ
in =

Γ̊µ
w ∩ ∂Γ̊µ

in = Γ̊µ
out ∩ Γ̊µ

w = ∅ and Γµ
out 6= ∂Ω, for any µ ∈ D, the Stokes equations read

−νµ∆~uµ +∇pµ = ~fµ in Ωµ

∇ · ~uµ = 0 in Ωµ

~u = ~gµD on Γµ
in

~u = ~0 on Γµ
w

−pµ~nµ + νµ
∂~uµ

∂~nµ
= ~gµN on Γµ

out,

(2)

where (~uµ, pµ) are the velocity and pressure fields of a viscous incompressible Newtonian fluid with
viscosity νµ, respectively. We introduce a (regular enough) lifting function ~rµ~gD ∈

(
H1(Ωµ)

)d and
the following µ-dependent spaces

V µ =
{
~v ∈

(
H1(Ωµ)

)d
: ~v
∣∣
Γµ
w

= ~v
∣∣
Γµ
in

= ~0
}
,

Qµ = L2(Ωµ) or Qµ = L2
0(Ωµ) if Γµ

out = ∅,

equipped with scalar products (·, ·)V µ = (·, ·)(H1
0 (Ωµ))d and (·, ·)Qµ = (·, ·)L2(Ωµ). For a given µ ∈ D,

the weak formulation of problem (2) reads: find (~uµ, pµ) ∈ V µ ×Qµ such that{
aµ(~uµ, ~v) + bµ(~v, pµ) = fµ(~v) ∀~v ∈ V µ

bµ(~uµ, q) = −bµ(~rµ~gD , q) ∀q ∈ Qµ,
(3)

where we define the forms in (3) for ~u,~v ∈ V µ, q ∈ Qµ, as

aµ(~u,~v) =

∫
Ωµ

νµ∇~u : ∇~vdΩµ, bµ(~v, q) = −
∫

Ωµ

q∇ · ~vdΩµ

fµ(~v) =

∫
Ωµ

~fµ · ~vdΩµ +

∫
Γµ
out

~gµN · ~vdΓµ
out − aµ(~rµ~gD , ~v).
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Problem (3) can be written as a symmetric non-coercive problem, provided we define the space
Xµ = V µ ×Qµ, equipped with the scalar product and the norm

((~u, p), (~v, q))Xµ = (~u,~v)V µ + (p, q)Qµ , (~u, p), (~v, q) ∈ Xµ,

‖(~v, q)‖Xµ =
√

((~v, q), (~v, q))Xµ , (~v, q) ∈ Xµ,

respectively. By introducing the forms Aµ : Xµ ×Xµ → R, Fµ : Xµ → R given by

Aµ((~uµ, pµ), (~v, q)) = aµ(~u,~v) + bµ(~v, pµ) + bµ(~uµ, q),

Fµ((~v, q)) = fµ(~v)− bµ(~rµ~gD , q),

system (3) can be equivalently written as: find ~zµ ∈ Xµ such that

Aµ(~zµ, ~w) = Fµ(~w) ∀~w ∈ Xµ. (4)

The well-posedness of problem (4) is ensured according to the general theory of saddle-point prob-
lems see, e.g., [10, 11].

2.1 Finite element approximation of the Stokes equations
Numerical methods based on (Petrov-)Galerkin projection onto a finite dimensional subspace, as
the finite element (FE) or spectral element methods, represent a successful technique to handle the
numerical approximation of (2), see e.g. [13, 20, 31]. However, when they are employed, a discrete
inf-sup condition must be satisfied to ensure the well-posedness of the numerical problem.

The ROMs considered in this paper for the efficient solution of the parametrized problem (4)
hinge upon a high-fidelity finite element approximation, which we introduce in this section. We
consider a domain deformation dependent on µ; the corresponding meshes are also taken as a
deformation of a reference mesh, hence not affecting the topology of the degrees of freedom.

Let us denote by V µ
h and Qµ

h two finite dimensional FE spaces of dimension Nu
h and Np

h ,
respectively, with V µ

h ⊂ V and Qµ
h ⊂ Q. Moreover, set Xµ

h = V µ
h ×Q

µ
h with Nh = Nu

h +Np
h . Note

that, for any given µ, Xµ
h denotes a single FE space rather than a family of spaces depending on

h. Indeed, in this work we do not focus on h-refinement; rather, we consider a fixed regular mesh
which is fine enough for the problem at hand.

The FE approximation of problem (4) reads: find ~zµh ∈ X
µ
h such that

Aµ(~zµh , ~wh) = Fµ(~wh) ∀~wh ∈ Xµ
h . (5)

Problem (5) can be equivalently written as a parametrized linear system

Aµ
hzµh = gµ

h (6)

featuring a saddle-point structure, where

Aµ
h =

[
Dµ
h (Bµ

h )T

Bµ
h 0

]
∈ RNh×Nh , zµh =

[
uµ
h

pµ
h

]
∈ RNh and gµ

h =

[
fµh
rµh

]
∈ RNh . (7)

More precisely, Dµ
h ∈ RNu

h×N
u
h , Bµ

h ∈ RN
p
h×N

u
h , fµh ∈ RNu

h and finally rµh ∈ RN
p
h . The solution of

(6) usually exploits suitable iterative methods properly preconditioned, [6, 7]. Several techniques
relying on, e.g., domain decomposition, multilevel methods and block factorizations have been
proposed as preconditioners, see e.g. [20, 30, 38, 34] and references therein. Furthermore, we
introduce the symmetric and positive definite matrix Xµ

h ∈ RNh×Nh is associated to the scalar
product (·, ·)Xµ on the space Xµ

h and is built as a block diagonal matrix of the form

Xµ
h =

[
Xµ
u 0

0 Xµ
p

]
; (8)

Xµ
u ∈ RNu

h×N
u
h and Xµ

p ∈ RN
p
h×N

p
h is associated to the (H1

0 (Ωµ))d and L2(Ωµ) scalar products
on V µ

h and Qµ
h , respectively. Since the computational domain is µ−dependent, the matrix Xµ

h

depends on µ, too. Then, the well-posedness of (6) is ensured by the following assumption.
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Assumption 2.1. There exists βmin > 0 such that

βµ
h = inf

~zh∈RNh

sup
~wh∈RNh

wT
hAµ

hzh
‖zh‖Xµ

h
‖wh‖Xµ

h

≥ βmin ∀µ ∈ D, (9)

A couple of FE spaces which fulfills condition (9) is given, for instance, by P2 − P1 (Taylor-Hood)
finite elements, for velocity and pressure, respectively; see, e.g., [20].

3 POD-based RB methods for the parametrized Stokes equa-
tions
The RB method represents a convenient framework for the reduction of parametrized PDEs [32].
It first generates a low-dimensional subspace where the RB solution is sought; then, it employs a
Galerkin (or Petrov-Galerkin) projection onto this subspace to obtain the corresponding RB prob-
lem. Here we rely upon proper orthogonal decomposition (POD) in order to avoid the evaluation of
a-posteriori error bounds, which would instead be required if a greedy algorithm were performed.
Then, a new algebraic PGRB method, in two different versions, is investigated for the sake of the
construction of the RB problem, and compared to the (indeed, more classical) Galerkin-RB method
which relies on properly enriched RB spaces. In the following, we recall the essential elements of
this technique and how it is used to build a RB approximation.

3.1 Proper orthogonal decomposition
In this section we recall POD, that we employ both for the construction of RB spaces (see Section
3.2) and for the efficient approximation of µ-dependent arrays (see Section 4.4). For simplicity here
we focus on the former aspect; see, e.g., [28] for further insights on the latter.

Let us consider a set of ns FE vectors {sµi}ns
i=1 ⊂ RNh (called snapshots) collected as columns

of a matrix S = [sµ1 | . . . |sµns ] ∈ RNh×ns . For any prescribed dimension N , the POD allows to
find the N -dimensional subspace, spanned by the columns of V = [ξ1| . . . |ξN ] ∈ RNh×N , which
best approximates {sµi}ns

i=1 among all possible N -dimensional subspaces. The POD method takes
advantage of the singular value decomposition (SVD) of the matrix S

S = UΣZT , (10)

with U ∈ RNh×Nh and Z ∈ Rns×ns orthogonal matrices and Σ ∈ RNh×ns is a diagonal matrix
containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σns ≥ 0. Then, V is provided by the first N
columns of U, which form by construction an orthonormal basis (with respect to the Euclidean
scalar product) for the best N -dimensional approximation subspace. Similarly, one can obtain
the SVD with repect to a scalar product induced by a symmetric positive definite matrix X by
considering the SVD of X

1
2 S, resulting in a X-orthonormal basis. In particular, by denoting IN

the N -dimensional identity matrix, the following proposition holds [32].

Proposition 3.1. Let VN = {W ∈ RNh×N : WTXW = IN}. Then
ns∑
i=1

‖sµi −VVTXsµi‖2X = min
W∈VN

ns∑
i=1

‖sµi −WWTXsµi‖2X =

ns∑
i=N+1

σ2
i .

Notice that the columns of any V ∈ VN form a X-orthonormal basis of aN -dimensional subspace
of RNh and that in general the singular values σi, i = 1, . . . , ns depend on the choice of the matrix
X, that is, σi = σi(X), i = 1, . . . , ns, and the relative error on all the snapshots is related to {σi}ns

i

through the following relation
ns∑
i=1

‖sµi −VVTXsµi‖2X
ns∑
i=1

‖sµi‖2X
=

ns∑
i=N+1

σ2
i

ns∑
i=1

σ2
i

. (11)

From a practical perspective, the POD basis construction is performed by means of Algorithm
1; for a given tolerance δPOD, (11) is employed to control the relative error on the approximation of
the snapshots and to select N basis functions. Alternatively, one could directly provide a dimension
N instead of δPOD, leading to a similar algorithm POD(S, X, N).
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Algorithm 1 POD
1: procedure POD(S, X, δPOD)
2: form the correlation matrix Cns = STXS
3: solve the eigenvalue problem Cnsψi = σ2iψi, i = 1, . . . , ns and set ξi = 1

σi
Sψi

4: define N as the minimum integer such that
∑N

i=1 σ
2
i∑ns

i=1 σ
2
i
> 1− δ2POD and V = [ξ1| . . . |ξN ]

5: end procedure

3.2 Projection-based RB methods
The RB method relies on the idea that the solution of the parametrized system (6), for a given
value of µ, can be well approximated by a linear combination of N basis functions {~ξi}Ni=1 obtained
by orthonormalizing the solutions of the same problem for other values of the parameter. The basis
functions are collected in the so-called RB space, which is defined as

VN = span{~ξi, i = 1, . . . , N} (12)

and is of dimension N � Nh. From an algebraic standpoint, VN is represented by the matrix
V = [ξ1| . . . |ξN ] ∈ RNh×N , where ξi, i = 1, . . . , N are the FE vector representation of the basis
~ξi, i = 1, . . . , N . From a practical standpoint, the vector basis {ξi}Ni=1 is constructed by applying
POD on a set of snapshots given by ns solutions of the FE linear system (6) for ns instances
of the parameter, that is, sµi = zµi

h , i = 1, . . . , ns. Then, the RB approximation is constructed
by introducing a set of (possibly µ−dependent) functions {wµ

i }Ni=1 such that a test space Wµ
N is

obtained as

Wµ
N = span{wµ

i , i = 1, . . . , N}.

Algebraically,Wµ
N is represented by a matrix Wµ ∈ RNh×N , which is generally different from V and

might be µ-dependent. If Wµ 6= V we have the more general Pevtrov Galerkin-RB approximation,
otherwise if Wµ = V we come up with the Galerkin case. For the sake of generality, we consider
here the PGRB problem, which reads: find ~zµN ∈ VN such that

Aµ(~zµN , ~wN ) = Fµ(~wN ) ∀~wN ∈Wµ
N . (13)

Problem (13) leads to the following algebraic RB linear system

Aµ
NzµN = gµ

N , (14)

where the RB matrix Aµ
N ∈ RN×N and the RB right hand side gµ

N ∈ RN are defined as

Aµ
N = (Wµ)TAµ

hV, gµ
N = (Wµ)Tgµ

h . (15)

We highlight that the PGRB approximation depends on the choice of the test space Wµ
N . As

remarked above, the matrix V is built employing POD, and results in

V =

[
VNu 0

0 VNp

]
=
[
ξ1| . . . |ξNu

|ξNu+1| . . . |ξN
]
, (16)

where VNu
∈ RNu

h×Nu and VNp
∈ RN

p
h×Np encode the subspaces to approximate the velocity uµ

h

and the pressure pµ
h , respectively.

In particular

ξi =

[
ϕui
0

]
i = 1, . . . , Nu, ξNu+i =

[
0
ψpi

]
i = 1, . . . , Np,

where
{
ϕi
}Nu

i
and

{
ψi
}Np

i
are the FE vector representation of the basis functions for the velocity

and the pressure RB space, that is,

VNu
=
[
ϕu1 | . . . |ϕuNu

]
, VNp

=
[
ψp1 | . . . |ψ

p
Np

]
.
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The construction of the RB spaces is thus performed by first collecting a set of FE snapshots{
uµi

h

}ns

i=1
,
{
pµi

h

}ns

i=1
, solutions of (6) for different instances of the parameters

{
µi
}ns

i=1
, and then

performing POD separately on the two spaces, thus yielding

VNu = POD
(
S~u,Xu, δRB

)
, VNp = POD

(
Sp,Xp, δRB

)
,

where δRB is a positive tolerance employed to control the relative error on the snapshots approxima-
tion. The matrices VNu

and VNp
are constructed by selecting the largest Nu and Np eigenmodes

respectively, according to Algorithm 1, finally obtaining Nu+Np = N , see [32]. Notice that a priori
Nu 6= Np. The trial RB spaces are defined by considering the sets of basis {~ϕi}Nu

i=1 and {ψi}
Np

i=1,
whose FE vector representations are given by {ϕi}Nu

i=1 and {ψi}
Np

i=1. Then, we define

VNu
= span{~ϕi, i = 1, . . . , Nu} QNp

= span{ψi, i = 1, . . . , Np},

and VN = VNu × QNp . We finally remark that the dimension N = Nu + Np of the RB system is
smaller than the dimension Nh of the FE linear system of several orders of magnitude: N � Nh,
so that problem (14) is solved by direct methods.

In order to obtain a well-posed RB approximation, an inf-sup condition equivalent to (2.1) at
the RB level must also be satisfied. Several ways to produce a well-posed Stokes RB problem,
relying either on Galerkin or Petrov-Galerkin projection, are available. The following subsections
are devoted to their description.

3.2.1 Galerkin-RB method with velocity enrichment

A Galerkin-RB formulation is obtained by choosing Wµ
N = VN (or algebraically Wµ = V) in (15),

resulting in a RB approximation whose well-posedness is guaranteed by satisfying the following
assumption: there must exist β̃minN > 0 such that

β̃µ
N = inf

pNp∈RNp
sup

vNuRNp

uTNu
VT
Nu

(Bµ
h )TVNp

pNp

‖VNuuNu‖Xu‖VNppNp‖Xp

≥ β̃minN > 0 ∀µ ∈ D. (17)

Unfortunately, as explained above, condition (17) is not automatically satisfied when the RB
spaces VNu and QNp are constructed by POD, or by greedy algorithms, by considering basis func-
tions extracted from velocity and pressure snapshots only. Consequently, we consider an "enriched"
velocity space formulation, as proposed in [4], where the velocity space VNu

is augmented to guar-
antee the well-posedness of the resulting RB approximation. This method has been proposed for
both POD and greedy RB space construction, and, even if empirically it works properly, it does
not rigorously ensure the well-posedness of the resulting RB problem. Furthermore, when using
POD it is unclear how large the augmenting space should be.

Algebraically, this enriching strategy is pursued by building a matrix VNs
∈ RNu

h×Ns whose
columns form a basis for the enriching RB velocity space.

Then, the GRB approximation is built by considering V = Wµ = Ṽ in (15), where

Ṽ =

[
VNu

VNs
0

0 0 VNp

]
.

The enriching strategy is based upon the use of the pressure-supremizing operator Tµ
p : Qµ

h → V µ
h .

For any given qh ∈ Qµ
h , T

µ
p (qh) is the solution of the following problem

(Tµ
p (qh), ~vh)V µ = bµ(~vh, qh) ∀~vh ∈ V µ

h . (18)

Equation (18) corresponds to a FE problem whose algebraic formulation yields the linear system

Xµ
u tµp (qh) = (Bµ

h )Tqh, (19)

where qh ∈ RN
p
h is the FE vector representation of qh ∈ Qµ

h . Two strategies have been developed
to build a well-posed GRB approximation for a new parameter µ:
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• build for each pressure basis {ξi}Ni=Nu+1 the supremizing functions {tµp (ξi)}Ni=Nu+1 and define

VNs
= [tµp (ξNu+1)| . . . |tµp (ξNu+1)],

leading to a RB formulation which by definition satisfies (17). However, in this way the
construction of the supremizing enriching functions is not computationally feasible, because
it entails (online) the solution of Np FE linear system for each new value of µ;

• compute a set of supremizing snapshots
{
tµi
p (pµi

h )
}ns

i=1
corresponding to the pressure snap-

shots
{
pµi

h

}ns

i=1
by solving (19) ns times, and then build the matrix VNs through POD

VNs = POD
({

tµi
p (pµi

h )
}ns

i=1
,Xu, δPOD

)
.

This option does not ensure that condition (17) (or any equivalent one) is satisfied. Moreover,
the numberNs of basis functions for VNs

is chosen, with a rule of thumb, equal toNu, doubling
the size of the RB velocity space. This looks like a reliable option which yields a stable RB
problem for the steady Navier-Stokes equations, see [4].

3.2.2 LSRB method

Instead of performing a Galerkin projection onto properly enriched RB spaces, the Petrov-Galerkin
(PG)RB method uses a different test space Wµ and naturally builds an inf-sup stable RB problem.
The PGRB method has been firstly analyzed for the affinely parametrized Stokes equations in [1]
where the RB space is built upon a greedy algorithm. In this work we deepen the analysis carried
out in [1], propose several strategies to make this method computationally efficient and use instead
the POD method for the construction of the RB space. Moreover, we do not assume to have an
analytical function which maps the reference domain Ω0 to the physical domain Ωµ; the main
consequence is that we consider the more general case where recasting the problem on a reference,
parameter-independent domain Ω0 is not possible. We restrict ourselves to the case of PGRB
method built through the least-squares (LS) method, which automatically guarantees to obtain an
inf-sup stable problem. With this aim, we introduce a global supremizing operator Tµ : Xµ

h → Xµ
h ,

such that

(Tµ(~zh), ~wh)Xµ = Aµ(~zh, ~wh) ∀~wh ∈ Xµ
h . (20)

With respect to the definition (18) of Tµ
p , both velocity and pressure appearing in (20), together

with the full Stokes operator at the right hand side. Given ~zh ∈ Xµ
h , problem (20) is a µ−dependent

FE problem which needs to be solved to determine Tµ(~zh). Then, the LSRB problem reads as (13),
where the test space is chosen as

Wµ
N = span

{
Tµ(~ξi), i = 1, . . . , N

}
,

while the trial RB space is chosen as in (12) with the corresponding matrix V as in (16). From an
algebraic standpoint, given zh ∈ RNh , the supremizing function tµ(zh) is obtained by solving the
linear system

Xµ
h tµ(zh) = Aµ

hzh. (21)

The projection matrix Wµ, whose columns are supremizers of type (21) and form a basis for the
(µ-dependent) test space, is then given by

Wµ = (Xµ
h )−1Aµ

hV, (22)

where Xµ
h is the µ−dependent norm matrix (8). Finally, the linear system (14) representing the

LSRB problem is recovered with

Aµ
N = VT (Aµ

h )T (Xµ
h )−1Aµ

hV gµ
N = VT (Aµ

h )T (Xµ
h )−1gµ

h . (23)

The following results hold, see also [1, 32] for the proof.
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Lemma 3.1. Assume that condition (9) holds and Wµ is defined as in (22). Then, the LSRB
problem (14) is µ−uniformly inf-sup stable, i.e., there exists βmin > 0 independent of µ such that

βµ
N = inf

zN∈RN
sup

wN∈RN

wT
NAµ

NzN
‖VzN‖Xµ

h
‖WµwN‖Xµ

h

≥ βmin ∀µ ∈ D.

Moreover, it has a unique solution zµN ∈ RN for any µ ∈ D, which satisfies

‖zµN‖Xµ
h
≤ 1

βµ
N

‖gµ
h ‖(Xµ

h )−1 .

Remark 3.1. The solution zµN ∈ RN of problem (14) solves the following minimization problem

zµN = arg min
vN∈RN

‖gµ
h −Aµ

hVvN‖2(Xµ
h )−1 , (24)

that is, the RB solution minimizes the square of the residual in the norm induced by the symmetric
positive definite matrix (Xµ

h )−1, see [32] for further details.

4 Algebraic LSRB method for the parametrized Stokes equa-
tions
The LSRB method described in Section 3.2.2 requires to build the µ-dependent matrix (Xµ

h )−1 or
to solve approximately the N linear systems (21) associated with the matrix Xµ

h to construct a
stable RB problem for any new parameter instances µ ∈ D considered online. In this section we
propose a purely algebraic PGRB method which can be viewed as an algebraic LSRB (aLSRB)
method for problem (6). Compared to the approximate enrichment of the velocity space described
in section (3.2.1), the aLSRB method allows to build a RB problem which is automatically and
rigorously inf-sup stable and henceforth it does not require to enrich the velocity space doubling
the degrees of freedom of the velocity.

4.1 Construction of algebraic LSRB method
The underlying idea to build the aLSRB approximation is to substitute the matrix Xµ

h appearing
in the definition of the test space (22) by a properly chosen surrogate PX ∈ RNh×Nh . To this aim,
we suppose the following assumption to hold.

Assumption 4.1. The matrix PX ∈ RNh×Nh is symmetric and positive definite and induces a
norm ‖x‖2PX

= (x,x)PX
= xTPXx for any x ∈ RNh . Moreover, there exist two positive constants

c and C independent of µ such that

c‖x‖PX
≤ ‖x‖Xµ

h
≤ C‖x‖PX

∀x ∈ RNh . (25)

Next, we introduce a slightly modified supremizing operator Tµ
PX

: V µ
h × V

µ
h → V µ

h defined by the
following problem

(Tµ
PX

(~zh), ~wh)PX
= Aµ(~zh, ~wh) ∀~wh ∈ V µ

h , (26)

where the difference with respect to (20) is the choice of the scalar product (·, ·)PX
with respect

to which the operator is built. Reasoning as in the previous section, we introduce a PG problem
under the form: find ~zN ∈ VN such that

Aµ(~zN , ~wN ) = Fµ(~wN ) ∀~wN ∈Wµ
N,PX

, (27)

where now the test space is chosen as

Wµ
N,PX

= span
{
Tµ
PX

(~ξi), i = 1, . . . , N
}
,

10



with {~ξi}Ni=1 denoting the RB functions of the space VN defined in (12). Problem (26) is algebraically
equivalent to solving

PXtµPX
(zh) = Ahzh, (28)

and yields a projection matrix of the following form

Wµ
PX

= P−1
X Aµ

hV. (29)

Finally, the corresponding RB system is

Aµ
N,PX

zµN = gµ
N,PX

, (30)

where the RB matrix Aµ
N,PX

∈ RN×N and the RB right hand side gµ
N,PX

∈ RN are defined as

Aµ
N,PX

= VT (Aµ
h )TP−1

X Aµ
hV gµ

N,PX
= VT (Aµ

h )TP−1
X gµ

h . (31)

Remark 4.1. Equations (31) are similar to the ones in (23), provided Xµ
h is substituted with PX .

4.2 Stability of algebraic LSRB method
In the following we provide results showing the stability of system (30) and the optimality properties
satisfied by the solution zµN of (30).

Proposition 4.1. Assume that condition (9) holds, Wµ is taken as in (29), and let assumption
4.1 hold. Then problem (30) is inf-sup stable, more precisely

βµ
PX ,N

= inf
zN∈RN

sup
wN∈RN

wT
NAµ

N,PX
zN

‖VzN‖Xµ
h
‖Wµ

PX
wN‖Xµ

h

≥ c

C
βmin ∀µ ∈ D. (32)

Moreover, problem (30) has a unique solution zµN ∈ RN for any µ ∈ D, which satisfies

‖zµN‖Xµ
h
≤ 1

βµ
PX ,N

‖gµ
h ‖(Xµ

h )−1 .

Proof. Starting from (28), it holds

wT
hAµ

hzh = wT
hPXtµPX

(zh) ≤ ‖tµPX
(zh)‖PX

‖wh‖PX
∀wh ∈ RNh ,

where the equality is reached for wh = tµPX
(zh). Consequently, using (25) we have

βµ
PX ,N

= inf
zN∈RN

sup
wN∈RN

wT
NAµ

N,PX
zN

‖VzN‖Xµ
h
‖Wµ

PX
wN‖Xµ

h

≥ 1

C
inf

zN∈RN
sup

wN∈RN

wT
NAµ

N,PX
zN

‖VzN‖Xµ
h
‖Wµ

PX
wN‖PX

=
1

C
inf

zN∈RN

‖tµPX
(VzN )‖PX

‖VzN‖Xµ
h

≥ 1

C
inf

zh∈RNh

‖tµPX
(zh)‖PX

‖zh‖Xµ
h

=
1

C
inf

zh∈RNh

sup
wh∈RNh

wT
hAµ

hzh
‖zh‖Xµ

h
‖wh‖PX

≥ c

C
inf

zh∈RNh

sup
wh∈RNh

wT
hAµ

hzh
‖zh‖Xµ

h
‖wh‖Xµ

h

=
c

C
βµ
h ≥

c

C
βmin.

Applying the Babus̆ka theorem for non-coercive problems satisfying an inf-sup stability property,
see [2], allows to conclude the proof.

Proposition 4.2. Let assumption 4.1 hold, then problem (30) corresponds to solving the mini-
mization problem

zµN = arg min
vN∈RN

‖gµ
h −Aµ

hVvN‖2P−1
X

. (33)
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Proof. We consider the quadratic functional

J(vN ) = ‖gµ
h −Aµ

hVvN‖2P−1
X

, vN ∈ RN ,

which has a unique minimum in uN ∈ RN thanks to the nonsingularity of the matrices PX and
Aµ
h . We impose its gradient with respect to vN , and evaluated at uN , to vanish. By employing

the definition of the norm ‖ · ‖P−1
X

we obtain

0 =
∂J{vN}
∂vN

(uN ) =
∂

∂vN

{
(gµ
h )TP−1

X gµ
h + vTNVT (Aµ

h )TP−1
X Aµ

hVvN − 2(gµ
h )TP−1

X Aµ
hVvN

}
(uN )

= 2VT (Aµ
h )TP−1

X Aµ
hVuN − 2(gµ

h )TP−1
X Aµ

hVuN = 2Aµ
N,PX

uN − 2gµ
N,PX

.

Therefore, uN is such that

Aµ
N,PX

uN = gµ
N,PX

,

hence it coincides with the RB solution zµN , since the matrix Aµ
N,PX

is invertible.

Remark 4.2. As a matter of fact, compared to the LSRB methods in [1, 32], the main feature of
aLSRB methods consists in employing a parameter-independent metric in (33), which is obtained by
substituting the matrix Xµ

h by the µ-independent PX in the minimization criterion for the residual.

4.3 On the choice of PX

A natural question arising in this context regards the choice of the matrix PX , since this directly
affects the values of the constants c and C; (see (32)). These constants play indeed a relevant role
in the conditioning of the aLSRB approximation. Moreover, it is clear that by taking PX = Xµ

h ,
we would have the optimal case c/C = 1, hence recovering the standard LSRB method. Therefore,
PX should be chosen as close as possible to Xµ

h , however it has to be µ-independent. The following
results give some insights on how to properly choose the matrix PX . Their proofs are reported in
the Appendix.

Lemma 4.1. Let assumption 4.1 hold. The optimal value for the constants C ≥ c satisfying (25)
are

C = ‖P−1/2
X (Xµ

h )1/2‖PX
, c = 1/‖(Xµ

h )−1/2P
1/2
X ‖Xµ

h
. (34)

From now, we consider C, c as their optimal values (34).

Lemma 4.2. Let assumption 4.1 hold. The two constants C ≥ c > 0 satisfying (25) and (34) are
such that

c

C
=
[
KXh

(P−1
X Xµ

h )
]−1/2

=
[
K2(P

−1/2
X XhP

−1/2
X )

]−1/2

. (35)

It is clear from Lemma 4.2 that the matrix PX should be chosen so that the condition number
of the preconditioned matrix P−1

X Xµ
h does not depend on the mesh size h, that is, PX should be

an optimal preconditioner for Xµ
h . If this is not the case, the value of the stability constant of the

RB approximation βµ
PX ,N

may depend on h. Furthermore, if we set up our RB approximation in
a HPC environment, employing a mesh partitioner to divide the computational domain among the
processors, it is also advisable to choose PX such that c

C does not depend on the size H of the
subdomains, that is, PX should be a scalable preconditioner for Xµ

h .
In our numerical experiments, PX is chosen either as PX = X0

h, that is, as the norm matrix
in the reference domain, or as a block diagonal preconditioner of X0

h, where the two blocks are
generated as symmetric and positive definite preconditioners PXu ∈ RNu

h×N
u
h of X0

u and PXp ∈
RN

p
h×N

p
h of X0

u and X0
p, respectively.
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4.4 Assembling the RB problem
When building a RB approximation, it is essential to assume the affine dependence on µ in the FE
arrays (6), that is, the possibility to express them as

Aµ
h =

Qa∑
q=1

Θq
a(µ)Aq

h, gµ
h =

Qg∑
q=1

Θq
g(µ)gqh, (36)

where Θq
a : D → R, q = 1, . . . , Qa and Θq

g : D → R, q = 1, . . . , Qg are µ-dependent functions, while
the matrices Aq

h ∈ RNh×Nh and the vectors gqh ∈ RNh are µ-independent. If assumption (36) is
verified, then the RB algebraic structures can be written, for the aLSRB case, as

Aµ
N,PX

=

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)VT (Aq1
h )TP−1

X Aq2
h V =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)Aq1,q2
N (37)

gµ
N,PX

=

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq

g(µ)VT (Aq1
h )TP−1

X gq2h =

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq2

g (µ)gq1,q2N . (38)

In the GRB case, the algebraic RB structures can be instead obtained as

Aµ
N =

Qa∑
q=1

Θq
a(µ)VTAq

hV =

Qa∑
q=1

Θq
a(µ)Aq

N (39)

gµ
N =

Qg∑
q=1

Θq
g(µ)VTgqh =

Qg∑
q=1

Θq
g(µ)gqN . (40)

The matrices Aq
N , q = 1, . . . , Qa, Aq1,q2

N ∈ RN×N , q1, q2 = 1, . . . , Qa, and the vectors gqN ∈ RN ,
q = 1, . . . , Qg, gq1,q2N ∈ RN , q1 = 1, . . . , Qa, q2 = 1, . . . , Qg can be precomputed and stored during
the offline phase. During the online phase, only the sums in (37)–(38) and (39)–(40) must be
calculated to assemble the RB problem.

Notice that the construction of Aµ
N and gµ

N in (39)–(40) depends linearly on the number of affine
terms Qa and Qg for the GRB method. On the other hand, the corresponding aLSRB structures
Aµ
N,PX

and gµ
N,PX

in (37)–(38) depend quadratically Qa and Qg. Practically, by employing the
GRB method softens the dependence on the number of affine terms, since less RB structures must
be assembled and stored with respect to the aLSRB method. This advantage is also visible in the
online phase, since the construction of (39)–(40) scale linearly with respect to Qa and Qg. However,
the aLSRB matrices and right hand sides have a smaller dimension, since the velocity basis is
not augmented, entailing a lower cost for computing and storing each array and for computing
the solution of the RB system. Finally, notice that the affine decomposition (36) would not be
exploitable in the case of standard LSRB method, due to the µ−dependence of the matrix Xµ

h .
Indeed, one would need also an affine decomposition of (Xµ

h )−1, which is generally not available
since it is never explicitly assembled and its application is performed by solving a linear system
where Xµ

h is at the left hand side.
In the numerical examples considered in this work, as well as in almost every problem of applied

interest, the geometrical dependence of the computational domain on the parameter µ is generally
nonaffine, therefore an affine representation of Aµ

h and gµ
h cannot be computed. To circumvent

this problem, both the empirical interpolation method (EIM) or its discrete variants DEIM and
Matrix-DEIM [5, 15, 28] offer the possibility to recover an approximate affine decomposition. When
such techniques are employed, the relations (36) are satisfied up to a certain tolerance,

Aµ
h ≈

Qa∑
q=1

Θ̃q
a(µ)Aq

h, gµ
h ≈

Qg∑
q=1

Θ̃q
g(µ)gqh. (41)

Qa and Qg are the number of selected basis computed by the corresponding algorithms. In the case
of DEIM (resp. MDEIM), the basis are again built by applying POD on a set of ns vector (resp.
matrix) snapshots, where Algorithm 1 is employed with X the identity matrix and a tolerance
δPOD = δdeim. Then, for a new value of the parameter µ, the coefficients Θ̃q

g : D → R q = 1, . . . , Qa

(resp. Θ̃q
a : D → R, q = 1, . . . , Qg) are computed by solving an interpolation problem.
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5 Coarse algebraic LSRB method for the parametrized Stokes
equations
The cost of assembling the aLSRB problem (30) depends quadratically on the number of affine
terms Qa for the RB matrix and Qg for the right hand side; this represents a serious bottleneck
when a large number affine contributions are needed to affinely approximate the RB arrays. In
order to overcome it, we introduce a coarse aLSRB (caLSRB) method, which allows to perform
the construction of the RB problem by relying on O(Qa) (instead than O(Q2

a)) terms. This entails
the same complexity of a Galerkin RB method, however ending up with an intrinsically stable RB
problem, without the need of enriching the velocity RB space.

To start with, we introduce a new supremizing operator: given zh ∈ RNh , the new supremizing
solution tµ(zh) is obtained by solving the linear system

PXtµ(zh) = Ãµ
hzh (42)

where PX satisfies Assumption 4.1 and Ãµ
h ∈ RNh×Nh can be regarded as a convenient approx-

imation of Aµ
h . Here we assume that Ãµ

h ∈ RNh×Nh fulfills the following inf-sup condition.

Assumption 5.1. There exists β̃min > 0 such that for any µ ∈ D is such that

β̃µ
h = inf

~zh∈RNh

sup
~wh∈RNh

wT
h Ãµ

hzh
‖zh‖Xµ

h
‖wh‖Xµ

h

≥ β̃min ∀µ ∈ D. (43)

The caLSRB approximation is obtained by selecting the test projection matrix Wµ as

Wµ = W̃µ = P−1
X Ãµ

hV, (44)

that is, the columns of W̃µ are supremizers fulfilling (42) by taking as zh in this case each column
of V – and form a basis for the (µ-dependent) test space. At algebraic level, the corresponding
caLSRB formulation reads

Ãµ
N z̃µN = g̃µ

N , (45)

where z̃µN ∈ RN is the caLSRB approximation and

Ãµ
N = (W̃µ)TAµ

hV = VT (Ãµ
h )TP−1

X Aµ
hV ∈ RN×N , g̃µ

N = VT (Ãµ
h )TP−1

X gµ
h ∈ RN .

The main difference with the aLSRB approximation (30) lies in the presence of Ãµ
h in the definition

of the RB matrix and right hand side. When employing either approximation (30) or (45), the RB
problem is practically assembled by exploiting the approximated affine decompositions (41) of Aµ

h

and gµ
h as explained in Section 4.4. In the aLSRB approximation the assembling phase depends

quadratically on the number of affine terms Qa and Qg; contrarily, when employing the caLSRB
formulation (45), the choice of the matrix Ãµ

h is arbitrary. In the numerical experiments, Ãµ
h will

be selected as a coarse affine approximation of Aµ
h , where only the first (and most relevant) mode

of MDEIM is retained, that is,

Ãµ
h = Θ̃1

a(µ)A1
h. (46)

On one hand, this choice guarantees to efficiently assemble the RB problem (45), since the resulting
assembling phase depends linearly on Qa for Ãµ

N and Qg for g̃µ
N . On the other hand, using a coarse

affine approximation only for defining the test space does not affect the overall accuracy of the
resulting method. Furthermore, we introduce the matrix

Āµ
N = (W̃µ)T Ãµ

hV = VT (Ãµ
h )TP−1

X Ãµ
hV ∈ RN×N ,

which is obtained by algebraic least squares projection of the matrix Ãµ
h . The following result

ensures the invertibility of Āµ
N .
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Proposition 5.1. Assume that condition (43) holds, then the following inf-sup condition holds

β̄µ
N = inf

zN∈RN
sup

wN∈RN

wT
NĀµ

NzN

‖VzN‖Xµ
h
‖W̃µwN‖Xµ

h

≥ c

C
β̃min ∀µ ∈ D.

Proof. The proof is carried out as the one for Proposition 4.1, by properly replacing Aµ
h with Ãµ

h

and βmin with β̃min.

Remark 5.1. We remark that we cannot prove a priori the invertibility of the matrix Ãµ
N , however

this property is observed experimentally. Furthermore, if Ãµ
N is assumed to be invertible, then the

following inf-sup stability holds

β̃µ
N = inf

zN∈RN
sup

wN∈RN

wT
NÃµ

NzN

‖VzN‖Xµ
h
‖W̃µwN‖Xµ

h

≥ c

C
CAβ

min ∀µ ∈ D.

Indeed, we can evaluate the stability factor of the caLSRB problem (45) as

β̃µ
N = inf

zN∈RN
sup

wN∈RN

wT
NÃµ

NzN

‖VzN‖Xh
‖W̃µwN‖Xh

≥ inf
yN∈RN

sup
wN∈RN

wT
NĀµ

NyN

‖VyN‖Xh
‖W̃µwN‖Xh

inf
zN∈RN

‖V(Āµ
N )−1Ãµ

NzN‖Xµ
h

‖VzN‖Xµ
h

≥ c

C
CAβ̃

min

where

CA = inf
zN∈RN

‖V(Āµ
N )−1Ãµ

NzN‖Xµ
h

‖VzN‖Xµ
h

> 0.

Note that CA = 1 in the case where Ãµ
h is used in place of its approximation Ãµ

h ; as a matter of
fact, CA is as close to 1 as Ãµ

h is close to Aµ
h .

6 Numerical experiments
We show the results obtained with the RB methods presented in Section 3, 4 and 5 implemented
within the LifeV library2, see [9]. We compare the GRB method (with velocity space enrichment)
and the aLSRB method in the case of large-scale Stokes flows in a cylindrical domain which is
nonaffinely parametrized. The deformation is not analitically known, since it is retrieved as the
solution of an additional FE problem which harmonically extends in the interior of the domain the
datum prescribed on a Dirichlet boundary.

6.1 Test case setting: Stokes problem in a parametrized cylinder
We consider the Stokes equations in a parameter dependent domain Ωµ ⊂ R3, which is obtained
by deforming a reference domain

Ω0 = {~x ∈ R3 : x2
1 + x2

2 < 0.25, x3 ∈ (0, 5)}

by means of a displacement ~dµ obtained as the harmonic extension of a boundary deformation.
More specifically, we set

Ωµ = {~xµ ∈ R3 : ~xµ = ~x+ ~dµ},

where ~dµ solves the following PDE

2www.lifev.org
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{
−∆~dµ = ~0 in Ω0

~dµ = ~hµ on ∂Ω0.
(47)

In our numerical experiments we take µ = (µ1, µ2) ∈ D = [−0.5, 0.5] × [1.8, 3.2] and a Dirichlet
datum of the form

~hµ =

−x1µ1 exp{−5(x3 − µ2)2}
−x2µ1 exp{−5(x3 − µ2)2}

0

 ,
entailing a deformation of the cylinder by narrowing or enlarging (according to the sign of µ2) its
section in different positions along the coordinate x3 (according to the value of µ1). Notice that
the solution ~dµ of (47) is not known a-priori, therefore we compute its numerical approximation
~dµh by writing the variational form of problem (47) and by employing the FE method. We denote
by dµ

h ∈ RNd
h the solution of the corresponding FE linear system.

Moreover, once the computational domain has been deformed, the lifting function ~rµ~gD is com-
puted similarly by solving the following problem

−∆~rµ~gD = ~0 in Ωµ

~rµ~gD = ~gµD on Γµ
in

~rµ~gD = ~0 on Γµ
w

∂~rµ~gD
∂~nµ

= ~0 on Γµ
out,

(48)

which is an harmonic extension of the Dirichlet data in (2). Here ~gµD is a parabolic profile such that
the flow rate at the inlet is equal to 1. The FE method with second order polynomials (P2) basis
functions is employed to approximate the solution of problem (48); this leads to a parametrized
linear system whose solution rµh ∈ RNu

h is the approximated lifting functions. In Fig. 1, the
deformation dµ

h is reported for three different values of µ ∈ D. In the numerical experiments we

(a) µ = (2.7, 0.12) (b) µ = (2,−0.3) (c) µ = (3, 0.3)

Figure 1: Displacement for different values of µ.

present, Taylor-Hood FE (P2−P1), with a mesh leading to Nh = Nu
h +Np

h = 1′503′280 + 64′943 =
1′568′223 degrees of freedom, are employed for the Stokes equations. The algebraic problem is run
on the Piz-Daint cluster with Cray XC40 machines, at the Swiss National Supercomputing Center
(CSCS) in Lugano. The computation has been carried out with 256 processors.

6.1.1 FE simulation setup

For any parameter µ considered, we solve the FE problems to approximate the deformation ~dµ

of problem (47) and the lifting function ~rµ~gD of problem (48). Next, we employ a move-mesh tool
to shape the computational domain and assemble the FE Stokes arrays. This ensures that the
meshes for different instances of the parameter µ are topologically equivalent and there is a one-
to-one correspondence between degrees of freedom. The FE linear system (6) is solved with the
preconditioned flexible GMRES (FGMRES) method, where the preconditioner is the Pressure Mass
Matrix (PMM) operator, which exploits the block structure of (7) and employs the mass matrix
in pressure to approximate the Schur complement, see [30]. Finally, in order to compute the FE
solution with the FGMRES method, up to a final tolerance of 10−8, our solver requires on average
of 48.2 seconds, which also accounts for the time for deforming the domain, building the lifting
function, the PMM preconditioner and the FE solution.
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6.1.2 RB simulation setup

During the offline phase, we explore the parameter domain D for building our RB approximation.
In particular we perform the following steps:

• we randomly choose a set of ns parameters
{
µi
}ns

i=1
⊂ D; then we compute the corresponding

velocity snapshots
{
uµi

h

}ns

i=1
and pressure snapshots

{
pµi

h

}ns

i=1
by solving the linear system

(6). Next, we build the RB space VN by separately computing a basis VNu
for the velocity

and VNp
the pressure, by plugging in the POD the same tolerance δPOD = δRB in both cases.

If the GRB method with velocity enrichment is employed, we also compute ns supremizer
snapshots

{
tµi
p (pµi

h )
}ns

i=1
. Since in general we do not take the same number of basis functions

for the velocity and pressure RB spaces, we use a tolerance also for computing the pressure
supremizer basis functions. With this aim, we employ POD with δPOD = δRB

10 to build the
supremizer basis VNs

, which numerically confirmed to provide a stable GRB problem. The
number of snapshots ns for the construction of the RB spaces has to be chosen in order
to properly sample the parameter space D and construct a basis which provides a uniform
accuracy across D. In Fig. 2 the singular value decay for different values of ns for velocity
(left) and pressure (right). By changing ns, the decay approaches the one obtained with
ns = 500. Furthermore, in Table 1 the number of RB functions selected by POD is reported
as function of ns when using a tolerance δRB = δPOD = 10−6 in Algorithm 1. As a matter of
fact, the number of selected RB functions stabilizes as ns approaches ns = 500, which is then
considered a reasonable sample size for properly sampling the parameter space, yet avoiding
a too heavy offline computation.

• we compute a basis to affinely approximate fµh , rµh (by DEIM) and Dµ
h , Bµ

h (by MDEIM),
by taking ns = 250 snapshots for each of these quantities and a tolerance δdeim for the POD
embedded in the (M)DEIM computation for the sake of basis selection, cf. Section 4.4.

In the online phase, we consider a test set made by Nonl = 100 new parameter instances and
solve the corresponding RB problem (by means of the GRB, aLSRB or caLSRB method). We
remark the parameters chosen during the online phase are different from the ones belonging to the
training set

{
µi
}ns

i=1
. We perform an analysis of the GRB and (c)aLSRB methods with respect

to the tolerances δRB (or equivalently the number of basis functions N) and δdeim, by choosing
δRB = 10−l, l = 3, 4, 5, 6 and δdeim = 10−5, 10−7. We evaluate the accuracy of the RB solutions
zµN in terms of the rescaled RB residual

rRB =
‖gµ

h −Aµ
hVzµN‖(Xµ

h )−1

‖gµ
h ‖(Xµ

h )−1

,

averaging the results obtained by solving the RB problem for the parameters of the test set. For
the aLSRB and caLSRB methods, we present the results for the choice of the matrix PX = PX0

h
,

that is, we take the preconditioner PX0
h
of X0

h, which is the matrix norm on the reference domain
Ω0. PX0

h
has a diagonal 2 × 2 block structure, where PXu ∈ RNu

h×N
u
h (resp. PXp ∈ RN

p
h×N

p
h ) is

a symmetric and positive definite AMG preconditioner of X0
u (resp. X0

p), leading to a matrix PX

which does not depend on µ.

Table 1: Number of basis functions for velocity and pressure selected by POD with δRB = 10−6 as
function of ns.

ns 200 300 400 500
Nu 96 110 119 122
Np 49 54 57 58

During the online phase, for any new µ, we solve the FE linear system for computing the
deformation dµ

h and the lifting function rµh . Alternatively, we could approximate both dµ
h and

rµh by the RB method, similarly to what has been proposed in [25] on a simpler scalar problem.
However, this goes beyond the scope of this paper and will be the subject of further research.
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Figure 2: Decay of singular values computed by performing POD on velocity and pressure snapshots.

6.2 Numerical results

6.2.1 Offline phase

In Table 2 we show the offline time and the corresponding number of affine terms Qa and Qg
required to build an affine approximation of the FE matrices and right hand sides when using
δdeim = 10−7; these times are shared by both the GRB and aLSRB methods. In Table 3 the total
computational time employed for the offline phase with δRB = 10−6 and δdeim = 10−7 are reported,
together with the details of its three main stages: (i) snapshots computation, (ii) POD and (iii)
RB affine arrays construction. Comparable results hold when bigger tolerances are used, since the
most part of the computational time is employed for computing the snapshots.

Table 2: Computational time (seconds) and number of affineterms to build (M)DEIM affine basis with
δdeim = 10−7.

MDEIM - Dµ
h MDEIM - Bµ

h DEIM - fµh DEIM - rµh Total (M)DEIM
Offline time 998.9 549.2 721.8 721.5 2991.4
Affine terms 39 29 28 97 193

Table 3: Computational time (seconds) to build RB approximation with δRB = 10−6 and δdeim = 10−7.

GRB aLSRB (PX0
h
) caLSRB (PX0

h
)

Snapshots computation 24290.0 24105.0 24105.0
POD 25.6 16.4 16.4
Affine arrays construction 171.1 1997.7 77.9
Total (M)DEIM 2991.4 2991.4 2991.4
Total offline phase 27478.2 29110.5 27190.7

We recall that δRB is used within POD to build the velocity and pressure RB spaces, while
δdeim for building an affine approximation of the FE blocks of Aµ

h and gh in the (M)DEIM algo-
rithm. Snapshots computation is the most demanding phase, and is more expensive if the GRB
method is employed, since it entails the additional computation of ns pressure supremizer snap-
shots

{
tµi
p (pµi

h )
}ns

i=1
. The second phase, involving the POD to build the RB spaces, only requires

a tiny percentage of the offline time for all the three methods considered, however also in this case
the two variants of the aLSRB method need a shorter time than the GRB method, because they
require only the construction of velocity and pressure spaces VNu

and VNp
– in the GRB case the
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pressure supremizer space VNs
must also be built.

Concerning the construction of the affine RB matrices and vectors, the GRB method scales
linearly on the number (Qa and Qg) of affine terms of the FE matrices and right hand sides,
yielding a computational time which is shorter than the one obtained with the aLSRB method for
this phase. Similarly, also the caLSRB method scales linearly thanks to the choice of the matrix
Ãµ
h ; this latter is taken as the affine approximation of Aµ

h where only the first POD mode is
retained, cf. (46). In this way, the caLSRB method shows the most efficient offline phase, since
on one hand it does not require to handle the supremizer snapshots, on the other it provides an
efficient construction of the RB affine terms.

In Figure 3 the number of RB functions for the velocity, supremizer and pressure spaces and
the total number of RB functions for each method are reported as function of the tolerance δRB .
The total number of RB functions is the same for the aLSRB and caLSRB methods; for the GRB
method, the supremizer RB functions need to be considered, due to the velocity enrichment required
to ensure the well-posedness of the resulting GRB approximation.
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Figure 3: Number of RB functions as function of δRB for each RB space (left) and for each method
(right).

6.2.2 Online phase

In Fig. 4 and 5 the FE solution computed for an instance of the parameter and the corresponding
errors obtained with the GRB, aLSRB and caLSRB methods are shown for velocity and pressure,
respectively.

The proposed aLSRB method allows to obtain an exponential decay of the residual rRB with
respect to the tolerance δRB ; the trend, in loglog scale, is reported in Fig. 6a and 7a for δdeim = 10−5

and δdeim = 10−7, respectively. The convergence of the RB residual rRB is stopped by the tolerance
δdeim, reaching a plateau for the when δRB ≤ δdeim, as expected, see e.g. [15, 27]. By comparing
the GRB and the new (c)aLSRB methods, when the same tolerances δdeim and δRB are used, we
have that the (c)aLSRB methods allow to compute a more accurate solution during the online
phase of about 1 order of magnitude. Moreover, notice that by using the same δdeim for the aLSRB
methods and the GRB method, the latter requires a lower tolerance δRB to reach a solution with
the same accuracy, yielding a much larger number of RB functions. Obtaining a more accurate
solution with the aLSRB method is an expected result, since the standard LSRB method seeks a
RB approximation minimizing the (Xµ

h )−1 norm of the residual, and the aLSRB method provides
a RB approximation minimizing the P−1

X norm, where P−1
X ≈ (Xµ

h )−1, as shown in Proposition
4.2. A similar argument also holds for the caLSRB method and allows to obtain an accuracy
comparable (yet slightly larger) to the one obtained with the aLSRB. This is expected since the
caLSRB method has been constructed by approximating the aLSRB one.
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(a) FE velocity magnitude. (b) GRB velocity error magnitude.

(c) aLSRB velocity error magnitude. (d) caLSRB velocity error magnitude.

Figure 4: FE velocity solution and GRB and aLSRB errors for µ = (2.92, 0.3).

(a) FE pressure magnitude. (b) GRB pressure error magnitude.

(c) aLSRB pressure error magnitude. (d) caLSRB pressure error magnitude.

Figure 5: FE pressure solution and GRB, aLSRB and caLSRB errors for µ = (2.92, 0.3).

In Fig. 6b and 7b, the computational time required to assemble and solve the RB problem is
reported for the three methods as function of δRB for the (M)DEIM tolerances δdeim = 10−5, 10−7,
respectively. Depending on the desired level of accuracy and the RB method employed, the com-
putational time required to solve the RB Stokes problem online ranges from 0.2 to 0.45 seconds.
We remark that this computational time does not take into account the time required to solve the
two additional problems for the domain displacement dµ

h and the lifting rµh .
In Table 4, for the three methods examined, we compare the minimum computational time

to compute a RB approximation whose residual rRB is lower than a fixed target accuracy (left
column). The aLSRB and caLSRB methods confirm to reach a target accuracy in a lower time.
In particular, the caLSRB method outperforms, by reaching the same accuracy of the aLSRB
method, being significantly faster thanks to the linear dependence of the assembling phase with
respect to the number of affine terms. The ’x’ in the the GRB column states that the accuracy
10−4 is not reached when this method with the given tolerance values δRB = 10−l, l = 3, 4, 5, 6
and δdeim = 10−5, 10−7. Therefore, one should further decrease δRB and δdeim to compute a more
accurate solution.
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Figure 6: Residuals in norm (Xµ
h )−1 (left) and online computational time as function δRB for δdeim =

10−5computed and averaged on Nonl = 100 parameters.
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Figure 7: Residuals in norm (Xµ
h )−1 (left) and online computational time as function δRB for δdeim =

10−7computed and averaged on Nonl = 100 parameters.

Table 4: Computational time (seconds) required by the RB methods to compute a solution satisfying
a target accuracy.

Accuracy GRB aLSRB (P0
X) caLSRB (P0

X)
1e-02 0.27 0.26 0.20
1e-03 0.36 0.27 0.21
1e-04 x 0.35 0.27

7 Conclusions
In this paper we have proposed a new algebraic PGRB method which can be generally used when
the problem is parametrized with respect to the shape of the computational domain, especially when
an analytical dependence of the geometry from the parameters is not known a priori. When such
a case occurs, the state of the art PGRB methods are currently not exploitable, since they require
an unbearable amount of computation to build the RB problem online due to the µ-dependence of
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the matrix Xµ
h .

The key idea of the proposed method relies on approximating the (µ-dependent) matrix Xµ
h

used to build a standard LSRB approximation, with a µ−independent matrix PX , giving birth to
an algebraic LSRB method which we called aLSRB. We have analyzed its theoretical properties by
providing well-posedness results and by comparing it with the state of the art techniques to deal
with the same class of problems, i.e. a GRB approximation with augmented velocity basis.

Next, we have introduced an approximation of the aLSRB method, the caLSRB method, where
the definition of the test space employs a coarse affine approximation of the FE matrix. This choice
allows to obtain an assembling phase which depends linearly on the number of affine term of the
FE arrays, thus speeding up the construction of the RB approximation when a new instance of the
parameter is queried online.

We have numerically investigated the properties of the proposed aLSRB and caLSRB methods,
comparing the results with the ones obtained by means of the GRB method. The new proposed
methods yield a reduced linear system with lower dimension and require in general a lower number
of affine terms in the affine decomposition of the FE arrays to reach a prescribed accuracy. Finally,
the results obtained with the (c)aLSRB method are more accurate and computationally cheaper
(both at the offline and online stages) than the ones obtained using the GRB method with velocity
enrichment.

Theoretical findings and numerical results suggest that the proposed strategies yield an efficient
construction of a stable and accurate RB method for Stokes equations. In principle, they would
also allow the solution of more involved systems as the Navier-Stokes equations in parametrized
geometries: indeed, the efficient reduction of these problems may yield a severely large number
of affine terms for the approximation of the operators, possibly hampering the efficiency of the
RB approximation. In particular, we believe our approach outlined in Section 5, making use of
an affinely approximated test space, and showing a linear dependence on the number of affine
contributions, is extremely promising in view of enhancing the efficiency of RB methods in this
case.
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A Proofs of the results in Section 4.3
In the proofs we will omit the apex µ for the sake of clearness, i.e. Xh = Xµ

h .

A.1 Lemma 4.1
Proof. Being Xh and PX symmetric and positive definite, for any y ∈ RNh it holds

‖y‖2Xh
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X
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h y,X

1/2
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)
2
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X PXP
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X X
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2
PX
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,

and there exists an element y0 ∈ RNh where equality is reached. This leads to an optimal C =

‖P−1/2
X X

1/2
h ‖PX

. Similarly, by inverting the roles of PX and Xh and following the same argument,
we have that c = 1/‖X−1/2

h P
1/2
X ‖Xh

.
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A.2 Lemma 4.2
Proof. We rewrite the optimal values for C and c as it follows
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Similarly, we have that ‖X−1/2
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where the last two relations are both used to find different equalities. Next, by recalling the
definition of condition number (with respect to the Euclidean norm) K2 for a matrix, we obtain
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which verifies the second equality of (35). On the other hand we have
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where we have used that ‖X−1/2
h PXX
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;

these latter relationships are verified similarly to (49), and their proof can therefore be omitted.
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