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Abstract

In many application domains, process monitoring and process optimiza-
tion have to deal with functional responses, also known as profile data. In
these scenarios, a relevant industrial problem consists in discovering which
specific parts of the functional response is mostly affected by the process
changes. As a matter of fact, knowledge of the specific locations where the
curve is more sensitive to process changes can bring several advantages.
It can be exploited to design specific monitoring devices directly focusing
on the functional data pertaining to the selected intervals. Secondly, the
dimensional reduction can eventually bring to an increase of the power to
detect process changes.

This paper proposes a methodology to inferentially select the parts of
the output functions that are more informative in terms of the underly-
ing factors. The procedure is based on a non-parametric domain-selective
ANOVA for functional data, which results in the selection of the intervals
of the domain presenting statistically significant effects of each factor. To
illustrate its potential in industrial applications, the proposed procedure
is applied to a case study on remote laser welding, where the main aim is
monitoring the gap between the welded plates through the observation of
the emission spectra of the welded material.
Keywords: Statistical Process Control, Design of Experiments, Functional
Data Analysis, Family-Wise Error Rate
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1 Introduction

Due to the advent of in-line sensoring and non-contact measurement systems,
more and more often responses of manufacturing processes can be modeled as
functional data, i.e., a vector of data, where each value corresponds to a specific
temporal or spatial location. Functional data can in fact represent the shape of
a machined feature and/or the pattern of a signal acquired by the process over
time. In this scenario, statistical quality monitoring and process optimization
have to be appropriately rethought to deal with functional responses. With
reference to statistical quality monitoring, the problem of checking the stability
of a functional response has been named profile monitoring and has attracted the
attention of many researchers over the past ten years (for an overview, see, for
instance, Noorossana et al. 2012 and references therein). In the field of process
optimization, robust optimization of functional data received the attention of
researchers in many different application domains (Nair et al. 2002; Del Castillo
and Colosimo 2011; Alshraideh and Del Castillo 2014; Del Castillo et al. 2012;
He et al. 2014; Drignei 2010).

Both process monitoring and optimization of functional responses share a
common basic problem, i.e., to detect a change of the functional response pat-
tern. In the first case, the change is deemed to be due to an out-of-control
state of the manufacturing process. In the case of process optimization, the
functional response change is pursued by changing the process parameters, with
the aim of making the response following as close as possible a target pattern.
Within such framework, the analysis of the whole response function can provide
lots of information on the underlying interest factors. Nevertheless, the func-
tional observation and analysis present some issues. For instance, the in-process
monitoring of the whole output function can be computationally not affordable,
and/or the effect of the factors on the whole function can be difficult to study.
Hence, it is often required to reduce the dimensionality of the output data,
to provide a methodology that is efficient and actually applicable in industrial
environments.

Functional principal component analysis (Ramsay and Silverman 2005) can
be a way to reduce the dimensionality, and to select the most informative features
of the data in terms of the proportion of explained variance (i.e., the functional
principal components). This method can be applied to problems dealing with
profile data, to reduce the dimensionality of the output functions and better
understand their characteristics and evolution during the industrial process (Hall
et al. 2001; Colosimo and Pacella 2007, 2010; Yu et al. 2012; Grasso et al. 2014).
Unfortunately, functional principal components are often difficult to interpret,
and in the field of functional ANOVA, this analysis can be misleading, as the
components of the signal explaining the higher variability are not necessarily the
ones that present more information about the factors of interest of the industrial
process. Furthermore, functional principal component analysis relies on the
evaluation of all of the original functional data. This means that the entire data
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domain has to be acquired to detect a process change.
In many industrial applications, the output functions may be influenced by

the factors only in some parts of their domain, or in different ways over the do-
main. To efficiently monitor the process, it is then key to select the informative
parts of the functions (i.e. the ones influenced by the factors). The information
on which parts of the domain are informative can be used to design specific
monitoring devices that only focus on the data pertaining to those parts. This
would provide a direct gain, both in terms of efficiency of the monitoring pro-
cedure, and in economic terms, since the monitoring would then be based on
the univariate output of the sensor, instead of on more complicated evaluations
based on the whole functions. As an example, the motivating case study of this
research paper is remote laser welding, where the laser emission spectrum is used
as reference to check whether the distance between the plates to be welded (i.e.,
the gap) is appropriate. In this case, a previous study Colombo et al. (2013)
showed that the gap between the plates affects the emission spectra and hence
this last information can be used for monitoring purposes. However, developing
a specific sensor aimed at detecting the emission just at some specific wavelength
instead of using the whole spectra can reduce costs of the monitoring device and
reduce the computational time.

Even though the selection of the informative parts of the domain can be
done in naive ways, for instance by a visual inspection of the data, or based on
prior knowledge about the process, in most cases visual inspection and/or prior
knowledge can be unclear or misleading, and may neglect important aspects.
Hence, we here propose a statistical technique to approach the domain selection.
The approach that we propose is sound even in absence of prior knowledge
about the process, and gives clear and reliable results. We propose to select
the informative parts of the functions by means of the inferential interval-wise
testing procedure, first proposed in Pini and Vantini (2015), and here extended
to the case of multi-way functional ANOVA. In detail, we test the significance of
the effects of the factors on the output functions. More importantly, we provide
a selection of the parts of the domain presenting significant effects of each factor.
Once this selection has been done, we propose to monitor the industrial process
based on the information that the functions contain on the selected domains.

The paper is structured as follows: Section 2 presents the statistical method-
ology applied for the domain-selective functional ANOVA. Section 3 reports an
application of the proposed method on a remote laser welding data set. In de-
tail, Subsection 3.1 reports the description of the industrial application and the
related problems, Subsection 3.2 reports the description of the data, and Subsec-
tion 3.3 reports the results of the domain-selective functional ANOVA on these
data. A robustness analysis is reported in the Appendix.
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2 Domain-selective functional ANOVA

In this section we describe the methodology that we apply to test a multi-way
functional ANOVA. For ease of notation, and without loss of generality, we
consider the example of a two-way functional ANOVA with interaction. Nev-
ertheless, the methodology presented here can be directly generalized to the
analysis of factorial design with more than two factors.

Consider a two-way ANOVA in which we investigate the effects of factors A
and B (with I and J levels, respectively), on a functional response, based on a
replicated full factorial design. We assume that the response of the model is a
function of a continuous variable t observed over a domain (a, b) ⊂ R. In the
considered model, the functional response will be expressed as the result of two
main effects, and of an interaction between the previous ones. The aim of the
analysis is to test the significance of every term in the model (i.e., interaction
and main effects).

In detail, let yijl : (a, b) 7→ R be the output functional data, where i denotes
the level of the first factor, j denotes the level of the second factor, and l the
replicate. We here assume functional data to be continuous functions of the
variable t. Note that, as shown in Pini and Vantini (2015), this condition can
be relaxed, and the methodology can be applied to generic L2 functions. The
functional ANOVA model that we want to test is thus the following:

yijl(t) = µ(t) + αi(t) + βj(t) + γij(t) + εijl(t), (1)

where t ∈ (a, b), with i = 1, . . . , I, j = 1, . . . , J , l = 1, . . . , nij , nij being the
number of replicates for ith level of the first factor and jth level of the second
factor. In model (1), µ(t) is the functional grand mean, αi(t) and βj(t) are
functional main effects, and γij(t) is the functional interaction effect. The func-
tional errors εijl(t) are assumed to be independent and identically distributed
zero-mean random functions. Note that we do not require the errors to follow
a gaussian process. All effects (as well as the errors) are expressed as functions
of the continuous variable t. For sake of identifiability, we require the classical
constraints on the effects, i.e., ∀t ∈ (a, b):

∑I
i=1 niαi(t) = 0;

∑J
j=1 njβj(t) = 0;∑I

i=1

∑J
j=1 nijγij(t) = 0, where ni =

∑J
j=1 nij denotes the number of units at

ith level of the first factor and nj =
∑I

i=1 nij denotes the number of units at
jth level of the second factor.

The aim of our analysis is to test the significance of all coefficients of model
(1). In particular, we want to perform the functional counterparts of uni/multivariate
ANOVA tests:

• a functional test of the null model, jointly for all factors:{
H0,Model : αi(t) = βj(t) = γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ (a, b);

H1,Model : (H0,Model)
C ;

(2)
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• three functional tests for the effects of each factor and interaction:

H0,A : αi(t) = 0 ∀i = 1, . . . , I; t ∈ (a, b); H1,A : (H0,A)C

(3)

H0,B : βj(t) = 0 ∀j = 1, . . . , J ; t ∈ (a, b); H1,B : (H0,B)C

(4)

H0,AB : γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ (a, b); H1,AB : (H0,AB)C .
(5)

Note that, similarly to uni/multivariate two-way ANOVA, (2) is a test of signif-
icance of the whole functional model, whereas the three tests (3-5) allow to per-
form a model selection. The main difference with respect to a uni/multivariate
ANOVA is that, being the response functional, tests (2-5) involve functional
coefficients, i.e., the null hypothesis is rejected whenever there is a significant
difference between the corresponding groups in at least one interval of the do-
main.

The problem of testing a functional ANOVA model has been widely dis-
cussed in the literature of the last decades, and it can be addressed in sev-
eral ways (e.g.,Cuevas et al. (2004); Cuesta-Albertos and Febrero-Bande (2010);
Abramovich and Angelini (2006); Antoniadis and Sapatinas (2007)). A com-
mon feature of all these works, is that the final result from the ANOVA testing
determines whether the hypotheses (2-5) are globally accepted or rejected. In
particular, by applying these tests, we only are able to answer the question “Are
there any statistically significant effects of factors A and/or B on the functional
responses?”. In the case of a positive answer, these tests are not able to select
the intervals of the domain in which the effects are detected.

On the contrary, the principal aim of this paper is to provide practitioners
with a methodology that selects the most informative parts of the functions
domain, in order to use this information to design specific monitoring devices.
In detail, for each tests (2-5), in case of rejection of the null hypothesis, we want
to select the intervals of the variable t where significant differences are detected.
For this reason, we extend the interval-wise testing proposed in (Pini and Vantini
2015), that is a testing procedure for functional data that enables to select the
intervals of the domain presenting significant effects.

Another advantage of the application of such procedure is being a non-
parametric procedure. In particular, we neither need to assume the normality
of the residuals of the model, nor to specify their covariance structure, that can
be both difficult to assess in the practice.

The extension of the procedure on functional ANOVA is based on three steps,
detailed in the following paragraphs.

First step: interval-wise testing. A functional test corresponding to tests
(2-5) is performed on any interval of the domain. In detail, given any I ∈ (a, b),
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we perform a test of the null model, and three tests on the main effects and
interaction:{

HI0,Model : αi(t) = βj(t) = γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ I;

HI1,Model : (HI0,Model)
C

(6)

HI0,A : αi(t) = 0 ∀i = 1, . . . , I; t ∈ I; HI1,A : (HI0,A)C (7)

HI0,B : βj(t) = 0 ∀j = 1, . . . , J ; t ∈ I; H1,B : (HI0,B)C (8)

HI0,AB : γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ I; HI1,AB : (HI0,AB)C . (9)

As proposed in Pini and Vantini (2015), we perform each test in a permuta-
tion framework. In detail, we apply permutations of the residuals of the reduced
model, according to the Freedman and Lane permutation scheme (Freedman
and Lane 1983). As test statistics, we compute the integral over the interval I
of the two-way ANOVA statistics of the corresponding classical F -tests. This
provides exact tests for H0,Model, and approximated (asymptotically exact) tests
for H0,A, H0,B and H0,AB. In the following, we denote with pIModel, p

I
A, pIB, and

pIAB the p-values of tests (6-9), respectively.

Second step: computation of the adjusted p-value function. An ad-
justed p-value function is computed for each test (2-5). In detail, for each
t ∈ (a, b), the p-value p̃(t) is computed as the maximum p-value of all interval-
wise tests (6-9) on intervals containing t:

p̃Model(t) = sup
I3t

pIModel, p̃A(t) = sup
I3t

pIA, p̃B(t) = sup
I3t

pIB, p̃AB(t) = sup
I3t

pIAB.

The adjusted p-value function p̃Model(t) is provided by a control of the
interval-wise error rate, while the adjusted p-value functions p̃A(t), p̃B(t), and
p̃AB(t) are provided with an asymptotic control of the interval-wise error rate,
as defined in Pini and Vantini (2015).

Third step: domain selection. The intervals of the domain presenting a
rejection of the null hypothesis are obtained by thresholding the correspond-
ing adjusted p-value function at level α: we select intervals presenting at least
one significant effect by thresholding p̃Model(t), intervals presenting a significant
effect of the A factor by thresholding p̃A(t), and so on.

The control of the interval-wise error rate allows controlling the probability
of detecting false positive intervals, i.e., the probability of wrongly rejecting any
interval. For instance, since p̃Model(t) is provided by a control of the interval-
wise error rate, by selecting the intervals associated with an adjusted p-value
p̃Model(t) ≤ α, we have that, given any interval in which the response is not
influenced by any factor, the probability that this interval is (wrongly) selected
as significant is lower than α.
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3 Case study: remote monitoring of remote laser
welding

To illustrate the potential of the approach proposed in this paper in industrial
applications, in the following we report an application on remote laser welding
data. During the remote welding of zinc-coated steel in the lap-joint configura-
tion, we register as output profile the optical emission of the welded material as
a function of the wavelength. We are interested in selecting the informative part
of these profiles for the monitoring of the gap between the two welded surfaces,
by taking into account the location in which the emission spectra are acquired.
In the following, we report the description of the industrial process of remote
laser welding, and the related issues (Subsection 3.1), the description of the data
(Subsection 3.2), and the results of the analysis (Subsection 3.3). A robustness
study with respect to the smoothing parameter is reported in the Appendix.

3.1 Remote monitoring of laser welding

Laser welding technologies are quickly replacing conventional welding processes.
Furthermore, nowadays the laser welding is often used in remote configurations,
i.e., configurations in which the laser beam is moved along the seam with the
help of a laser scanner. One of the most common applications of such process
is the welding of zinc-coated steel in the lap-joint configuration. However, this
particular configuration and materials present a lot of technical issues, since
the boiling temperature of the zinc is significantly lower than the one of steel
(approx. 906◦C and 1500◦C, respectively). Consequently, during the welding,
highly pressurized zinc vapors are often produced at the interface of the two
metal sheets, and may cause defects in the welded material, such as spatters
and porosities, that can compromise its quality.

The classical solution applied in industrial processes to prevent these defects
is to leave a small gap (order of hundreds microns) between the two metal sheets,
to facilitate the degassing (Akhter et al. 1991; Steen et al. 2003). One of the
methods used to produce such gap is laser dimpling, which uses a remote pulsed
laser to generate protuberances on one of the plates (Daimler Chrysler AG 2005;
Schwoerer 2008; Gu 2010). However, the variance of the height of laser-dimples
can cause errors in the final gap dimension, which can cause defects on the welded
material, compromising its quality and causing variations in the mechanical
properties of the weld bead.

In Colombo et al. (2013), a method to remotely monitor the gap in remote
laser welding, avoiding destructive off-line tests, is proposed. According to this
technique, optical emissions are monitored during remote laser welding by a
spectroscope. Then, from the acquired spectra, different indicators, or summa-
rizing variables, are evaluated, such as the overall emission across the considered
range, and the emissions in separated wavelength ranges (defined by physical
evaluations of the welding process). For each of the obtained variables, univari-
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ate analysis of variance is performed, and the statistical significance of the effects
of the gap value is used to compare the tested methods. The optical emission
recorded during the experiment can also depend on the location in the weld
seam where the spectrum is acquired. That is why, in Colombo et al. (2013),
a two-way analysis of variance is performed, to evaluate the effect of the gap
on the emission taking into account the different locations. The former analysis
is a valid instrument to assess how the emission is influenced by the gap, and
the results can be used to provide an indicator to evaluate the gap remotely.
However, the choice of the better indicator to evaluate the gap effect is difficult
to perform, since the analyzed wavelength bands are priorly fixed.

Here, we perform a domain selective functional ANOVA, according to the
procedure described in Section 2, to select the wavelength bands presenting
significant effects of the gap and the location on the emission, and controlling the
probability of false discoveries. The direct result of this analysis is the selection
of the wavelength bands that are informative in terms of the gap between the
plates. The selected bands can thus be used to remotely monitor the gap between
the plates during the welding process.

3.2 Experimental procedure and data acquisition

A Through Optical Combiner Monitoring architecture (Capello et al. 2008;
Colombo and Previtali 2009, 2010) is used to monitor the laser welding. Ac-
cording to this technique, the monitoring of laser emission is performed remotely.
Indeed, far from the work area, the optical emissions from the welding process
are directly observed inside the laser source through the optical combiner of the
fiber laser source with a spectroscope. An extensive description of the experi-
mental welding procedure and the monitoring technology goes beyond the scope
of this paper, and can be found in Colombo et al. (2013).

The main objective of this study is to assess the effects of both gap and
location on the emission functions. To analyze these effects, the emission is
acquired in correspondence of different levels of gap and location, in a repeated
factorial design. Three values of gap, corresponding to 100 nm, 200 nm and
300 nm are explored. For each of the analyzed gap values, three replicates
are produced, for a total of nine welded specimens. Inside each specimen, five
emission spectra are acquired at five different locations, for a total number of 45
acquired spectra. The emission data are described in detail in Colombo et al.
(2013).

To record the optical emission in the visible range, optical emission spec-
troscopy, i.e., the analysis of emitted light with high-wavelength resolution, is
used. The laser emission yijl(t) is acquired at 703 discrete wavelengths t between
400.521 nm and 800.030 nm (where indexes i, j, l indicate the levels of gap, loca-
tion and replicate, respectively). The acquired data, as well as the three means,
corresponding to the three different values of the gap, are represented in Fig-
ure 1. In the figure, the curves of each color correspond to the 15 functional
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Figure 1: Emission data captured in the factorial laser welding experiment (dashed lines),
colored according to the three different gaps; and means of the three groups, corresponding to
the three different gaps (solid lines). The figure is divided along the abscissa into the plasma
(light blue), laser (light green), and thermal (light red) emissions.

emissions (five locations and three replicates) within each gap level.
Note that in the explored wavelength range, it is possible to distinguish

between three different emission ranges:

• between 400 nm and 530 nm, it is observed the emission related to elec-
tronic transition, i.e., the plasma emission (light blue area of Figure 1);

• around 535 nm we observe a strong emission line, corresponding to the
laser emission (light green area of Figure 1);

• above 540 nm we observe the emission due to the thermal black-body
radiation, i.e. the thermal emission (light red area of Figure 1).

The aim of the following analysis is to assess whether the gap and the location
have some effects on the emission, by taking into account the whole functional
shape of the spectrum, controlling the probability of false discoveries. Finally,
we want to locate possible wavelength bands in which the significant effects are
detected.

3.3 Results of the tests

In the application, the emission functions yijl(t) (i = 1, . . . , 3, j = 1, . . . , 5,
l = 1, . . . , 3) are modeled according to model (1), where t is the wavelength,
αi(t) is the gap functional effect, βj(t) is the location functional effect, γij(t) is
the interaction functional effect, and εijl(t) is the functional error term.
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Figure 2: Left: adjusted p-value function for the tests on H̃0,GapLoc. Right: emission data
colored according to gap and location levels.

We apply the domain-selective functional two-way ANOVA described in Sec-
tion 2 to test of the null model H0,Model (2), the gap effect H0,Gap = H0,A (3), the
location effect H0,Loc = H0,B (4), and the interaction effect H0,GapLoc = H0,AB

(5). The functional data that we analyze are based on a smoothing of the 703
discrete data points on a dense piece-wise linear B-spline basis characterized by
200 knots. The obtained data after the smoothing are reported in the right
panels of Figure 3. A robustness analysis with respect to the number of knots
of the expansion is reported in the Appendix. The test statistics of tests on
intervals were approximated through a rectangle integration method. Thanks to
the continuity of test statistics with respect to the extremes of integration, the
adjusted p-value functions were approximated through a finite family of tests
over a fine discrete grid of 703 points (i.e., the maximal resolution of the mon-
itoring instrument). The permutation p-values were estimated by means of a
Conditional Monte Carlo algorithm based on 1000 iterations.

We started by applying the testing methodology described in Section 2 to
test the interaction term γij(t). The results of the test are reported in Figure
2. In detail, the left panel reports the adjusted p-value function for the test
of H0,GapLoc, and the right panel reports the emission data obtained after the
B-spline smoothing. Since the interaction effect is not significant (i.e., the ad-
justed p-value function presents high values along all the wavelength domain),
we decided removing this term from the model, and tested the following additive
functional ANOVA model:

yijl(t) = µ(t) + αi(t) + βj(t) + εijl(t), ∀t ∈ (a, b). (10)

In the following, we describe in detail the results of the tests on the additive
model (10). Note that, in this case, the test of the null model becomes:{
H̃0,Model : αi(t) = βj(t) = 0, ∀i = 1, . . . , 3; j = 1, . . . , 5; t ∈ (400.521, 800.030);

H̃1,Model : (H̃0,Model)
C .
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Figure 3 reports the results of the additive two-way functional ANOVA of
emission data. In particular, the left panels report the adjusted p-value functions
for each test. In detail, on the top panel, we report the adjusted p-value func-
tions of H̃0,Model, on the middle panel the adjusted p-value functions of H0,Gap

and on the bottom panel the adjusted p-value functions of H0,Loc. For ease of
visualization of the test results, the right panels of the figure report the emission
data and the significant intervals detected at 5% and 1% levels (areas colored
in light and dark grey, respectively) for the three tests. Data are colored in the
three panels according to the corresponding tests: on the top panel data are
colored differently according to the different levels of both gap and location; on
the middle panel data are colored according to the different levels of gap; on the
bottom panel data are colored according to the different levels of location.

Focusing on the test of H̃0,Glob (i.e., top panels of Figure 3), we find a sig-
nificant effect of at least one factor among gap and location in nearly the entire
wavelength domain. This result suggests that, as expected, the welding con-
ditions have a significant effect on the spectrum for all three emission ranges
(plasma, laser, and thermal). The gap has a significant effect in most of the
wavelength domain (i.e., test of H0,Gap, middle panels of Figure 3), suggesting
that, consistently with previous results, the emission is significantly influenced
by the gap on all three emission ranges. The location has a significant effect
mostly in the plasma emission range (i.e., test of H0,Loc, bottom panels of Fig-
ure 3). This suggests that plasma emission is influenced by the location.

The procedure described in this paper improves the results found by Colombo
et al. (2013), by precisely locating the wavelength bands associated to significant
effects of the two factors. Indeed, the most important result highlighted by this
analysis, and completely new with respect to the literature in this field, is that,
looking at all tests together, we detect a band (i.e., the band t ∈ (547 nm,
681 nm) corresponding approximately to the thermal emission), in which the
gap effect is significant and the location one is not. This suggests the use of
emission data on this band to monitor the gap between the plates during the
welding process at any possible location.

Note that, for instance, the adjusted p-value function of the test of H0,Glob is
lower than 5% on the interval (547 nm, 681 nm). Thanks to the control of the
interval-wise error rate, if the emission were effected by neither the gap nor the
location in such band, we would have selected it as significant with a probability
lower that 5%. Furthermore, since the adjusted p-value function of the test
of H0,Gap is lower than 1% on the interval (547 nm, 681 nm), thanks to the
asymptotic control of the interval-wise error rate, if the gap were not affect the
emission in such band, we would have selected it as significant with a probability
approximately lower that 1%.

11



400 500 600 700 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model

Wavelength

D
a
ta

400 500 600 700 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gap

Wavelength

D
a

ta

400 500 600 700 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Location

Wavelength

D
a

ta

400 500 600 700 800

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Model

Wavelength
D

a
ta

400 500 600 700 800

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Gap

Wavelength

D
a

ta

400 500 600 700 800

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Location

Wavelength

D
a

ta

Figure 3: Left: adjusted p-value functions for the tests on H̃0,Model (top), H0,Gap (middle) and
H0,Loc (bottom). Right: emission data colored according to gap and location levels (top), gap
levels (middle) and location levels (bottom). The gray areas represent significant intervals at
5% and 1% levels (light and dark grey, respectively)
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4 Conclusions

We proposed a methodology that can be applied in profile monitoring and func-
tional response optimization to select the informative parts of the output func-
tions. The methodology exploits a domain-selective functional ANOVA to study
the effects of one or more underlying factors on the output functions. This se-
lection is performed by extending the interval-wise testing procedure (Pini and
Vantini 2015) to the case of multi-way ANOVA framework. This methodology
represents a significant improvement with respect to the state of the art tech-
niques. Indeed, it is a functional technique, in the sense that considers the whole
functional data instead of performing a prior dimensional reduction. Further-
more, it selects the informative parts of the output functional data, in order
to optimize the monitoring of the input factors through the observation of the
output curves.

The proposed methodology is applied to a remote laser welding case study.
The aim of this study is to remotely monitor the gap between two welded
plates, by observing the emission spectra of the welded material. We applied
the domain-selective functional two-way ANOVA to study the effects of the gap
on the output functions, by taking into account the different locations at which
the emission is registered.

The final result of this analysis is the selection of a wavelength band (i.e., the
band t ∈ (547 nm, 681 nm) corresponding to the thermal emission), in which
the emission is significantly influenced by the gap and not by the location. This
suggests to directly record the emission data on this band, to monitor the gap
between the plates during the welding process at any possible location. The
interval-wise control, that this procedure is based on, gives a direct measure of
the reliability of this result. In detail, we know that, if the emission were effected
by neither the gap nor the location in the band t ∈ (547 nm, 681 nm), we would
have selected it as significant with a probability lower that 5%.

The robustness of this result with respect to the number of knots p of the B-
spline basis expansion employed to smooth the data is discussed in the Appendix.
Even though the results of this robustness study show that in this case, the
number of knots is not a crucial parameter, it is of course of major interest for
future research to explore the trade-off, in terms of power of the procedure, as
p increases.

An interesting future challenge posed by this data analysis is to introduce
the gap in the functional model as a numeric explanatory variable, instead of a
factor. Since the effect of the gap on the emission spectra is observed to be not
monotonic, to perform this analysis, it is key to study its effect, and add the gap
in the model in a non-linear way.
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Appendix. Robustness analysis

To investigate the robustness of the results with respect to the number of knots
of the B-spline expansion, we performed the test by varying this parameter. We
considered different cases, based on B-splines expansions with a different number
of knots. In particular, we started from the analysis reported in Section 3 based
on 200 knots, and tried to double or halve the number of knots. Finally, we also
tried the maximum possible resolution (i.e., 703 knots).

The test on the interaction H0,GapLoc is not significant in all cases. Hence,
the comparison is made on the additive model without interaction (10). The
results of the tests are reported in Figure 4. Similarly to the right panels of
Figure 3, the results of the tests of H̃0,Model, H0,Gap and H0,Loc at 1% and 5%
levels are represented by means of the gray bands below each graphic. The axis
on the left indicates the number of knots used for the B-spline basis expansion,
i.e., 100, 200, 400, and 703 knots, corresponding to length of B-spline supports
of 8, 4, 2, and 1.14 nm.

This further analysis shows that the results are robust with respect to the
number of knots. Both the test on the null model H̃0,Model and the test on
the gap H0,Gap report significant differences in most of the wavelength domain.
In particular, the gap has a significant effect on all three emission ranges. On
the other hand, the effect of the location is significant mostly on the plasma
emission. In all cases, the thermal band detected in Subsection 3.3, presenting
a significant effect of the gap but not of the location, is preserved.
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