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In thiswork, wepropose a bootstrap based inferential frame-
work for quantifying dependency among families of multi-
variate curves. We start from the notion of Spearman index
and SpearmanMatrix to provide pointwise estimates of de-
pendency among families of (multivariate) curves, enabling
the analysis of the pattern of dependence among the com-
ponents of a multivariate functional dataset. Moreover, a
suitable inferential framework for the Spearman index and
matrix is proposed, making use of a testing procedure based
on suitably adjusted confidence intervals for the Spearman
index. An additional bootstrap based test for thematrices,
enabling the detection of significant differencies in the pat-
terns of dependency among components in different fam-
ilies of multivariate curves, is provided. We apply these
procedures to a real case study, where two populations of
electrocardiographic signals from healthy and unhealthy
patients are compared. All the codes are embedded in a
suitable R-package, namely raohd. The inferential tools pre-
sented in this work represent, to the best of our knowledge,
the first systematic attempt to investigate dependency in
the (multivariate) functional setting.
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bootstrapmethodology, ECG signals.

1 | INTRODUCTION

Nowadays, the statistical analysis of complex and high dimensional data is experiencing a notable growth for application
in different fields of science such asmedicine, finance, criminology, quality control, andmanyothers. This leads to rethink
the way the classical statistics approaches the analysis of such data, sincemethodologies commonly implemented until
now for both descriptive and inferential purposes are increasingly limited or inefficient. Data dimensionality often leads
multivariate analysis to be not feasible and its results not easily interpretable. Functional Data Analysis (FDA) (see
Ramsay and Silverman (2005) Kokoszka and Reimherr (2017) Ferraty and View (2006), among others, for complete
tractation) is clearly the main field of research in statistics which tried to overcome this issue. Despite the fact that
several multivariatemethods are not usually well suited for functional datasets, manymultivariate techniques have
inspired advances in FDA. For example, to quantify the relationship of dependence between two or more groups of
functional data.

The investigation of the dependence among curves is relatively a new issue in statistics. This ismainly due to the late
development of (multivariate) functional data analysis with respect tomultivariate analysis as well as to the difficulty
in summarizing dependence and other indexes in the infinite dimensional context. In fact, in multivariate statistics
the covariance matrix represents the variation of each variable with respect to itself and the other component of a
multivariate vector. The analogous object in themultivariate functional case, where functions are indexed by time or
space, is not straightforwardly easy to compute, to handle and, in the end, to be interpreted. This is because of the
dimension of the variance-covariance operators themselves (in the sampling version), and to themissingness of single
indexes that are able to summarize their spectral features and information content. In such context, the use of an
alternative nonparametric measure of dependence is considered in order to exploit a manageable index of dependence
among components of themultivariate functional data. The idea is to provide ameasure of dependence for families of
(multivariate) curves, as well as a suitable corresponding inferential framework for testing the presence of dependency
among components and possible differences among patterns of dependency.

For instance, Opgen-Rhein and Strimmer (2006) proposed an estimator for the dynamical correlation introduced
byDubin andMuller (2005) for longitudinal data, which provides ameasure of similarity between pairs of functional
observations. He et al. in He et al. (2000) andHe et al. (2004) proposed a natural way of finding the canonical correlation
for functions, previously introduced by Leurgans et al. (1993). They found significant difficulties such as the covariance
operator not being invertible, since it is a compact operator that is not generally invertible in infinite dimensional Hilbert
space. Li and Chow (2005) provided a generalization of the Pearson correlation coefficient for functional data that
allows to quantify the dependence among two families of curves. This measure is called the concordance correlation
coefficient andwas used to evaluate the reproducibility of repeated-paired curve data. Valencia et al. (2012) defined
Kendall’s tau coefficient for functions considering pre-orders that permit the sorting of the functional observations
and the identification of the concordant and discordant pairs in a bivariate sample of curves. Ramsay and Silverman
(2005) also considered a dependence functional measure called the cross-correlation function. This measure provides a
surface that evaluates point by point the usual Pearson correlation coefficient between the corresponding values of the
pair of curves in two given points.

In this work, wewill consider the definition of the Spearman index for function introduced by Valencia et al. (2016)
to set a proper inferential framework for assessing dependency among families of (multivariate) curves. The paper is
organized as follows: Section 2 recalls some basic notions about depths and the definition of the Spearman index (§2.1)
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and SpearmanMatrix (§2.2); Section 3 presents the whole inferential framework we propose for assessing the presence
of dependency in both univariate and h-variate (h ≥ 2) functional data. In this part, suitable adjusted bootstrap-based
confidence intervals (§3.2) and tests (§3.3) are computed to evaluate the dependency among two families of curves. The
framework is extended also to themultivariate case (§3.4). Finally, a bootstrap based test (§3.5) for comparingmatrices
is used to assess differences in patterns o dependency of two families of multivariate functional data. The effectiveness
and reliability of such instruments are proved in a set of simulation studies carried out and detailed in Appendix B. A
real case study considering two populations omultivariate Electrocardiographic signals from healthy and unhealthy
patients is presented in Section 4. Results are discussed in Section 5, together with possible further developments.
All the analyses are carried out using R Team (2017). Codes are embedded in the roahd package, detailed in Tarabelloni
et al. (2018).

2 | NONPARAMETRIC ESTIMATION OF DEPENDENCY AMONG (MULTIVARI-
ATE) CURVES

Dependence is the relationship that exists between two ormore random variables. Themeasures of such dependence
provide a value that summarizes the size of the association between two variables, whichmay occur in different ways:
(i) the values of one variable increase and the same happens for the other one (positive association); (ii) the values of one
variable increase and the values of the other one decreases (negative association); (iii) there is not consistent behavior of
one variable with respect to the other (uncorrelation/independence).
To determine the significance of the value given by some associationmeasure, tests of significance are provided formany
of them. Such tests hypothesize that there is no relationship between the two variables (i.e., themeasure of association
is equal to 0). If the measure is far enough from 0, the test shows that there is a significant relationship between the
two variables. When there are quantitative variables, what is usually done to interpret dependence is to determine a
coefficient of correlation between variables. The decision of what coefficient to use depends on several factors, such as
the type of measurement scale in which each variable is expressed, the nature of the distribution and if the dependence
sought is linear or nonlinear (see Valencia (2014) for a deeper discussion on this topic). The Pearson coefficient can be
usedwhether the random variables are continuous or discrete, andwhether they aremeasured in intervals or ratios.
Although the Pearson coefficient is widely employed, especially in clinical literature, it is not completely satisfactory
to measure the dependence between random variables, as it provides limited information about their dependence
structure overall in presence of non-lineal dependence. The Spearman and Kendall’s tau coefficients (Spearman (1904),
Xu et al. (2010), Hauke and Kossowski (2011)) are then used, sorting data according to their rank. Also for this reason,
they are able tomeasure dependence when a nonlinear structure exists between the random variables.
Last but not least, the absence of correlation is equivalent to independence in very rare cases, such as when the random
variables are Gaussian distributed. Since in the functional case the Normality of the generating process is rare and very
difficult to assess at general level, the aim of this part is to introduce inferential instruments for pointwise and interval
estimate of dependence among univariate andmultivariate functional data.

2.1 | The Spearman index for two families o curves
The Spearman index Spearman (1904) is a non-parametric measure of association between two random variables
X andY . It is defined as the Pearson correlation coefficient between the grades of X andY and does not require
any assumption on the distribution of the variables. One of the possible definition is the following. Let us consider
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(X1;Y1), (X2;Y2) and (X3;Y3) as three independent copies of the random vector (X ;Y )with joint cumulative distribution
function FXY andmarginals FX and FY , respectively. The Spearman index between the variablesX andY , denoted by
ρs (X ,Y ), is defined as:

ρs (X ,Y ) = 3[P {(X1 − X2)(Y1 −Y3) > 0} − P {(X1 − X2)(Y1 −Y3) < 0}] (2.1)

The Spearman index is proportional to the difference between the probability of concordance and the probability
of discordance for two vectors (X1,Y1) and (X2,Y3). However, we are interested in the equivalent definition of ρs
by computing the Pearson correlation coefficient, indicated with ρp , between the random variablesU = FX (X ) and
V = FY (Y ), that is:

ρs (X ,Y ) = ρp (U ,V ) =
Å(UV ) − Å(U )Å(V )√
V ar (U )

√
V ar (V )

(2.2)

U andV are called the gr ades of X andY . For this reason, the Spearman index is also called the grade correlation
coefficient. Realizations u ofU and v ofV can be obtained evaluating realizations x ofX and y ofY in the distribution
functions FX and FY , respectively.

Suppose now to have two samples of size n from the random variables X andY , say x = (x1, x2, . . . , xn ), y =

(y1, y2, . . . , yn). Consider thevectors of theestimatedgradesu = (u1,u2, . . . ,un ),v = (v1,v2, . . . ,vn ), definedevaluating
each observation in the empirical cumulative distribution function of the corresponding sample. So, we have

ui = F̂X (xi ) =
1

n

n∑
j=1

É(xj ≤ xi ) (2.3)

vi = F̂Y (yi ) =
1

n

n∑
j=1

É(yj ≤ yi ) (2.4)

for i = 1, . . . , n . Notice that ui (resp. vi ) can be interpreted as the relative position of the observation xi (resp. yi ) in the
setx (resp. y).
The sample version of the Spearman index is defined as the sample Pearson correlation coefficient ofu and v:

ρ̂s (x,y) = ρ̂p (u,v) =
∑n
i=1(ui − ū)(vi − v̄ )

(∑n
i=1(ui − ū)2

∑n
i=1(vi − v̄ )2)1/2

(2.5)

where ū and v̄ stand for the samplemeans ofu and v, respectively. Observe that the estimated grades assume always
values in [0, 1] and they are bounded independently of the support of the random variables that generated the data.
Therefore, an estimate of the Spearman index is less sensitive to the presence of outliers than an estimate of the Pearson
correlation coefficient. Finally, we emphasize that ρs is well defined for all pairs of random variables. This represents
an advantage over the classical Pearson coefficient, which is computable only for pairs of random variables with finite
secondmoment.
The Spearman index satisfies some general and intuitive properties required for any reasonable dependencemeasure.
For instance:

• The sign of ρs indicates the direction of association between X andY . This means that ifY increases when X
increases, then the Spearman index is positive (conversely, it is negative ifY increases whenX decreases).
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• A Spearman indexwith value 0 indicates that there is not a clear tendency forY to either increase or decreasewhen
X increases. Moreover, the Spearman index assumes the value 0when the two random variables are independent.

• The absolute value of ρs increases inmagnitude asX andY become closer to being perfect monotone functions
of each other. In particular, when X is a monotone increasing function ofY , the index assumes value 1 (−1 if the
relation is given by amonotone decreasing function).

These properties show how the Spearman index is able to capture the dependence, either positive or negative, between
two random variables, even if the relation is not linear.

This notion has been generalized to the infinite dimensional setting in Valencia et al. (2016), and can be used to assess
the presence of dependency between two sets of functions. In order to define the Spearman index for the functional
case, some notions enabling the ranking of infinite dimensional objects are eeded and recalled below.

LetC (I ) be the space of the continuous functions defined in a compact interval I and consider a stochastic process
Xt , with distribution L andwith sample paths inC (I ). The graph of a function x belonging toC (I ) is the subset of the
planeG (x ) = {(t , x (t )), t ∈ I }. The hypograph (hyp) and the epigraph (epi) of x (seeMartin-Barragan et al. (2016) for
further details) are given respectively by

hyp(x ) = {(t , y ) ∈ I ×Ò : y ≤ x (t )}, (2.6)
epi (x ) = {(t , y ) ∈ I ×Ò : y ≥ x (t )} (2.7)

A natural form of ordering curves is considering a curve x as “greater” than another curve y if and only if hyp(y ) ⊂
hyp(x ) or epi (x ) ⊂ epi (y ). However, in practical situations the curves in a sample can be crossed and hence the natural
ordering in these cases does not work. Therefore, an alternative way of ordering curves can be developed on the basis
of two concepts, the Inferior Length and the Superior LengthMartin-Barragan et al. (2016) of a curvewith respect to a
stochastic processXt :

I L(x ) =
1

λ(I )Å[λ {t ∈ I : x (t ) ≥ Xt }], (2.8)
SL(x ) =

1

λ(I )Å[λ {t ∈ I : x (t ) ≤ Xt }] (2.9)

where λ stands for the Lebesguemeasure onÒ. Basically the Inferior Length I L(x ) is the “proportion of time” that the
stochastic process Xt is smaller than x and the Superior Length SL(x ) is the “proportion of time” that the stochastic
processXt is greater than x .

These notions are behind the definitions of the grades of a stochastic processXt with respect to another process Zt :

Definition 1 LetXt and Zt be two stochastic processes. Then,

IL-grade(Xt )Zt =
1

λ(I )ÅZt [λ {t ∈ I : Xt ≥ Zt }], (2.10)
SL-grade(Xt )Zt =

1

λ(I )ÅZt [λ {t ∈ I : Xt ≤ Zt }]. (2.11)
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Observe that IL-grade and SL-grade assign a value between [0, 1] to Xt . To avoid hard notation, the subscript Zt is
neglected when the two processes have the same distribution.

Consider now a functional dataset x1(t ), ..., xn (t ), with t ∈ I , composed by n realizations of the processXt . If we fix
any curve x = x (t ) of the dataset, the sample version of both IL-grade and SL-grade can be easily obtained by substituting
the expectation with the samplemean as follows:

ILn -grade(x ) =
1

nλ(I )

n∑
i=1

λ {t ∈ I : x (t ) ≥ xi (t )}, (2.12)

SLn -grade(x ) =
1

nλ(I )

n∑
i=1

λ {t ∈ I : x (t ) ≤ xi (t )}. (2.13)

ILn -grade(x ) and SLn -grade(x ) quantify the relative position of x with respect to the other curves of the sample. From
(2.13), it can be noticed that the largest grade in a functional dataset may not be 1 unless the curve with the highest
grade does not cross with any other.

The sample version of the Inferior and Superior Length grade provide an affective way for ordering a set of curves.
In fact, we can give the following criterion:

Definition 2 Consider the functional dataset x1(t ), ..., xn (t ), with t ∈ I , composed by n realizations of a stochastic processXt .
Then,

xi (t ) � xj (t ) ⇔ ILn -grade(xi ) ≤ ILn -grade(xj ).

The alternative definition can be deduced by replacing the ILn -grade with SLn -grade.

The relation given by Definition 2meets important properties such as reflectivity and transitivity, but, unfortunately, it
does not satisfy the antisymmetry property. Therefore, the relation introduced is a pre-order, which is less restrictive
than a partial order and allows to compare any pair of functions in the sample.

Given the previous framework, the Spearman index for two stochastic processes can be introduced as follows:

Definition 3 (Spearman index for stochastic processes) Let (Xt ,Yt ) be a stochastic process with law L taking values on
the spaceC (I ;Ò2) of the continuous functions (f (t ), g (t )) : I → Ò2, with I a compact interval ofÒ. The Spearman index for
(Xt ,Yt ) is defined as

ρs (Xt ,Yt ) = ρp (IL-grade(Xt ), IL-grade(Yt )), (2.14)

where ρp denotes the Pearson correlation coefficient and IL-grade(·) is the grade associated to a stochastic process, as in
Definition 1.

The corresponding sample version is the following:
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Definition 4 (Sample Spearman index for bivariate functional dataset) Consider the bivariate functional dataset,

[
x y

]
=



x1(t ) y1(t )
x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈I
,

composed by n realizations of the stochastic process (Xt ,Yt ) as above. Then, the sample Spearman index, denoted by ρ̂s (x,y),
is defined as

ρ̂s (x,y) = ρ̂p (I Ln − gr ade)(x), I Ln − gr ade(y)), (2.15)

where ρ̂p is the sample Pearson correlation coefficient and

I Ln − gr ade(x) = (I Ln − gr ade(x1), I Ln − gr ade(x2), ..., I Ln − gr ade(xn )),

I Ln − gr ade(y) = (I Ln − gr ade(y1), I Ln − gr ade(y2), ..., I Ln − gr ade(yn )). (2.16)

An alternative definition of the Spearman index for functions can be obtained by replacing ILn -grade by SLn -grade.

The Spearman index defined above satisfies (see Valencia et al. (2016) for proofs) some desirable properties required
for a dependencemeasure (see Xu et al. (2010)), in particular:

• ρs is well defined for any (Xt ,Yt ).
• ρs (Xt ,Yt ) = ρs (Yt ,Xt ).
• −1 ≤ ρs (Xt ,Yt ) ≤ 1.
• ρs (Xt , g (Xt )) = 1 for any increasing function g .
• ρs (Xt , g (Xt )) = −1 for any decreasing function g .
• The Spearman index is invariant under strictly increasing transformations of the processes, that is:

ρs (α(Xt ), β (Yt )) = ρs (Xt ,Yt ), (2.17)

for any α(·) and β (·) being strictly increasing functions.
• IfXt andYt are stochastically independent, then ρs (Xt ,Yt ) = 0.
• The sample Spearman index is a consistent estimator of the index of the original processes.

The Spearman index can then be used for assessing dependency among two stochastic processes (i.e., two families of
univariate functional data). The same is true also in the case these two processes are the components of a bivariate
functional data, i.e., a bivariate stochastic process where each statistical unit is characterized by a bivariate function
(X1(t ),X2(t )). The latter view of the problem naturally leads to the generalization of the inferential paradigm to the
h-variate case.
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2.2 | SpearmanMatrix for h-variate functional data
Up to now, we only considered bivariate functional data. Nevertheless, in real problems it is more andmore often the
case that a statistical unit is described through a set of h curves, with h ∈ Î and, possibly, h > 2. This is particullary true
for biological problems, where vital signs often aremeasured for monitoring the health status of a patient. Therefore,
in such a framework investigating the way the components of multivariate functional data depend one on each other
is a challenging and fascinating problem. Inmultivariate statistics, the covariancematrix represents the variation of
each variable with respect to itself and the other component of a multivariate vector. The analogous object in the
multivariate functional case, i.e., the variance-covariance operator, is not straightforwardly easy to compute, to handle
and, in the end, to be interpreted and used for the same purpose. This is firstly due to its dimension once dealing with
the corresponding sampling version, and to themissingness of single indexes that are able to summarize its spectral
features and information content.

These reasons led us to introduce e a newmathematical object, based on the nonparametric index described in the
previous Section, for expressing in an intuitive way the pattern of dependence among the components of multivariate
functional data.

LetXt = (X 1
t ,X

2
t , ...,X

h
t ) be a stochastic process with law L taking values on the space C (I ;Òh ) of the vector-

valued continuous functions f (t ) : I → Òh , with I a compact interval ofÒ and h > 2. We define the SpearmanMatrix
(SM in the following) as the h × h symmetric matrix

SM (Xt ) =



ρs (X 1
t ,X

1
t ) ρs (X 1

t ,X
2
t ) . . . ρs (X 1

t ,X
h
t )

ρs (X 2
t ,X

1
t ) ρs (X 2

t ,X
2
t ) . . . ρs (X 2

t ,X
h
t )

.

.

.
.
.
.

. . .
.
.
.

ρs (X h
t ,X

1
t ) ρs (X h

t ,X
2
t ) . . . ρs (X h

t ,X
h
t )


, (2.18)

where ρs (X it ,X j
t ) is the Spearman index between the i-th and j-th component of the stochastic process, as in Definition 3.

Let then

X =
[
x1 x2 . . . xh

]
=


x1,1(t ) x1,2(t ) . . . x1,h (t )
x2,1(t ) x2,2(t ) . . . x2,h (t )
. . . . . . . . . . . .

xn,1(t ) xn,2(t ) . . . xn,h (t )

 t∈I
, (2.19)

be amultivariate functional dataset, composed by n realizations of the stochastic processXt , where the vectors

xi = (x1,i (t ), x2,i (t ), ..., xn,i (t ))
′
t∈I , i = 1, ..., h (2.20)

represent the functional samples containing the realizations of a specific component of the process. To avoid hard
notations, the vectors are represented neglecting the dependence on time. The sample SpearmanMatrix ŜM (X) is
given by
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ŜM (X) =



ρ̂s (x1,x1) ρ̂s (x1,x2) . . . ρ̂s (x1,xh )
ρ̂s (x2,x1) ρ̂s (x2,x2) . . . ρ̂s (x2,xh )

.

.

.
.
.
.

. . .
.
.
.

ρ̂s (xh ,x1) ρ̂s (xh ,x2) . . . ρ̂s (xh ,xh )


, (2.21)

where ρ̂s (xi ,xj ) is the sample Spearman index computed on the bivariate functional dataset
[
xi yj

]
, as in Definition

4. It can be immediately noticed that ŜM (X) is an easy to handle and easy to interpret mathematical object and its
cross diagonal elements give a quick and effective overview of the pattern of dependence among components of a
multivariate functional dataset.
Since SM (Xt ) and ŜM (X) are symmetric, in the following wewill show only their upper triangular part.

3 | A BOOTSTRAP-BASED INFERENTIAL FRAMEWORK FOR SPEARMAN IN-
DEX AND MATRIX

In this Section, we aim at defining an inferential framework for the Spearman index and Matrix making use of the
bootstrap methodology. Bootstrap is a computationally intensive technique for assigning measures of accuracy to
statistical estimates in a non-parametric framework This approach has a wide range of applications (see Efron and
Tibshirani (1993) for more details) and it can be also exploited, in an inferential perspective, to implement test and
compute confidence intervals for any parameter of interest.

The purpose we use the bootstrap methodology for is twofold: firstly, we aim at defining suitable confidence
intervals for the Spearman index estimates, in order to assess if the Spearman index computed among two families of
curves is significantly different from 0. Notice that this step represents an improvement of Valencia et al. (2016), where
only the point estimate of the index is provided. Suitable applications of this bootstrapmethodology enable us to define
properly hypothesis tests for checking the independence of two families of functional data. Moreover, the bootstrap
methods are also used for defining a procedure testing the possible difference among twomatrices (Section 3.5).

3.1 | Preliminary notions on bootstrap techniques applied to the distribution of Spear-
man index

Let (X1, ...,Xn ) be independent and identically distributed random variables with probability distribution F and suppose
that a samplex = (x1, ..., xn ) is available. Let’s assume that the inferential purpose is to estimate a parameter of interest
θ = t (F ), on the basis ofx and for this purposewe consider the estimatorTn , whose value in the sample is θ̂ = Tn (x). The
sampling distribution of the statisticTn , that we callG and that we supposed unknown in this framework, is completely
determined by F and n . We aim at defining amethod to estimateG . A possible approach can be the following. Consider
x1,x2, ...,xB , being B samples of size n drawn from F , say

xi = (xi ,1, xi ,2, ..., xi ,n ), xi ,1, ..., xi ,n ∼ F i .i .d ., i = 1, ...,B ,
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and compute θ̂(i ) = Tn (xi ), i = 1, ...,B . In this way, we obtain the replications

θ̂(1), θ̂(2), ..., θ̂(B),

that are distributed according toG . We can use the informations provided by the replications to approximate the shape
of the sampling distributionG as well as to evaluate the accuracy of the estimate θ̂ = Tn (x). This latter operation is
possible computing, for instance, an estimate of θ̂ standard error (i.e., an estimate of the standard deviation of the
distributionG ). Therefore, using this approach, we have the possibility to study the properties of the statistic of interest
simply evaluating its behaviour on samples of size n drawn directly from F .
However, thismethod cannot be used in practical situations since the distribution F is not known. The bootstrapmethod
uses a different strategy, based on the notion of bootstrap sample. Let then F̂ be the empirical distribution of F , say a
discrete distribution that puts probability 1/n on each value xi , i = 1, 2, ..., n . In other words, the empirical distribution
represents an estimate of the underlying model that generated the datax. A bootstrap samplex∗ is defined to be a
random sample of size n drawn from F̂ , say

x∗ = (x ∗1 , x
∗
2 , ..., x

∗
n ), x ∗1 , x

∗
2 , ..., x

∗
n ∼ F̂ i .i .d . (3.1)

The star notation indicates thatx∗ is not the actual datasetx, but rather a randomized, or resampled, version ofx. There
is another way to write down (3.1). The bootstrap data points x ∗1 , x ∗2 , ..., x ∗n are a random sample of size n drawnwith
replacement from the population of n equally likely objects (x1, x2, ..., xn ).
The bootstrap method uses the same approach described above simply substituting F with its empirical version F̂ .
Considerx∗1,x∗2, ...,x∗B , B bootstrap samples from F̂ , namely

x∗i = (x
∗
i ,1, x

∗
i ,2, ..., x

∗
i ,n ), x ∗i ,1, ..., x

∗
i ,n ∼ F̂ i .i .d ., i = 1, ...,B , (3.2)

and compute θ̂∗(i ) = Tn (x∗i ), i = 1, ...,B . In so doing, we obtain the collection of bootstrap replications

θ̂∗(1), θ̂∗(2), ..., θ̂∗(B), (3.3)

that represents a sample from the so called bootstrap distribution of the statisticTn . Therefore, the bootstrap distribution
of a statistic is its distribution when data used to evaluate it are bootstrap samples obtained, with suitable resamplings,
from the original dataset. Of course, the bootstrap distribution is not unique, since it depends on the observations used
to define F̂ . Theoretically, a statistic has infinite bootstrap distributions, one for each possible samplex of size n drawn
from F .

Let’s now suppose to obtain a sample from the bootstrap distribution of the statistic ρ̂s (x,y) of interest. Consider the
functional dataset from the stochastic process (Xt ,Yt ),

[
x y

]
=



x1(t ) y1(t )
x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈T
, (3.4)
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composed by n bivariate curves observed on the time gridT = {t1, t2, ..., td }. The bootstrap resampling requires an
empirical estimate of the stochastic model F that generated the data. The stochastic model F is then estimated with its
empirical version F̂ , namely with a discrete distribution that assigns probability 1/n to each of the n bivariate curves
of the dataset. We define the bootstrap sample

[
x∗ y∗

]
as a random sample of size n drawn from F̂ , i.e., n bivariate

curves drawn with replacement and with uniform probability from the population defined by (3.4). An equivalent
representation is the following:

[
x∗ y∗

]
=



xπ1 (t ) yπ1 (t )
xπ2 (t ) yπ2 (t )
.
.
.

.

.

.

xπn (t ) yπn (t )

 t∈T
(3.5)

where (π1, π2, ..., πn ) is a random sample from the uniform distribution on the discrete set {1, 2, ..., n }.

Fixed this notion, we can now compute the bootstrap replications of the statistic ρ̂s (x,y) as reported in Table 3. The
procedure generates the collection

ρ̂∗(1), ρ̂∗(2), ..., ρ̂∗(B), (3.6)

that may be used to approximate the shape of the distribution of ρ̂s (x,y). Given these notions, we are now ready to
present bootstrap-basedmethods to compute confidence intervals.

3.2 | Bootstrap confidence intervals for the Spearman Index ρs
In this Section we aim at providing a confidence interval for the Spearman index ρs in order to set the first part of the
inferential framework to be used in investigations of dependence of multivariate functional data. The second part will
be given in the next Section, where a suitable hypothesis test for dependency is presented.

Appendix A reports general theoretical notions on the construction of bootstrap based confidence intervals. In
our case, it translates into the idea of constructing an interval estimate for ρs using the informations provided by the
bootstrap distribution of the estimator ρ̂s . We decide to use the BCa intervals (see Appendix A) since they represent,
in terms of efficiency and accuracy, the best choice in the literature of the bootstrapmethods (see Efron (1987) for a
detiled discussion on this).

Definition 5 (Confidence interval for the Spearman index) Consider the functional dataset from the stochastic process
(Xt ,Yt ),

[
x y

]
=



x1(t ) y1(t )
x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈T
,
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TABLE 1 Pseudo-code of the bootstrap procedure used to compute the bootstrap distribution of ρ̂(x,y)
Algorithm 1:Bootstrap distribution of the Spearman coefficient ρ̂s (x,y).
Input: Functional dataset

[
x y

]
=



x1(t ) y1(t )

x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈T
1 for i ∈ 1, . . . ,B do
2 obtain π i1, π i2, ..., π in from the uniform distribution on the discrete set {1, 2, ..., n } ;
3 define theBOOTSTRAP SAMPLE

[
x∗
i

y∗
i

]
=



x
πi
1
(t ) y

πi
1
(t )

x
πi
2
(t ) y

πi
2
(t )

.

.

.
.
.
.

x
πin
(t ) y

πin
(t )

 t∈T
compute theBOOTSTRAPREPLICATION ρ̂∗(i ) = ρ̂s (x∗i ,y∗i ).

composed by n bivariate curves observed on the time gridT = {t1, t2, ..., td }. Let

ρ̂∗(1), ρ̂∗(2), ..., ρ̂∗(B)

be B bootstrap replications of the estimator ρ̂s . The BCa confidence interval for ρs (Xt ,Yt ) of coverage probability of 1 − α is
given by

CI1−α (ρs ) = (ρ̂∗(α1)B
, ρ̂
∗(α2)
B
), (3.7)

where ρ̂∗(α1)
B

and ρ̂∗(α2)
B

are respectively the 100 · α1th and the 100 · α2 the empirical percentiles of the bootstrap replications.

The order α1 and α2 of the percentiles are obtained according to the procedure described in Appendix A. Table 7
summarizes the entire procedure which enables the construction of confidence intervals for the Spearman coefficient
among two stochastic processes.

3.3 | An independence bootstrap based test for bivariate functional data
Another useful inferential tool we introduce is a bootstrap-based test aimed at checking if the Spearman index between
two families of functional data can be considered as equal to zero or not. Since a null value of the index expresses a
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condition of independence, this tool allows for verifying wether two families of curves are uncorrelated.
Let then (Xt ,Yt ) be a stochastic process with law L taking values on the space C (I ;Ò2) of the continuous functions
(f (t ), g (t )) : I → Ò2, with I a compact interval ofÒ. Suppose to have the functional dataset

[
x y

]
=



x1(t ) y1(t )
x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈T
,

composed by n bivariate curves observed on the time gridT = {t1, t2, ..., td }, realizations of (Xt ,Yt ). Wewant to check
the following hypotheses:

H0 : ρs (Xt ,Yt ) = 0,

H1 : ρs (Xt ,Yt ) , 0.

In other words, the test aims at providing evidence for a possible dependency among two families of functional data. It
can be carried out in more than one way: a possible implementation is the one proposed in Valencia et al. (2016). In
order tomantain the coherence with the previous framework, we propose here the following criterion:

RejectH0 if the Bias-corrected and accelerated confidence interval for the Spearman index BCa (ρs )
of intended coverage probability 1 − α does not contain zero.

Using this approach, we essentially exploit the BCa intervals for the Spearman index introduced in 3.2 within a test
procedure framework. The simulation studies reported in Appendix B show the effectiveness of our approach.

3.4 | Inference for h-variate functional data
The concepts presented in Sections 3.2 and 3.3 for couples of stochastic processes are useful and straightforward
to be translated into the case of multivariate functional data. In fact, considering the case where the observations
are realizations of the stochastic processXt = (X 1

t ,X
2
t , ...,X

h
t ), with h > 2, the pattern of dependence between the

components is captured by the Spearman Matrix SM (Xt ) presented in Section 2.2, whose entry i j represents the
Spearman index between the i th and j th component of themultivariate functional data, say ρs (X it ,X j

t ).
In fact, given the procedure to derive a confidence interval for the Spearman index, we can exploit it to define

interval estimates for each component of the dependency pattern resumed by the Spearmanmatrix. Therefore, we
define the h × h symmetric matrix

ŜM (X)1−α =



1 CI1,21−α . . . . . . CI1,h1−α
1 CI2,31−α . . . CI2,h1−α

1
.
.
.

.

.

.

1 CIh−1,h1−α
1


, (3.8)
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where CIi ,j1−α , i = 1, .., h − 1, j = i + 1, ...h stands for the BCa interval of coverage probability 1 − α for ρs (X it ,X j
t ).

The same is true for the testing procedure described in 3.3. In this case, we ca perform the pairwise disjointed tests

H0 : ρs (X it ,X
j
t ) = 0,

H1 : ρs (X it ,X
j
t ) , 0.

for i = 1, ..., h − 1, j = i + 1, ..., h. In doing so, we do detect the components that are significantly different from 0 in the
pattern of dependency. Therefore, flanking the pointwise estimate of the SpearmanMatrix

ŜM (X) =



ρ̂s (x1,x1) ρ̂s (x1,x2) . . . ρ̂s (x1,xh )
ρ̂s (x2,x1) ρ̂s (x2,x2) . . . ρ̂s (x2,xh )

.

.

.
.
.
.

. . .
.
.
.

ρ̂s (xh ,x1) ρ̂s (xh ,x2) . . . ρ̂s (xh ,xh )


, (3.9)

with thematrix of confidence intervals

ŜM (X)1−α =



1 CI1,21−α . . . . . . CI1,h1−α
1 CI2,31−α . . . CI2,h1−α

1
.
.
.

.

.

.

1 CIh−1,h1−α
1


, (3.10)

we provide an useful andmanageable tool for the detection o significant dependency among components ofmultivariate
functional data. In fact, if the confidence interval for ρs (X it ,X j

t ) contains zero, there is no evidence (with respect
to a significance level α ) to assume a dependence between the i th and j th component of the multivariate curves.
The corresponding entry i j of ŜM (X)may be considered as equal to zero. To simplify the pattern, only significant
components may be highlighted.

3.5 | Bootstrap test for the equality of two SpearmanMatrices
As it is the case inmultivariate statistics, sometimes the interest of the analysis may lie in the comparison among the
patterns of dependency of two oremore families of multivariate functional data. For example, if the statistical units
under study are characterized bymultivariate signals, wemight wander if people belonging to different groups present
the same pattern of dependency among components of their curves or not. This is the case also considered for the real
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case study presented in Section 4.
For this reason, we now propose a bootstrap-based test procedure to check the dissimilarity of two Spearman

matrices, referring to two populations of multivariate functional data. Suppose (Xt ,Yt ) to be two h-variate (h > 2)
stochastic processes of the form

Xt = (X 1
t ,X

2
t , ...,X

h
t ), Yt = (Y 1

t ,Y
2
t , ...,Y

h
t ),

and assume that the same continuity assumption of Definition 3 holds for both processes. Assume also to have the
multivariate functional datasets

X =


x1,1(t ) x1,2(t ) . . . x1,h (t )
x2,1(t ) x2,2(t ) . . . x2,h (t )
. . . . . . . . . . . .

xnx ,1(t ) xnx ,2(t ) . . . xnx ,h (t )

 t∈T
,

Y =


y1,1(t ) y1,2(t ) . . . y1,h (t )
y2,1(t ) y2,2(t ) . . . y2,h (t )
. . . . . . . . . . . .

yny ,1(t ) yny ,2(t ) . . . yny ,h (t )

 t∈T
,

fromXt andYt , respectively. Wewant to perform the test

H0 : SM (Xt ) = SM (Yt ),

H1 : SM (Xt ) , SM (Yt ).

Themain issue in checking these hypotheses is the definition of a suitable test statistic that is sensible to departures
fromH0. Here we propose a test statistic based on the notion of distance between twomatrices.
Let d a distance in the spaceÒh×h , say a binary function

d ( · , · ) : Òh×h ×Òh×h → Ò

such that, for anyA,B ,C ∈ Òh×h :

• d (A,B) ≥ 0 and d (A,B) = 0 if and only ifA = B ;
• d (A,B) = d (B ,A);
• d (A,B) ≤ d (A,C ) + d (C ,B).

The notion of distance is suited for defining a statistic that captures deviations from the null hypothesis. In fact, the
value returned by d is expression of the dissimilarity of two matrices since it takes in account the differences they
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present. With this in mind, we propose to checkH0 exploiting the statistic

Φ(X,Y ) = d (ŜM (X), ŜM (Y )). (3.11)

Our choice is quite reasonable. In fact, large values ofΦ denote great distance among the sample Spearmanmatrices of
the two populations of multivariate functional data, providing evidence in favour of the dissimilarity of the Spearman
matrices of the generative processes.

Thus, our test procedure requires a notion of distance in the space of the h × h matrices. We can introduce it
considering the distance induced by amatrix norm. In fact, let ‖ · ‖ be a norm in the spaceÒh×h , say an application

‖ · ‖ : Òh×h → Ò

such that, for anyA,B ∈ Òh×h :

• ‖A ‖ ≥ 0 and ‖A ‖ = 0 if and only ifA = 0;
• ‖αA ‖ = |α | ‖A ‖ [α ∈ Ò;
• ‖A + B ‖ ≤ ‖A ‖ + ‖B ‖.

It can be shown, exploiting the properties of the norm, that the function

d (A,B) = ‖A − B ‖, A,B ∈ Òh×h ,

defines a distance in the spaceÒh×h . Therefore, a matrix norm provides also a notion of distance (and dissimilarity)
amongmatrices. GivenA ∈ Òh×h , some examples of norms are:

• One norm: ‖A ‖1 = max
j=1,...,h

∑h
i=1 |ai j |;

• Infinity norm: ‖A ‖∞ = max
i=1,...,h

∑n
j=h |ai j |;

• Frobenius norm: ‖A ‖F =
√∑h

i=1

∑h
j=1 |ai j |2.

Notice that the three norms assume small valueswhen the entries of thematrix are small, so the corresponding distances
show small values when the difference of the twomatrices has small entries, i.e., when the twomatrices are almost
equal. Therefore, the distances induced by them represent an effective way to capture dissimilarity amongmatrices.
Summing up, we propose to testH0 exploiting the test statistic

Φ(X,Y ) = ‖ŜM (X) − ŜM (Y ) ‖, (3.12)

being ‖ · ‖ a suitable norm in the space of the h × h matrices.

Since the statistic distribution underH0 is not a priori known, againwe propose, coherentlywith the previous framework
of the paper, to approximate it using the bootstrapmethodology. The idea is to compute bootstrap replications of Φ
under the null hypothesis and to compare themwith the observed valueΦ(X,Y ) to estimate the p-value of the test.
Table 4 sketches the bootstrap procedure for testing the equality of two Spearmanmatrices.
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Note that the resamplingwhich allows to reproduce the bootstrap datasetsX∗0 ,Y ∗0 under the null hypothesis is basedon
the following argument: underH0, the generative processes have the same pattern of dependence among components,
so each of themultivariate curves

(xi ,1(t ), xi ,2(t ), . . . , xi ,h (t ))t∈T , i = 1, ..., nx ,

(yi ,1(t ), yi ,2(t ), . . . , yi ,h (t ))t∈T , i = 1, ..., ny , (3.13)

are equally likely in both populations. Therefore, we can consider the set of the nx + ny curves given by 3.13 and define
a discrete distribution F̂0 that assigns probability 1/(nx + ny ) to each of them. The bootstrap datasetsX∗0 ,Y ∗0 are then
defined as two random samples of size nx and ny , respectively, drawn from F̂0.
With this test we ed up with a complete inferential framework to assess dependency of two or more families of
(multivariate) curves. Appendix B presents a simulation study aimed at verifying the performances and reliability of the
proposedmethods inmany different scenarios. We remind that all the procedures described are implemented in the
R-package roahd (see Tarabelloni et al. (2018)).
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TABLE 2 Pseudo-code of the bootstrap procedure used to compute the Bias-corrected and accelerated confidence
intervals for ρ(x,y).
Algorithm 2:Bias-corrected and accelerated confidence intervals for the Spearman coefficient ρs (x,y).
Input: Functional dataset

[
x y

]
=



x1(t ) y1(t )

x2(t ) y2(t )
.
.
.

.

.

.

xn (t ) yn (t )

 t∈T
1 for i ∈ 1, . . . ,B do
2 obtain π i1, π i2, ..., π in from the uniform distribution on the discrete set {1, 2, ..., n } ;
3 define theBOOTSTRAP SAMPLE

[
x∗
i

y∗
i

]
=



x
πi
1
(t ) y

πi
1
(t )

x
πi
2
(t ) y

πi
2
(t )

.

.

.
.
.
.

x
πin
(t ) y

πin
(t )

 t∈T
compute theBOOTSTRAPREPLICATION ρ̂∗(i ) = ρ̂s (x∗i ,y∗i ) ;

4 compute the JACKKNIFE VALUES as

θ̂(i ) = ρ̂s (x(i ),y(i )), i = 1, ..., n,

where (x(i ),y(i )) stands for the bivariate functional sample with the i -th bivariate curve removed ;
5 compute theACCELERATION as

â =

∑n
i=1(θ̂(·) − θ̂(i ))

3

6{∑n
i=1(θ̂(·) − θ̂(i ))2 }3/2

.

where θ̂(·) = ∑n
i=1 θ̂(i )/n ;

6 compute theBIAS-CORRECTION as

ẑ0 = Φ
−1

(
#
(
i ∈ {1, 2, ...,B } : ρ̂∗(i ) < ρ̂s (x,y)

)
/B

)
,

whereΦ is the standard normal cumulative distribution function ;
7 compute theORDERSOF PERCENTILES as

α1 = Φ
(
ẑ0 +

ẑ0 + z
(α/2)

1 − â(ẑ0 + z (α/2))

)
,

α2 = Φ
(
ẑ0 +

ẑ0 + z
(1−α/2)

1 − â(ẑ0 + z (1−α/2))

)
,

where z (α/2) and z (1−α/2) are the 100·α/2-th and the 100·(1 − α/2)-th percentile points of the standard normal
distribution, respectively.
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TABLE 3 Pseudo-code of the bootstrap procedure used to carry out the test for the equality of two Spearman
Matrices.
Algorithm 3:Bootstrap based test for the equality of two SpearmanMatrices.
Input: Twomultivariate Functional dataset

X =



x1,1(t ) x1,2(t ) . . . x1,h (t )

x2,1(t ) x2,2(t ) . . . x2,h (t )

. . . . . . . . . . . .

xnx ,1(t ) xnx ,2(t ) . . . xnx ,h (t )

 t∈T
,

Y =



y1,1(t ) y1,2(t ) . . . y1,h (t )

y2,1(t ) y2,2(t ) . . . y2,h (t )

. . . . . . . . . . . .

yny ,1(t ) yny ,2(t ) . . . yny ,h (t )

 t∈T
,

fromXt andYt , respectively.
1 for i ∈ 1, . . . ,B do
2 obtain twoBOOTSTRAPDATASET of multivariate functional dataX∗0 ,Y ∗0 by resampling from the original

datasetsX,Y under the null hypothesis;
3 compute theBOOTSTRAPREPLICATION

Φ∗0(i ) = ‖ŜM (X
∗
0 ) − ŜM (Y

∗
0 ) ‖

4 estimate the P-VALUE of the test as

p = #
(
i ∈ {1, 2, ...,B } : Φ∗0(i ) ≥ Φ(X,Y )

)
/B .
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4 | CASE STUDY: DETECTION OF ABERRATIONS IN DEPENDECY PATTERNS
AMONG HEALTHY AND UNHEALTHY PEOPLE USING ECG SIGNALS.

In this Section, we apply the techniques previously described to a real case study. The aim is to compare the Spearman
Matrix arising from the h-variate (h = 8) electrocardiographic signals (ECGs hereafter) of a population of healthy people
with the one arising from signals of people affected by Left Bundle Brunch Block (LBBB hereafter), a kind of Acute
Myocardial Infarction (see ?? for details about data and precise description of the pathology). Our goal is to investigate
if the pattern of dependency between the components of themultivariate signals associated to each patient presents
remarkable differences (aberration) in the two cases, due to the presence of the disease.

4.1 | Dataset description
Each statistical unit (patient) is characterized by the 8-variate functional datum of his/her electrocardiogram, which
describes his/her heart dynamics on the eight leads I, II, V1, V2, V3, V4, V5 and V6, respectively. The data are from
PROMETEO (PROgetto sull’ areaMilanese Elettrocardiogrammi Teletrasferiti dall’Extra Ospedaliero) database. PROM-
ETEO project has been started in 2008with the aim of spreading the intensive use of ECGs as pre-hospital diagnostic
tool. The project is also a way of constructing a new database of ECGswith features never recorded before in any other
data collection on heart diseases. See Ieva et al. (2013), Tarabelloni et al. (2015), Ieva and Paganoni (2016), Ieva and
Paganoni (2017) for further details on the dataset and its use for statistical applications. The roahd package contains a
toy-dataset reproducing a syntetic dataset inspired to this project, that is detailed in Ieva et al. (2018).
Each file contained in the PROMETEO database is associated to three sub-files, called Details, Rhythm andMedian.
For the aims of the present analysis, only the last one is necessary. TheMedian file depicts a reference beat lasting
1.2 seconds on a grid of 1200 points. It then provides 8 curves (one for each ECG lead) for each patient, representing
patient’s “median” beat for that lead. This representative heartbeat is a trace of a single cardiac cycle (heartbeat), i.e.,
of a Pwave, a QRS complex, a Twave, and a Uwave (see Ieva et al. (2013) for further details on ECG signals and their
preprocessing).

Actually PROMETEO database contains 6, 734 curves; among these, 1, 633 are healthy (i.e., not affected by car-
diovascular diseases detectable through the ECG), whereas 5, 101 are affected by different heart diseases. As we
said before, we will focus on Left Bundle Brunch Block (LBBB). In the PROMETEO dataset, 314 people are affected
by this pathology. After suitable preprocessing and robustification (see Ieva and Paganoni (2017) for more details)
of the dataset, the sample available for the analyses is composed by 1, 564 Physiological curves and 205 LBBB curves,
discretized on a uniformly time gridT of 1024 points. Each patient is represented by his/her discretizedmultivariate
signal, i.e., for i = 1, . . . n , Φi (t ) : T ⊂ Ò → Ò8. All the curves of the available sample are registered and denoised
according to the procedure described in Ieva et al. (2013).

To fix the notation, we assume that the ECG signals of physiological and pathological patients are realizations of
two different multivariate stochastic processes,Xt = (X 1

t ,X
2
t , ...,X

8
t ) andYt = (Y 1

t ,Y
2
t , ...,Y

8
t ), respectively. Without

loss of generality, in order to ease computations, we selected two balanced (results with the unbalanced case are the
same) subsets of multivariate functional data: the first is denotedwithX and collects nx = 200 randomly chosen ECG
signals from the population of the physiological (healthy) patients. In other words,X is a dataset composed by 200 × 8
discretized functions, where the i -th row contains themultivariate curve (ECG) associated to the i -th selected patient.
The second functional dataset is denotedwithY and contains themultivariate curves of ny = 200 randomly chosen
patients affected by LBBB. Figures 1 and 2 show the ECG signals selected in the datasetsX andY , respectively.
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4.2 | Inference on the Spearmanmatrices of healthy vs LBBB patients
Aswe said before, we aim at studying the pattern of dependence among leads in the two populations of patients and
pointing out possibly significant differences. This aim is supported by the following argument: it is likely, clinically
speaking, that the presence of the disease might affect the way the leads depend on each other. In fact, the LBBB
patients have a region of the heart that is damaged, and thismodifies the heart dynamics. So, we believe that the relation
of dependence among leadsmay change due to the presence of the disease. In what follows, wewill apply techniques
presented along the paper to the real case study described in the previous Section, in order to assess the statement
above.

Tables 4 and 5 show the Spearmanmatrices for physiological (ŜM (X)) and pathological (ŜM (Y )) ECGs, respectively.
The entries coloured in yellow represent the NON significant components of the pattern and indicate which pairs
of leads can be assumed as uncorrelated according to the degree of dependency measured by the Spearman index.
Their detection is performed observing the confidence intervals contained in thematrices ŜM (X)0.95 and ŜM (Y )0.95
(reported in Tables 6 and 7, respectively). We remind that, according to the procedure described in 3.3, if a confidence
interval among a pair of components contains zero, the hypothesis of independence between the corresponding pair
of leads is not rejected. In such a case, the component of the SpearmanMatrix is coloured in order to highlight a non
significant dependence. We decide to highlight the uncorrelated pairs of leads instead of the dependent ones in order to
point out, in a easier way, the dissimilarities between the patterns, if any.

I II V1 V2 V3 V4 V5 V6

ŜM (X) =

I 1 0.357 -0.039 0.193 0.166 0.185 0.226 0.264
II 1 0.045 0.212 0.457 0.554 0.589 0.630
V1 1 0.713 0.451 0.304 0.255 0.173
V2 1 0.709 0.571 0.501 0.361
V3 1 0.879 0.761 0.575
V4 1 0.905 0.710
V5 1 0.843
V6 1

TABLE 4 SpearmanMatrix for the population of the physiological signals. The non significant components
(highlighted in yellow) are detected according to the confidence intervals of Table 6.

The twomatrices provide an effective insight on the way the leads of the ECG signals depend one on each other. It can
be noticed that the upper diagonals of thematrices almost always present high and significant values for the Spearman
correlation coefficient. This means that, in both cases, the dynamics of the heart on a lead is strictly related to the
dynamics on the following one. However, we notice remarkable differences in th twomatrices. For instance, the pattern
of dependence of physiological signals is more “connected”, whereas the one of LBBBs is more “sparse”, due to the
presence of several pairs of uncorrelated leads. Moreover, it seems that the V2 lead dynamic is particularly affected by
the presence of the disease. In fact, in healthy patients, it is significantly dependent on all the other leads, but the same
does not hold in the pathological patients, where it is correlated only with 3 other leads.

What we observe can be interpreted in terms of heart dynamics in the following way: in physiological patients, the
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I II V1 V2 V3 V4 V5 V6

ŜM (Y ) =

I 1 0.451 -0.378 -0.043 -0.037 0.337 0.612 0.659
II 1 -0.077 0.053 0.182 0.459 0.589 0.569
V1 1 0.756 0.559 0.136 -0.210 -0.366
V2 1 0.723 0.368 0.018 -0.144
V3 1 0.682 0.220 -0.058
V4 1 0.715 0.438
V5 1 0.844
V6 1

TABLE 5 SpearmanMatrix for the population of the LBBB signals. The non significant components (highlighted in
yellow) are detected according to the confidence intervals of Table 7.

dynamic of the heart ismore regular and expresses a cohordinated behaviourwhich is reflected on the ECG components
dynamic, whereas it becomesmore chaotic and characterized by disjointed behaviours of the parts when the pathology
is present. Another difference that can be noticed comparing the two matrices is that, in the case of physiological
signals, the entries that are significatively different from zero are positive, indicating that the leads tend to bemonotone
increasing functions of each other. The same does not happen for the LBBB signals, where the entries associated to
the pairs V1-V5 and V1-V6 are negative. Hence, it seems that the disease is able to change the natural relation of
dependence among some leads of the ECG.

I II V1 V2 V3 V4 V5 V6
I 1 (0.227, 0.470) (-0.179, 0.089 ) (0.071, 0.311) (0.010, 0.292 ) (0.054, 0.312) (0.100, 0.352) (0.140, 0.389)
II 1 (-0.097, 0.185 ) (0.050, 0.336) (0.331, 0.566) (0.429, 0.648 ) (0.476, 0.678) (0.527, 0.716 )
V1 1 (0.597,0.773 ) (0.348, 0.563) (0.163, 0.409) (0.125, 0.378 ) (0.037, 0.300)
V2 1 (0.633, 0.768) (0.479, 0.657) (0.392, 0.590) (0.239, 0.484)
V3 1 (0.842, 0.906) (0.694, 0.808) (0.458, 0.658)
V4 1 (0.871, 0.927) (0.595, 0.784)
V5 1 (0.771, 0.892)
V6 1
TABLE 6 Matrix of confidence intervals of coverage probability 0.95 for the components of the SpearmanMatrix
associated to the population of the physiological signals. Each interval is computed using B = 1000 bootstrap iterations.
The intervals containing zero are highlighted in yellow.

The differences highlighted above lead us to suppose that the patterns of dependence of the two populations of signals
are different. A quantitative confirmation of this conjecture is given performing the bootstrap test for the equality of
two Spearmanmatrices introduced in Section 3.5.

Let’s consider the distance amongmatrices induced by the one norm (results does not change considering any other
type of distance). Figure 3 reports the histogram of B = 1000 bootstrap replications of statisticsΦ underH0 . The dashed
line denotes the observed valueΦ(X,Y ). As you can see, the value obtained for the sttistical test indicates that the
observed value is not likely under the null hypothesis (p-value < 2e-16). Therefore, the test gives strong evidence to
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I II V1 V2 V3 V4 V5 V6
I 1 (0.294, 0.557) (-0.494, -0.242 ) ( -0.188, 0.106) (-0.181, 0.096 ) (0.211, 0.446) ( 0.505, 0.694) (0.559, 0.731)
II 1 (-0.226, 0.080 ) (-0.121, 0.194) (0.022, 0.322) (0.340, 0.568 ) (0.474, 0.670) (0.452, 0.667 )
V1 1 (0.674,0.814 ) (0.455, 0.644) (-0.012, 0.272) (-0.360, -0.054 ) (-0.487, -0.224 )
V2 1 (0.646, 0.791) (0.216, 0.495) (-0.137, 0.197) (-0.300, 0.009)
V3 1 (0.546, 0.761) (0.043, 0.373) (-0.192, 0.086)
V4 1 ( 0.635, 0.787) (0.319, 0.545)
V5 1 (0.783, 0.889)
V6 1
TABLE 7 Matrix of confidence intervals of coverage probability 0.95 for the components of the SpearmanMatrix
associated to the population of the pathological signals. Each interval is computed using B = 1000 bootstrap iterations.
The intervals containing zero are highlighted in yellow.

rejectH0 and to state that the Spearmanmatrices of physiological and pathological signals are different.
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F IGURE 1 Registered and denoised ECG signals of the nx =200 physiological patients used for the analysis.
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F IGURE 2 Registered and denoised ECG signals of the ny = 200 LBBB patients used for the analysis.
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F IGURE 3 Histogram of B = 1000 bootstrap replications ofΦ underH0 computed using the distance induced by the
one norm. The dashed line is drawn at the observed valuesΦ(X,Y ) = 2.41.
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5 | DISCUSSION AND CONCLUSIONS
The investigation of the dependence among curves is relatively a new issue in statistics. This is mainly due to the late
development of (multivariate) functional data analysis with respect tomultivariate analysis as well as to the difficulty
in summarizing dependence and other indexes in the infinite dimensional context. Indeed, treating the problem of
estimating dependency in (multivariate) functional setting is not a straightforward task. On the other hand, it is more
andmore often the case that disciplines like medicine, finance, quality control, andmany others bring to statistical stage
complex and high dimensional data (e.g. signals) which require suitable techniques to be handled and used for inference
and prediction purposes.

For all these reasons, in this paper we considered the definition of the Spearman index for function introduced by
Valencia et al. (2016) as a starting point to set a suitable bootstrap based inferential setting for assessing dependency
among families of (multivariate) curves. Themain contribution of thework is twofold: firstly, weprovided andhandleable
and intuitive set of instruments for assessing dependency among families of (multivariate) functional data; secondly, we
formalized a computationally feasible and effective framework for performing inference on it.

Further developments of the work may take both the theoretical and applied setting. They may regard, among
others: i) the deeper study of the relationship among Spearman index ρs and the correlation ρ overimposed in the
simulation study among functions; ii) the joint inference formore than two families of curves; iii) the validation of results
on different cardiac pathologies or disease contexts, like the analysis of brain signals in patients where connections
among different parts of the brain have been damaged by a disease or compromised by a surgical intervenction.
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APPEND IX A: ON THE NOT ION OF BOOTSTRAP CONFIDENCE INTERVALS
In this Section, the notion of bootstrap replication of a statistic is exploited to compute confidence interval for a given
unknown parameter of interest. Suppose that the datax = (x1, x2, ..., xn ) are obtained by random sampling from an
univariate unknown distribution F . Let θ = t (F ) the parameter onwhichwewant tomake inference on and suppose
that θ̂ is the estimate of θ based on x, say θ̂ = Tn (x). A possible way for defining a confidence interval for θ is to use
the so called percentile interval, based on the percentiles of the bootstrap distribution of the statisticTn . Let x∗ be a
bootstrap sample drawn from data and consider the bootstrap replication of θ̂, say θ̂∗ = Tn (x∗). Let Q̂ be the cumulative
distribution function of θ̂∗. The 1 − α percentile interval is defined by the α/2 and 1 − α/2 percentiles of Q̂ :

(θ̂lo, θ̂up) = (Q̂−1(α/2), Q̂−1(1 − α/2)). (5.1)

Since by the definition Q̂−1(α/2) = θ̂∗(α/2), the 100·α/2th percentile of the bootstrap distribution, we can also write the
percentile interval as

(θ̂lo, θ̂up) = (θ̂∗(α/2), θ̂∗(1−α/2)). (5.2)

Expressions (5.1) and (5.2) refer to the ideal bootstrap situation in which the number of bootstrap replications is infinite.
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In practice, wemust use somefinite numberB of replications. Hence, we can generateB independent bootstrap datasets
x∗1,x

∗
2, ...,x

∗
B and compute the bootstrap replication θ̂∗(i ) = Tn (x∗i ), i = 1, 2, ...,B . Let θ̂∗(α/2)B

be the 100·α/2th empirical
percentile of the θ̂∗(i ) values, that is, the B · α/2th value in the ordered list of the B replications of θ̂∗ . Hence, if B = 2000
and α = 0.1, θ̂∗(α)

B
is the 100th ordered value of the replications. Likewise, let θ̂∗(1−α/2)

B
be the 100·(1 − α/2)th empirical

percentile. IfB ·α/2 is not an integer, the following convention can be used. Assumingα/2 ≤ 0.5, let k = [(B +1)α/2], the
largest integer ≤ (B +1)α/2. Then the 100·α/2th and the 100·(1−α/2)th empirical percentiles are defined, respectively,
as the k th and (B + 1 − k )th values in the ordered list of the B replications. Given these notions, the approximate 1 − α
percentile interval is

(θ̂lo, θ̂up) ≈ (θ̂∗(α/2)B
, θ̂
∗(1−α/2)
B

). (5.3)

Despite the fact that they are very easy to compute, these intervals present some critical issues, as explained in Efron
and Tibshirani (1993). For instance, they have bad coverage performances, in the sense that the level 1 − α is an
overestimate of the real coverage probability. This is a consequence of the fact that the percentile intervals do not take
in account the possible bias associated to the point estimate θ̂. Moreover, they implicitly assume that the standard
error of the estimate does not depend on the value of the unknownparameter θ, but in real applications thismay happen.

The latter argument induces us to consider an improved version of the percentile method called BCa (bias-corrected and
accelerated). The BCa intervals are a substantial improvement over the percentile method in both theory and practice,
since they aremore accurate in terms of coverage probability. We presented the 1 − α percentile interval as

percentile method : (θ̂lo, θ̂up) = (θ̂∗(α/2), θ̂∗(1−α/2)). (5.4)

The BCa interval endpoints are also given by the percentiles of the bootstrap distribution, but not necessarily the same
ones as in (5.4). In fact, the percentiles used in the new approach depend on two numbers â and ẑ0 , called the acceleration
and bias-correction, respectively. We give first the definition of the BCa interval endpoints and thenwe describe how â
and ẑ0 are obtained.

TheBCa interval of intended coverage probability 1 − α , is defined by

BCa : (θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2)), (5.5)

where

α1 = Φ
(
ẑ0 +

ẑ0 + z
(α/2)

1 − â(ẑ0 + z (α/2))

)
,

α2 = Φ
(
ẑ0 +

ẑ0 + z
(1−α/2)

1 − â(ẑ0 + z (1−α/2))

)
. (5.6)

HereΦ is the standard normal cumulative distribution function and z (α) and z (1−α/2) are the 100·α/2th and the 100·(1−
α/2)th percentile points of the standard normal distribution, respectively. Formula (5.6) looks complicated, but it is easy
to compute. Notice that if â and ẑ0 equal zero, then

α1 = Φ(z (α/2)) = α/2 and α2 = Φ(z (1−α/2)) = 1 − α/2, (5.7)



IEVA ET AL. 29

so that the BCa interval (5.5) is the same as the percentile interval (5.4). Non-zero values of â and ẑ0 change the
percentiles used for the BCa endpoints, correcting the deficiencies of the percentile method (see Efron and Tibshirani
(1993) for further details).

The value of bias-correction ẑ0 is obtained directly from the proportion of bootstrap replications less than the
original estimate θ̂,

ẑ0 = Φ
−1

(
#
(
i ∈ {1, 2, ...,B } : θ̂∗(i ) < θ̂

)
/B

)
, (5.8)

whereΦ−1 indicates the inverse function of a standard normal cumulative distribution function. Roughly speaking, ẑ0
measures themedian bias of θ̂∗, say the discrepancy between themedian of θ̂∗ and θ̂, in normal units. This represents
also ameasure of themedian bias of the estimate θ̂. Of course, we obtain ẑ0 = 0 if exactly half of the θ̂∗(i ) values are less
than or equal to θ̂. There are various ways to compute the acceleration â . The easiest to explain is given in terms of
the jackknife values of the statistic θ̂ = Tn (x). Letx(i ) be the original sample with the i th point xi deleted. Moreover, let
θ̂(i ) = Tn (x(i )) and define θ̂(·) = ∑n

i=1 θ̂(i )/n . A simple expression for the acceleration is

â =

∑n
i=1(θ̂(·) − θ̂(i ))

3

6{∑n
i=1(θ̂(·) − θ̂(i ))2 }3/2

. (5.9)

The name acceleration is due to the fact that it refers to the rate of change of the standard error of θ̂ with respect to
the true parameter value θ, measured on a normalized scale. Therefore, through the acceleration, the interval takes in
account also the possibility that the variability of the point estimate depends on the value of the unknown parameter.
This adjustment improves the performance with respect to the percentile method. It is not all obvious why the formula
(5.9) should provide an estimate of the acceleration of the standard error. Some discussions of this may be found inEfron
(1987).

APPEND IX B: S IMULAT ION STUDY
In this Section we present some simulation studies aimed at testing the performance of the Spearman index and
Matrix estimators introduced in Section 2 of the paper, when correlation among the components of multivariate curves
exists/does not exists, is direct/inverse, respectively.

Without loss of generality, in the first part of the study, we consider bivariate functional datasets (Case 1, h = 2),
sampled from a stochastic process (Xt ,Yt ). In this case, we investigate the dependence between the components of the
generative process providing the point and interval estimates of the Spearman index and performing the independence
test introduced in Subsection 3.3. Thenwe consider amultivariate functional dataset (Case 2, h > 2). In this case, we
investigate the pattern of dependence between the components computing the point estimate of the SpearmanMatrix
and evaluating the significance of its entries using confidence intervals introduced in Section 3.4.

| Case 1: bivariate functional data
The first part of the study considers functional observations with h = 2 components, sampled from the referencemodel
proposed in Ieva and Paganoni (2017). Let

(Xt ,Yt ) = (µX (t ) + ÚX (t ), µY (t ) + ÚY (t )), (5.10)
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be a bivariate gaussian process withmeans

µX (t ) = sin(2πt ), t ∈ I = [0, 1],

µY (t ) = sin(4πt ), t ∈ I = [0, 1],

and exponential Matèrn covariance functions

Cov(ÚX (t ),ÚX (s)) = CX (t , s) = αX exp(βX |s − t |),
Cov(ÚY (t ),ÚY (s)) = CY (t , s) = αY exp(βY |s − t |). t , s ∈ I .

In the following, wewill always set αX = 0.5, αY = 0.7, βX = βY = 0.4without loss of generality.
We introduce a dependence between the two components of the process assuming a correlation betweenÚX (t ) and
ÚY (t ), say

Corr(ZX (t ),ÚY (t )) = ρ, [t ∈ I .

It is important to remark that the data generation procedure adopted above assumes a pointwise dependence between
the curves. This kind o dependence is different from the one theoretically captured by the Spearman index. In fact,
ρs (Xt ,Yt ) considers the direction of association between Xt andYt , namely their tendency to be perfect monotone
(increasing or decreasing) function of each other. Therefore, it takes into account the possible dependence between
the processes behaviours in the reference time interval and not only the pointwise correlation between their points,
as the variance-covariance operator would do. Of course, the reciprocal behaviour of Xt andYt is influenced by the
correlation ρ that we impose in the generatingmodel, but the two concepts are not completely overlapped, since they
are also influenced by themeans that we choose for the processes, among others. For this reason, whenwe fix ρ, we
do not fix ρs (Xt ,Yt ) and this means that a priori we cannot expect that the point estimate ρ̂s of the Spearman index is
also an estimate of ρ, even if they are of course related in some sense. In our simulation, ρ is used to vary the grade of
dependence between the components, in order to obtain different scenarios for the evaluation of the performances of
our tools.

In Figure 4 a sample of n = 200 bivariate curves from the stochastic process described above is presented, assuming
uncorrelated components, i.e., ρ = 0.
Given this framework, we can sample functional datasets from the model (5.10) and then make inference on the
Spearman index characterizing them. We simulate six samples, each of them composed by n = 200 bivariate curves,
defined over an uniformly time grid of d = 500 points and characterized by a pointwise correlation ρ among components
ranging in {0.01, 0.1, 0.3, 0.6, 0.9, 0.999}. For the bootstrap estimates, B = 1000 iterations are considered. The inference
on ρs is performed providing:

• The value of the point estimate ρ̂s , computed using the Inferior Length grade (results does not change considering
the Superior Length grade).

• The BCa confidence interval for ρs of intended coverage probability 1 − α = 0.95.
• The result of the independence test presented in Subsection 3.3.

The results are summarized in Table 8.
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F IGURE 4 Sample of n = 200 bivariate curves with no correlations among components (ρ = 0).

ρ ρ̂s CI0.95(ρs ) Result of the test
0.01 -0.045 -0.188 0.098 not reject
0.1 0.068 -0.065 0.212 not reject
0.3 0.393 0.248 0.505 reject
0.6 0.712 0.640 0.776 reject
0.9 0.885 0.845 0.910 reject
0.999 0.998 0.997 0.999 reject

TABLE 8 Inference on ρs using bivariate functional samples of n = 200 curves with pointwise correlation ranging
from 0.01 to 0.999.

First of all, we notice that ρ̂s seems able to capture the dependence between the components of the bivariate curves, if
any. In fact, if we set a sufficiently large pointwise correlation, the point estimate is positive and significatively different
from 0, where significatively means that the corresponding BCa confidence interval does not contain 0. This result
confirms the theoretical properties of the Spearman index discussed in Section ??. Consider now the case in which the
pointwise correlation is small, say ρ = 0.01 and ρ = 0.1. In these cases the point estimator provides a value different
from 0, but not far from it and actually not significant, since the corresponding confidence interval does contain 0.
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Correspondingly, in the independence test the null hypothesis is rejected at a significance level α = 0.05when there
is a strong pointwise correlation between the components of the bivariate curves. In other words, the presence of
dependence is correctly kept by the test. On the other hand, when the pointwise correlation is weak, the test does not
provide evidence for rejecting the hypothesis of independence.

From Table 8, it can be also noticed that the BCa confidence intervals of coverage probability 0.95 always contain the
value of pointwise correlation ρ, except for the case ρ = 0.6. As we discussed above, this is due to the fact that ρ and
ρs (Xt ,Yt ) are not the same thing. However, since the two concepts are linked, confidence intervals for ρs might be
considered, in themost part of cases, as good interval estimators o the pointwise correlation.

To complete our analysis, we perform the same inference considering also functional datasets with negative pointwise
correlations among components. Again, we consider six samples of n = 200 bivariate curves defined over an uniformly
time grid of d = 500 points, with ρ ranging in {−0.999,−0.9,−0.6,−0.3,−0.1,−0.01}. For the computation of the interval
estimates, we fix B = 1000. The results are summarized in Table 9.

ρ ρ̂s CI0.95(ρs ) Result of the test
-0.999 -0.998 -0.999 -0.998 reject
-0.9 -0.874 -0.906 -0.831 reject
-0.6 -0.555 -0.643 -0.444 reject
-0.3 -0.211 -0.341 -0.082 reject
-0.1 -0.044 -0.173 0.093 not reject
-0.01 0.002 -0.138 0.140 not reject

TABLE 9 Inference on ρs using bivariate functional samples of n = 200 curves with pointwise correlation ranging
from -0.999 to -0.01.

The results are satisfactory also in this case. The point estimates of the Spearman index are significant when a signifi-
cantly high negative correlation is present, while they are not significant when the correlation is weak. Sowe can say
that the Spearman index has good performance also in case of negative dependence between the components. Again,
the independence test rejects the null hypothesis only when the correlations among the component is strong.

| Case 2: h-variate functional data

Wenow consider functional data generated by amultivariate stochastic processXt = (X 1
t ,X

2
t , ...,X

h
t ), with h > 2. In

this case, the object of the inference is the pattern of dependence among the components of the process, captured by
the SpearmanMatrix SM (Xt ). Without lack of generality, we focus on trivariate case, say h = 3.

Let’s consider a trivariate gaussian process, generated y the followingmodel:

(X 1
t ,X

2
t ,X

3
t ) = (µ1(t ) + Ú1(t ), µ2(t ) + Ú2(t ), µ3(t ) + Ú3(t )),
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withmeans

µ1(t ) = sin(2πt ), t ∈ I = [0, 1],

µ2(t ) = sin(4πt ), t ∈ I = [0, 1],

µ3(t ) = sin(6πt ), t ∈ I = [0, 1],

and exponential Matèrn covariance functions

Cov(Ú1(t ),Ú1(s)) = C1(t , s) = α1 exp(β1 |s − t |),
Cov(Ú2(t ),Ú2(s)) = C2(t , s) = α2 exp(β2 |s − t |),
Cov(Ú3(t ),Ú3(s)) = C3(t , s) = α3 exp(β3 |s − t |) t , s ∈ I .

In the following, we set α1 = 0.5, α2 = 0.7, α3 = 0.8, β1 = β2 = β3 = 0.4 without loss of generality. We introduce a
dependence between the components of the trivariate process assuming a correlation structure betweenÚ1(t ),Ú2(t )
andÚ3(t ), say

Corr(Z1(t ),Ú2(t ),Ú3(t )) =

1 ρ12 ρ13

1 ρ23

1

 , [t ∈ I .

Again, the dependence imposed by the pointwise correlation ρi j is different from the dependence captured by the i j
component of the SpearmanMatrix, according to the argument proposed in the previous paragraph. Therefore, a priori
we cannot expect the sample estimate ŜM (X) to be a point estimate of thematrix Corr(Z1(t ),Ú2(t ),Ú3(t )), but it is a
reasonable proxy.

Given this framework, we carry out the inference. We simulate from themodel n = 200 trivariate curves defined over
an uniformly time grid of d = 500 points. The correlation structure used is

Corr(Z1(t ),Ú2(t ),Ú3(t )) =

1 0.9 −0.3

1 0.01

1

 , [t ∈ I . (5.11)

Basically, we are assuming a trivariate process with an high and positive correlation among the first and the second com-
ponent, a very weak and positive correlation among the second and the third one and aweak and negative correlation
among the first and the third one. For this instance, the point estimate of the SpearmanMatrix is

ŜM (X) =


1 0.895 −0.350

1 −0.038
1

 ,
and the correspondingmatrix of the BCa confidence intervals with 0.95 coverage probability (B=1000) is given by
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ŜM (X)0.95 =


1 (0.857, 0.922) (−0.471,−0.231)

1 (−0.170, 0.086)
1

 . (5.12)

We can notice that ŜM (X) provides a good representation of the grade of dependence between the components of
the generative process. In fact, it indicates a large positive dependence between the first and the second component, a
negative dependence between first and the third one and a very weak dependence between the second and the third
one, coherently with the correlation structure defined in (5.11).
If wewant to simplify the pattern of dependence, we can perform the disjointed tests

• H0: ρs (X it ,X j
t ) = 0,

• H1: ρs (X it ,X j
t ) , 0.

for i = 1, 2, j = i +1, ..., 3. From (5.12), we notice that only the confidence interval for ρs (X 2
t ,X

3
t ) contains zero, indicating

that the dependence captured by corresponding component of ŜM (X) is not significant.

In general, wemay say that the simulations carried out in this Section testify for good performances of the inferential
tools proposed into the paper in properly capturing ad describing the dependency among (multivariate) families of
curves.
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