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Abstract

We propose a nonparametric method for density estimation over
(possibly complicated) spatial domains. The method combines a like-
lihood approach with a regularization based on a differential opera-
tor. We demonstrate the good inferential properties of the method.
Moreover, we develop an estimation procedure based on advanced nu-
merical techniques, and in particular making use of finite elements.
This ensures high computational efficiency and enables great flexibil-
ity. The proposed method efficiently deals with data scattered over re-
gions having complicated shapes, featuring complex boundaries, sharp
concavities or holes. Moreover, it captures very well complicated sig-
nals having multiple modes with different directions and intensities of
anisotropy. We show the comparative advantages of the proposed ap-
proach over state of the art methods, in simulation studies and in an
application to the study of criminality in the city of Portland, Oregon.
Keywords: differential regularization; finite elements; heat diffusion
density estimator; functional data analysis.
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Figure 1: The figure displays the municipality of Portland, with the locations
of motor vehicle thefts. The city is divided in two parts by the Willamette
river. The phenomenon under study appears influenced by the complicated
shape of the municipality. For instance, in the northern area of the city, a
much higher criminality is observed on the East side of the river with respect
to the West side. This is also the case for the southern part of the city and
for Hayden Island, in the northern part towards Washington State, where
the number of occurrences is much higher than in the inland nearby part of
the municipality.

1 Introduction

Density estimation represents a core tool in statistic. It is essential for
the visualization of data structures in exploratory data analysis and often
represents the starting point for regression and classification problems.

In this work in particular we consider density estimation over planar do-
mains with non-trivial geometries, including those with complicated bound-
aries, sharp concavities or interior holes. Figure 1 illustrates the kind of
problem we are considering. The points correspond to reported crime lo-
cations in the municipality of Portland, Oregon. The data come from the
Portland Police Bureau, and they comprise a collection of different crime cat-
egories in different years. The interest here is to estimate the distribution of
reported crimes, in order to identify critical areas in the city. In this case, the
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complicated geographical conformation of the domain, characterized by the
presence of the river, is crucial in the study of the phenomenon. For instance,
in the northern area of the city, many more crimes are reported in the East
side of the river with respect to the West side. Standard density estimators,
such as kernel density estimators (KDE) (Wand and Jones, 1994), local es-
timators (Hjort and Jones, 1996) or spline density estimators (Gu and Qiu,
1993; Gu, 1993), do not readily generalize to this case. These methods in fact
rely on Euclidean distances, thus leading to inaccurate estimates when the
phenomenon under study is influenced by the shape of the spatial domain.
The same holds for the other recent proposals to density estimation, such
as shape-constrained methods, that assume that the log-density is concave,
and therefore unimodal (Carando et al., 2009; Cule et al., 2010; Samworth,
2018). Viceversa, the counting processes in Bejanov (2011), as well as the
log-Gaussian Cox Processes proposed in Simpson et al. (2016) and the anal-
ogous point process models described in Yuan et al. (2017) can handle point
data over domains with irregular shapes.

More generally, outside of the density estimation framework, the mod-
elling of data distributed over complex planar domains has recently at-
tracted an increasing interest; for instance Ramsay (2002), Lai and Schu-
maker (2007), Wang and Ranalli (2007), Wood et al. (2008b), Sangalli et al.
(2013) and Scott-Hayward et al. (2014) develop smoothing and spatial re-
gression methods for data scattered over domains with complicated geome-
tries; Zhang et al. (2007) and Menafoglio et al. (2018) consider kriging in
this context, while Lindgren et al. (2011) proposes Gaussian fields based on
a stochastic Partial Differential Equation (sPDE) approach, and Niu et al.
(2019) uses intrinsic processes. Different solutions have been put forwards by
various authors to handle boundaries and boundary conditions. For instance,
Zhang et al. (2007) considers some physical constraints at the boundaries of
the domain in a kriging approach, Wood et al. (2008a) handles boundary fea-
tures with soap film smoothing, Sangalli et al. (2013) and Azzimonti et al.
(2014, 2015) deal with general forms of boundary conditions in regression
with differential regularization, while Bakka et al. (2019) shows how physical
barriers can be included in sPDE models.

In this paper we develop a flexible density estimation method for data ob-
served over complicated two-dimensional domains. The method is based on a
nonparametric likelihood approach, with a regularizing term involving a par-
tial differential operator. We study the theoretical properties of the proposed
estimator and prove its consistency. From a theoretical perspective, an anal-
ogous regularized nonparametric likelihood approach has been considered in
the context of simple multidimensional domains by Gu and Qiu (1993) and
Gu (1993), and formerly, in the univariate case, by Good and Gaskins (1980)
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and Silverman (1982). On the other hand, the generalization of the latter
estimators to complicated domains is not obvious. In fact, the classical spline
basis used to implement these methods (Gu, 1993, 2014) naturally work over
rectangular domains. Here we propose an innovative method to tackle the
estimation problem. This method leverages on advanced numerical analysis
techniques, making use of finite elements. The finite element method (see,
e.g., Ciarlet, 2002) is often used in engineering applications to solve partial
differential equations. An important advantage of the use of finite elements
is the possibility to consider spatial domains with complex shapes, instead
of simple tensorized domains. Moreover, the proposed approach for density
estimation does not impose any shape constraints, and its unstructured basis
allows for the estimation of fairly complex structures. In particular, thanks
to the finite element formulation, the method is able to capture highly local-
ized features, and lower dimensional structures such as ridges. This ability
makes the method particularly well suited in research areas such as density
based clustering (Chacón, 2015) and ridge estimation (Genovese et al., 2014;
Chen et al., 2015). As a byproduct, we also describe an innovative heat dif-
fusion estimator, inspired by the works of Chaudhuri and Marron (1999) and
Botev et al. (2010), that is able to handle data distributed over complicated
domains.

The article is organized as follows. Section 2 introduces the proposed
nonparametric likelihood density estimator with differential regularization.
In Section 3 we study its theoretical properties and prove the consistency of
the estimator. In Section 4 we describe the estimation procedure. Section
5 reports simulation studies that show the performances of the proposed
method with respect to state of the art techniques. Section 6 gives the
application to the Portland crime data. Section 7 discusses possible directions
for future research.

2 Density estimation with differential regu-

larization

We consider the problem of estimating a density function f on a spatial
domain Ω ⊂ R2. Let x1, . . . ,xn be n independent realizations from f. We
use the logarithm transform g = log f , and propose to estimate f by finding
the function g that minimizes the negative penalized log likelihood

L(g) = − 1

n

n∑
i=1

g(xi) +

∫
Ω

exp(g) + λ

∫
Ω

(
∆g
)2

(1)
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where λ > 0. The first term in (1) is the negative log-likelihood. The second
term is necessary to ensure that the estimate integrates to one, as detailed in
Appendix A.The third term is a regularization, necessary to avoid unbounded
likelihoods. In fact, unlike classical parametric density estimation, where the
parameter space is finite dimensional and the form of f is assumed known,
here we deal with an infinite class of densities. In particular, the regularizing
term we use involves the Laplacian, a differential operator defined as

∆g =
∂2g

∂x2
1

+
∂2g

∂x2
2

where x = (x1, x2). The Laplacian provides a measure of the local curva-
ture of g, invariant with respect to rigid transformations of the coordinate
system. This regularization thus controls the roughness of the estimate. In
particular, when the smoothing parameter λ increases, the solution flattens
out, presenting less bumps.

Instead of the simple Laplacian, the regularizing term could as well in-
volve more complex partial differential operators, or the misfit of a par-
tial differential equation (PDE). This is particularly interesting when some
problem-specific information about the phenomenon is available, that can
be formalized in terms of a PDE, Lg = u, modeling to some extent the
phenomenon under study. In such case, it makes sense to replace the reg-

ularization in (1) by
∫

Ω

(
Lg − u

)2
, thus including the problem-specific in-

formation in the estimation functional. This is explored in the context of
spatial and spatio-temporal regression methods in Azzimonti et al. (2014),
Azzimonti et al. (2015) and Arnone et al. (2019), who consider general linear
second order differential operators L, including second-order, first-order and
zero-order differential operators with space varying coefficients, as well as
space-varying forcing terms u, thus enabling an extremely rich modelling of
anisotropy and non-stationarity. For sake of simplicity of exposition, in this
work we focus on the isotropic and stationary case in equation (1), involving
the penalization of the Laplace operator.

2.1 Equivalence to Poisson process intensity estima-
tion

In this section we discuss the relationship of the proposed estimator with
the problem of estimating a Poisson intensity. The estimation of spatial point
processes, especially of inhomogeneous processes, is emerging as fundamental
in many applications. Some likelihood approaches for inhomogeneous pro-
cesses have been proposed by Waagepetersen and Guan (2009) and Guan
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and Shen (2010). In these models, weighted estimating equations incor-
porate information on both inhomogeneity and dependence of the process.
More recent approaches are studied in Diggle et al. (2013), that focuses on
log-Gaussian Cox process estimated via MCMC, in Coeurjolly and Møller
(2014), that considers a variational procedure, in Flaxman et al. (2017), that
proposes a nonparametric approach based on Reproducing Kernel Hilbert
Spaces, and in Fuentes-Santos et al. (2016) that proposes a bootstrap band-
width selection method for the consistent kernel intensity estimator of a spa-
tial point processes. All these models, although able to comply with bounded
domains, do not consider the influence of the domain on the intensity of the
process. They are therefore not appropriate when the data are distributed
over complicated spatial domains, with holes or strong concavities. The re-
cent proposals in Bejanov (2011), Simpson et al. (2016) and Yuan et al. (2017)
can instead handle data over domains with irregular shapes. In particular,
Simpson et al. (2016) extends the sPDE approach introduced by Lindgren
et al. (2011) to model point data, using log-Gaussian Cox Processes. More-
over, Yuan et al. (2017) generalizes this technique to space-time point data.
These methods use integrated nested Laplace approximations (see, e.g., Rue
et al., 2009) with Gaussian processes priors for fast Bayesian inference.

We now briefly sketch how intensity estimation can be performed within
the framework proposed in this article. Let us consider n i.i.d. observa-
tions x1, . . . ,xn from a Poisson counting process on Ω with inhomogeneous
intensity function γ. The likelihood of the process is

n∏
i=1

γ(xi) exp

(∫
Ω

(1− γ(u)) du

)
.

If we set g(x) = log(γ(x)) and we omit the constant term
∫

Ω
1 du = |Ω|, we

obtain the negative log-likelihood

−
n∑
i=1

g(xi) + n

∫
Ω

exp(g(u)) du.

Finally, likewise in the case of density estimation, we can add a regularization,
and consider the functional

−
n∑
i=1

g(xi) + n

∫
Ω

exp(g(u)) du + λ̃

∫
Ω

(
∆g
)2

(2)

with a positive smoothing parameter λ̃. The minimization of the functional
(2) is equivalent to the minimization of (1), setting λ̃ = nλ. We can thus
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tackle the minimization of (2) along the same lines detailed below for the
density estimation problem considered in Section 2. Thus, our proposal also
defines an innovative method for the study of inhomogeneous Poisson pro-
cesses, that is able to accurately handle data observed over complex spatial
domains.

3 Theoretical properties

In this section we formalize the minimization problem introduced in the
previous sections, and we demonstrate that this estimation problem is well
posed, proving the existence of a unique minimizer, in an appropriate func-
tional space. We then demonstrate the consistency of the estimator.

3.1 Well posedness of the estimation problem

Let L2(Ω) denote the space of square integrable functions over Ω. The
Sobolev space Hk(Ω) is defined as

Hk(Ω) =
{
g ∈ L2(Ω) : Dαg ∈ L2(Ω) ∀|α| ≤ k

}
and is equipped with the standard norm ‖g‖2

Hk(Ω)
=
∑
|α|≤k ‖Dαg‖2

L2(Ω) where

Dαg denotes the weak derivative of order α (see, e.g., Adams, 1975; Agmon,
2010; Brezis, 2010, for a detailed treatment of Sobolev spaces). Denote by ν
the normal unitary vector to the boundary of the domain ∂Ω, i.e., at each
point x ∈ ∂Ω, ν is the vector with unitary norm that is orthogonal to the
tangent to the curve ∂Ω at x. Define the space

V =

{
g ∈ H2(Ω) :

∂g

∂ν
= 0 on ∂Ω

}
where ∂g

∂ν
= ∇g · ν is the derivative of the function g in the normal direction.

The so-called homogeneous Neumann boundary conditions, ∂g
∂ν

= 0 on ∂Ω,
that impose a null normal derivative at the boundary of the domain, are nat-
urally associated with the Laplace operator. In the space V , when λ→ +∞,
the estimated density is the uniform distribution over Ω. This corresponds
to the null family of the Laplace operator, i.e., the solution of the problem
∆g = 0 for g ∈ V . In the formulation of the problem of Poisson intensity
estimation, outlined in Section 2.1, when λ → ∞, the obtained estimates
tend to an homogeneous Poisson intensity on Ω.

The following Theorem states that the minimization problem is well posed
in the space V .
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Theorem 3.1. The functional L(g) defined in equation (1) has a unique
minimizer in V .

Proof. The proof is deferred to Appendix B.

The same result of course holds for the functional in equation (2), setting
λ̃ = nλ. In the following, we focus on the density setting.

3.2 Consistency of the estimator

Denote by DsKL(g1, g2) the symmetrized Kullback–Leibler distance be-
tween g1 and g2, i.e., µg1(g1 − g2) + µg2(g2 − g1), where µg(h) =

∫
heg is the

mean of h(X) when X has log-density g. The symmetrized Kullback–Leibler
is a distance specific for density functions; it measures the loss of information
between two probability distributions.

Let g0 be the true log-density function. Moreover, let L∗(g) be a quadratic
form such that the Taylor expansions of L and L∗ in g0 coincide up to the
second order. Denote with Varg(h) the variance of h(X) when X has log-
density g. Following the same approach as in Silverman (1982) and Gu and
Qiu (1993), we introduce g∗, an approximation of ĝ, which is the minimizer
of

L∗(g) = − 1

n

n∑
i=1

g(xi) + 1 + µg0(g) +
1

2
Varg0(g − g0) + λ

∫
Ω

(
∆g
)2
.

The functional L∗, and hence its minimizer g∗, are introduced in order to
split the distance between ĝ and g0 in two parts, namely DsKL(ĝ, g∗) and
DsKL(g∗, g0), whose asymptotic behaviors are easier to investigate. We make
the following assumptions on g0 and g∗.

Assumption 1. The true log-density g0 is bounded above and below, and
is such that

∫
Ω

(∆g0)2 <∞.

Assumption 2. For g in a convex set B0 around g0 containing ĝ and g∗,
there exists a positive constant c such that cVarg0 ≤ Varg uniformly with
respect to g.

Assumption 1 is a standard requirement for the consistency of density
estimators (see, e.g., Silverman, 1982). It guarantees that the weighted L2(Ω)
norm with the density function f0 = exp (g0) is equivalent to the standard
L2(Ω) norm, i.e., there exist two constants c1 and c2 such that c1 ‖h‖2

L2(Ω) ≤∫
Ω
h2f0 ≤ c2 ‖h‖2

L2(Ω) for each h ∈ V . Assumption 2 is also standard (see,
e.g., Gu and Qiu, 1993). This assumption is satisfied whenever the members
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of B0 are bounded from above and below. The assumption requires that the
same property described by Assumption 1 is satisfied by functions near g0,
and in particular by ĝ and g∗.

The following theorem states the consistency of the proposed density
estimator and gives the rate of convergence.

Theorem 3.2. Under Assumptions 1 and 2, as λ → 0 and nλ1/2 → ∞ the
estimator ĝ that minimizes (1) is consistent and

DsKL(ĝ, g0) = O(n−1λ−1/2 + λ). (3)

Proof. The proof is deferred to Appendix C.

Remark. Theorem 3.2 states the consistency of the estimator in the sym-
metrized Kullback–Leibler distance. This distance, however, controls other
commonly used distances for density functions, such has the total variation
and the Hellinger distances (see, e.g., Pollard, 2002). Therefore, the proposed
estimator is also consistent in the total variation and Hellinger distances.

4 Estimation procedure

The minimization of the functional (1) is an infinite dimensional problem
and its solution is not analytically available. Here we consider a discretization
of such infinite dimensional problem based on finite elements (see, e.g., the
textbook Ciarlet, 2002, for an introduction to finite elements). In particular,
we consider a linear approximation of the function g and correspondingly
of the functional (1). This leads to a tractable estimation procedure. The
proposed technique permits to efficiently handle data scattered over domains
with complicated shapes. Moreover, the unstructured nature of the finite
element basis enables the accurate estimation of complicated densities, with
multiple modes having different intensities and direction of anisotropy.

The implementation of the method is based on the R package fdaPDE

(Lila et al., 2019).

4.1 Finite elements

First, we consider a discretization of the domain Ω using a constrained
Delaunay triangulation; this is a generalization of the Delaunay triangulation
(see for example Hjelle and Dæhlen, 2006) that enables the definition of the
boundary of the domain, forcing the required segments into the triangulation.
The resulting domain is denoted by ΩT , where T is the set of all the triangles.
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Figure 2: Mesh used for the study of motor vehicle theft in the city of Port-
land. The mesh represent very well the complex morphology of the domain,
cut through by the Willemette river. The mesh is obtained as a constrained
Delaunay triangulation using the functions in the R package fdaPDE (Lila
et al., 2019).

In the simulation studies and application presented in the following sections,
the triangulation is constructed starting from the boundary; the triangulation
is then refined according to criteria concerning maximal allowed triangle area
and minimal allowed triangle angle. The R package fdaPDE (Lila et al., 2019)
provides the functions to construct the mesh and refine it.

Figure 2 shows the mesh that we use for the estimation of the distribution
of motor vehicle theft reports in Portland. The mesh is able to represent
very well this complicated domain, accurately rendering the Willamette river,
that cuts through the city, and other detailed features of the domain. In
general, the mesh should be fine enough to capture the features in the signal.
Typically, a regular mesh having a number of nodes higher than the number of
data, but of the same order of magnitude, works efficiently. Triangles having
too acute angles should be avoided, as they may be associated with numerical
instability. In particular, we suggest setting a minimum angle of 30 degrees in
the refinement function. For data displaying highly localized modes, it may
be convenient to consider data-driven meshes, that are constructed using
the procedure detailed in Appendix F.4,and then refined, always according
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Figure 3: A linear finite element basis function on a triangulation.

to criteria of minimal allowed triangle angle and maximal allowed triangle
area. Such data-driven meshes permit to capture strongly localized features
of the density, while being parsimonious (i.e., using a limited number of mesh
nodes) and thus requiring a lower computational cost. An example in this
sense is shown in Figure 11 in Section 6.2.

We now define the piecewise polynomial functions over ΩT . For simplicity
of exposition we present the linear case, but higher order polynomials can be
used as well. To this aim, we define a system of bases. Let us denote by ξk,
k = 1, . . . , K, the nodes of the mesh. In the case of linear finite elements,
these nodes coincide with the vertices of the triangles. For each node ξk,
we hence consider the finite element basis ψk, defined as the piecewise linear
function that has value 1 at node ξk and value 0 at any other node ξ`, with
` 6= k. As highlighted in Figure 3, ψk has a tent-like shape: the tip of the
tent is above the node ξk, where ψk reaches value 1; the basis ψk takes non-
zero values only over the patch of triangles sharing the vertex ξk, and this
patch of triangles constitutes the base of its tent-like shape; the tent drops
linearly from the value 1 at ξk to the value 0 at the other nodes of the path of
triangles sharing the vertex ξk, and hence remains 0 over all other triangles of
the mesh. The finite element bases hence have a strongly localized support.

Any function g, that is globally continuous on ΩT and is linear when
restricted to any triangle of T , can be obtained as an expansion of the K
bases ψ1, . . . , ψK , i.e., g(·) = gTψ(·), where g = (g1, . . . , gK)> is the K-
vector of coefficients of the basis expansion, and and ψ := (ψ1, . . . , ψK)>

is the vector that packages the K finite element basis. Moreover, it turns
out that the vector g of coefficients of the basis expansion coincides with the
vector of evaluations of the function at the K nodes of the mesh, i.e., g =
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(g(ξ1), . . . , g(ξK))>. In fact, since ψk(ξj) = δjk, where δjk is the Kronecker
delta (δjk = 1 if j = k and δjk = 1 otherwise), we have that

g(ξj) =
K∑
k=1

gkψk(ξj) =
K∑
k=1

gkδjk = gj.

The finite element space of functions is thus constructed so that any function
in such space is completely defined by the values its assumes at the K nodes.

4.2 Discretization of the infinite dimensional estima-
tion problem

We now discretize the infinite dimensional estimation problem, associated
with the minimization of functional (1), using the finite elements introduced
in Section 4.1.

Let Ψ be the n × K matrix having as entries the evaluations of the K
finite element basis functions ψ1, . . . , ψK at the n data points (x1, . . . ,xn),
i.e.,

Ψ :=

ψ1(x1) . . . ψK(x1)
...

. . .
...

ψ1(xn) . . . ψK(xn)

 .
Moreover, let 1 denote the K-vector with entries all equal to 1. With this
notation, using the piecewise linear function g = g>ψ, we can discretize by
−1>Ψg the negative penalized log-likelihood that constitutes the first term
in (1).

To discretize the second term in (1), i.e.,
∫

Ω
exp(g), we need an appropri-

ate quadrature rule. Here, in particular, we use a standard Gaussian quadra-
ture rule, with q = 9 quadrature nodes and associated vector of quadrature
weights w ∈ Rq (see, e.g., Quarteroni et al., 2010). For each triangle τ ∈ T ,
denote by Ψτ the q × K matrix having as entries the evaluations of the K
basis functions ψ1, . . . , ψK at the q quadrature nodes in the triangle τ . The
second term in (1) can hence be discretized as

∑
τ∈T w> exp(Ψτg).

Finally, to approximate the third term in (1), i.e., the roughness penalty,
we need to introduce the vectors ψx1 := (∂ψ1/∂x1, . . . , ∂ψK/∂x1)> and
ψx2 := (∂ψ1/∂x2, . . . , ∂ψK/∂x2)>, and K ×K mass and stiffness matrices

R0 :=

∫
ΩT

(ψψ>) and R1 :=

∫
ΩT

(ψx1ψ
>
x1

+ψx2ψ
>
x2

).

Following Ramsay (2002) and Sangalli et al. (2013), the regularization can
hence be discretized by λg>R1R

−1
0 R1g. Such approximation only involves

the first derivatives of the function g = g>ψ.
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Summarizing, the negative penalized log-likelihood functional (1) can be
discretized as

LT (g) = −1>Ψg +
∑
τ∈T

w> exp(Ψτg) + λg>R1R
−1
0 R1g. (4)

The minimization of (4) can be performed using classical steepest descent
approaches, such as the gradient descent and the Quasi Newton algorithms
briefly reviewed in Appendix D.Both algorithms are proved to converge when
the functional to be minimized is strictly convex (Lange, 2013). Since (4)
is strictly convex, both algorithms are guaranteed to converge. However,
the number of iterations needed to converge depends on the goodness of the
initial guess g0. A standard choice for such initial guess can be g0 = 0, that
corresponds to a uniform distribution over Ω. In next section we propose a
better initial guess g0, which cuts down the computational cost, significantly
reducing the number of necessary iterations.

4.3 Initialization of the optimization algorithm

We initialize the vector of parameters by means of a heat diffusion esti-
mator, inspired by the work of Chaudhuri and Marron (1999). In particular,
Chaudhuri and Marron (1999) proposes an approach to curve estimation
based on a heat diffusion process, exploiting the close relationship between
heat diffusion processes and Gaussian kernels. The approach is motivated by
the “scale-space” models from computer visions and the idea is to explore
the whole space of solutions for increasing levels of smoothness. Botev et al.
(2010) uses the same idea to define a density estimator and studies the prop-
erties of the method. This approach to density estimation, based on the heat
diffusion process, gives elegant solutions in the case of univariate domains or
multivariate domains with simple shapes. On the other hand, the method
discussed in Botev et al. (2010) cannot account for domains with complex
shapes.

To overcome this problem, differently from Chaudhuri and Marron (1999)
and Botev et al. (2010), we consider a discretization of the heat diffusion
process, that enables us to deal with domains with complex shapes. We
stress the fact that we use such method only to compute an initial guess for
the optimization algorithm.

Let δ(·) denote the Dirac measure. Given n realizations x1, . . . ,xn, con-
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sider the heat equation

∂

∂t
f̃(x; t) =

1

2
∆f̃(x; t) x ∈ Ω, t > 0

∂f̃

∂ν
(x) = 0 x ∈ ∂Ω

f̃(x; 0) =
1

N

N∑
i=1

δ(x− xi)

(5)

The initial condition of the equation, f̃(x; 0), is the empirical density of
the data. The use of homogeneous Neumann boundary conditions (second
equation of the system) ensures that, for every t ≥ 0, the solution f̃ integrates
to one over the domain Ω, thus being a proper density. While the initial
condition, the empirical density, constitutes an extremely rough solution, as t
increases, the solution f̃(x; t) becomes progressively more smooth, converging
to a uniform density over Ω when t→∞. The main idea is that, for a certain
time t, f̃(x; t) provides a good initial guess for the true density f , that we
can use in the gradient descent or Quasi Newton algorithm.

Differently from Chaudhuri and Marron (1999) and Botev et al. (2010),
we solve the heat-diffusion problem (5) numerically, using a forward Euler
integration scheme (see for example Butcher, 2016). Moreover, we consider
an appropriate finite element formulation. Specifically, let us first of all con-
sider the Voronoi tesselation of the spatial domain of interest, associated with
the triangulation of the domain discussed in Section 4.1. The triangulation
and the Voronoi tessellation constitutes two dual partitions of the domain of
interest.

Figure 4 illustrates the relationship between the triangulation and the
Voronoi tesselation: in the top center panel we show in gray a triangulation
and in red the corresponding Voronoi tesselation. For k = 1, . . . , K, we
denote by Rk the k-th Voronoi tile: this is the set of all points in ΩT that
are closer to node ξk of the triangulation than to any other node ξj, with
j 6= k, i.e.: Rk = {x ∈ Ω | d(x, ξk) ≤ d(x, ξj) for all j 6= k}, where d(·, ·)
denotes the Euclidean distance, computed within the domain of interest (i.e.,
without crossing the boundaries of the domain). We hence approximate the
empirical density of the data by the finite element function f̃ 0 = f̃0>ψ that
takes the following values at the nodes:

f̃ 0
k = f̃ 0(ξk) =

1

n

n∑
i=1

|Rk|
|Ω|

I(xi ∈ Rk) for k = 1, . . . , K (6)

where I is the indicator function, |Rk| denotes the area of the k−th tile and
|Ω| the area of the spatial domain Ω. The value of this function at the
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Figure 4: Top left: a sample of 200 observations from a mixture of Gaus-
sian distributions on a square domain; the figure also displays a Voronoi
tessellation of the domain. Top center: Voronoi tessellation and the dual
Delaunay triangulation. Top right: approximation of the empirical density
of the data, computed on the Voronoi tessellation and using finite elements;
this consitutes the initial condition of the heat-equation. Bottom panels:
heat diffusion estimates as the time increases.

k−th node corresponds to the proportion of data that fall within the k−th
tile, weighted by the relative area of the tile. With a sufficiently fine tri-
angulation, and correspondingly small tiles, such function provides a good
approximation of the empirical density. We thus use this function to approx-
imate the initial condition of the heat diffusion problem (5). Figure 4 offers
an illustration. The top left panel shows a sample of 200 observations from
a mixture of Gaussian distributions; the same figure also displays a Voronoi
tessellation of the domain. The top center panel shows a zoom of the Voronoi
tessellation, with the associated triangulation. The top right panel shows the
corresponding approximation of the empirical density, f̃ 0.

We hence discretize the heat-diffusion problem in (5) by finite elements
in space and a forward Euler scheme in time, setting the temporal step size
to ∆t. This means that, starting from the initialization in equation (6), we
compute an approximation of f̃(x; t), at times t = m∆t, where m = 1, 2, . . .
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is the iteration index, by the finite element function f̃m = f̃m>ψ, setting the
following values of the functions at the nodes

f̃m+1
k = f̃mk + ∆t

1

#(Nk)
∑
j∈Nk

(f̃mj − f̃mk ), k = 1, . . . , K . . .

where Nk is the set of nodes that are closest neighbours of ξk and #(Nk)
is its cardinality. Looking at the solutions for different time instants (i.e.
for different m) we obtain a set of functions that ranges from the extremely
rough sum of spikes at the observations (m = 0) to the uniform distribution
over Ω (m → ∞). Figure 4 illustrates this process. In particular, starting
from the approximation of the empirical density f̃ 0, displayed in the top right
panel, the bottom panels show progressively smother solutions f̃m.

Among the various solutions f̃m, we then use as a starting guess for
the gradient descent algorithm the solution f̃m, such that gm = log(f̃m)
minimizes the functional (4).

Remark. We stress that the initialization step described in this section is
not necessary for the estimation procedure. A constant initialization would
nevertheless lead to convergence of the optimization algorithm, and thus, to
the same estimate. However, the initialization here described leads to a sig-
nificant reduction of the number of iterations needed to convergence of the
optimization algorithm, and hence to a computational saving, as highlighted
in the simulation studies in Section 5. For this reason, especially for very
fine meshes, we encourage the use of this initialization.

4.4 Selection of the smoothing parameter

The selection of the smoothing parameter λ is crucial for an accurate esti-
mation and to ensure a right balance between the bias and the variance of the
estimator. The smoothing parameter can be automatically selected through
cross-validation. In particular, we consider here a k-fold cross-validation
based on the L2 norm. This norm is frequently used in literature and leads
to a particularly tractable selection algorithm (Marron, 1987). The value of
λ can be chosen minimizing the cross-validation error

R̂(λ) =

∫
(f̂
−[k]
λ (x))2 − 2

#(x[k])

∑
i∈[k]

f̂
−[k]
λ (x[k]) (7)

where k is the fold index, f̂
−[k]
λ (x) is the density estimated without the k-

th fold, x[k] is the subset of observations of the k-th fold and #(x[k]) its
cardinality. See Appendix Efor details.
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5 Simulation studies

In this section we present three simulation studies, under different sce-
narios. In Simulation 1, in Section 5.1, we consider a non-trivial density,
obtained as a mixture of four Gaussian distributions, on a simple square do-
main. In Simulation 2, in Section 5.2, we consider a very simple density, but
defined on a complicated domain, having the form of an horseshoe. Finally,
in Simulation 3, in Section 5.3, we consider a non-trivial density defined on a
complicated domain, the horseshoe. These simulations are chosen to mimic
the difficulties posed by the analysis of crime report data, mentioned in the
Introduction.

In these different settings, we compare the performances of
- KDE: the classical Kernel Density Estimation, implemented using the R

package ks (Duong, 2018), that employs anisotropic Gaussian kernels, se-
lecting the full the bandwidth matrix by k-fold cross validation;
- SPLINE: the spline density estimation in Gu (1993), implemented using
the R package gss (Gu, 2014), selecting the smoothing parameter by leave-
one-out cross-validation, as implemented in the package;
- LGCP: the log-Gaussian Cox processes based on the sPDE approach intro-
duced in Simpson et al. (2016), implemented using the R packages inlabru

(Bachl et al., 2019) and R-INLA (Lindgren et al., 2015), considering a Matern
model that uses the penalizing complexity prior discussed in Simpson et al.
(2017);
- HEAT: the heat diffusion density estimator described in Section 4.3, that
constitutes the initialization for the proposed method, implemented using
the R package fdaPDE (Lila et al., 2019);
- DE-PDE: the proposed nonparametric Density Estimator with Partial Dif-
ferential Equation regularization, implemented using the R package fdaPDE,
selecting the smoothing parameter by k-fold cross validation.

The different methods are compared in terms of Mean Integrated Squared
Error (MISE), computed as

∫
Ω

(f̂ − f)2, where the integral is approximated
using a regular lattice that covers the domain.

5.1 Simulation 1: mixture of Gaussians on square do-
main

In the first simulation we consider a non-trivial density, with multiple
modes having different directions and intensities of anisotropy, obtained as
a mixture of four Gaussian distributions, on a simple square domain. The
density is shown in the top left panel of Figure 5, and its detailed definition is
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LGCP HEAT DE-PDE

Figure 5: Simulation 1: mixture of Gaussians on square domain. Top left
panel: true density. Other panels: mean estimates yielded by the competing
methods over 100 simulation repetitions.

given in Appendix F.1.We generate from this density 100 samples of 200 ob-
servations each. We hence compute the estimates with the various methods,
under the specifications detailed in Appendix F.1.

Figure 5 shows the mean estimates, obtained by the various considered
methods, over the 100 simulation repetitions. KDE is able to capture all the
modes of the density, especially the highest mode in the top right. It has
nonetheless some difficulties in capturing the shapes of the leftmost modes:
this is due to the fact that KDE selects the full bandwidth of an anisotropic
kernel, and this might lead to inaccuracies in the estimates when the modes
present different orientation and intensities of anisotropy. SPLINE captures
the overall shape, but has a tendency to oversmooth, especially the most
elongated modes in the top right. This is caused by the intrinsically ten-
sorized nature of the spline basis: anisotropic modes that are in different
directions with respect to the two main axes are not well captured; on the
contrary, anisotropic features in the directions of one of the two main axes
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LGCP HEAT DE-PDE

Figure 6: Simulation 2: simple density on horseshoe domain. Top left panel:
true density. Other panels: mean estimates yielded by the competing meth-
ods over 100 simulation repetitions.

may be over-emphasised, as highlighted in Simulation 3 and in the appli-
cation to motor vehicle thefts data in Section 6.1. LGCP captures all four
modes, but oversmooths them. HEAT drastically oversmooths the modes.
DE-PDE captures the heights of the four modes better than the compet-
ing methods, with a more precise identification of the leftmost modes with
respect to KDE.

The left panel in Figure 8 shows the boxplots of the MISE, over the 100
simulation replicates, of the estimates obtained with the competing models.
DE-PDE and KDE displays significantly smaller values of MISE with respect
to the other methods, with the proposed DE-PDE attaining the smallest
MISE with the smallest variance.

5.2 Simulation 2: simple density on horseshoe domain

In the second simulation we consider the horseshoe domain from Ramsay
(2002), and define a simple density on this domain, starting from the test
function introduced in Section 5.1 Wood et al. (2008a); see Appendix F.2for
details. The density, shown in the top left panel of Figure 6, follows the
shape of the domain, with higher values on the top horseshoe arm and lower
values on the bottom horseshoe arm. This simulation setting presents similar
difficulties as the analysis of crimes in Portland, outlined in the Introduction.
In both cases, the domain is characterized by a strong concavity, that almost
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separates two parts of the domains, with one part displaying much higher
density values that the other part. We generate from the true density on the
horseshoe domain 100 samples of 200 observations each. We hence compute
the estimates with the various methods, under the specifications detailed in
Appendix F.2.

KDE is clearly unable to identify the true structure of the density, and
pours the higher density values of the top horseshoe arm into the lower den-
sity values of the bottom horseshoe arm, returning estimates that are partic-
ularly poor near the boundaries. SPLINE has similar problems in identifying
the true shape of the density. The methods tends to smooth the function
of the most external part of the domain, but is unable to capture the differ-
ence in density levels between the two horseshoe arms. This highlights that
methods that rely on the Euclidean distance may return inaccurate esti-
mates when the shape of the domain is important for the phenomenon under
study. LGCP, HEAT and DE-PDE instead appropriately take in account the
shape of the domain. These methods are able to capture the overall shape of
the density, and do not display any particular problem near the boundaries.
HEAT estimates are rougher than those provided by LGCP and DE-PDE,
that are instead very similar.

The boxplots of the MISE shown in Figure 8 confirm that LGCP, HEAT
and DE-PDE provide the best estimates. In particular, HEAT attains the
smallest MISE and with the smallest variance, likely due to the fact that
the considered true density resembles the solution of a diffusion equation.
The MISE of LGCP and DE-PDE are not significantly different, as tested
by pairwise Wilcoxon tests.

5.3 Simulation 3: mixture on horseshoe domain

In the third simulation study we combine the complexities of the two pre-
vious simulation studies: a complicated density on a complicated domain. In
particular, we consider the horseshoe domain, as in the second simulation,
but we define a less trivial density on the top of this domain, obtained mix-
ing the true density in Simulation 2 with Gaussian and skewed Gaussian
distributions; see Appendix F.3for details. This density, shown in the top
left panel of figure 7, features two modes in the bottom horseshoe arm, and a
mode in the top horseshoe arm, close to the internal boundary. This feature
is similar to the ones displayed by Portland crime reports (see Section 6).

KDE is able to identify all modes, but displays some difficulties near the
boundaries; the modes estimated in the bottom horseshoe arm are elongated
in the horizontal direction, due to the fact that the selected bandwidth pa-
rameters captures a strong anisotropy in this direction. SPLINE shows sim-
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Figure 7: Simulation 3: mixture over horseshoe domain. Top left panel: true
density. Other panels: mean estimates yielded by the competing methods
over 100 simulation repetitions.

ilar difficulties. Also in this case the modes in the bottom are are strongly
elongated in the horizontal direction: this is an effect of the tensorized basis,
that may over-emphasise anisotropies in the direction of the axes. LGCP
captures all the modes, but oversmooths the density, as already seen in Sim-
ulation 1. HEAT presents a similar behavior. DE-PDE also slightly over-
smooths the two bottom modes, but not as much as the competitors, but
captures very well the top mode. The boxplots of the MISE in right panel of
Figure 8 show that DE-PDE has significantly lower errors and with a lower
variance than all other methods.

6 Portland crime reports

We consider the problem of estimating the crime reports distribution in
the city of Portland. The data come from NIJ “Real-Time Crime Forecast-
ing Challenge”1 and consists of calls-for-service positions from the Portland
Police Bureau. Wilhelm and Sangalli (2016) also offers a study of crime
data over the city of Portland, but they aggregate crimes per district, and
consider a generalized linear model to analyze crime counts over the various
municipality districts.

1https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge
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Figure 8: Boxplots of the Mean Integrated Squared Error (MISE), over the
100 simulation repetitions, of the competing methods, in the three considered
simulation studies.

6.1 Motor vehicle theft reports

Figure 1 shows the location of motor vehicle theft reports over the munic-
ipality, in the year 2012. Figure 3 shows the municipality of Portland, along
with a Delaunay triangulation based on 788 nodes.

Note that two areas are not part of the domain of interest: the airport, in
the northern part of the city, and the western part of Hayden Island, towards
Washington State. As already commented in the Introduction, the frequency
of occurrences of motor vehicle thefts varies significantly over the various
parts of the municipality; moreover, the complex morphology of the city
clearly influences the phenomenon under study. For instance, rather different
theft numbers are observed on the two sides of the river. In the northern
part of the city, a much higher occurrence of vehicle thefts is observed on
the east side of the river; the same can be said in the southern part of the
city. In the city center instead, more occurrences are present on the west
side of the river. A similar situation applies for the Hayden Island, in the
north toward Washington State, where there are more vehicle thefts that in
the inland nearby part of the municipality. In general, the phenomenon is
not smooth across the river, that acts as a physical barrier.

This problem should more appropriately be considered as an intensity es-
timation problem (as done in Section 6.2), rather than a density estimation
problem. On the other hand, to enable quantitative comparison among the
various competing methods, through the cross-validation error (7), we shall
deal with it as a density estimation problem. Figure 9 shows the estimates of
the vehicle theft density obtained by the various methods, implemented un-
der the specifications detailed in Appendix F.4The top left panel shows the
results in terms of 5-fold cross-validated error, computed as in (7). DE-PDE

22



CV ERROR

−60

−55

−50

−45

−40

KDE SPLINE LGCP HEAT DE−PDE

KDE SPLINE

LGCP HEAT DE-PDE

Figure 9: Motor vehicle theft reports (see Figure 1). Top left panel: boxplots
of 5-fold cross-validation errors of the estimates yielded by the competing
methods. Other panels: estimates yielded by the competing methods.

outperforms all competitors. KDE is the second best method, but shows
significantly higher errors and variance in the estimates. SPLINE clearly
shows some artefact due to its tensorized basis, with strongly elongated re-
gions of high density in the direction of the axes. LGCP and HEAT return
oversmoothed densities, as already commented in Simulation 1 and 3. The
proposed DE-PDE, on the contrary, accurately complies with the shape of
the domain and is able to capture localized features. The two main distri-
bution masses are concentrated in the city center and in the Lloyd district,
a primarily commercial neighborhood in the North and Northeast section of
the city. It is also interesting to note the high density region on the eastern
part of the city, along the War Veterans Memorial freeway, a main highway
that serves the Portland-Vancouver metropolitan area and passes near three
of the largest shopping centers of the city. All these areas have huge amounts
of parking lots, with cars parked for long periods of time. It is interesting to
note the high concentration area in the Eastern part of Hayden Island, high-
lighted in the enlarged views in Figure 10. This part of the island, named
Jantzen Beach, has highly developed retail areas near the freeway, with ho-
tels, offices, manufactured home communities, and condominium complexes.
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Figure 10: Motor vehicle theft reports. Enlargement of the data and esti-
mates on Hayden Island.

Despite the complexity of the domain, DE-PDE is able to identify the high
density region on the island, without interfering with the estimation on the
opposite side of the river, where almost no observations are present; see the
bottom right panel in Figure 10. As shown by the other panels of this figure,
the competing methods return instead inaccurate estimates over this region:
KDE and SPINE because they do not take into account for the shape of the
domain, while LGCP and HEAT because they oversmooth the signal.

6.2 Prostitution

Figure 11 shows instead the locations of crime reports related to prosti-
tution, reported in 2012. For sake of space, we here only display DE-PDE
estimates, briefly commenting on the estimates yielded by the competing
methods. We formalize the data analysis as an intensity estimation problem,
considering the DE-PDE intensity methodology, as discussed in Section 2.1.
The top left panel of Figure 11 shows that the locations of prostitution re-
lated crime reports are concentrated along the Northest 82nd Avenue. This
is a major arterial on the Eastside, that has long had a reputation as a hub
for prostitution and other aspects of Portland’s sex industry. The top center
and right panels of the same figure show the corresponding DE-PDE intensity
obtained on a regular triangulation with around 3000 nodes (see Appendix
F.4for details). These figures highlight how accurately the proposed method
captures the very high intensity concentrated around a segment that cor-
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Figure 11: Prostitution-related crime reports. Top left: data. Top center
and right: DE-PDE estimates on a fine regular mesh with about 3000 nodes.
Bottom left: coarse data-driven mesh with about 600 nodes. Bottom center
and right: DE-PDE estimates on the coarse data-driven mesh. These images
highlight how accurately the proposed method captures the density mass
concentrated along Northest 82nd Avenue, that appears as a neat ridge in
the three-dimensional visualization.

responds to the Northest 82nd Avenue. The proposed estimator is flexible
enough to detect a low dimensional structure of the underlying intensity, a
ridge, without oversmoothing it. The bottom left panel of the same figure dis-
plays a coarse data-driven triangulation, with 612 nodes, that is finer where
there are more data points; the mesh is constructed as detailed in Appendix
F.4.The bottom center and right panels show the corresponding DE-PDE
intensity estimate. While being more parsimonious and requiring the esti-
mation of a smaller number of parameters, the estimate on the coarse data-
driven mesh is nevertheless able to accurately represent the highly anisotropic
signal. The other methods return instead inaccurate estimates, not shown
here for sake of space. In particular, KDE gives a very rough estimate, with
many spikes, SPINE overemphasises the elongated ridge in the Northest 82nd
Avenue, and misses the nearby mode, while LGCP oversmooths the signal
returning a flat estimate.
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7 Discussion and future research directions

The proposed DE-PDE method shows robust performances in all con-
sidered scenarios, with comparable or significantly better performances with
respect to state of the art density estimation methods. Thanks to its unstruc-
tured basis, DE-PDE can capture complicated signals, displaying multiple
modes with different intensities and directions of anisotropy (see, e.g., Simu-
lation 1) and also low-dimensional structures such as the ridge displayed by
prostitution-related crime reports. Furthermore, it is able to comply with non
trivial bounded domains, as highlighted by Simulation 2 and by the applica-
tion to motor vehicle theft reports. Moreover, it only requires the selection
of one smoothing parameter, that can be chosen through cross-validation.

The proposed density estimation method can be extended in various di-
rections. A first fascinating direction goes toward higher dimensional and
non-euclidean domains. These include two-dimensional curved domains with
non-trivial geometries, and three-dimensional domains with complex bound-
aries. Data observed over these complicated domains are common in modern
applications (see, e.g., Ettinger et al., 2016; Lila et al., 2016; Chung et al.,
2016; Niu et al., 2019; Coveney et al., 2020). Density estimation over compli-
cated multidimensional domains requires flexible methods able to overcome
the classical concept of Euclidean distance. Some proposals generalize the
kernel density estimation to Riemaniann manifolds, using the concept of ex-
ponential map to solve the problem (see, e.g., Kim and Park, 2013; Berry and
Sauer, 2017). In our setting, the flexible formulation of DE-PDE in terms
of finite elements enables the extension to curved two-dimensional domains
and to complex three-dimensional domains. In particular, we can here resort
respectively to surface finite elements, likewise in (Lila et al., 2016), and to
volumetric finite elements. In a similar spirit, some recent works address
density and point processes estimation on networks (see, for example Mc-
Swiggan et al., 2017; Rakshit et al., 2019; Moradi et al., 2019; Moradi and
Mateu, 2020).

Another interesting direction of research concerns the modeling of spatio-
temporal point data over complicated spatial domains (Gervini, 2019; Yuan
et al., 2017). This permits the understanding of the evolution of underlying
processes generating the data. DE-PDE could be generalized to space-time
point data by considering two regularizations, one in time and one in space, or
alternatively a unique regularization involving a time-dependent differential
operator, in analogy to the spatio-temporal regression methods presented in
Bernardi et al. (2017) and Arnone et al. (2019).

It would moreover be interesting to explore alternative discretizations
based on splines over triangulations (Lai and Schumaker, 2007) or on other
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advanced non-tensor product splines, such as non-uniform rational B-splines,
as explored in Wilhelm et al. (2016) in a regression setting.

As commented in Section 2, we could as well consider regularizing terms
involving more complex differential operators and partial differential equa-
tions, similarly to what done in Azzimonti et al. (2014) and Arnone et al.
(2019) in the context of spatial regression. This possibility would enable
the inclusion in the estimator of problem-specific information concerning the
physics of the process generating the data.

Finally, the problem of uncertainty quantification in nonparametric den-
sity estimation represents a fascinating research topic. It would be intrest-
ing to explore the use of bootstrap techniques to estimate confidence bands
around the density (Hall, 1992), although these bands are centered on the
true density only asymptotically. A recent promising alternative is the ap-
proach proposed by Giné and Nickl (2010), based on Rademacher sym-
metrization. A possible extension of this approach to the proposed setting
constitutes a very interesting direction for future research.
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A From constrained to unconstrained opti-

mization

Consider the space V0 = {g ∈ V s.t.
∫
eg = 1}. Moreover, define the

functional L0(g) as

L0(g) = − 1

n

n∑
i=1

g(xi) + λ

∫
Ω

(∆g)2.

This functional is as functional (1), but omitting the term
∫

Ω
eg.

Lemma A.1. The function ĝ minimizes L0(g) over g ∈ V0 if and only if ĝ
minimizes L(g) over V .

Proof. This is essentially the same result as Theorem 3.1 in Silverman (1982).
We report here its proof for completeness. First of all, observe that in V0 the
functional L and L0 differ for a constant (i.e. L = L0 + 1), thus in V0 the
minimization of L is equivalent to the minimization of L0. Take g ∈ V and
define g∗ = g − log

∫
eg, so that

∫
eg

∗
= 1, i.e., g∗ ∈ V0. We show that for

each g ∈ V , L(g∗) ≤ L(g); this implies that the minimizer of L in V is in
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V0, and therefore satisfies the constrain
∫
eg = 1. It remains to prove that

L(g∗) ≤ L(g). Since g and g∗ differ only by a constant, we have ∆g = ∆g∗,
and therefore

L(g∗) = − 1

n

n∑
i=1

g∗(xi) + 1 + λ

∫
Ω

(∆g∗)2

= − 1

n

n∑
i=1

g(xi) + log

∫
eg + 1 + λ

∫
Ω

(∆g)2

= L(g)−
∫
eg + log

∫
eg + 1.

Since −t + log t + 1 ≤ 0 for all t > 0, with equality only if t = 1, we have
that L(g∗) ≤ L(g), with equality only if

∫
eg = 1.

B Proof of Theorem 3.1

The proof of Theorem 3.1 relies on the following two lemmas.

Lemma B.1. The functional J(g) = − 1
n

∑n
i=1 g(Xi) +

∫
Ω

exp(g) is continu-
ous and strictly convex in V .

Proof. The continuity of J is obvious since the first term is linear and both
the exponential and the integral are continuous operators. Let now g1, g2 ∈
V , γ ∈ [0, 1] and g = γg1 + (1 − γ)g2. We have to show that J(g) ≤
γJ(g1) + (1− γ)J(g2) and that the equality holds only if g1 = g2. We have:

J(g) = J(γg1 + (1− γ)g2)

= − 1

n

n∑
i=1

{γg1(Xi) + (1− γ)g2(Xi)}+

∫
Ω

exp(γg1 + (1− γ)g2)

= γ

{
− 1

n

n∑
i=1

g1(Xi)

}
+ (1− γ)

{
− 1

n

n∑
i=1

g2(Xi)

}
+

∫
Ω

exp(γg1) exp((1− γ)g2)).

Using Holder’s inequality with p = 1/γ and q = 1/(1− γ) we have∫
Ω

exp(γg1) exp((1− γ)g2)) ≤
{∫

Ω

exp(g1)

}γ {∫
Ω

exp(g2)

}1−γ

.
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Moreover, using Young’s inequality with the same p and q we have{∫
Ω

exp(g1)

}γ {∫
Ω

exp(g2)

}1−γ

≤ γ

{∫
Ω

exp(g1)

}
+ (1− γ)

{∫
Ω

exp(g2)

}
.

This leads to J(g) ≤ γJ(g1) + (1− γ)J(g2).
It remains to show that the equality holds if and only if g1 = g2. In

Holder’s inequality, the equality holds only if there exists a, b 6= 0 such that

a exp(g1) = b exp(g2) ⇔ g1 = g2 + log(b/a).

Moreover, in Young’s inequality, the equality holds only when∫
Ω

exp(g1) =

∫
Ω

exp(g2).

Substituting g1 = g2 + log(b/a) in the equation above, we get a = b; this in
turn implies g1 = g2. Thus J is strictly convex in V .

Let now V0 denote the null space of the Laplacian in V , i.e., V0 = {g ∈
V : ‖∆g‖L2 = 0}. Let V∆ denote the complementary space of V0 in V , i.e.,
V = V0 ⊕ V∆, where ⊕ denotes the direct sum.

Lemma B.2. V0 is of finite dimension. Moreover ‖∆·‖L2 is a norm in the
space V∆, equivalent to the H2 norm.

Proof. Jet g0 ∈ V0. The g0 is a solution of the differential equation∆g = 0 in Ω

∂g

∂ν
= 0 on ∂Ω

This implies that g0 is a constant function over Ω, that is, V0 = {g : Ω→ R :
g = c, c ∈ R}. Thus V0 is a finite dimensional space.

It remains to prove that ‖∆·‖L2 and ‖·‖H2 are equivalent in V∆. By
definition of the H2 norm, we have that, for all g ∈ H2(Ω),

‖∆g‖2
L2 ≤ ‖g‖2

H2
.

In addition, for all g ∈ V,

‖g‖H2
≤ C{‖g‖L2 + ‖∆g‖L2}.

Since we can always write g = c + g̃, with c ∈ R and ‖g̃‖L2 = 0, then, for
each g̃ ∈ V∆, we have

‖g̃‖H2
≤ C ‖∆g̃‖L2 .
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Thanks to Lemma B.1 and Lemma B.2, we can leverage on Theorem 4.1
of Gu and Qiu (1993). Thanks to this theorem we have that functional L(g)
in (1) has a unique minimizer in V if and only if − 1

n

∑n
i=1 g(Xi) +

∫
Ω

exp(g)
has a minimizer in V0. The latter condition is verified since V0 is the space
of constant functions. This concludes the proof that the functional L(g) in
(1) has a unique minimizer in V.

C Proof of Theorem 3.2

The proof of Theorem 3.2 follows along the lines of the proof of Theorem
5.3 of Gu and Qiu (1993). In particular, the class of penalized density esti-
mators considered by Theorem 5.3 of Gu and Qiu (1993) does not directly
include the proposed DE-PDE estimator. On the other hand, we can exploit
the arguments in Gu and Qiu (1993) leveraging on following two lemmas.

Lemma C.1. Let g0 be the true log-density and ĝ the minimizer of (1). Then

DsKL(g0, ĝ) = 2λ

∫
Ω

ĝ(g0 − ĝ) +

[
1

n

n∑
i=1

(ĝ − g0)(Xi)− µg0(ĝ − g0)

]
. (8)

Proof. Set Ag,h(t) := − 1
n

∑
(g + th)(Xi) +

∫
exp (g + th) + λ

∫
∆(g + th)2.

Differentiating Ag,h in t we obtain:

Ȧg,h(t) = − 1

n

∑
h(Xi) +

∫
exp (g + th)h+ 2λ

∫
∆(g + th)∆h.

Thus, for t = 0, we have

Ȧg,h(0) = − 1

n

∑
h(Xi) + µg(h) + 2λ

∫
∆g∆h.

Finally, setting g = ĝ and h = ĝ − g0 we obtain equation (8).

Lemma C.2. Under Assumption 1, there exists an infinite set of functions
φk such that

Cov(φk, φj) = δk,j and

∫
Ω

∆φk∆φj = η2
kδk,j

where δk,j is the Kronecker delta and 0 ≤ ηk →∞. In additions, there exist
two positive constants α and β such that, for all k ≥ 0,

ηk = ckk, α ≤ ck ≤ β.
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Proof. Consider the problem of finding the eigenfunctions and eigenvalues of
the Laplacian with Neumann boundary conditions, i.e.,∆φ = ηφ in Ω

∂φ

∂ν
= γ on ∂Ω.

It is known (see, e.g., Agmon, 2010; Brezis, 2010) that the eigenvalues ηk are
infinite and live in [0,+∞). The corresponding eigenfunctions are a basis for
the space V and can be orthonormalised in L2(Ω). This means that we can
construct a set of functions φk such that∫

Ω

φkφj = δk,j (9)

and clearly, since ∆φk = ηkφk∫
Ω

∆φk∆φj = ηkηj

∫
Ω

φkφj = η2
kδk,j.

In addition, if the boundary of Ω is regular enough (for instance, ∂Ω ∈ C2 or
∂Ω piecewise linear), the eigenvalues are such that there exist two positive
constants α and β such that ηk = ckk, with α ≤ ck ≤ β (Weyl, 1912).

Finally, under Assumption 1, we can substitute the standard L2(Ω) scalar
product in (9) with the scalar product induced by the true log-density g0,
i.e.,

∫
Ω
φkφj exp (g0), and therefore with Cov(φk, φj).

D Optimization algorithms

We minimize (4) by iterative optimization algorithms. Iterative methods
start with an initial guess g0 and take steps in a descent direction dm, up-
dating the guess at step m with the formula gm+1 ← gm − αdm, where α
is the algorithm step. We here consider two classical methods: Gradient
Descent and Quasi Newton. The two algorithms differ for the choice of the
minimization direction dm.

In the gradient descent algorithm the descent direction dm is the gra-
dient of the function at the current point gm, i.e., dm = ∇LT (gm), where
∇LT is the derivative of LT with respect to g. We consider the simplest
formulation of the gradient descent method, but other algorithms, such as
Nesterov accelerated gradient (Nesterov, 2018), can be implemented with
simple modification of the updates.

In the Quasi Newton algorithm the descent direction is defined as dm =
−Hm∇LT (gm), where Hm is a K×K symmetric positive definite matrix, and
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is the approximation of the inverse of the Hessian of LT , i.e., [∇2LT (gm)]−1.
Specifically, Hm is constructed with the iterative BFGS formula (Lange,
2013):

Hm+1 = Hm +

(
1 +

γTmHmγm
δTmγm

)
δmδ

T
m

δTmγm
− (Hmγm)δTm + δm(Hmγm)T

δTmγm

where δm = gm+1 − gm and γi = ∇LT (gm+1)−∇LT (gm).
The algorithms are stopped when a termination criterion is met. In par-

ticular, we terminate the algorithms when the percentage variation between
two consecutive iterates of the loss function LT (g) in (4), as well as of the
log likelihood (i.e., first two terms in (4)) and of the penalization term (i.e.,
the last term in (4)), are lower than a threshold. The selection of the optimal
step α is a classical problem in the numerical analysis literature (see, e.g.,
Lange, 2013, for a thorough discussion). Both the gradient descent and the
Quasi Newton are proved to converge when the functional to be minimized
is strictly convex (see Lange, 2013, for details on the method). In the simu-
lation studies and applications shown in this paper we use the Quasi Newton
algorithm, that is the fastest between the two considered algorithms. Nu-
merical tests, not shown in the paper for sake of space, shows that computing
time necessary for the Quasi Newton algorithm increases with the number
K of finite element bases as K2.

E k-fold cross-validation

The k-fold cross-validation index in (7) is an approximation of the L2 dis-
tance between the estimated density f̂ and the true density f, i.e.,

∫
(f̂−f)2.

In particular, the first term in equation (7) approximates
∫
f̂ 2, considering

the estimate computed on the training set; this term can be easily computed
thanks to the finite element formulation. The second term in (7) approxi-
mates −2

∫
f̂f, which involves the expected value of f̂ with respect to the

true f ; this mean is computed empirically, considering the density obtained
on the training set, evaluated at the data points in the testing set. Finally,
the term

∫
f 2 is of course not included in (7); this term does not depend on

f̂ , and thus it does not depend on λ.
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F Simulations and applications

F.1 Simulation 1: mixture of Gaussians on square do-
main

The true density considered in Simulation 1 in Section 5.1 is defined as a
mixture of four Gaussian with means

µ1 =

(
−2
−1.5

)
, µ2 =

(
2
−2

)
, µ3 =

(
−2
1.5

)
, µ4 =

(
2
2

)
,

and variances

Σ1 =

[
0.8 −0.5
−0.5 1

]
, Σ2 =

[
1.5 0
0 1.5

]
, Σ3 =

[
0.6 0
0 0.6

]
, Σ4 =

[
1 0.9

0.9 1

]
,

and mixing weights π =
(

1
4
, 1

4
, 1

4
, 1

4

)
. The density is appropriately normalized

to integrate to 1 on the considered square domain (−6, 6)× (−6, 6).
KDE is estimated using the best bandwidth matrix selected via 5-fold

cross-validation. SPLINE is implemented using tensor product smoothing
splines on a regular grid of step 0.5 that covers the square domain, resulting
in 625 nodes, and including both the main effects and the interaction; the
smoothing parameter is selected by leave-one-out cross-validation (see Gu
and Wang, 2003, for details). LGCP is estimated using a Matern covariance
with flat prior having σ = 0.1 and range equal to 5. The mesh used for LGCP
is created using the R package R-INLA (Lindgren et al., 2015), starting from
the border of the square domain, with offset (0.3, 2), maximum edge (0.8, 2)
and cutoff 0.4; the mesh has 685 nodes. DE-PDE is estimated selecting the
smoothing parameter λ by 5-fold cross-validation. The mesh, constructed
using the same package used for the estimate, fdaPDE, is obtained starting
from the border of the square domain setting maximum triangle area equal
to 1 and minimum triangle angle equal to 30; the mesh has 625 nodes. The
initial value for DE-PDE is the HEAT estimate described in Section 4.3,
obtained on the same mesh. This initialization leads to a 20% saving of the
computational time for the full algorithm (initialization + optimization) with
respect to a constant initialization. The optimization uses the Quasi Newton
algorithm described in Appendix D,D, with the default threshold to evaluate
convergence.

F.2 Simulation 2: simple density on horseshoe domain

The simple density on horseshoe domain considered in Simulation 2 in
Section 5.2 is defined starting from the test function defined in Section 5.1

7



of Wood et al. (2008), adding the constant 5 to the function and dividing it
by its integral, in order to obtain a proper density.

We only remark the differences in the specifications with respect to Sim-
ulation 1. SPLINE are estimated using a regular grid of step on the rect-
angle (−1, 3.5) × (−1, 1), resulting in 625 nodes. LGCP is estimated using
a Matern covariance with flat prior having σ = 0.1 and range equal to 0.1.
LGCP mesh is created starting from the horseshoe boundary with no offset
(i.e., we consider the exact horseshoe domain), maximum edge 0.2 and cutoff
0.03; the mesh has 485 nodes. DE-PDE is estimated selecting the smoothing
parameter λ using 2-fold cross-validation. DE-PDE mesh is obtained start-
ing from the horseshoe boundary, setting maximum triangle area equal to
0.012 and minimum triangle angle equal to 30; the mesh has 502 nodes. The
initialization by HEAT leads to a 40% saving of the computational time for
the full algorithm (initialization + optimization) with respect to a constant
initialization.

F.3 Simulation 3: mixture on horseshoe domain

The true density we use is defined as a mixture of four components: the
density used in Simulation 2, two Gaussians with means

µ1 =

(
0.9
−0.5

)
, µ2 =

(
2
−0.5

)
,

and variances

Σ1 =

[
0.04 0

0 0.01

]
, Σ2 =

[
0.02 0

0 0.01

]
,

and a skewed Gaussian simulated using the package sn (Azzalini, 2020) with
parameters

ξ =

(
1.3
0

)
, Ω =

[
0.5 0
0 0.1

]
, α =

(
0
6

)
, τ = 0.

The mixture weights are (0.2, 0.05, 0.05, 0.7), and the mixture is appropriately
normalized to integrate to 1 on the considered domain.

The implementation details are the same of Simulation 2 for all methods.
The initialization of DE-PDE optimization algorithm by HEAT lead to a
total saving of 10% in the computing time with respect to the constant
initialization.
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F.4 Applications to crime report data

For motor vehicle theft data, KDE is implemented using the best band-
width matrix via 5-fold cross-validation on a subsample of size 200 of the
data. The subsampling is necessary to avoid the overly anisotropic estimate
of the bandwidth matrix that is otherwise obtained when using all data
points; the subsample is only used for the selection of the bandwidth matrix,
while the estimate is computing using all data points. SPLINE is imple-
mented using a regular grid of about 1000 nodes on a rectangle that cover
the domain (with latitude from -122.85 to -122.46 and longitude from 45.425
to 45.655); both main effects and interaction are included; the smoothing
parameter is selected by leave-one-out cross validation. LGCP is estimated
using a Matern covariance with flat prior with σ = 0.1 and range equal to
0.1. LGCP mesh is created using the R package R-INLA, starting from the
borders of the municipality, with no offset, maximum edge 0.013 and cutoff
5 · 10−5; the mesh has 749 nodes. The mesh for HEAT and DE-PDE is con-
structed using fdaPDE, starting from the borders of the municipality, setting
maximum triangle area equal to 5 · 10−5 and minimum triangle angle equal
to 30; the mesh has 788 nodes. DE-PDE smoothing parameter is selected by
5-fold cross-validation.

For prostitution data, DE-PDE regular mesh of 3000 nodes is constructed
setting maximum area equal to 10−5 and minimum angle equal to 30. The
adaptive mesh is constructed as follows: we construct a Voronoi tessellation
of the data points, discarding data that are closer than a fixed threshold,
set to 0.002, and we hence construct a constrained Delaunay triangulation
of the Voronoi vertices. This procedure provides a mesh that is naturally
finer where there are more data points. If the number of observations is very
high, the Voronoi tessellation can be constructed on a subsample of the data
points, setting a minimun distance among the data.
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