
MOX-Report No. 31/2022

Weighted functional data analysis for the calibration of
ground motion models in Italy

Bortolotti, T; Peli, R.; Lanzano, G; Sgobba, S.; Menafoglio, A

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Weighted functional data analysis for the

calibration of ground motion models in Italy

Teresa Bortolotti1*, Riccardo Peli1, Giovanni Lanzano2, Sara Sgobba2, and
Alessandra Menafoglio1

1MOX, Department of Mathematics, Politecnico di Milano, Milano, Italy
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano, Italy

*teresa.bortolotti@polimi.it

Abstract

Motivated by the crucial implications of Ground Motion Models (GMM) in
terms of seismic hazard analysis and civil protection planning, this work ex-
tends a scalar ground motion model for Italy to the framework of Functional
Data Analysis. The inherent characteristic of seismic data to be incomplete over
the observation domain entails embedding the analysis in the context of par-
tially observed functional data. This work proposes a novel methodology that
combines pre-existing techniques of data reconstruction with the definition of
observation-specific functional weights, which enter the estimation process to
reduce the impact that the reconstructed parts of the curves have on the fi-
nal estimates. The classical methods of smoothing and concurrent functional
regression are extended to include weights. The advantages of the proposed
methodology are assessed on synthetic data. Eventually, the weighted func-
tional analysis performed on seismological data is shown to provide a natural
smoothing and stabilization of the spectral estimates of the GMM.

Keywords: Functional Data Analysis, Weighted analysis, Partially observed func-
tional data, Ground motion model

1 Introduction

In the field of seismic hazard assessment, Ground Motion Models (Douglas and Ed-
wards, 2016) estimate the distribution of ground motion intensity measures, condi-
tionally on parameters that are descriptive of a certain seismic scenario. Earthquake-
induced ground motion is typically measured at the recording sites by the seismic
response spectrum, which is the peak response of a set of damped harmonic oscil-
lators to the seismic force, each characterised by its natural period of oscillation
T (Newmark and Hall, 1982). Consequently, the intensity measure can either be
seen as single ordinates defined with respect to T , or as profiles along the range of
vibration periods. This gives rise to the threefold possibility of inserting the analysis
of ground motion in a scalar (e.g. Bindi et al. (2011), Lanzano et al. (2019), Kotha
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et al. (2016), Boore et al. (2014)), multivariate (e.g. Worden et al. (2018), Huang and
Galasso (2019)), or functional context (Menafoglio et al., 2020). A scalar approach
ignores the correlation between the ordinates of the spectrum. In considering this
correlation, on the other hand, multivariate approaches inevitably suffer from the
curse of dimensionality. Embedding ground motion models in the context of Func-
tional Data Analysis (FDA, Ramsay and Silverman (2005), Horváth and Kokoszka
(2012)) solves the shortcomings of both scalar and multivariate approaches, by mov-
ing the focus from the period-specific intensity measures to their continuous profile
over the domain of vibration periods.
By exploiting the methodologies of FDA on the seismic recorded data, this work
aims to provide a functional extension of ITA18, the ground motion model that
provides scalar spectral ordinates for shallow crustal earthquakes in Italy, proposed
in Lanzano et al. (2019) and calibrated on the same database.
The peculiarity of the data of ground motion analysed in this work is that their
processing is manual. The non-automatic handling of the recordings results in high-
pass corner frequencies that differ from datum to datum, generating the problem
that a non-negligible number of curves are only observed on subsets of the whole
domain. Since such data are effective in populating the dataset with information
that produces robust regression results, and since there is seismological interest in
doing inference over the entire period domain, we are reluctant in erasing data from
the dataset, or in reducing the domain of analysis similarly to what Menafoglio et al.
(2020) did in their work. Rather, we are motivated in embedding the analysis in the
context of partially observed functional data.
Most classical methodologies of FDA do not generalize to the case of data that are
not completely observed over the domain. Recently, ad-hoc techniques for partially
observed functional data arose aiming to obtain estimates of the mean and of the
covariance operator (Yao et al. (2005), Kraus (2015)), to perform functional princi-
pal component analysis (Stefanucci et al. (2018), Kraus and Stefanucci (2018), Yao
et al. (2005)), and to impute missing trajectories to the unobserved parts of the
domain (e.g. Kraus (2015), Kneip and Liebl (2020)). This work exploits these last
techniques to reconstruct the missing observations of the acceleration spectra, in
order to preserve the formulation of the functional ground motion model over the
entire period domain.
The methodological novelty proposed in this work fits downstream of curves recon-
struction. The idea is to build a workflow of analysis that keeps track of the fact that
the degree of uncertainty associated to the discrete observations of the curves may
be variable within the single functional datum. In particular, the analysis should
associate less confidence to the parts of a curve that underwent reconstruction, with
respect to those that are originally observed. This requires to modify the optimiza-
tion criteria for smoothing and functional regression, in a way that greater weight
is given to the estimation errors made on the observed values of a curve, and less
weight to those made on the reconstructed values. The classical technique of penal-
ized least squares for smoothing presented in Ramsay and Silverman (2005) easily
extends to the inclusion of scalar weights, which vary over the sampling instants
but are common to all functional observations. This use of weights allow the op-
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timal smoothed curve to be characterised by various degrees of regularity over the
domain. In the non-parametric context, methods of weighted smoothing splines are
employed with an equivalent purpose and belong to the category of spatially adaptive
splines (e.g. Pintore et al. (2006), Davies and Meise (2008)). In the weighted penal-
ized least square criterion for functional regression (Ramsay and Silverman, 2005),
weights vary across observations but are constant over the domain of analysis. The
present work extends the techniques of weighted penalized smoothing and weighted
penalized functional linear regression discussed in Ramsay and Silverman (2005), to
include curve-specific functional weights. Specifically, the proposed framework cou-
ples each curve with a weight function, taking value one where original observations
are available and decreasing to zero the further the reconstructed trajectory gets
from the last recorded value.

2 Model and data

2.1 Model

In the context of seismic hazard assessment, Ground Motion Models estimate the
distribution of an intensity measure (IM) of ground motion conditionally on seismic
parameters that are descriptive of the source of the earthquake, the site of regis-
tration and the path taken by the seismic wave from the epicentre to the recording
station. The focus of this work lies in the extension to a functional framework of
the scalar GMM proposed in Lanzano et al. (2019), which we refer to as ITA18.

Background In Lanzano et al. (2019), the authors resort to a linear ordinary
least-square regression to separately fit 37 models of the IMs, i.e. peak ground
acceleration (PGA) and the ordinates of elastic acceleration response spectra, SA at
5% damping (Douglas, 2003), each corresponding to a vibration period Tj ∈ T :=
[0.04, 10 s], j = 1, . . . , 36. The median values of such IMs are estimated according
to the following functional form:

log10 IM = a+ FM (Mw, SoF ) + FD(Mw, R) + FS(VS30) + ϵ, (1)

where a is the offset, FM (Mw, SoF ), FD(Mw, R), FS(VS30) are the source-, path- and
site-related terms respectively, and ϵ is the remaining error. The source is specified
as a step-wise linear function

FM (Mw) =

{
b1(Mw −Mh) Mw ≤ Mh

b2(Mw −Mh) Mw > Mh

,

FM (SoF ) = fkSoFk,

in which the straight line changes slope at the hinge magnitude Mh. Terms fk, for
k = 1, 2, 3, are the coefficients related to three dummy variables accounting for the
style-of-faulting (SoFk: strike-slip, thrust faulting, normal faulting). Coefficient f3
related to the normal faulting is constrained to zero when the regression is performed.
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The path term takes the form

FD(Mw, R) = [c1(Mw −Mref) + c2] log10(R) + c3R,

where parameter Mref is the reference magnitude. The two terms of this summation
account for the geometrical spreading of the waves from the source and for the
anelastic attenuation, respectively. The distance R represents a correction of the
pure Joyner-Boore distance – i.e. the closest distance to the surface projection of

an extended fault – and is defined as R =
√
d2JB + h2, where h is the parameter of

pseudodepth measured in kilometres.
Lastly, the site-related term has the form

FS(VS30) = k log

(
V0

800

)
,

where V0 = VS30 if VS30 ≤ 1500 m/s, V0 = 1500 m/s otherwise. According to Kamai
et al. (2014), the scaling with VS30 is assumed to be linear for values lower than
1500 m/s, while for larger values the amplification here is considered as independent
on the shear-wave velocity.

Functional embedding of the scalar model Parameters Mh, Mref and h ap-
pearing in (1) are known to be dependent on the spectral periods. For this reason,
they are typically included in the regression model either as known (Sabetta et al.,
2021) or unknown (Lanzano et al., 2019) functions of the vibration period. Since
the latter approach is non-trivial when applied to a functional framework, resulting
in a non-linear regression model, we assume them to be known functions of the pe-
riod. In particular, we take advantage of the estimates of Mh,Mref and h obtained
period-wise from the preliminary step of non-linear regression discussed in Lanzano
et al. (2019). Functions Mref and h are defined in the space generated by a cubic
B-spline basis, where the optimal coefficients are the result of a step of penalized
smoothing. The estimate of Mh made by Lanzano et al. (2019) forces a step-wise
behaviour along the period domain, producing jumps in the prediction of the spec-
trum for scenarios close to the hinge magnitude. In order to solve the discontinuity
issues in the predictions, the work of Sabetta et al. (2021) corrects Mh to have a
smoother variation in the range of periods [0.25 s, 0.7 s]. Following this line, we
define function Mh on a basis of quadratic B-spline via a smoothing that penalizes
its first derivative. Figure 1a shows how the smoothing of Mh results in a continuous
function over the period domain.
We acknowledge that these are modelling choices made a priori according to how
the issue is typically handled in the literature on this topic. Such choices may be
revised in further extensions of the work, the most straightforward of which extends
the functional form (1) to a non-linear regression.
A functional definition of the covariates in (1) follows naturally, and eventually leads
to the embedding of the scalar model into a fully functional framework:

log10 IM = α+ FM (Mw,SoF,Mh) + FD(Mw, dJB,Mref, h) + FS(VS30) + E . (2)
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Figure 1: (a) Definition of Mh as the function resulting from the smoothing of its
step-function estimate obtained in Lanzano et al. (2019). (b) Scatter plot of magni-
tude vs Joyner-Boore distance (dJB), coloured by style-of-faulting. The records at
dJB = 0 are plotted at 0.1 km.

In (2), IM is a random variable with values in a convenient functional space, α, FM ,
FD and FS are known functions with domain T and E is assumed to be generated
by a zero mean stochastic process.

2.2 Data

The analysis is carried out on the same dataset used for the calibration of ITA18,
which includes 5568 records, relative to 146 earthquakes and 1657 stations. The bulk
of the data comes from the ITalian ACcelerometric Archive (ITACA; Russo et al.
(2022)), which collects the manually-revised and good quality waveforms recorded
by the most important and large seismic networks in Italy. The data included in the
ITACA collection were selected according to the following criteria: (1) earthquakes
of active shallow crustal regions (only events of tectonic origin with focal depth
lower than 30 km) occurred in the period time 1972–2017, (2) minimum moment
magnitude (Mw) set to 3.5, (3) Joyner–Boore distance lower than 200 km, and (4)
stations with surface instruments and with low or no interactions with nearby struc-
tures. The dataset was also enriched with recordings of high-magnitude (Mw > 6.1)
worldwide events associated to strike-slip and thrust faulting mechanisms. Addi-
tional details on the dataset selection are provided in Lanzano et al. (2018). Figure
1b shows the magnitude-distance distribution of the calibration data that supports
the reliability of the model calibration in the intervals 3.5-8 and 0.1-200 km for
magnitude and distance, respectively.

Domain definition The sampling of the discrete observations of IM is not uniform
over [0, 10 s]. Conversely, 26 out of the 37 sampling instants are in the interval [0, 2 s],
while the other 11 points span the remaining of the domain. This motivates us to
define the spectrum on the interval T = (log10(0), log10(10)], thus considering the
sequence (log10(t1), . . . , log10(tN )) as the sampling instants. Such modelling choice
has the twofold advantage of obtaining a more uniform sampling of the curves over
the domain of definition and of better representing the greater seismological interest
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Figure 2: (a) Curves of IM. The orange line represents a curve that is not fully
observed up to 10 s. (b) Period-specific fraction of the observed records over the
total records. The dashed horizontal line marks 75%. The vertical lines mark the
last sampling points where 100% and >90% of curves are observed.

that practitioners have on short rather than long periods. It is worth pointing out
that we decide to cut the domain on the left by making the PGA correspond to
the ordinate SA(log(T ) = −2.5) rather than to SA(log(T ) = −∞) (Bradley (2011),
Lanzano et al. (2019)). Doing so, we are reducing the impact that the left tail of
the definition domain would else have in the estimation process. Figure 2a displays
the longitudinal observations of intensity measure resulting from these modelling
choices.

Partially observed response variable RotD50 (Boore, 2010), which is the in-
tensity measure considered as response variable in this work, results from the com-
bination of three mutually orthogonal components of spectral acceleration measured
at the recording sites. Accelerometric stations make use of high-pass filters that may
differ from site to site and from component to component of spectral acceleration.
This implies that some longitudinal observations may not be validly recorded at all
registration periods, but only at the lower ones. Figure 2b shows, for each registra-
tion period T , the fraction of longitudinal data that are observed at T . We may
notice that the percentage of unobserved curves is low and stable up to a period of
about 5 s, and that it rapidly increases up to 25% at 10 s. We refer to Sections 4.2
and 5.1 for a report on the strategies adopted to reconstruct the missing trajectories
of the curves, from their last valid observation up to T = 10 s.

3 Methods

Let T be an open subset of R and w : T → [0, 1] be a bounded non-negative function,
which we refer to as weight. Now let f, g ∈ L2(T ) and let w, v be weights associated
to f and g respectively. We define the weighted inner product in L2 as

⟨f, g⟩W =

∫
T

√
w(s)f(s)

√
v(s)g(s)ds,
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and the weighted L2 norm of f with respect to w as ||f ||W =
√
⟨f, f⟩W . It is trivial

to see that if the L2 norm of f is finite, then also the weighted L2 norm of f is finite.

3.1 Weighted smoothing

Let y1, . . . , yn be realizations of independent and identically distributed functional
random variables with values on L2(T ), T ⊂ R. Let y1, . . . ,yn be vectors of discrete
observations of the curves at the sampling instants t1, . . . , tN . For each observation
yi, the smoothing technique (Ramsay and Silverman (2005), de Boor (1978)) fits
the discrete observations yi(t1), . . . , yi(tN ) according to the model

yi(tj) = xi(tj) + ϵi(tj), ∀ j = 1, . . . , N.

Penalized weighted least-square criterion Define smoothing error the square
integrable function ϵi = yi(tj)−xi(tj), and let wi be the associated weight as specified
in the introduction to this section. Then the smoothing is performed resorting to a
penalized weighted least-square (PWLS) criterion, that solves

x̂i = argmin
x∈H2(T )

T∑
j=1

(√
wi(tj)(yi(tj)− x(tj))

)2

+ ζ||D2x||2L2(T ). (3)

In (3), the term ||D2x||2L2(T ) quantifies how abrupt the changes in the smoothed

curve are, by evaluating the L2 norm of its second derivative, while ζ is the smooth-
ing parameter, which may be tuned via generalized cross-validation. Hereafter, we
assume that x belongs to the Sobolev space H2(T ) (i.e., that has first and second
derivatives in L2(T )) to guarantee the finiteness of ||D2x||2L2(T ). Notice that the

error sum of squares in (3) is discounted at each sampling instant tj by the value of
wi in tj , wi playing the role of giving different weight to smoothing errors made at
different time instants.

Problem (3) is formulated in an infinite dimensional space. In order to solve it,
dimensionality is reduced by projecting the smooth curve x on the space generated
by a finite set of basis functions {ϕ1, . . . , ϕL}, so that it may be expressed in the
form

xi(t) =

L∑
l=1

cilϕl(t) = cTi ϕ(t), (4)

and hence univocally identified with respect to the basis by the vector of coefficients
of the linear combination of the basis functions, c ∈ RL. Doing so, it is possible to
embed the problem in a finite dimensional space, and to express the smoothing cri-
terion in matricial form. This implies that the smoothing criterion may equivalently
be expressed for x or c.
First, observe that the penalization term may be re-expressed as

||D2x||2L2(T ) =

∫
T

[
(D2x)(s)

]2
ds =

∫
T

[
(D2cTϕ)(s)

]2
ds = cTPc, (5)

7



where [P ]lk = ⟨D2ϕl, D
2ϕk⟩L2(T ).

Secondly, observe that the weighted error sum of squares may be written as

N∑
j=1

(√
wi(tj)(yi(tj)− cTϕ(t))

)2

= (yi − Φc)T Wi (yi − Φc) , (6)

where Wi = diag(wi(t1), . . . , wi(tN )) is a N -order diagonal matrix, and Φ ∈ R(L×N)

contains the values taken by the basis functions at the sampling instants.
Equation (5) and (6) allow one to formulate the PWLS criterion (3) as the problem
of finding the minimum c ∈ RL of the quadratic form

(yi − Φc)T Wi (yi − Φc) + ζcTPc. (7)

It is immediate to verify that, by taking the derivative of (7) and by setting it to
zero, the solution is found in closed form as

ĉi =
(
ΦTWiΦ+ ζP

)−1
ΦTWiyi, (8)

so that it is possible to identify a smoothing map Swi
Φ =

(
ΦTWiΦ+ ζP

)−1
ΦTWi

such that
ĉi = Swi

Φ yi. (9)

Construction of the smoothing map Let Y ∈ R(n×N) be the matrix containing
the values that the n observations take in N sampling points, and let C ∈ R(n×L) be
the matrix that collects all the n optimal coefficient vectors, each of which found via
equation (9). We are interested in identifying a smoothing map SΦ that collectively
links matrices Y and C.
The identification of such a map comes from an extension of the case of classical
weighted smoothing (Ramsay and Silverman, 2005). The latter accounts for corre-
lations among time instants by applying the same weighting to all raw data, and
by identifying a smoothing map SΦ that is common to all the observations. In this
case the mapping of Y into C is easily given by the common SΦ in the form

C = Y ST
Φ . (10)

In a more general setting than the classical weighted smoothing, the weights system
is applied differently to each raw curve, and requires the computation of n curve-
specific smoothing maps Swi

Φ , so that a valid counterpart of equation (10) cannot be
identified directly, but needs a little more handling.
Observe that by applying the vec() operator to both sides of (10) and exploiting the
properties of the Kronecker product one gets

vec(C) = vec(Y ST
Φ) = (SΦ ⊗ I)vec(Y ), (11)

where I is the n-dimensional identity matrix. The Kronecker product (SΦ ⊗ I)
expands the common mapping SΦ in a sparse matrix of dimension (Ln × Nn).
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Let now Swi , i = 1, . . . , n, be the n curve-specific smoothing maps, where we omit
subscript Φ for clarity of notation. Then one may check that the counterpart of
(SΦ ⊗ I) in this general setting is given by the matrix SΦ having the form

SΦ :=



S1
11 0 . . . 0
0 S2

11 . . . 0
...

. . .

0 . . . 0 Sn
11

S1
12 0 . . . 0
0 S2

12 . . . 0
...

. . .

0 . . . 0 Sn
12

S1
1T 0 . . . 0
0 S2

1T . . . 0
...

. . .

0 . . . 0 Sn
1T

S1
L1 0 . . . 0
0 S2

L1 . . . 0
...

. . .

0 . . . 0 Sn
L1

S1
L2 0 . . . 0
0 S2

L2 . . . 0
...

. . .

0 . . . 0 Sn
L2

S1
LT 0 . . . 0
0 S2

LT . . . 0
...

. . .

0 . . . 0 Sn
LT



,

so that eventually the following holds:

vec(C) = SΦvec(Y ). (12)

3.2 Weighted regression

As our application interest lies in a functional extension of a linear regression with
functional covariates, we consider a functional concurrent linear regression model
with independent functional covariates x1(t), . . . , xq(t). In the framework defined in
Section 3.1, the model formulates

y(t) = X(t)β(t) + ϵ(t), t ∈ T , (13)

where β(t) = (β1(t), . . . , βq(t))
T denotes the vector of functional coefficients evalu-

ated in t, X(t) ∈ Rn×q is the design matrix at t and y(t) is a n-dimensional vector
containing the response functions evaluated in t. The error term is a n-dimensional
vector of functions ϵi, that are assumed to be independent realizations of a zero-mean
stochastic process.

Penalized weighted functional least-square criterion Similarly to what we
did for the smoothing, the aim of this section is to extend to a weighted approach
the penalized functional least-square criterion discussed in Ramsay and Silverman
(2005), by exploiting the features of the weighted L2 norm introduced above. Notice
that the systems of weights introduced for smoothing and here for regression could
in principle be different, as they could account for different types of uncertainty.
This work, however, treats them as equal, and regards the two weighted techniques
as a unique, novel procedure.
Let w1, . . . , wn be the weights associated to the errors ϵ1, . . . , ϵn. Then we define the
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penalized weighted functional least-square (PWFLS) criterion as the minimization of

PWFLS =
n∑

i=1

||ϵi||2L2(T ),W +

q∑
j=1

λj ||D2βj ||2L2(T )

=
n∑

i=1

∫
T

(√
wi(s)ϵi(s)

)2
ds+

q∑
j=1

∫
T
λj

(
D2βj(s)

)2
ds, (14)

where
∑q

j=1 λj ||D2βj ||2L2(T ) is a roughness penalty that enters the criterion to regu-
larize and stabilize the estimates of the regression coefficients, and λ1, . . . , λq are the
coefficient-specific penalization parameters which can be tuned via generalized cross-
validation to allow for different degrees of smoothness in the coefficients estimates.
Recall that the roughness penalty

∑q
j=1 λj ||D2βj ||2L2(T ) allows one to estimate re-

gression coefficients βj , which are in principle infinite dimensional, from a finite
sample (Horváth and Kokoszka, 2012), counterbalancing the pursuit of a good fit-
ting with the estimation of a coefficient that is regular, stable and able to provide
useful insights on the phenomenon under analysis.

By linearity of the integral, the operations of integration and summation in (14) can
be interchanged, and consequently one may write

PWFLS =

∫
T

n∑
i=1

[√
wi(s)

(
yi(s)− xi(s)

Tβ(s)
)]2

ds+

∫
T

q∑
j=1

λj

(
D2βj(s)

)2
ds

=

∫
T
[y(s)−X(s)β(s)]T W (s) [y(s)−X(s)β(s)] ds+

∫
T
[Lβ(s)]TΛ[Lβ(s)]ds,

(15)

where we setW (s) = diag (w1(s), . . . , wn(s)) to be the diagonal matrix of the weights
evaluated in s, L to be a linear differential operator taking the second derivative of
each regression coefficient, and Λ = diag (λ1, . . . , λq(s))

T the diagonal matrix of the
q penalization parameters.

The minimization of (15) passes through a dimensionality reduction of the problem.
The idea consists in moving from an infinite dimensional setting to a multivariate
framework, by projecting the observations in the space spanned by the basis func-
tions, as already done in Section 3.1. The functional coefficients are estimated as
elements of finite dimensional spaces generated by suitable basis functions, and the
part of the curve that remains not captured is assumed to be negligible and included
in the regression error. Accordingly, this section will refer to the response variable
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and to the functional coefficients as

yi(t) =

Ly∑
l=1

cilϕl(t), i = 1, . . . , n,

βj(t) =

Lj∑
l=1

bjlθ
j
l (t), j = 1, . . . , q. (16)

The argument above is formulated in its most general setting, which considers the
bases for the observations and for each one of the regression coefficients as distinct.
Such comprehensiveness is particularly convenient when one has a priori knowledge
that the effects entering the regression model have different levels of roughness or
smoothness, as it allows to flexibly adjust the definition of each coefficient βj in the

space generated by suitable basis functions θj1, . . . , θ
j
Lj
. Note that formulation (16)

can be compacted in matricial form as follows

β(t) = Θ(t)b, (17)

where Θ(t) is the q × Lβ matrix of the point evaluations at t of the basis functions

Θ(t) =


θ11(t) θ12(t) . . . θ1L1

(t)
0 0 . . . 0
...

. . .

0 0 . . . 0

0 0 . . . 0
θ21(t) θ22(t) . . . θ2L2

(t)
...

. . .

0 0 . . . 0

. . .

0 0 . . . 0
0 0 . . . 0
...

. . .

θq1(t) θq2(t) . . . θqLq
(t)

 ,

and b is the Lβ-dimensional vector of the coefficients of the projections of {β1, . . . , βq}
on bases θ1, . . . ,θq.
A new phrasing of model (13) follows all the considerations made above and takes
the form

Cϕ(t) = X(t)Θ(t)b+ E(t). (18)

Putting (18) in (15) one gets∫
T
[Cϕ(s)−X(s)Θ(s)b]T W (s) [Cϕ(s)−X(s)Θ(s)b] ds+

∫
T
[LΘ(s)b]T Λ [LΘ(s)b] ds.

This quadratic form is the starting point of the calculation, extensively reported in
Appendix A.1, that leads to the following equation for vector b:

[J +R] b =

∫
Θ(s)TX(s)TW (s)Cϕ(s)ds, (19)

where

J :=

(∫
T
Θ(s)TX(s)TW (s)X(s)TΘ(s)ds

)
,

and R is the Lβ × Lβ matrix accounting for the penalization term.
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3.3 Uncertainty assessment

Following the argument reported in Appendix A.2, one finds that the raw observa-
tions Y are mapped into the matrix of coefficients β̂ according to the relation

β̂(t) = SΘ(t)SβSΦvec(Y). (20)

The linkage expressed by (20) is crucial for the assessment of the variability associ-
ated to the point estimates of the regression coefficients. On the one hand, it allows
one to quantify the point-wise variability associated to each βj ; on the other, it jus-
tifies the use of a bootstrap approach to generate a sample of regression coefficients
and estimate their variability simultaneously over the periods domain.

Point-wise variability The point-wise variability of β̂ comes easily from (20). It
suffices to observe that the variance of the observations Y is given by

Var (vec(Y )) = Σe ⊗ In,

where Σe is the covariance matrix of the residuals ϵ̂i of the regression model. Then
one immediately finds that the q × q covariance matrix of vector β̂(t), ∀t ∈ T , is
given by

Var
(
β̂(t)

)
= Var (SΘ(t)SβSΦvec(Y )) = SΘ(t)SβSΦ(Σe ⊗ In)S

T
ΦS

T
β SΘ(t)

T . (21)

Simultaneous variability Equation (21) provides an estimate of the variability
that has point-wise validity, meaning that conclusions based on it can only be drawn
one-at-a-time. To overcome the intrinsic limitations of such an estimate, the present
work makes use of a method based on a bootstrap resampling that quantifies the
uncertainty associated to β̂’s simultaneously over the whole domain.
Bootstrap resampling methods and results of asymptotic validity of the bootstrap
methodology, which are guaranteed in the scalar case by the law of large numbers
and by the Glivenko-Cantelli theorem, find an extension in the framework of func-
tional data analysis, where the distributional properties of the statistics are typically
problematic to handle (Cuevas et al. (2004), Politis and Romano (1994), Cuevas and
Fraiman (2004)). In particular, the work of Cuevas and Fraiman (2004) derives a
result of bootstrap validity for functional statistics defined on differentiable oper-
ators. Observe that the vec() operator and the projection maps SΘ(t), Sβ and SΦ

appearing in (20) satisfy the regularity conditions required by the result of Cuevas
and Fraiman (2004), and so does their composition, so that we are justified in the
use of a bootstrap method to get a valid estimate of the distribution of the functional
coefficients. We thus resort to the following resampling scheme.

1. Estimate β̂(t) of the regression model y(t) = X(t)β(t) + ϵ(t), as from Section
3;

2. Evaluate the residuals ϵ̂(t) = y(t)−X(t)β̂(t);
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3. Randomly generate a bootstrap sample ϵ̂∗ from the empirical distribution of
the residuals and define the new pairings {(y∗1,x1), . . . , (y

∗
n,xn)} as

y∗i (t) = xT
i (t)β̂(t) + ϵ̂∗i (t).

4. Estimate β̂∗(t) of the regression model y∗(t) = X(t)β(t) + ϵ(t), with y∗(t) =
(y∗1, ..., y

∗
n)

T ,

5. Repeat (3) and (4) for B times, with M sufficiently large.

The empirical distributions of the sample {β̂∗(t)}Mm=1 are visualized via functional
boxplots. The amplitude of the fences is considered a reliable estimate of the confi-
dence that one globally has on the true coefficients.

We point out that more compound techniques relying on parametric bootstrap to
do simultaneous inference for functional parameters are present in the literature.
Degras (2011) considers a simple function-on-scalar regression and proposes a para-
metric bootstrap that builds simultaneous confidence bands around the estimate of
the functional coefficient. Chang et al. (2017) extend this work by proposing a wild
bootstrap methodology to handle regression with multiple covariates and errors that
are non-normal and heterogeneous. The simulation-based method of Degras (2017)
provides theory, method and implementation of simultaneous confidence bands for
functional statistics and parameters. Cao et al. (2012) associate a spline estimator
for the mean function of dense functional data to a simultaneous confidence band
which is asymptotically correct. Employing such methodologies is outside the scope
of the present work and may be object of future research, aiming to accurately iden-
tify simultaneous confidence bands for coefficient estimates or for other functional
statistics.

4 Simulation study

This section is devoted to the validation through a simulation study of the weighted
methodology presented above. Synthetic partially observed data are simulated so
as to capture the characteristics of variability of the data of the case study. Monte
Carlo simulations are employed to test the soundness of the weighted against the
non-weighted approach with respect to three aspects: (i) the effectiveness in reducing
the impact that the method adopted to reconstruct the missing trajectories of the
curves have on the final coefficients estimates, (ii) the effect that their shape has
on the results of the analysis, (iii) the property of stabilization of the coefficients
estimates when the fraction of partially observed data increases.

4.1 Simulation of partially observed functional data

Data are generated according to model

yi(t) = β0(t) + β1(t)x1i + β2(t)x2i(t) + ϵi(t), (22)
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where ϵi are independent realizations of a zero-mean stochastic process. The inclu-
sion of a scalar and a functional covariate in (22) allows us to test the soundness
of the weighted methodology both for a function-on-scalar and a concurrent linear
regression model. The scheme adopted for the simulation of the covariates and the
regression coefficients entering (22) is motivated by our intention to capture the
main modes of variability of the functional data of the case study that propelled
this work. Specifically, the rationale is as follows:

1. Consider a scalar covariate z1 and a functional covariate z2(t) among those
entering the functional form (2), then fit via unweighted least squares the
regression model log10(SAi(t)) = α0(t)+α1(t)z1i+α2(t)z2i(t)+ξi(t) to obtain
the estimates α̂0, α̂1, α̂2 and ξ̂1, . . . , ξ̂n,

2. Set βk = akα̂k so that the magnitudes of β0, β1, β2 are comparable, thus pre-
venting the effect of a single covariate from being preponderant compared to
that of the others,

3. Sample the covariates x1i, x2i(t) and the regression residuals ϵi(t) (as specified
below),

4. Set yi(t) = β0(t) + β1(t)x1i + β2(t)x2i(t) + ϵi(t),

5. Evaluate (yi(t1), . . . , yi(tN )) on the sampling instants (t1, . . . , tN ),

6. Sample the smoothing error eij
iid∼ N (0, σ2) for j = 1, . . . , N and set ỹi(tj) =

yi(tj) + eij .

It is necessary to specify how the sampling of the covariates and of the regression
error is done in step 3. The scalar covariate is simply generated from the univariate
normal distribution whose mean and variance are the mean and the variance of the
original covariate z1, namely x1,i ∼ N (µ1, σ

2
1) for i = 1, . . . , n. The argument for the

functional covariate is only slightly more compound. Let b(t) = (b1(t), . . . , bL(t))
T

be the basis on which z2 is defined, so that z2i(t) = cTi b(t). Then the synthetic
covariate x2i is defined on the same space of basis functions and is built by sampling
new random coefficients c̃i from the multivariate normal distribution whose mean
vector and covariance operator are the mean vector and the covariance matrix of the
c1, . . . , cL, i.e. c̃i ∼ NL(c̄,Σc). The rationale behind the generation of the regression
residuals ϵi is to define them in the space generated by the K = 2 harmonics φk that
account for about 99% of the variability of the ξ̂1, . . . , ξ̂n obtained in step 1. Then
the new scores si1, si2 are sampled from the bivariate normal distribution centred
in zero and with covariance the diagonal matrix of the first two eigenvalues of the
FPC decomposition, namely si1, si2 ∼,N2(0,Λ2). Eventually, the novel regression
residuals are built by setting ϵi(t) =

∑
k=1,2 sikφk(t). We point out that as the

regression of the original log10(SA) curves on only two of the seismic covariates leaves
much of the variability into the regression error, the estimated residuals ξ̂1, . . . , ξ̂n
obtained in step 1 are previously scaled of a factor 10 so that they do not impact
too much on the synthetic observations.
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Simulation of the observation domain We want each simulated curve to be
observed over a curve-specific domain. To this end, curve yi is coupled with two
independent random variables Ui ∼ Unif([1.5, 3.5]) and Pi ∼ Be(p), and the corre-
sponding instant of right censoring Ti is defined as

Ti =

{
3.5, Pi = 0

Ui, Pi = 1
.

This sampling approach ensures that a fraction p of data are partially observed with
censoring instant Ti in the interval [1.5, 3.5]. Parameter p is set to 0.4 in the first
two sets of simulations. The third set, reported in Appendix B.1, tests the impact
of the choice of p on the results.

Definition of the weights The definition of a functional weight should reflect the
reliability that we have on a functional datum along the domain. The full reliability
associated to the observed values of a curve is represented by a weight set to 1. As
we move more and more away from the last observed value, the reliability on the
extrapolated values is corrected to become continuously smaller. A logistic function
is a convenient choice to achieve a decrease in confidence from 1 to small values.
Suppose that the i-th functional datum is observed up to an instant t = Ti. Then
we define

wi(t) =

{
1 , t ≤ Ti

1
1+e(t−µi)αi

+ ci , t > Ti
, (23)

where we set αi = aσTi , σTi being the empirical standard deviation of the observed
curves at Ti and a > 0 a hyperparameter. The corrective term ci = 1− 1

1+e(Ti−µi)αi

guarantees continuity of the weight at Ti. The location parameter µi identifies
the inflection point, which is curve-specific and set equal to half the length of the
missing domain. Notice that, once µi is fixed, the shape of the weight is completely
determined by the scale parameter αi, which controls the rate of decay of the logistic
function. The larger αi, the more abrupt is the decrease of the weight to 0. Here,
large values of αi are associated to a great variability of the complete curves in Ti,
meaning that if a record is censored at a period characterized by large variability
of the observed curves, then the confidence associated to the reconstruction quickly
falls to 0. Hyperparameter a is intended to regulate the impact of σTi on the decay.
The joint effect of a and the correction ci results in a weight that takes larger values
and shows more gradual decay when σTi is small, and that decreases rapidly to zero
when σTi is large.
The first and the third batteries of simulations maintain a fixed and equal to 10,
while the second set assesses the impact of the choice of the setting of a on the
results. Figure 3 shows a simulated partially observed curve, its reconstruction with
the method proposed by Kraus (2015) and the associated logistic weight.
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Figure 3: (a) Partially observed curve (blue) and its reconstruction (light blue). (b)
Logistic weight associated to the partially observed curve, where the hyperparameter
for the decay is set a = 10.

4.2 Validation of the weighted analysis

The performance of the weighted against the non-weighted analysis is assessed
in terms of the Mean Squared Error (MSE) and the variance of the estimators
β̂0, β̂1 and β̂2, defined, for j = 0, 1, 2, as

MSE(β̂j) = E
[∣∣∣∣β̂j − βj

∣∣∣∣2
2

]
,

Var(β̂j) = E
[∣∣∣∣β̂j − E

[
β̂j

] ∣∣∣∣2
2

]
. (24)

In the practice, MSE and variance of each β̂j are extracted from the empirical

distributions of the β̂0, β̂1 and β̂2, obtained via Monte Carlo simulation with B=100
repetitions, by approximating the population means in (24) with their finite sample
counterparts.
For b = 1, . . . , B, the simulation does: (i) generate a sample of fully and partially
observed functional data, (ii) reconstruct the right-censored curves, (iii) define the
logistic weights, (iv) smooth the discrete observations, (v) estimate the regression
coefficients (β̂b

0, β̂
b
1, β̂

b
2). Depending on the approach considered, steps (iv) and (v)

are carried out including or non including the weights in the estimation criteria.
The comparison is carried out in three series of simulations. First, we evaluate the
impact that the reconstruction methodology has on the performance of the entire
analysis, for both the weighted and unweighted approaches. Secondly, the rate of
decay of the logistic weights is varied within a set of values, to check whether there is
an optimal definition of the weight system in the range between two extreme options:
opt for an unweighted analysis or force the weights to zero right after the last valid
observation instant of a curve. Finally, we vary the fraction of partially observed
curves over the total sample size to check if the application of the weighted method
positively impacts the stability and the accuracy of the estimators in scenarios where
the missing information increases.

Robustness to the reconstruction methods As mentioned in the introduc-
tion to this work, the reconstruction of partially observed functional data can be
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performed exploiting different methodologies. Here three reconstruction strategies
are taken into account. For the sake of clarity, they are referred to with acronyms
and their working principle is briefly recalled below1.

Kraus: Reconstruction of the missing trajectory made by a Hilbert-Schmidt
operator, estimated via a functional linear ridge regression as it is accurately
reported in Kraus (2015). The penalization parameter entering the ridge re-
gression is selected via generalized cross-validation at each step of the Monte
Carlo simulation.

KL-PC: Functional completion made by a reconstruction operator, which
estimates the principal components of the curve over the entire domain. Then
the missing part of the trajectory is reconstructed resorting to the best basis
property as the truncated sum of the first K principal components (Kneip
and Liebl, 2020). The number K of principal components entering the sum is
selected via generalized cross-validation.

KL-AL: It refers to the same procedure as KL-PC, but operates a prelimi-
nary step of non-parametric smoothing on the observed parts of the curves.
Since in general we are not guaranteed continuity at the boundary of the non-
parametric estimate with the reconstructed trajectory, the reconstruction is
corrected in order to recover continuity (thus the term ALign).

When comparing the weighted and non-weighted approaches over different recon-
struction methods, we expect the inclusion of the weights to reduce the differences
among their performances, since they enter the estimation criteria for the smoothing
and the regression coefficients by diminishing the impact of the reconstructed tra-
jectories on the resulting estimates. The results displayed by the boxplots in Figure
4 are in agreement with this intuition. The empirical distributions of the squared L2

distances of β̂b
j from its true value are closer to each other in the weighted analysis

than in the unweighted analysis, for each of the three regression coefficients. Addi-
tionally, we observe that the weighted methodology is effective in lowering both the
variance and the bias (Table 1) of the point estimators, meaning that the analysis
benefits in terms of stabilization of the estimators and of estimation accuracy.
We mention that, since method KL-AL is the best performing in both the weighted
and non-weighted approaches, it is adopted as reconstruction method for the follow-
ing two batteries of simulations.

Impact of the weights definition This series of simulations is intended to as-
sess the extent to which the shape of the weights affects the results of the analy-
sis. Their profile is modified by varying the rate of decay of the logistic function,
namely by moving the hyperparameter a that enters (23) within the set of values
{5, 10, 15, 20,∞}. Notice that a = ∞ corresponds to the limit condition at which the

1The implementation of all three methods considered is available in the R package Reconst-
PoFD, which can be installed from the GitHub account of Dominik Liebl: https://github.com/
lidom/ReconstPoFD.
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Table 1: Comparison of bias2(βj) among the adopted reconstruction methods.

Coefficient Kraus: wgt KL-PC: wgt KL-AL: wgt Kraus KL-PC KL-AL

β0 0.002 0.003 0.002 0.011 0.030 0.011
β1 0.005 0.005 0.003 0.024 0.028 0.017
β2 0.000 0.001 0.001 0.004 0.009 0.004
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Figure 4: Boxplots of the empirical population of
∣∣∣∣β̂b

j−βj
∣∣∣∣2
2
(left) and of

∣∣∣∣β̂b
j−β̂b

j

∣∣∣∣2
2

(right), for every reconstruction method considered and for every regression coeffi-
cient β0, β1 and β2. The finite sample means of the empirical populations estimate
the population MSE and variance of the coefficients estimators.

weight is a step function, taking value one up to the middle of the missing domain
and falling to zero right after that instant. In the computations, this condition is
obtained by setting a = 100. Other than a = ∞, two other limit conditions are
considered, which are the non-weighted case – i.e. the weights have constant value
1 – and the case denoted as 0-weights, where the weights are step functions falling
to a small positive value (set to 10−6 rather than to 0 for computational reasons) at
the censoring instant. Results are reported in Figure 5. As we may notice from the
figure on the right, the boxplots relative to all three coefficients estimators present a
minimum of the estimated MSE in correspondence of a = 10. The minimum variance
is observed at a = 5 for β0 and β2, and at a = 10 for β1. Both the unweighted case
and the case 0-weights, although not corresponding to an increase in the variance,
exhibit large bias, which manifests in a strong increase of the MSE. The predictive
effectiveness of the model corresponding to weights with a = 10 is confirmed by
a Leave-One-Out cross-validation (LOOCV) on a realization of n = 100 synthetic
data. Figure 6 displays the empirical distributions of the L2 norm of the functional
prediction error made by the models on the true curves, assessed via LOOCV. In-
deed, we notice that the minimum of the estimated MSE corresponds to a = 10.
These results jointly show that there is a trade-off between the two alternatives
of associating full reliability to the curve as a whole and of completely neglecting
the information of the missing trajectory. Specifically, the boxplots suggest that a
solution to the trade-off lies in the use of a well-calibrated system of weights that
conveniently modulates the importance associated to a functional datum along the
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Figure 5: Boxplots of the empirical population of
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(right), for every regression coefficient β0, β1 and β2 and for different values of the
hyperparameter a entering the weights definition. Larger values of a correspond to
greater rates of decay of the weights; a = ∞ corresponds to the limit case in which
the weights are forced to be zero right after the last observed instant.
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Figure 6: Boxplots of the empirical population of
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, for different values

of the hyperparameter a entering the weights definition, obtained via LOO cross-
validation.

observed and unobserved segments of the domain.

5 Case study

This section is devoted to the assessment of the efficacy of the weighted functional
methodology when it is employed in the fitting of the functional ground motion
model in equation (2). The performance of the weighted approach is compared
to that of the ordinary least squares adopted for the fitting of the ITA18 scalar
model (1) at 37 periods of observation of the acceleration spectrum. We refer to
Appendix C.1 for the analysis of correlation between the covariates, which reveals
the presence of collinearity between the predictor variables in (2) and, possibly, the
ineffectiveness of the estimation procedure in separating the individual effects of the
predictors on the response. Although collinearity could in principle be fixed resorting
to techniques of model reduction developed in the FDA context (e.g. Horváth
and Kokoszka (2012), Ramsay and Silverman (2005), Mehrotra and Maity (2022)),
the physical interpretability of the regressors motivates the choice of keeping the
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functional form (2) unchanged, as it allows to discuss on the results in seismological
terms and eases the comparison with ITA18 and similar state-of-the-art ground
motion models (e.g Bindi et al. (2014), Boore et al. (2014), Kotha et al. (2022)). Yet,
note that regularization is performed through the introduction of the penalization
term discussed in Section 3.2. A penalization in the fitting criterion hence not
only permits to obtain estimates of the functional coefficients from a finite number
of observations, but also controls the side effects of collinearity by reducing the
variability associated to the estimates. This prompts us to pay special attention,
along with the choice of the weights and the reconstruction method, to the selection
of penalty hyperparameters that enter the estimation process. Accordingly, the
calibration of the functional model occurs in three steps, that select (i) the penalty
parameters, (ii) the parameter a entering the definition of the weights, and (iii) the
method for the imputation of the partially observed curves.

5.1 Model calibration

The three steps of calibration of the functional ITA18 model exploit estimates of
the prediction mean squared errors obtained via a cross-validation procedure. As
model (2) works under the ergodic assumption (Anderson and Brune, 1999), we
adopt a partitioning strategy that forces data in the training and test to be related
to independent events, hence reducing the underestimation of the MSE.

Calibration of the penalization parameters The calibration of the penaliza-
tion parameters is conducted on the dataset restricted to the fully observed curves
and resorting to an unweighted analysis. This implies working under the reason-
able assumption that the features of regularity of the regression coefficients can be
inferred from the fully observed curves alone, which still account for 75% of the
data. Since there is no particular reason to believe that every functional coefficient
should be characterised by the same level of regularization, a distinct penalization
parameter is selected for each coefficient. The strategy adopted for the calibration
of λ1, . . . , λ9 then stems from the computational burden of performing a grid search
in a 9-dimensional space. We opt for a greedy approach that iteratively moves one
parameter in a range of values, while maintaining the others as fixed, and sets it
to the value corresponding to the minimum prediction error estimated through a
cross-validation. We refer to Appendix C.2 for a more detailed description of the
approach and the obtained results.

Choice of parameter a in weights definition Here, the different models are
compared by means of a global measure of inaccuracy in the prediction of the ob-
served values of the curves. Inaccuracy is quantified as the sum of the squared
distances from the true and the fitted discrete ordinates of a curve, namely

ϵ̂2i =
1

Ni

Ni∑
j=1

(yij − ŷi(tj))
2 , (25)
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Table 2: Empirical MSE and the associated variability for all possible values of a.

unweighted a = 5 a = 10 a = 15 a = 20 a = ∞ 0-weights

MSE 0.1194 0.1193 0.1192 0.1192 0.1191 0.1189 0.1193
σ 0.0227 0.0227 0.0227 0.0227 0.0227 0.0222 0.0226

Table 3: Empirical MSE and σ for extrapolation and KL-AL.

extrapolation KL-AL

MSE 0.1189 0.1190
σ 0.0220 0.0222

where Ni is the number of observed ordinates of the functional datum yi and is
included in (25) as a normalization factor. We evaluate the expectation of quantity
(25) as the sample mean resulting from a 10-fold cross-validation procedure. We seek
for the optimal parameter a within the range of values tested in the simulation study,
and contextually assess whether the weighted analysis performs better than the
unweighted analysis. The results displayed in Table 2 do not reveal any significant
difference in the predictive performances of the methodologies. Nonetheless, the
MSE exhibits a decreasing trend from the unweighted analysis (i.e. weights equal
1 everywhere) up to case a = ∞, and then increases in the case of 0 weights. This
motivates the choice of a = ∞ as the system of weights to be introduced in the
analysis.

Selection of the reconstruction method The last step of calibration consists
in the selection of the method adopted for the imputation of the missing trajectories
of the acceleration spectra. The optimal reconstruction method resulting from the
simulation study, which we refer to with the acronym KL-AL (see Section 4.2), is
tested against a naive reconstruction suggested by the profiles of RotD50 displayed
in Figure 2a. The idea is to linearly extrapolate each incomplete curve from its last
observed value up to T = 10 s, with a slope that captures the descending trend
exhibited by the complete records in the right end of the domain. The slope of the
extrapolating line is set equal to the mean over all complete records of the slopes of
the straight lines that interpolate the complete records at T̄ and at T = 10 s. Again,
the comparison is carried out by means of the expectation of quantity (25), which is
estimated as the sample mean resulting from a 10-fold cross-validation. The result
is reported in Table 3. We notice that the 10-fold cross-validation does not highlight
any significant difference in the predictive performances of the two methods. Since
the point minimum of the MSE is exhibited by the extrapolation method, we are
lead to adopt it to perform data reconstruction in the analyses that follow.
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5.2 Comparison with scalar ITA18

Figure 7 shows the estimates of the regression coefficients b1, b2, c1, c2, c3 and k, each
one associated to the functional boxplot of a bootstrap sample of dimension B =
1000, generated from its empirical distribution according to the procedure detailed
in Section 3.3. We see the scatter of the sample around the point functional estimate
as measure of its simultaneous variability over the domain. The smaller the scatter,
the lower is the uncertainty associated to the estimate. All functional coefficients
estimates generally follow the trends of the scalar estimates while displaying a more
regular behaviour. Coefficients b1 and b2, plotted in Figure 7a and 7b, capture
the linear dependence of ground motion on low magnitudes and high magnitudes
respectively. Both have a positive impact on spectral acceleration that grows in the
interval [0, 1 s] and then remains more or less constant until T = 10 s. Differently
from the scalar estimate, coefficient b1 takes high constant values at long periods.
Notice that the detachment between the estimates accentuates where the fraction of
missing values increases. Here the functional weighted approach impacts the results,
with respect to the scalar analysis that neglects the unobserved curves. Figure 7c
and 7d display the coefficients related to the geometric attenuation of ground motion
with distance, namely c1 and c2. At all periods, c2 captures the linear decay of
the spectral acceleration with dJB. Coefficient c1 complements c2 in capturing the
magnitude dependence of geometric spreading due to finiteness of large magnitude
ruptures. As expected, c1 takes positive values to simulate the more gradual decay
in near-source distances from large ruptures (Kotha et al., 2022). The functional
estimate for c1, however, moves away from the scalar estimate at long periods. We
notice that lower values of c1 at long periods are compensated by higher values
of b1, confirming the difficulty of the model to separate the single effects of the
predictors on the response. We point out that the scalar least squares performed
in Lanzano et al. (2019) do not operate any form of regularization to deal with
collinearity. In Figure 7e, c3 accounts for the exponential decay of ground motion
with distance, that is the anelastic attenuation. As we may see from the graph,
anelastic attenuation affects ground motion at short periods, and its effect vanishes
at longer periods. Positive values taken by c3 at the right end of the domain could
be an issue, as they would indicate an unphysical exponential increase with distance.
Note however that the uncertainty associated with the positive estimates of c3, as
evidenced by the functional boxplot in Figure 7c, suggests that these estimates may
not be significantly different from zero. A further account of the significance of the
coefficients will be the scope of future work (see also Section 3.3). Finally, coefficient
k in Figure 7f accounts for the negative scaling of ground motion with the shear-
wave velocity. A common issue with this coefficient lies in its instabilities at short
periods, where it may get very close to zero or even be positive, conversely to what
is observed at all other periods. In our case, the instability is not pronounced and
k remains significantly negative for all T . A brief comment on estimates f1 and f2
is left in the Appendix C.3.

Figure 8a shows a comparison of the point-wise mean squared errors, resulting from
a 10-fold cross-validation. The functional model operates a regularization in the
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Figure 7: Functional boxplots of the estimated functional regression coefficients
and comparison with the estimates of ITA18 (orange). The black continuous lines
represent the point estimates of the coefficients. The azure bands are the fences of
the functional boxplots. The dashed horizontal line marks zero. The vertical lines
mark the points which correspond to the last instants where 100% and > 90% of
the curves are observed.
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Figure 8: Comparison of the model performance between Scalar (orange) and Func-
tional (green) ITA18, in terms of: (a) Point-wise Mean Squared Error, (b) Point-wise
residual standard deviation σ̂.

estimation process, which also reflects on the shape of the MSE along periods. We
note that regularization of the MSE with respect to the scalar approach occurs at
the right end of the domain, where the scalar least squares are performed only on
the fully observed curves. However, prediction performances in the fully observed
domain appear similar, which is likely due to the functional shape of the weight
function (a = ∞).
Figure 8b reports the comparison between the estimated point-wise residuals stan-
dard deviations of the functional and of the scalar models. Since the number of
observed curves n = 5568 is large with respect to that of the sampling instants
N = 37 (Ramsay and Silverman (2005), Section 4.6.2), we estimate the point-wise
residual relying on the diagonal elements of

Σ̂ =
1

n− q − 1
ÊT Ê ,

where q is the number of covariates entering (2). While the two models share the
same trend of σ̂ at short and medium periods, scalar ITA18 exhibits lower values of
residuals standard deviation at long periods, precisely where the effect of the data
censoring becomes more relevant.

6 Discussion and conclusions

The present work proposes a novel approach to the analysis of partially observed
functional data, maintaining a thorough focus on the application context that moti-
vates the work. The proposed methodology extends the classical penalized smooth-
ing and penalized concurrent regression to the inclusion of weights, which enter the
analysis by reducing the impact that the reconstructed parts of partially observed
curves have on the final estimates. The soundness of the weighted analysis is tested
in a simulation study, which highlights the effectiveness of the method in (i) reducing
the variance and the mean-square error of the coefficients estimators with respect to
the unweighted analysis, (ii) improving the predictive performances of the analysis,
(iii) mitigating the impact of the adopted reconstruction methods on the resulting
estimates.
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The adoption of the weighted functional methodology for the analysis of GMMs
introduces multiple innovative features in the context of ground motion prediction
equations. By embedding the analysis in the context of partially observed functional
data and by reconstructing the missing ordinates of intensity measures, the method
circumvents a massive loss of information, while preserving the functional analysis
over the entire range of vibration periods of interest. The functional embedding
naturally takes account of the cross-correlation between the spectral ordinates and
provides continuous estimates over the considered range of periods. Besides, the
method is shown to operate an intrinsic smoothing and stabilization of the coeffi-
cients estimates and of the spectral predictions.
Future developments of the weighted method go in multiple directions. Suitable
definitions of weights may be driven by correlations between different time instants,
e.g. by exploiting the estimate of the covariance operator. The estimation of the
variability associated to the coefficients estimates, which is currently done including
the uncertainties related to the weighted smoothing and weighted regression, may
be refined to account also for the uncertainty that propagates from reconstruction.
A more rigorous analysis of simultaneous uncertainty, additionally, might stem from
one of the methods mentioned in Section 3.3 and allow one to draw statistically-based
conclusions on the significance of the functional coefficients estimates. Concerning
the applicability of the approach, one may consider to employ the methodology in
the more general context of fully observed curves that exhibit various degree of un-
certainty over the domain.
Further extensions of our ergodic functional ground motion model move towards the
construction of nonergodic and functional seismic-shaking maps. On the one hand,
period-continuous systematic corrective terms may be estimated with a functional
mixed-effect model that account for site- and event-related random effects. This
latter model, too, may be generalized to work with partially observed data and to
the inclusion of functional weights. On the other hand, the estimate for the me-
dian intensity measure provided in this work naturally combines with the functional
geostatistical model for the residuals proposed in Menafoglio et al. (2020), as they
jointly set up a convenient tool for the construction of ground motion maps in a
fully functional context.
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A Methods

A.1 Penalized Weighted Functional Least Squares

In the following, t as integration parameter is omitted for clarity of notation.
Let W (t) = diag(w(t)).

WFLS =

∫
(Cϕ−XΘb)⊺W (Cϕ−XΘb)

=

∫
(Cϕ)⊺W (Cϕ) +

∫
(XΘb)⊺W (XΘb)−

∫
(XΘb)⊺W (Cϕ)−

∫
(Cϕ)⊺W (XΘb)

=

∫
tr [(WCϕ)(Cϕ)⊺] +

∫
tr [(WXΘb)(XΘb)⊺]−

∫
tr [(WCϕ)(XΘb)⊺]−

∫
tr [(XΘb)(WCϕ)⊺]

=

∫
tr [WCϕϕ⊺C⊺] +

∫
tr [WXΘbb⊺Θ⊺X⊺]−

∫
tr [(XΘb)⊺(WCϕ)]−

∫
tr [(XΘb)(WCϕ)⊺]

=

∫
tr [C⊺WCϕϕ⊺] +

∫
tr [X⊺WXΘbb⊺Θ⊺]− 2

∫
tr [b⊺Θ⊺X⊺WCϕ]

=

∫
tr [C⊺WCϕϕ⊺] +

∫
tr [b⊺Θ⊺X⊺WXΘb]− 2

∫
tr [b⊺Θ⊺X⊺WCϕ] .
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The operations of integration and summation implied by the trace may be inter-
changed, so that the previous can be reformulated as

WFLS = tr

[∫
C⊺WCϕϕ⊺

]
+ tr

[∫
b⊺Θ⊺X⊺WXΘb

]
− 2tr

[
b⊺

∫
Θ⊺X⊺WCϕ

]
.

In order to minimize this quantity, we have to take its derivative with respect to b.
The first term does not depend on b and hence disappears. The derivative of the
third is equal to

−2

∫
Θ⊺X⊺WCϕ

and is easily obtained by recalling that the derivative of tr(B⊺A) with respect to B
is A. For the derivation of the term in the middle it suffices to recall the following
general rule for the derivation of the trace

∇Atr(ABA⊺C) = CAB + C⊺AB⊺

Then,

∇btr

[∫
b⊺Θ⊺X⊺WXΘb

]
=

∫
∇btr [bb

⊺Θ⊺X⊺WXΘ]

=

(∫
Θ⊺X⊺WXΘ

)
b+

(∫
Θ⊺X⊺WXΘ

)
b

= 2

(∫
Θ⊺X⊺WXΘ

)
b.

We operate similarly for the penalization term∫
[L (Θb)]⊺ Λ [L (Θb)] =

∫
tr [ΛL(Θb)L(Θb)]⊺ =

∫
tr [ΛL(Θ)bb⊺ [L(Θ)]⊺]

=

∫
tr [bb⊺ [L(Θ)]⊺ ΛL(Θ)] = tr

[
bb⊺

∫
[L(Θ)]⊺ ΛL(Θ)

]
= tr [bb⊺R] ,

where we define R as the Lβ × Lβ-dimensional matrix

R =


R1 0 . . . 0
0 R2 . . . 0
...

. . .

0 0 . . . Rq

 ,

and [Rj ]mn = λj⟨
(
θjm

)′′
,
(
θjn
)′′

⟩L2(T ).

Taking advantage again of the properties of the derivative of the trace we get

∇b (bb
⊺R) = 2Rb.
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Summing up, we find that b satisfies

2

(∫
Θ⊺X⊺WXΘ

)
b+ 2Rb− 2

∫
Θ⊺X⊺WCϕ = 0,

which simplifies into[(∫
Θ⊺X⊺WXΘ

)
+R

]
b =

∫
Θ⊺X⊺WCϕ.

A.2 Y-to-β̂ Map

This subsection is devoted to the construction of a map that acts as linkage between
the raw observations Y and the estimate β̂. To this aim, it is useful to view the
overall mapping as the composition of: (i) the smoothing map that associates the
observations to the smooth functions, (ii) the regression map that connects the
smooth functions to the vector of coefficients b, (iii) the basis expansion map that
couples the estimated coefficients with the basis functions for the β’s.

The construction of the smoothing map is already given by (12).
The regression map connecting vec(C) into b is found by exploiting the properties
of the vec() operator and of Kronecker product for manipulating the term Cϕ(s) in
equation (19). It is easy to show that the latter may be written in the form

b = [J +R]−1

(∫
Θ(s)TX(s)TW (s)

[
ϕ(s)T ⊗ In

]
ds

)
vec(C).

Now it is straightforward to identify the mapping as the (Lβ × Ln)-dimensional
matrix

Sβ := [J +R]−1

(∫
Θ(s)TX(s)TW (s)

[
ϕ(s)T ⊗ In

]
ds

)
.

The basis expansion map carries out the linear combination of the basis functions
that uniquely define the vector of functions β̂ from the estimated coefficients. For
every t ∈ T , the map is directly derived from (17) and coincides with matrix Θ(t):

SΘ(t) := Θ(t).

Finally, the complete mapping of Y into the vector of functions β̂ for every t ∈ T is
given by the composition of all three mappings identified above and may be expressed
in matricial form as

Mapt := SΘ(t)SβSΦ,

so that we obtain the relation

β̂(t) = SΘ(t)SβSΦvec(Y).
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B Simulation study

B.1 Variation of the fraction of partially observed data

With this set of simulations the intention is to show how the increase of missing
information in the data impacts the results of the analysis, and how a weighted ap-
proach manages to stabilize the regression coefficients estimators. To this aim, the
fraction of partially observed data p entering the data simulation process is varied
within the set {0.1, 0.2, 0.4, 0.7}. The weighted and the non-weighted approaches are
employed in Monte Carlo simulations, and the empirical distribution properties of
the corresponding estimators β̂0, β̂1, β̂2 are examined. Results are shown in Figure
9. As expected, the estimation error made on each regression coefficient grows with
the number of curves that are not fully observed, both in the weighted and in the
non-weighted analysis. This is in accordance with the fact that the convergence of
the reconstruction methods follows the convergence of the estimators of the mean
and of the covariance operator for partially observed functional data (Kraus (2015),
Kneip and Liebl (2020)). These are obtained point-wise by using for each t only
the available curves at t (Kraus, 2015) or near t (Kneip and Liebl (2020), Yao et al.
(2005)), and for each pair (t, s) only the complete pairs of curve values at s and t
or in their neighbourhoods. If the number of valid observations on which the point
estimators are built reduces, then the resulting estimates become increasingly bi-
ased towards the data on which they are calculated, and their distribution presents
higher variability around the mean. Consequently, the uncertainty around the re-
constructed trajectories increases and propagates into the empirical distribution of
the point estimates of the regression coefficients. Figure 9 reveals how the weights
help to stabilize the estimates by reducing their variance and their MSE. This result
is endorsed by Figure 10, where the boxplots are built from the empirical distribu-

tions of the squared norms
∣∣∣∣β̂b

j − β̂b
j

∣∣∣∣2
L2([0,1.75])

and
∣∣∣∣β̂b

j − β̂b
j

∣∣∣∣2
L2([1.75,3.5])

, evaluated

separately on the two halves of the domain. Doing so, we are able to discern the
stabilizing effect of the weights specifically to the segment [1.75s, 3.5s], i.e. where a
fraction p of the curves is right-censored and undergoes reconstruction. We observe
in fact that the majority of the contribution to the estimators variability comes
from the right half of the domain, which is also where the weights regulating effect
is restricted to.

C Case study

C.1 Collinearity analysis in the covariates

The presence of collinearity between observed functional covariates xi1 and xi2 can be
inspected resorting to the finite sample counterpart of the cross-covariance function
of the random predictors

Cov (x(tl),y(sm)) =
1

n− 1

n∑
i=1

[xi(tl)− x̄(tl)] [yi(sm)− ȳ(sm)] ,
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or equivalently of the cross-correlation function

Corr (x(tl),y(sm)) =
1

n− 1

n∑
i=1

[xi(tl)− x̄(tl)] [yi(sm)− ȳ(sm)]

σ̂xσ̂y
.

The contour plots in Figure 11 display the contour lines of the cross-correlation
functions for some notable pairs of covariates entering (2). The domain of defini-
tion of the functions is plotted along the horizontal and the vertical axes, which
are labelled with the name of the considered functional covariates. A deep inves-
tigation of the patterns of variation in the cross-correlation functions falls outside
the scope of this paper. Rather, we solely acknowledge that each one of the consid-
ered pairs show positive correlation over the bivariate domain. The top-left panel
in the figure reveals the presence of almost perfect positive correlation between the
magnitude-independent geometric attenuation and the anelastic attenuation across
all periods. This is not surprising, as both terms depend exclusively on the correc-
tion R of the Joyner-Boore distance (see Section 2). High positive cross-correlations
persist also between the covariates accounting for low and high magnitudes and the
magnitude-dependent geometric attenuation (bottom-left and bottom-right, respec-
tively). Lastly, the top-right contour plot shows that the terms accounting for low
and high magnitudes have levels of cross-correlation that approximately stay within
values 0.4-0.7 across all periods. This is a direct consequence of the definition of
the source term in (1) as a monotone increasing step-wise linear function, which
alternately sets to zero the high (low) magnitude term depending on whether the
moment magnitude is below (above) the hinge magnitude.

C.2 Calibration of the penalization parameters

The measure of prediction inaccuracy used for comparison is the L2 norm of the
prediction errors

ê2i =
∣∣∣∣ysi − ŷi

∣∣∣∣2
2
, (26)

where ŷi is the i-th predicted curve and ysi the smoothed curve obtained via un-
weighted penalized least squares. It is convenient to evaluate the error committed
on the smoothed curves because the comparison is made between different regres-
sion criteria and does not evaluate the overall analysis. The average of (26) is esti-
mated via a 5-fold cross-validation, for the combinations of the penalty parameters
λ1, . . . , λ9 tested with the greedy procedure detailed below.

The penalization parameters are initialized to value λ̄ = 10−2, which guarantees
us a certain level of regularity. We take first intercept a, and let λ1 vary in the
set {−6,−5, . . . , 1}, while maintaining the others fixed to λ̄. 1 is set equal to the
value corresponding to the lowest MSE resulting from a 5-fold CV. Then, we iterate
the procedure for all the other coefficients. Eventually we obtain a list (λ1, . . . , λ9)
which corresponds to the minimum of this greedy search. The second line of Table
4 collects the values that result from this procedure. Since coefficients a and c2 are
associated to anomalous levels of roughness, and since the estimate of c1 resulting
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(c) Correlation across periods for
 Low Magnitudes and Geometric Attenuation
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(d) Correlation across periods for
 High Magnitudes and Geometric Attenuation
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Figure 11: Contour plots of the cross-correlation functions over period for pairs of
functional covariates: (a) magnitude-independent geometric attenuation and anelas-
tic attenuation, (b) low magnitudes and high magnitudes, (c) low magnitudes and
magnitude-dependent geometric attenuation, (d) high magnitudes and magnitude-
dependent geometric attenuation.
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Table 4: Optimal penalization coefficients entering the PWFLS criterion for regres-
sion.

a b1 b2 f1 f2 c1 c2 c3 k

10−6 0.1 0.001 0.01 0.01 0.01 10−6 10 0.01

0.001 0.1 0.001 0.01 0.01 0.1 0.01 10 0.01
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Figure 12: Functional boxplots of the estimated functional regression coefficients f1
and f2, and comparison with the estimates of ITA18 (orange). The black continuous
lines represent the point estimates of the coefficients. The azure bands are the fences
of the functional boxplots. The dashed line marks zero. The vertical lines mark the
points which correspond to the last instants where 100% and > 90% of the curves
are observed.

from this choice of parameters exhibits unphysical noise at long periods, the penalty
parameters that correspond to these coefficients are forced to take higher values. It
is worth pointing out that such modelling choice implies an increase in MSE of the
order of one thousandth standard deviation. The third line of Table 4 collects the
values of penalization parameters used in all subsequent analyses.

C.3 Comparison of the coefficients estimates

We do not comment on coefficients f1 and f2 for two main reasons. Firstly, the fault-
ing mechanism is known to have little impact on the standard deviation of a GMPE
(Bommer et al. (2003), Lanzano et al. (2019)), and to be included in the functional
form for purposes of seismic hazard assessment, rather than to get a better perfor-
mance of the regression model. Secondly, coefficient f2 is known to be dependent on
the region where the event occurs (Lanzano et al., 2021). Consequently, the ergodic
model expressed in (1) is not expected to capture the effects of the thrust-faulting,
to which f2 is associated. For the sake of completeness, the functional estimates for
f1 and f2 are displayed in Figure 12.
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