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Abstract

In this paper we present a new approach for shape optimization that
combines two different types of model reduction: a suitable low-dimensional
parametrization of the geometry (yielding a geometrical reduction) com-
bined with reduced basis methods (yielding a reduction of computational
complexity). More precisely, free-form deformation techniques are intro-
duced for the geometry description and its parametrization, while reduced
basis methods are used upon a finite element discretization to solve systems
of parametrized partial differential equations. This allows an efficient flow
field computation and cost functional evaluation during the iterative op-
timization procedure, resulting in effective computational savings with re-
spect to usual shape optimization strategies. This approach is very general
and can be applied for a broad variety of problems. To prove its effectivity,
in this paper we apply it to find the optimal shape of aorto-coronaric by-
pass anastomoses based on vorticity minimization in the down-field region.
Stokes equations are used to model blood flow in the coronary arteries.
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1 Introduction and Motivation

The efficient solution of optimal control or shape optimization problems in-
volving partial differential equations (PDEs) is a problem of interest for car-
diovascular surgeons and computational scientists. The goal is the minimiza-
tion/maximization of a given cost functional under some (algebraic, topological
or differential) constraints, controlling either suitable variables (such as sources,
model coefficients or boundary values) or the shape of the domain itself. In this
paper we focus on the latter class of problems referred as shape optimization or
optimal shape design problems [1, 2, 3, 4]. In fluid mechanics, cost functionals
are expressed in terms of flow variables (such as velocity, pressure, temperature,
etc.), while constraints are usually given under the form of PDEs (advection-
diffusion, Stokes or Navier-Stokes equations, etc.) describing the flow, besides
topological constraints on the shape of the domain, if necessary.

In a broad variety of applications the design of devices able to reduce drag
forces, dissipations or stresses greatly enhances the efficiency of a system. The
reduction of drag in transportation vehicles (aircrafts, watercrafts) and of vor-
ticity and stresses in biomedical devices, and the compliance minimization in
cantilevers or membranes represent further instances in which shape optimiza-
tion techniques are called into play.
For the numerical solution of these problems, efficient procedures are required
since (i) PDEs are expensive to solve when solutions need to capture fine details
(such as velocity and thermal boundary layers, vorticity structures, etc.); (ii) the
finite element assembling discretization procedures result expensive when prob-
lem geometry keeps changing; (iii) optimization requires recursive evaluations of
the cost functional. For example, a classical shape optimization algorithm based
on explicit boundary displacement, even though able to give accurate solutions,
proves to be very unefficient, since at each step PDEs problems have to be solved
for a new geometrical configuration. A key to simplification consists of making
use of a reference configuration on which every problem is brought back and
solved at each iteration of the optimization process, and geometry variations are
accounted for the equation coefficients.

The introduction of a suitable (low-dimensional) shape parametrization is
thus instrumental to reduce both the geometrical and computational complex-
ity. Obviously, shape parametrization has to be flexible enough to describe a
wide family of admissible shapes without substantially increasing the number
of parameters and, at the same time, it should be computationally efficient
to allow for a fast solution of the parametrized PDEs. Free-form deformation
techniques [5, 6, 7] provide a powerful tool for representing global and smooth
deformations acting on a small number of design parameters. Once the shape
has been parametrized, we solve iteratively a partial differential (state) equation
and evaluate the cost functional we want to minimize on the parametric domain.
To do this, we rely on reduced basis methods for parametrized partial differential
equations (P2DEs) (see the review papers [8, 9]). Thanks to a suitable compu-
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tational Offline-Online decomposition (see Sec. 6), RB methods provide rapid
and reliable results at a greatly reduced cost, and are well-indicated above all
in real-time (e.g. parameter estimation) and multi-query (e.g. optimization,
control) contexts. The combination of free-form deformation techniques with
reduced basis methods allows a considerable geometrical (i.e. with respect to
the number of design parameters) as well as computational (in terms of linear
system dimensions of the resulting discretized problems) reduction.

Our proposed approach to parametric shape optimization is as follows. First
we introduce the mathematical formulation for parametric PDEs problems. Then,
a suitable parametrization of the geometry is obtained by using free-form defor-
mation (FFD): this technique allows to build a parametric map through which
we reformulate our original problem on a reference configuration, resulting in
a parametrized problem where the effect of geometry variations is traced back
onto its parametrized transformation tensors. Since FFD techniques lead (in
general) to non-affinely parametrized transformations of the computational do-
main, we approximate their components by means of affinely parametrized ten-
sors, through the empirical interpolation method (EIM) [10, 11, 12, 13]. In this
way, we can perform a suitable Offline-Online computational strategy, through
which reduced basis approximation gives a rapid and reliable field solution and
cost functional evaluation. At the outer level, this is used in a suitable iterative
procedure for the (now, parametric) optimization.

The proposed approach is rather general and can be used in a broad va-
riety of application contexts. To provide a proof of its efficacy, in this paper
we apply it to the design of cardiovascular prostheses. More specifically, the
design of a bypass graft has been formulated as a shape optimization and flow
control problem in [14] and later studied using small perturbation techniques
and an asymptotic development in Agoshkov et al. [15, 16]. The reduced basis
framework applied to the Stokes problem approximation has been used to study
a simple bypass design problem in presence of either affine or nonaffine shape
parametrization, treating some shape geometrical dimensions (such as lenghts,
diameters, angles) as design parameters (see [13, 17, 18]).
In this paper we aim at extending this framework, by handling more general
shape parametrizations in order both (i) to enrich the family of possible shape
configurations and (ii) to combine the RB framework with more unspecific tools
for an efficient shape treatment, where (possibly) the parametric shape defor-
mations result independent of the problem geometry, the flow model and the
computational mesh. The approach we propose is in fact based on the coupling
of three different tools – free-form deformation, empirical interpolation and re-
duced basis methods – and applied to steady incompressible Stokes equations.
This combined “RB+FFD” approach features several advantages: it is very flex-
ible, it involves the solution of low dimensional problems (with low geometrical
dimension), yielding substantial computational savings without sacrificing nu-
merical accuracy, even when addressing complex shape optimization problems.
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Needless to say, techniques and methods discussed in this work prove to be useful
also in facing other optimization problems arising in haemodynamics and, more
generally, in computational fluid dynamics.

The paper is organized as follows. In Sec. 2 we address the medical and bio-
engineering aspects of bypass surgery. In Sec. 3 we present a review of reduction
strategies for shape optimization problems and illustrate our proposed approach
to parametric shape design, then in Sec. 4 we study the mathematical modelling
of the problem. In Sec. 5 we introduce free-form deformation techniques for
shape parametrization, while in Sec. 6 we deal with reduced basis methodology
and formulate the reduced basis approximation of the optimal bypass design
problem. In Sec. 7 we deal with optimization and algorithmic aspects, then in
Sec. 8 we introduce numerical results and address a brief comparison with the
previous ones. In the last Sec. 9 we sketch some possible future developments
and improvements.

2 Bypass surgery: medical & bio-engineering aspects

Aorto-coronaric bypass graft surgery represents the standard treatment of ad-
vanced coronary arteries diseases. Coronary circulation is the circulation of
blood in vessels of the heart muscle; in particular, coronary arteries deliver
oxygen-rich blood to the myocardium. In fact, when a coronary artery is af-
fected by atheromatous plaques or a stenosis, the heart muscle does not receive
the necessary oxygen amount through blood circulation: aorto-coronaric anas-
tomosis thus restores the oxygen amount through a bypass surgery downstream
an occlusion (see Fig. 1).

Figure 1: Left side: heart, coronary arteries and bypass graft. Right side:
anatomical depiction of end-to-side and side-to-side models including the aorto-
coronary bypasses (arrows), the coronary arteries (arrowheads), the anastomosis
(asterisks) and their relation to the heart and aorta. Picture taken from Biomed.
Eng. Online, 35(6), 2007.
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Different kind and shape for aorto-coronaric bypass anastomoses are avail-
able (e.g. Miller cuffed models, Taylor patches, etc.) and consequently different
surgery procedures are used to set up a bypass; in general, the connection of the
graft to the coronary artery can be done using an end-to-side or a side-to-side
anastomosis. For a discussion and a comparative approach see, for example, Cole
et al. [19, 20]. Bypass can be made by organic material (e.g. the saphena vein
taken from patients legs or the mammary artery) or by prosthetic material. The
graft patency affects the long-term efficacy of coronary bypass procedures, and
several post-surgical complications have to be taken into consideration. Among
them, we mention intimal thickening hyperplasia (near suture lines), which is a
narrowing of coronary arteries, restenosis, surgical injury, long term graft failure.
In particular, during the first year after bypass surgery up to 15% of venous graft
occlude, while by ten years after only 60% of vein grafts are patent and only
50% of patent vein grafts are free of significant stenosis [21, 22]. Moreover, every
year 8% of all patients risk bypass occlusion, after ten years 80% bypasses must
be replaced (these statistics refer to the situation in the U.S.A.). One of the
most important process is atherosclerotic obstruction occurring on a foundation
of neointimal hyperplasia. This thickening, which results from an accumula-
tion of muscle cells and extracellular matrix in the intimal compartment, is the
principal disease process in venous bypass grafting during the first post-surgical
year and represents the foundation for later development of graft atheroma and
atheromatous plaques.

Computational fluid dynamics (CFD) helps understanding local haemody-
namics phenomena and the effect of vascular wall modication on flow patterns
(e.g. [23]). This can have useful clinical applications especially in surgical pro-
cedures. In the case of bypass grafting, correlations between low and oscillatory
wall shear stress (WSS) or high vorticity areas and atherogenesis or intimal
hyperplasia have been established [24]. Moreover, computational studies have
highlighted the correlation between geometric configurations and vorticity, shear
stress, shear stress gradient [25] and oscillatory shear index [13], as effect of re-
circulation, flow separation and moving stagnation zones [19, 20, 21]. For the
problem at hand, we are interested in the minimization of the blood vorticity in
the down-field region of the bypass by changing the shape of the anastomosis. In
fact, high vorticity areas are responsible of atherogenesis or intimal hyperplasia,
which can eventually lead to the failure of grafting surgery. The design of artifi-
cial arterial bypass is a very complex problem; recent analysis on parametrized
bypass graft configurations [25, 26, 27] have shown a deep influence of anasto-
motic angle and graft-artery diameter ratio on WSS distribution.
In this work we want to improve the results already obtained [14] by developing
new tools of model order reduction and formulating the problem as a suitable
parametrized shape optimization problem. We aim at demonstrate the potential
role of shape optimization techniques in designing bypass grafts, coupled with
(i) suitable low-dimensional shape parametrization techniques for the configu-
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ration description (and reduction of geometrical complexity) and (ii) reduced
basis methods for the solution of parametric PDEs problems and computational
reduction.

3 Model Order Reduction strategies in Shape Opti-

mization

The example addressed in the previous section represents an instance where the
design of an optimal configuration arises in a (i) user-dependent (e.g. patient-
specific in the case of a bypass), (ii) real-time (since we could be interested in
a very rapid solution) and (iii) many-query (since optimization requires repet-
itive evaluations of different configurations) contexts. In this scenario, suitable
parametrization techniques and reduced basis methods allow to obtain more ef-
ficient methods.

In particular, we consider an output of interest as a function of an input
parameter P -vector µ related to geometry, physical properties, boundary condi-
tions or sources; the input parameter domain is denoted as D ⊂ R

P . The output
of interest s(µ) is (in our case, say a quadratic) functional of a field variable u(µ),
s(µ) = J(u(µ)), where u(µ) satisfies a PDE parametrized with respect to µ.
We thus arrive at an input–output statement µ → s(µ) evaluation of which
requires to solve a parametrized partial differential equation (P2DE). The pos-
sibility of performing this evaluation in a very rapid way is crucial in optimal
control problems, where we might need to execute iteratively a large amount
(say, O(102)) of these operations. For this kind of problems, input parameters
can be divided into three classes: control (i.e depending, in some way, on control
function), physical (like velocity field or diffusivity) and geometrical (i.e. related
to different domain conguration). On the other hand, the output of interest s(µ)
is the cost functional which has to be minimized, while the underlying P2DE
gives the (state) constraint. By suitable parametrizations, shape optimization
problems can be recast as optimal control problems dealing with geometrical (or
design) parameters as control variables. The problem we consider in this work
is related both to optimal design and flow control [28, 29, 4]. Indeed, we refer to
parametric shape optimization [1] when dealing with a flow control through the
optimization of the parametrized shape of the domain crossed by the flow itself.

A crucial point in shape optimization is the definition of the set of admissible
shapes under which optimization can be performed. Following an increasing level
of reduction, three different approaches can be envisaged:

- Topological Shape Optimization: in the most general case, we deal with
the optimization of a shape by acting, during the optimization process,
both on the position of its free boundary and on its topology [1, 30], as for
example the inclusion of holes.
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- Geometrical Shape Optimization: very often, the problem is formulated as
the minimization of a cost functional (depending on both the shape and
the solution of a PDE system) on a set of shapes with fixed topological
properties; the position of the domain boundary under control is changed
during the optimization process [31, 32, 33].

- Parametric Shape Optimization: this third approach is based on the pos-
sibility to describe the shape by means of some input parameters [1] and
it is naturally the best framework where reduced basis methods for P2DEs
can be introduced. Depending on the role played by input parameters, we
can obtain three different subcases, depicted in Fig. 2:

1. input parameters are geometrical properties (e.g. lenghts, angles, di-
ameters, etc.) that identify different configurations in a family of
shapes chosen a priori. In this way we obtain a simple but often
restrictive description of domain shapes. For example, bypass con-
figurations have been modeled as “T-shaped” domains with a curved
incoming branch in previous works [13, 9, 18];

2. input parameters are variables describing shape boundary, by means
of explicit boundary parametrization or else involving given shapes
families (such as Bézier curves, B-splines [34, 35], etc.). The family
of admissible shapes is thus wider, however shape deformations still
depend on reference configuration and computational mesh;

3. input parameters are free-form parameters, such as perturbations ap-
plied to a lattice of mesh-independent control points [5, 36, 6, 7]. In
this case design parameters are not directly connected to geometrical
properties, neither to the shape boundary we want to optimize.

With respect to the geometrical shape optimization, the parametric shape
optimization framework allows to reach increasing levels of complexity re-
duction (see the review [37] for a comparison of different options). In
particular, free form deformation techniques realize a very good trade-off
between shape flexibility and using a low number of parameters, allowing
therefore to achieve global computational efficiency by using a low dimen-
sional optimization space [3]. A detailed description of this method will
be provided in Sec. 5.

4 Mathematical modelling and parametrized PDEs

In the perspective of using low order methods for shape optimization, we adopt
the steady Stokes (rather than the more appropriate Navier-Stokes) equations for
modelling low Reynolds blood flow in mid size arteries [23, 14], like e.g. the coro-
nary arteries. Besides, because of flow pulsatility we should consider unsteady
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Figure 2: Different parametrization approaches: input parameters as geometrical prop-
erties (left), as variables describing shape boundary through a shapes family {φi}i∈I

(middle), as free-form parameters (right).

equations, however such a model would be too complex in view of reducion
strategies for shape optimization, since we would deal with time-dependent do-
main shapes (because of the heart beat). Once we get results from the shape
optimization procedure using this low fidelity approach, we have to test it with
a higher fidelity model, as proposed in [14]. With the goal of reducing blood
vorticity in the down-field zone of the incoming branch of the bypass, we intro-
duce a suitable parametric output (expressed as a functional of field variables)
to be minimized.

4.1 Geometry description, state equations, system observation

To model the incoming branch of a bypass we consider a longitudinal section in
the mean plane and the corresponding two-dimensional domain Ωo := Ωo(µ),
whose shape is depending on a set of P ≥ 1 geometrical parameters µ =
(µ1, . . . , µP ) ∈ D ⊂ R

P . The original domain Ωo(µ) can be seen as obtained by a
reference domain Ω through a regular parametric domain map T (·;µ) : Ω → R

2.
The steady Stokes equations [38] in Ωo(µ) read as follows:



























−ν∆vo + ∇po = fo in Ωo(µ)
∇ · vo = 0 in Ωo(µ)
vo = 0 on Γo

w

vo = gD on Γo
in

−pon + ν
∂vo

∂n
= gN on Γo

out,

(1)

where (vo, po) are the velocity and the pressure fields, for some given fo, gD,
gN ; no is the normal unit vector on the boundary ∂Ωo(µ), which is partitioned
in three components (see Fig. 3): Γo

in is the inflow boundary, Γo
out the outflow

boundary and Γo
w the boundary corresponding to the arterial wall.

We set Γo
D = Γo

in ∪ Γo
w. The inflow boundary Γo

in is given by two different
inflow sections: the bypass inflow section Γo

b and the stenosed artery section
Γo

a. No-slip conditions are imposed on Γw, while homogeneous (free-stress) Neu-
mann conditions are imposed on the outflow section Γo

out. Concerning inflow
boundary conditions, we impose a Poiseuille parabolic profile on Γo

b . Indeed, the
Womersley number [23] for blood flow in coronary arteries is Wo ≈ 2.1 and a
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graft

Ωdf
o (µ)

Γo
in = Γo

a ∪ Γo
b

Γo
out

Γo
w = ∂Ωo(µ) \ {Γo

in ∪ Γo
out}Γo

b

Γo
a

Ωo(µ)heel
toe

host artery

Figure 3: Idealized two-dimensional bypass anastomosis and notation used for domain
and boundary; Ωdf

o (µ) is the down-field region where observation will be made.

steady Womersley profile can be assimilated at a simpler Poiseuille flow. Then
we consider two different cases for the artery section Γo

a, according that we have
either complete occlusion (gD = 0 on Γo

a) or a partial occlusion (residual flow
gD 6= 0 on Γo

a). Inflow peak velocity is ṽo = 30 cm s−1, while arterial diameter
is about 0.3 cm; blood dynamic viscosity is µ = 0.04 g cm−1 s−1, blood density
ρ = 1 g cm−3, thus yielding a kynematic viscosity ν = µ/ρ = 0.04 cm2 s−1 and
a Reynolds number Re = ṽoD/ν of order 102.

Since we are interested in minimizing blood vorticity in the down-field zone
of the bypass, we consider a distributed observation of the vorticity ∇× vo on
a subset Ωdf

o ⊂ Ωo; we thus control the system by minimizing the following
functional:

Jo(Ωo,vo) =
κ

2

∫

Ωdf
o

|∇ × vo|
2dΩo, (2)

depending both on the shape of the domain Ωo and on the velocity vo that is
the solution of the state equation (1); κ > 0 is a given coefficient. We thus have
the following shape optimization problem:

find Ω̂o = arg min
Ωo∈Oad

Jo(Ωo,vo) (3)

where Jo(Ωo,vo) is given by (2) and Oad is a family of admissible shapes. Ex-
istence of solutions of this problem is in general stated [29, 33] for

Oad = {Ωo ∈ UL : |Ωo| ≤ V, Ωo ∩D = Γin},

where UL = {Ωo ⊂ D,Ωo open Lipschitz domain} and D is a given fixed rectan-
gle of area V ; first order necessary conditions can be derived by either introducing
a suitable adjoint problem [39, 14, 13] or using the approach based on Lagrange
multipliers [28].

4.2 Parametrized formulation

Indicating with X(Ωo) and Q(Ωo) the spaces (H1
0,ΓD

(Ωo))
2 and L2(Ωo) respec-

tively, where H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}, let us introduce a lift function

Rog
D ∈ (H1(Ωo))

2 such that Rog
D|Γin

= gD
o . We denote ṽo = vo − Rog

D, so
that ṽo|ΓD

= 0 and ∇ṽo = ∇vo − ∇Rog
D. For the sake of simplicity, we still
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denote ṽo with vo in the sequel, as no ambiguity occurs. The weak formulation
of (1) on Ωo reads as follows: find (vo, po) ∈ X(Ωo) ×Q(Ωo) such that

{

ao(vo,Φ) + bo(po,Φ) = F o(Φ) ∀ Φ ∈ X(Ωo)
bo(ϕ,vo) = Go(ϕ) ∀ ϕ ∈ Q(Ωo),

(4)

where, for 1 ≤ i, j ≤ d = 2 (with the implied summation of repeated indices),

ao(v,w) =

∫

Ωo

∂v

∂xoi
νo

ij

∂w

∂xoj
dΩo, bo(p,w) = −

∫

Ωo

p∇ ·wdΩo,

F o(w) = F o
f (w) + F o

0 (w),

being νo
ij = νδij , with δij indicating the Kronecker symbol. The force field term

and the ones due to non-homogeneous Dirichlet boundary conditions are given,
respectively, by

F o
f (w) =

∫

Ωo

fo ·wdΩo +

∫

Γo
out

gN ·wdΓo,

F o
0 (w) = −ao(Rog

D,w), Go(q) = −bo(q,Rog
D).

By tracing (4) back on the reference domain Ω by the parametric mapping
such that Ωo(µ) = T (Ω;µ) (whose construction will be discussed in Sec. 5) we
have the following parametrized formulation: find (v(µ), p(µ)) ∈ X(Ω) ×Q(Ω)
such that

{

a(v(µ),Φ;µ) + b(p(µ),Φ;µ) = F (Φ;µ) ∀ Φ ∈ X(Ω)
b(φ,v(µ);µ) = G(φ;µ) ∀ φ ∈ Q(Ω),

(5)

where

a(v,w;µ) =

∫

Ω

∂v

∂xi
νij(x,µ)

∂w

∂xj
dΩ, b(p,w;µ) = −

∫

Ω
pχij(x,µ)

∂wj

∂xi
dΩ,

and
F (w;µ) = Fs(w;µ) + F0(w;µ),

with

Fs(w;µ) =

∫

Ω
f · w |det(JT )|dΩ +

∫

Γout

gN · w|JT t|dΓ,

F0(w;µ) = −a(RgD,w;µ), G(q;µ) = −b(q,RgD;µ).

Notations are as follows:

- RgD ∈ (H1(Ω))2 is such that RgD|ΓD
= gD and t denotes the unit tan-

gential vector to ∂Ω;

- the transformation tensor in the bilinear form a(·, ·;µ) is defined as

ν(x,µ) = J−1
T νoJ−T

T |det(JT )|; (6)
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- the tensor used in the bilinear form b(·, ·;µ) is given by

χ(x,µ) = J−1
T |det(JT )|, (7)

where JT = JT (x,µ) denotes the Jacobian of T (x,µ) and det(JT ) its
determinant.

A necessary condition for the well-posedness of problem (5) is the Babuška
“inf-sup” condition [40], which can be stated as follows. Let us introduce Y :=
Y (Ω) = X(Ω) ×Q(Ω), V = (v, p)T and W = (w, q)T ; clearly ‖V‖Y := ‖v‖X +
‖p‖Q is a norm on the product space Y . Moreover, we can define the bilinear
form ã(·; ·;µ) : Y (Ω) × Y (Ω) → R given by

ã(V,W;µ) := a(v;w;µ) + b(p,w;µ) + b(q,v;µ).

We next introduce the supremizer operator [40] Tµ : Y → Y such that, for any
W ∈ Y ,

(TµW,V)Y = ã(W,V;µ), ∀ V ∈ Y (8)

and indicate with β(µ) the following quantity,

β(µ) := inf
W∈Y

sup
V∈Y

ã(W,V;µ)

‖W‖Y ‖V‖Y
, (9)

so that
β(µ)‖W‖Y ‖TµW‖Y ≤ ã(W, TµW;µ), ∀ W ∈ Y. (10)

Hence, we require that the Babuška “inf-sup” stability condition holds, i.e.

∃ β0 > 0 : β(µ) ≥ β0 > 0, ∀ µ ∈ D, (11)

where β0 is said “inf-sup” stability constant. Moreover, we require that the
bilinear form ã(·; ·;µ) is continuous, i.e. the continuity constant

γ(µ) := sup
V∈Y

sup
W∈Y

ã(V,W;µ)

‖W‖Y ‖V‖Y

is finite for all µ ∈ D, as well as the linear forms F (·;µ) and G(·;µ) are contin-
uous for all µ ∈ D. All these hypotheses are verified whether νij(·;µ) ∈ L∞(Ω),
χij(·;µ) ∈ L∞(Ω) for all µ ∈ D and f ∈ (L2(Ω))2, gD ∈ (L2(ΓD))2, gN ∈
(L2(ΓN ))2.

Concerning the minimization problem (3), its parametrized form can be
stated as follows:

find µ̂ = arg min
µ∈D

s(µ) (12)

where

s(µ) := J(v(µ)) =
κ

2

∫

Ωdf

|R(v(µ))|2|det(JT )|dΩ, (13)

and R(v(µ)) = (∇×v(µ))◦T (· ;µ) = (J−1
T )1j∂v2(µ)/∂xj−(J−1

T )2j∂v1(µ)/∂xj ,
being (v(µ), p(µ)) the solution of the parametrized Stokes problem (5). Well
posedness and optimality conditions for (12) can be easily derived using standard
arguments and techniques [1].
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5 Shape parametrization by free-form deformation

techniques

Since shape representation is highly specific problem-dependent, various meth-
ods have been proposed; a classical approach largely adopted in geometrical shape
optimization is the so-called local boundary variation technique [1, 4], while the
most common shape representation adopted in parametric shape optimization
problems is the explicit boundary shape parametrization [41, 35, 34]. The former
uses the discrete nodes of the triangulation lying on the boundary as design vari-
ables and their displacement for the shape deformation. Since very fine meshes
are needed for complex shapes or flows, the number of design variables may be-
come very large, leading to very high computational costs. The latter involves
shapes families (mainly polynomial or spline functions) depending on a small set
of control points, even if a larger number of parameters may be required to rep-
resent complex shapes. Nevertheless, after each shape deformation, remeshing
is in order.

An alternative approach, potentially able to avoid both problems of complex
shapes and remeshing, is the free-form deformation (FFD) technique, in which
it is the deformation of an initial design (and not the geometry itself) to be
parametrized. The technique consists of embedding the shape to be deformed
inside a control area and then of modifying – by acting on a lattice of control
points – the metrics of this space and thus the shape within it, rather than in
modifying the shape directly. A modification of the control points position thus
results in a deformation inside the control area and, automatically, of the com-
putational finite element mesh. Based on tensor product of splines, FFD inherits
from boundary parametrization techniques the possibility to handle with global
deformations by acting on a small set of control points [5, 6], but provides an
easier tool since any explicit parametrization is required [3]. FFD coupled with
reduced basis methods has previously been proposed as a parametrization tech-
nique for inverse airfoils design [42] and thermal flows control [43]; extensions to
three-dimensional geometries is quite straightforward [36].

Given a fixed rectangular domain D containing the reference domain Ω ⊂ D,
we introduce an affine map x̂ = Ψ(x), x ∈ D, such that Ψ(D) = (0, 1)2 ≡ D̂; by
this freezing procedure, FFD can be defined in a simpler way in the coordinates
x̂ = (x̂1, x̂2) of the spline parameter space (0, 1)2. On D̂ we thus select an
ordered mesh of (L+ 1) × (M + 1) unperturbed control points

Pl,m = [l/L,m/M ]T , l = 0, . . . , L, m = 0, . . . ,M

and modify the object by moving a control point to a new position. The cor-
responding perturbed control points Po

l,m are thus specified by a set of (L +

1)(M + 1) parameter vectors µl,m ∈ R
2

Po
l,m(µl,m) = Pl,m + µl,m, (14)
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giving in all 2(L+ 1)(M + 1) possible degrees of freedom. As often as not, only
small subsets of these are selected as design variables if we want to perform a
sensible geometrical model order reduction; moreover, several rows or columns of
control points can be fixed to obtain desired levels of continuity or to “anchor”
certain parts of the domain. In general, among the control points Pl,m, we
indicate the effectively free scalar-valued parameters chosen as design variables
as µ1, . . . , µP – each corresponding to the displacement of a control point in
either the x̂1 or the x̂2 direction, i.e. to one of the components of a vector µl,m

– and define the parametric map T̂ (·;µ) : D̂ → D̂o(µ) by which the uploaded
geometry is computed as follows:

T̂ (x̂;µ) =

(

L
∑

l=0

M
∑

m=0

bL,M
l,m (x̂)Po

l,m(µl,m)

)

, (15)

where

bL,M
l,m (x̂) = bLl (x̂1)b

M
m (x̂2) =

(

L

l

)(

M

m

)

(1 − x̂1)
L−lx̂l

1(1 − x̂2)
M−mx̂m

2

are tensor products of the unidimensional Bernstein basis polynomials defined
on D̂ by

bLl (x̂1) =

(

L

l

)

x̂l
1(1 − x̂1)

L−l, bMm (x̂2) =

(

M

m

)

x̂m
2 (1 − x̂2)

M−m.

Finally, the FFD mapping T (·,µ) is obtained as the composition

T (·;µ) : D → Do(µ), T (x;µ) = Ψ−1 ◦ T̂ ◦ Ψ(x;µ); (16)

in particular, the parametrized domain Ωo(µ) is obtained as Ωo(µ) = Ψ−1 ◦ T̂ ◦
Ψ(Ω;µ); see Fig. 4 for a representation of the mapping construction. Since only
the degrees of freedom corresponding to µ1, . . . , µP are considered as design vari-
ables, the map (15) can be seen as a function of µ = (µ1 . . . , µP ); nevertheless,
also other control points – which do not correspond to effective design variables
– obviously go under displacement. The number and position of control points
chosen have a deep impact on FFD flexibility: it is crucial to maximize the in-
fluence of the control points by placing them close to the sensitive regions of the
configuration. In particular, displacement of the points belonging to a side on
∂D depends only on the perturbation µi of the control points lying on that side,
thanks to the expression of the map (15). Using the inverse of T (·;µ) we can get
the parametrized formulation of the problem (5) by mapping the equations back
onto the reference domain Ω and computing the transformation tensors (6) and
(7). Compared to classical strategies such as boundary shape parametrization,
FFD techniques lead to low-dimensional parametrizations without loss of accu-
racy, since perturbations on parameters yield smooth shape deformations even
if control points are not related to the shape boundary. Moreover, FFD inherits

13



T (·,µ)

Ψ

Ω

D

Ωo(µ)Do(µ)

Ψ−1

Pl,m

Po
l,m = Pl,m + µl,m

D̂o(µ)D̂

T̂ (·,µ)

Figure 4: Schematic diagram of the FFD technique: unperturbed control points Pl,m,

perturbed control points Po
l,m(µl,m), mappings x̂ = Ψ(x), T̂ (x̂; µ) and resulting FFD

mapping T (x; µ) = (Ψ−1 ◦ T̂ ◦ Ψ)(x; µ).

from boundary parametrization techniques the possibility to handle with global
deformations by acting on a small set of control points [5, 6], but provides an
easier tool since any explicit parametrization is required [3]. We next introduce
reduced basis methods for approximating in a rapid and reliable way solutions
to (5) and then evaluating the parametric output (13).

6 Reduced basis method for noncoercive PDEs

Our approach to shape optimization takes advantage of reduced basis (RB)
method for rapid and reliable prediction of engineering outputs associated with
PDEs driven by one or more parameters that can represent both physical and
geometrical problem features [8, 9]. This method is premised upon a classical fi-
nite element (FE) method “truth” approximation space of (typically very large)
dimension N and is based on the use of “snapshot” FE solutions of the PDEs
(corresponding to certain values of the parameters) as global approximation ba-
sis functions previously computed and stored. Here we are interested in solving
by RB method an optimization problem like (5)-(13).

Given two FE spaces XN and QN for velocity and pressure respectively,
standard FE discretization of (5) is obtained through a Galerkin projection as
follows: find (vN (µ), pN (µ)) ∈ XN ×QN such that

{

a(vN (µ),Φ;µ) + b(pN (µ),Φ;µ) = F (Φ;µ) ∀ Φ ∈ XN ⊂ X(Ω)
b(φ,vN (µ);µ) = G(φ;µ) ∀ φ ∈ QN ⊂ Q(Ω).

(17)
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The dimension N = NX + NQ of the FE spaces is thus taken large enough in
order to neglect the differences ‖vN (µ) − v(µ)‖X(Ω) and ‖pN (µ) − p(µ)‖Q(Ω),
so that it can be effectively considered as a“truth” approximation. In our case
XN ×QN is the space of Taylor-Hood P2−P1 elements for velocity and pressure,
respectively. However, this choice is not restrictive, the whole construction keeps
holding for other spaces combinations as well.

6.1 Reduced basis approximation: formulation and main fea-

tures

The RB method efficienly computes an approximation of (vN (µ), pN (µ)) by us-
ing global approximation spaces made up of well-chosen solutions of (17), i.e.
corresponding to specific choices of the parameter values. The basic assumption
is that the solution to (5) depends smoothly on the parameters, whence the para-
metric manifold of solutions in X(Ω)×Q(Ω) is smooth too and can be approxi-
mated by selecting, among classical FE solutions, some “snapshot” solutions. Let
us take a relatively small set of parameter values SN = {µ1, . . . ,µN} and con-
sider the corresponding FE solutions (vN (µ1), pN (µ1)), . . . , (vN (µN ), pN (µN )),
where typically N ≪ N . We define the reduced basis pressure space QN

N ⊂ QN

as
QN

N = span{ζ̃n := pN (µn), n = 1, . . . , N}.

The reduced basis velocity space XN
N ⊂ XN can be built as

XN
N = span{σ̃n := vN (µn), Tµ

p ζ̃n, n = 1, . . . , N},

where Tµ

p : QN
N → XN

N is the so-called inner supremizer operator acting on
pressure term, defined as

(Tµ

p q,w)X = b(q,w;µ) ∀ w ∈ XN
N . (18)

With the above definitions of the two reduced basis spaces, the following LBB
condition [13, 17] holds:

inf
q∈QN

N

sup
w∈XN

N

b(q,w;µ)

‖w‖X‖q‖Q
=: βN (µ) ≥ β(µ) ≥ β0 > 0, ∀ µ ∈ D. (19)

where β(µ) and β0 are the same constants as in (9) and (11). By using Galerkin
projection onto XN

N ×QN
N we obtain the following reduced basis approximation:

find (vN
N (µ), pNN (µ)) ∈ XN

N ×QN
N such that

{

a(vN
N (µ),w;µ) + b(pNN (µ),w;µ) = F (w;µ) ∀ w ∈ XN

N

b(q,vN
N (µ);µ) = G(q;µ) ∀ q ∈ QN

N .
(20)

Condition (19) ensures well-posedness of (20). In practice, the Gram-Schmidt
orthonormalization procedure [13] has to be adopted, to build basis for pressure
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and velocity RB spaces that guarantee algebraic stability (i.e. the condition
number of the resulting RB system is relatively small); hence, the RB solution
can be written as

vN
N (µ) =

2N
∑

j=1

vNj(µ)σj , pNN (µ) =

N
∑

l=1

pNl(µ)ζl, (21)

where {σj}
2N
j=1 and {ζl}

N
l=1 are orthonormal basis for XN

N and QN
N , respectively.

Since N ≪ N , problem (20) has a much lower dimension than (17). RB method
offers the possibility to provide both reliable results and rapid response in the
real-time and multi-query contexts. Reliability is ensured by rigorous a posteriori
estimations [12, 8, 9] for the error in the reduced basis approximation relative
to the “truth” FE discretization; rapid response is ensured by an Offline–Online
computational strategy that minimizes marginal cost and a rapidly convergent
global RB approximation space construction [9]. In this way, in an expensive
Offline stage we prepare a very small RB “database”, while in the Online stage,
for each new value of µ ∈ D, we rapidly evaluate both the output of interest
and the associated a posteriori error bound whose complexity is independent of
the dimension N of the “truth” FE approximation space.

6.2 Reduced basis space assembling and error estimation

The choice of the snapshot solutions is crucial for the accuracy of the RB ap-
proximation and is operated using the following greedy algorithm [8, 9]. Let
Ξtrain ⊂ D be a (sufficiently rich) finite training sample of parameter points cho-
sen using a uniform distribution on D and indicate by VN (µ) = (vN (µ), pN (µ)),
VN

N (µ) = (vN
N (µ), pNN (µ)) the FE approximation and the RB approximation,

respectively (we are using notations for spaces and norms introduced in Sec.
4.2). Given the first parameter value µ1 and a sharp, rigorous and inexpensive
error bound ∆n(µ) for the norm such that

‖VN (µ) − VN
n (µ)‖Y ≤ ∆n(µ) for all µ ∈ D,

we choose the remaining parameter values (and corresponding snapshot solu-
tions) as

µn := arg max
µ∈Ξtrain

∆n−1(µ), for n = 2, . . . , N

until an error tolerance εRB
tol a priori fixed is achieved:

∆N (µ) ≤ εRB
tol for all µ ∈ Ξtrain.

The error bound ∆n(µ) is also used for estimating the error of the RB approxi-
mation w.r.t. the “truth” FE solution [8, 9] and can be defined introducing the
residuals

rv
n(w;µ) := F (w;µ) − a(vN

n (µ),w;µ) − b(pNn (µ),w;µ),

rp
n(q;µ) := G(q;µ) − b(q,vN

n (µ);µ).
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Note that

rv
n(w;µ) = a(vN (µ) − vN

n (µ),w;µ) + b(pN (µ) − pNn (µ),w;µ) ∀ w ∈ XN ,

rp
n(q;µ) = b(q,vN (µ) − vN

n (µ);µ) ∀ q ∈ QN

or, equivalently,

r̃n(W;µ) = ã(VN (µ) − VN
n (µ),W;µ) ∀ W ∈ Y N ≡ XN ×QN ,

where r̃n(W;µ) := rv
n(w;µ) + rp

n(q;µ). Using the condition (10), we have the
following residual-based estimator

‖VN (µ) − VN
n ‖Y ≤

‖r̃n(·;µ)‖Y ′

βLB(µ)
=: ∆n(µ) (22)

where ‖ · ‖Y ′ is the dual norm of the residual defined as

‖r̃n(·;µ)‖Y ′ = sup
V∈Y N

r̃n(V;µ)

‖V‖Y

and βLB(µ) is a computable lower bound for the inf-sup constant β(µ) [44].
Efficient and reliable methods of computing both the dual norm of the residual
and βLB(µ) will be reported in a forthcoming work [45]. Once the reduced
basis approximation (vN (µ), pN (µ)) has been computed for a given µ ∈ D by
solving the system (20), we are interested in the error estimation with respect
to the corresponding FE solution (vN

N (µ), pNN (µ)). Since the use of a priori
theory proves to be rather difficult in this context, we use the same residual-
based estimator (22) in order to provide a posteriori error estimates in a rapid
and reliable way. Moreover, a posteriori error estimators for the error on the
output |sN (µ)−sNN (µ)| = |J(vN (µ))−J(vN

N (µ))| (see [46]) could be introduced,
but their characterization in the noncoercive case for quadratic outputs is more
difficult and is currently under investigation.

6.3 Offline-Online efficient computational strategy

A suitable Offline/Online decomposition stratagem enables to decouple the gen-
eration and projection stages of the RB approximation: a very expensive (pa-
rameter independent) pre-processing performed Offline once prepares the way for
subsequent very inexpensive calculations performed Online for each new PDEs
solution or input-output evaluation required. The possibility to handle with this
computational procedure is based on an affine parametric dependence assump-
tion on both bilinear and linear forms. If the mapping T (·;µ) : Ω → Ωo(µ) is
affine, parametric bilinear forms a(·, ·;µ) and b(·, ·;µ) are affinely parametrized
[9, 8], i.e.

a(v,w;µ) =

Qa
∑

q=1

Θq
a(µ)aq(v,w), b(p,w;µ) =

Qb
∑

q=1

Θq
b(µ)bq(p,w)
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for some integers Qa, Qb, where q is a condensed index for (i, j, k),

aq(i,j,k)(v,w) =

∫

Ω
ξi,j
k (x)

∂v

∂xi

∂w

∂xj
dΩ, bq(i,j,k)(p,w) =

∫

Ω
ηi,j

k (x)p
∂wi

∂xj
dΩ,

(23)
Θq

a(µ) = βi,j
k (µ), Θq

b(µ) = γi,j
k (µ)

and, for 1 ≤ i, j ≤ 2,

νij(x,µ) =

Ka
ij
∑

k=1

βi,j
k (µ)ξi,j

k (x), χij(x,µ) =

Kb
ij
∑

k=1

γi,j
k (µ)ηi,j

k (x). (24)

In the same way, we can write the right-hand-side terms as

F (w;µ) =

QF +Qa
∑

q=1

Θ̃F
q (µ)F q(w), G(φ;µ) =

QG
∑

q=1

ΘG
q (µ)Gq(φ)

for some integers QF and QG ≡ Qb, where here q is a condensed index for (i, k),

F q(w) =

∫

Ω
ψi

k(x)widΩ, ΘF
q (µ) = δi

k(µ), q = 1, . . . , QF , (25)

fi(x)|det JT (x,µ)| =

K
f
i

∑

k=1

δi
k(µ)ψi

k(x), i = 1, 2, (26)

F q(w) = aq(Rvg,w), Θ̃F
q (µ) = −Θa

q(µ), q = QF + 1, . . . , QF +Qa,

Gq(φ) = bq(φ,Rvg), Θ̃G
q (µ) = −Θb

q(µ), q = 1, . . . , QG = Qb.
(27)

These assumptions enable to split the computation of solutions for (20) into
Offline and Online stages, since from (20) we obtain


























Qa
∑

q=1

Θq
a(µ)aq(vN

N (µ),w) +

Qb
∑

q=1

Θq
b(µ)bq(pNN (µ),w) =

QF +Qa
∑

q=1

Θ̃F
q (µ)F q(w)

Qb
∑

q=1

Θq
b(µ)bq(q,vN

N (µ)) =

QG
∑

q=1

ΘG
q (µ)Gq(φ)

(28)
for all w ∈ XN

N , φ ∈ QN
N . Using the expressions (21), system (28) becomes,

componentwise, for 1 ≤ i ≤ 2N and 1 ≤ l ≤ N ,


























2N
∑

j=1

Qa
∑

q=1

Θq
a(µ)Aq

ijvNj(µ) +

N
∑

l=1

Qb
∑

q=1

Θq
b(µ)Bq

ilpNl(µ) =

QF +Qa
∑

q=1

Θ̃f
q (µ)F q

i ,

2N
∑

j=1

Qb
∑

q=1

Θq
b(µ)Bq

jlvNj(µ) =

QG
∑

q=1

Θg
q(µ)Gq

l ,

(29)
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where Aq
ij = aq(σj , σi), B

q
il = bq(ζl, σi), F

q
i = f q(σi) and Gq

l = gq(ζl). In this
way, computation entails an expensive µ-independent Offline stage performed
only once and an Online stage for any chosen parameter value µ ∈ D. During
the former the basis functions σn, ζl, the matrices Aq, Bq and the vectors F q, Gq

are computed and stored; in the latter, for any given µ, all the Θq(µ) coefficients
are evaluated and then the 3N × 3N linear system (29) is assembled and solved
as a usual Stokes system, being of the form

(

A B
BT 0

)(

vN

pN

)

=

(

F
G

)

. (30)

Although being dense (rather than sparse as in the FE case), the system matrix is
very small, with a size independent of the FE space dimension N . Details about
the assembling procedure of these matrices will be given in the next section.
Moreover, also the dual norm of the residual appearing in (22) can be computed
efficiently by using the Offline-Online procedure [8, 9].

Since the map T (·;µ) (15) obtained by FFD method is in general a polyno-
mial map, the tensor νT (x;µ) is not affinely parametrized in the sense of (24)
nor is |det(JT )| appearing also in χT (x;µ) and F(w;µ). Hence, an interme-
diate step is necessary in order to recover the affinity assumption and thus the
possibility of computing the RB solution through an Offline/Online decompo-
sition. In the non-affine case, we rely on the empirical interpolation method
(EIM) [10, 11], which is an interpolation method for parametric functions based
on adaptively chosen interpolation points and global shape functions. According
to EIM each component νij(x;µ) is approximated by an affine expression given
by

ν̃i,j(x;µ) =

Ka
ij
∑

k=1

β̃i,j
k (µ)ξ̃i,j

k (x) + εai,j(x;µ). (31)

The same approximation is set up for the components of the χT tensor and the
right-hand-side of velocity equation:

χ̃i,j(x;µ) =

Kb
ij
∑

k=1

γ̃i,j
k (µ)η̃i,j

k (x) + εbi,j(x;µ),

fi(x)|det(JT (x;µ))| =

K̃i
∑

k=1

δ̃i
k(µ)ψ̃i

m(x) + εi(x;µ).

(32)

All the coefficients βi,j
m ’s, γi,j

m ’s, δi
m’s, ξi,j

k ’s, ηi,j
k ’s and ψi

m’s are efficiently com-
putable scalar functions and the error terms are guaranteed to be under some
tolerance,

‖ε
(a,b)
i,j (·;µ)‖∞ ≤ εEIM

tol , ‖εi(·;µ)‖∞ ≤ εEIM
tol , ∀µ ∈ D.

We refer the reader to Barrault et al. [10] and Nguyen [12] for details on EIM
procedures for non-affine RB problems and to a more recent work [42] for details
on EIM implementation and application in the FFD context introduced in Sec. 5.
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7 Numerical solution of parametric shape optimiza-

tion problems

At this stage, reduced basis methods, combined with shape parametrization
by free-form deformation and empirical interpolation for treating non-affinities,
enable to solve the parametrized optimization problem (12), which is a nonlinear
programming problem but depending on a relatively small number of parameters,
in a very efficient way. We proceed as follows. We consider the reduced version
of (12):

find µ̂N = arg min
µ∈D

sN (µ) (33)

where

sN (µ) := JN (vN
N (µ)) =

κ

2

∫

Ωdf

|R(vN
N (µ))|2|det(JT )|dΩ (34)

being (vN
N (µ), pNN (µ)) the RB solution to the system (20). Thus, in the Of-

fline stage, we perform once for all parameter-independent computations to set
geometrical parametrization and RB structures. In more details:

1. we compute the parametric FFD mapping T (·;µ) (16) and perform the
empirical interpolation to obtain the affinely parametrized expansions (24)-
(26);

2. we assemble the finite element matrices Aq ∈ R
NX×NX (q = 1, . . . , Qa),

Bq ∈ R
NX×NQ (q = 1, . . . , Qb) corresponding to the bilinear forms (23),

the right-hand sides Fq ∈ R
NX (q = 1, . . . , QF ), Gq ∈ R

NQ (q = 1, . . . , QG)
corresponding to the linear forms (25) and (27);

3. we calculate a lower bound βLB(µ) for the inf-sup constant by means of
the successive constraint method [44, 9];

4. we perform the greedy procedure presented in Sec. 6.2 for building the RB
spaces XN

N and QN
N for velocity and pressure respectively. Each Stokes

problem has been solved using the Pressure-Matrix Method; moreover, at
each iteration the space XN

N is enriched by the solution of (18) (supremizer
operator) and a Gram-Schmidt ortonormalization is executed;

5. after the greedy basis selection procedure, matrices Aq, Bq and vectors F q,
Gq are obtained by a pre- and post- multiplication of the corresponding
FE structures with the RB representations ZX = [ σ1 | . . . | σ2N ], ZQ =
[ ζ1 | . . . | ζN ]:

Aq = ZT
XAqZX , q = 1, . . . , Qa; Bq = ZT

XBqZX , q = 1, . . . , Qb;
F q = ZT

XFq, q = 1, . . . , Qa +QF ; Gq = ZT
QG

q, q = 1, . . . , QG ≡ Qb.
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The Offline stage thus depends on the choice of the FE spaces (whose di-
mension is NX + NQ), the reference domain Ω and the FFD structure. For
the RB Offline computations we have used the rbMIT library [47, 8], while for
the FE assembling stage we have exploited the MLife library [48], enhanced in
Matlab-PDE toolbox environment.
The Online stage consists of many evaluations of field variables (vN

N (µ), pNN (µ))
and parametric output sN (µ), as required by the optimization procedure chosen
to solve minimization problem (33); in our case, it has been solved using the
sequential quadratic programming (SQP) algorithm, see e.g. [49].

8 Numerical results

Let us now present the results obtained through the parametric optimization
framework described in the previous sections. Two different cases have been
performed, considering different patencies (i.e. different blockage conditions) in
the occluded coronary artery: the presence of a residual blood flow in this vessel
impacts on the global behaviour of the flow in the anastomosis, involving differ-
ent vorticity profiles in the region. In Case A a completely occluded coronary
is considered, with gD = 0 on Γa (completed blockage), while in Case B a par-
tially stenosed coronary is considered, choosing a residual horizontal flux given
by gD = (max(ṽ0 exp(−(x− xM)2/β) − ω, 0), 0) on Γa, where xM is the middle
point of side Γa and β = 10−3, ω = 10−1 are constants which model the patency
of the stenosis; here we consider a residual flow rate of about 15% of the flow
rate in the bypass grafting. In both cases, the same reference configuration Ω,
depicted in Fig. 5, has been chosen similar to some bypass configurations al-
ready considered in previous works [25, 14, 13], fixing the observation subregion
Ωdf = {x = (x1, x2) ∈ Ω : x1 > 1.5}. In each case the FFD configuration used
was an array of 5×6 control points on the rectangle D = [−1, 3]× [−0.6, 0.4], for
a total number of 60 degrees of freedom; P = 8 of these degrees of freedom have
been selected as design variables, seven of which corresponding to perturbation
in the vertical direction and one of which allowed to move in the horizontal di-
rection.

Previous analysis on the shape of an aorto-coronaric bypass [19, 20, 13, 27]
have highlighted an important dependence of the blood flow on the anastomotic
angle between the incoming branch of the graft and the artery, and on the
ratio between the diameters of this two branches; our selected design variables
thus control shape variations in this sense. In particular, the parameters µ3

and µ5 (the latter is the only one giving an horizontal deformation) control
the anastomotic angle, the parameters µ6 and µ8 control the ratio between the
diameters of the graft inlet segment and of the host artery (see Fig. 3). Moreover,
the parameters µ4 and µ7 control the upper shape of the anastomotic bifurcation,
while µ1 and µ2 are responsible of the shape of the lower wall, which has to be
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curved since it is positioned on the heart wall; the fact that the shape of the
bottom boundary depends only on these two last parameters allows to control
its curvature in a more precise way. The parametric domain D is therefore given
by

D = {µ = (µ1, . . . , µ8) ∈ R
8 : µi ∈ [−0.2, 0.2] ∀ i 6= 5, µ5 ∈ [0, 1]};

details on location of control points and selected design variables are shown in
Fig. 5.
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Figure 5: Top: reference domain Ω and free-form deformation setting. Control
points depicted in red and blue can be freely moved in vertical or horizontal direc-
tion, respectively. Bottom: an example of shape deformation; grey points correspond
to the undeformed shape (i.e. µ = 0), while black points correspond to the choice
µ = (0.1, 0.05, 0.15, 0.1, 0.5, 0.15, 0.2, 0.15).

Reduced basis approximation have been built upon a finite element approx-
imation on P

2 − P
1 spaces of dimension NX = 33, 330 and NQ = 4, 269 re-

spectively, obtained on a non-conforming mesh of 8, 128 triangular elements. In
particular, since FFD and EIM steps are independent of the reference configu-
ration, they can be performed only once for both cases A and B. In both cases,
the stopping tolerance is εEIM

tol = 2.5 × 10−4, giving for both cases an effine
expansion of

∑

i,j K̃
a
ij = 204 terms for ν̃ij components, of

∑

i,j K̃
b
ij = 18 terms

for χ̃ij components and of
∑

i K̃
f
i = 5 terms for the right hand-side components;

see Fig. 6 for an example of tensor reconstruction through EIM.

Instead, all the FE structures assembling, the estimation of the lower bound
of the inf-sup constant and the greedy algorithm for snapshots selection have to
be done separately, once for each case. In particular, tolerances for RB greedy
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algorithm εRB
tol and empirical interpolation εEIM

tol are chosen such that the error
on EIM is kept under the error on RB construction; with εRB

tol = 5 ·10−3, N = 24
and N = 22 basis functions have been selected for case A and B, giving RB
spaces of total dimension 72 and 66, respectively.

In Fig. 7 the convergence of the greedy algorithm for the RB space con-
struction during the Offline stage is shown, while the selected snapshots µ are
reported in Figs. 8 and 9 for the test cases A and B, respectively. Moreover, a
tolerance εOPT

tol = 10−6 has been chosen for the stopping criterium of the opti-
mization procedure, based on the magnitude of the (approximated) gradient of
the cost functional.

Figure 6: Tensor components ν1,1(x; µ̄), ν1,2(x; µ̄) ≡ ν2,1(x; µ̄), ν2,2(x; µ̄) on Ω for
a randomly chosen µ̄ ∈ D (left) and corresponding affine reconstructions obtained by
empirical interpolation (right).
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Figure 7: Convergence of the greedy algorithm for the RB approximation space con-
struction in test case A (left) and B (right).
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Figure 8: Test case A: parameters distribution during the Offline RB approximation
space construction.
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Figure 9: Test case B: parameters distribution during the Offline RB approximation
space construction.

8.1 Modelling aspects

For the test case A, a vorticity reduction of about 55% has been obtained through
the procedure described above. By choosing κ = 2 · 102, the cost functional de-
creases from an initial value sN(µ(0)) = 0.680 to an optimal value sN(µ̂) = 0.301
after 36 optimization steps performed in 2968s until convergencea.
In Fig. 10 the reference and the optimal configurations are displayed, together
with deformation induced by the displacement of the control points. In Fig. 11
velocity and pressure fields for the reference configuration are represented, to-
gether with the corresponding vorticity field; flow variables and vorticity field
obtained for the optimal configuration are instead represented in Fig. 12.

aComputations have been executed on a personal computer with 2×2GHz Dual Core AMD
Opteron (tm) processors 2214 HE and 16 GB of RAM.
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Figure 10: Test A: reference configuration (in grey), optimal shape (in black) and
corresponding control points displacement.
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Figure 11: Test A: velocity field, pressure field and vorticity magnitude for the reference
configuration.

For the test case B, a vorticity reduction of about 60% has been obtained,
passing from an initial value of the cost functional sN (µ(0)) = 1.249 to an optimal
value of sN (µ̂) = 0.458 after 45 optimization steps, which have been performed
in 3554s. Optimal configuration obtained in this case is displaied in Fig. 13,
while flow variables and the corresponding vorticity pattern for the initial and
the optimal configurations are represented in Figs. 14 and 15.

The results of the analysis performed in this work show that graft anasto-
mosis configurations play an important role in the pattern of the flow and the
distribution of the vorticity generated downstream. A remarkable observation
is that – even if the optimal shape are quite similar – the magnitude of the vor-
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Figure 12: Test A: velocity field, pressure field and vorticity magnitude for the optimal
configuration.
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Figure 13: Test B: reference configuration and optimal shape with corresponding con-
trol points displacement.

ticity on the anastomosis highly depends on the presence of a residual patency
in the obstructed host coronary artery; in particular, in the down field region
vorticity magnitude is higher whether a residual flow is present. In both cases,
the iteratively optimized geometry has a much smoother toe and heel than the
initial shape; optimal shapes also show smoother curvatures at the heel with a
gradual transition in the toe region, as already pointed out in the work by Lei
et al. [25]. The localization of maximum values of vorticity at the heel and toe
is expected, because this is the region where disturbed flows occur, even with a
Stokes model; the same conclusion can be drawn for wall shear stress gradient
and Navier-Stokes flows [25]. Moreover, higher values in the heel region are not
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Figure 14: Test B: velocity field, pressure field and vorticity magnitude for the reference
configuration.

as clinically significant as the high vorticity values near the toe region and in the
down-field region, which is a well-known location where restenosis might reform.
The shape optimization procedure however enables to reduce the vorticity in the
down-field region of the anastomosis, even if increasing values of vorticity arise
at heel and top segments. In the case where the observation region Ωobs is the
whole domain Ω instead of the subdomain Ωdf – and thus vorticity is minimized
all over the anastomosis – different results can be obtained, both in terms of op-
timal shapes and vorticity reduction. By using the same procedure as before, we
obtain (e.g. for test case B) the vorticity patterns in Fig. 16: the minimization
of the vorticity all over the anastomosis leads to optimal shapes characterized
by bigger sections and narrow bifurcations. Moreover, the parameter µ5 – which
strongly affects the anastomotic angle – seems to play an important role in the
behavior of the vorticity field. For both test cases numerical results are summa-
rized in Tabs. 1 and 2.

8.2 Computational features

Reduced basis techniques, combined with a free-form deformation framework
for shape optimization, allow a substantial reduction of both geometrical com-
plexity and computational work. An iterative optimization procedure is greatly
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Figure 15: Test B: velocity field, pressure field and vorticity magnitude for the optimal
configuration.
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Figure 16: Test B: optimal shapes (and related vorticity patterns) obtained through
vorticity minimization on the down-field region Ωdf (left) and on the whole domain Ω
(middle, right). In the third case the parameter µ5 has been fixed equal to the optimal
value obtained in the first case by vorticity minimization on Ωdf .

enhanced by the computational gain since at each step the cost functional to
be minimized is evaluated using the RB approximation. Compared to a flow
simulation by finite elements, in our 2D aorto-coronaric bypass case, a RB On-
line evaluation of flow variables enables a computational speedup of about 100
times. In particular, the average time over 100 Online evaluations is of 2.204
seconds for the test case A and of 2.012 seconds for the test case B, while the
corresponding FE computations take an average time of 209 and 216 seconds,
respectively. More details are reported in Tab. 3. This is basically due to the
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Ωobs sN (µ(0)) sN (µ̂) ∆sN # iterations cpu (s)

Ωdf 0.680 0.301 56% 36 2968
Ω 1.103 0.580 47% 45 3504

Table 1: Test case A: initial and optimal value of cost functional, total reduction, num-
ber of iterations of the optimization procedure and cpu times for a vorticity observation
on Ωdf and Ω.

Ωobs sN (µ(0)) sN (µ̂) ∆sN # iterations cpu (s)

Ωdf 1.249 0.458 63% 45 3554
Ω 1.830 0.823 55% 158 10492

Table 2: Test case B: initial and optimal value of cost functional, total reduction, num-
ber of iterations of the optimization procedure and cpu times for a vorticity observation
on Ωdf and Ω.

reduction of about 500 times in the dimension of the linear systems obtained by
finite element discretization and reduced basis approximation: in the first case,
we get a sparse linear system of dimension 35, 997 while in the second case linear
systems – which are now of full type – have dimension 72 and 66, for the test
case A and B, respectively. Consequently, computational times for the whole
optimization process are reduced too, depending almost linearly by the time for
a single Online evaluation.
Moreover, a shape parametrization based on FFD allows a strong reduction in
geometrical complexity: indeed, geometrical reduction in term of the number
of parameters is of about 100 with respect to traditional shape parametrization
based on local boundary variation. However, by acting on a small set of design
variables it is possible to describe a wide family of shapes and thus perform opti-
mization in a low dimensional but quite rich space of admissible configurations.
On the one hand, by properly choosing the location of the parameters, FFD
enables not to constrain a priori the shape of a configuration too similar with
respect to the initial one, as in the case where affine or non-affine mappings on
different subdomains are used [17, 13], and make the upper wall free to deform;
on the other hand, it allows a strict control on those parts where a shape is in
some sense prescribed (as in the case of the lower wall).

9 Conclusions and further developments

The purpose of the present work has been to develop a new model order reduction
strategy for shape optimization by coupling reduced basis methods for flow sim-
ulation with free-form deformation techniques for shape parametrization. This
framework has been applied to an optimal design problem of an aorto-coronaric
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FE RB (min) RB (average) RB (max) Speedup

Test Case A 209.06s 1.939s 2.012s 3.078s 94.85
Test Case B 215.76s 1.945s 2.204s 3.314s 107.18

Table 3: Computational times and speedup for reduced basis Online evaluations and
finite element computations. RB Online evaluations have been executed considering a
sample of 100 randomly chosen parameter vectors µ ∈ D.

bypass anastomosis, allowing a deep reduction in both computational efforts
(w.r.t. classical strategies based on finite element discretization techniques)
and geometrical complexity (w.r.t. more traditional shape parametrization ap-
proaches). A reduced basis formulation has been discussed for noncoercive prob-
lems, taking advantage of the empirical interpolation method to deal with the
nonaffine parametric dependence. A free-form deformation setting has been pre-
sented and applied to a complex 2D configuration.
In order to get more precise results and deal with more complex fluid dynamics,
the extension of this framework to Navier-Stokes equations and 3D configura-
tions is in order and represents our current research activity. The accuracy
of future simulations and optimization stages is dependent, as underlined by
Loth and al. [24], on the acquisition of patient-specific data such as geome-
try properties or flow conditions. Following this path, we intend to consider in
the next future a coupled parametrization of both geometrical and flow physi-
cal properties, such as rheology or boundary conditions. Moreover, an efficient
characterization of a posteriori error estimators for quadratic output is currently
under investigation.
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