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Abstract

We propose an inferential procedure for functional data, able to select
the intervals of the domain imputable of rejecting a functional null hypoth-
esis. The procedure is based on three different steps: (i) a functional test
is performed on any interval of the domain; (ii) an unadjusted and an ad-
justed p-value function are defined from the results of the previous tests;
(iii) the significant intervals of the domain are selected by thresholding the
unadjusted or the adjusted p-value functions, depending on the desired type
of control of the family-wise error rate (i.e., point-wise or interval-wise, re-
spectively). In detail, we prove that the newly defined unadjusted p-value
function provides a control of the point-wise error rate (i.e., given any point
of the domain where the null hypothesis is not violated - in an L2 sense to
be suitably defined - the probability of wrongly selecting it as significant
is controlled) and that it is point-wise consistent (i.e., given any point of
the domain where the null hypothesis is violated - in an L2 sense to be
suitably defined - the probability of selecting it as significant goes to one as
the sample size goes to infinity). Similarly, we prove that the newly defined
adjusted p-value function provides instead a control of the interval-wise er-
ror rate (i.e., given any interval of the domain where the null hypothesis
is almost-everywhere not violated the probability of wrongly selecting it as
significant is controlled) and that it is interval-wise consistent (i.e., given
any interval of the domain where the null hypothesis is almost-everywhere
violated the probability of selecting it as significant goes to one as the sam-
ple size goes to infinity). The procedure is also applied - together to other
two state-of.the-art procedures - to the analysis of of the Canadian daily
temperatures, to test for pairwise differences between four climatic regions.
In detail, we show how the new procedure hereby proposed is able to give
a new deeper and useful insight on the possible rejection of the null hy-
pothesis that consists in the selection of the periods of the years presenting
significant differences between each couple of regions.
Keywords: Functional Data Analysis, Inference, Domain Selection.
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1 Introduction

Functional Data Analysis (FDA), that is the analysis of data sets character-
ized by the observations of one or more functions for each statistical unit, has
recently achieved a considerable importance in modern statistical scientific in-
vestigation (Ramsay and Silverman 2002, 2005; Ferraty and Vieu 2006; Horváth
and Kokoszka 2012).

A lively area in the field of FDA is the one of statistical inference, which
is currently approached from two different perspectives: parametric and non-
parametric inference. The former approach commonly relies on distributional
assumptions on functional data and/or on asymptotic results (Cuevas et al.
2004; Abramovich and Angelini 2006; Antoniadis and Sapatinas 2007; Horváth
and Kokoszka 2012; Staicu et al. 2014; Zhang and Liang 2014). The latter
approach relies instead on permutation or bootstrap computational intensive
techniques (Hall and Tajvidi 2002; Cardot et al. 2007; Hall and Van Keilegom
2007).

Although being based on different models and assumptions, all these works
share a common aim, that is, the one of performing a global test on the whole
domain of the functional data. This aim is reached by looking at functions as the
data points. Even though mathematically very appealing and providing powerful
inferential tools, this type of approach is in many applicative cases not fully
satisfactory. Indeed, for instance, whenever the null hypothesis of no difference
between the two populations is rejected, practitioners are not just satisfied to
know that the two functional populations are significantly different, but they
are often interested in understanding which features of the data significantly
differ between the two populations. In a finite-dimensional multivariate case,
this issue is referred as feature selection. In the FDA framework, since data are
functions, the feature selection might translate into a selection of the portions of
the domain presenting significant differences between the two populations. We
will refer to it as domain selection. In the very recent literature some examples of
domain selection can be found in cluster analysis (Chen et al. 2014), in functional
regression with LASSO penalization (Zhao et al. 2012), and thresholded wavelet
and sparse representations (Donoho and Johnstone 1994; Dong et al. 2011).

Focussing on inferentially driven feature/domain selection techniques, in the
finite-dimensional multivariate case a feature selection can be performed by ex-
ploiting multiple testing techniques (Dudoit and Van Der Laan 2007). The
commonly used approach is to test all marginal univariate hypotheses pertain-
ing the single features of the data, applying a Bonferroni-Holm (Holm 1979),
or Benjamini-Hochberg (Benjamini and Hochberg 1995) multiplicity correction,
and then thresholding the resulting adjusted p-values.

Extending to the FDA framework the latter technique poses at least two
major challenges: (i) point-wise p-values are in general not trivially defined in
functional spaces. If, for instance, data are embedded in the L2 space (that
is the natural extension of the Euclidean geometry to the FDA framework),
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the point-wise evaluation of data is meaningless; (ii) the multiplicity correction
would involve a family of infinite tests, and both the Bonferroni Holm and the
Benjamini Hochberg procedures are not able to deal with such a case.

In the recent literature, two works have been proposed on this line of research,
trying to solve the issue of multiplicity in the FDA framework in different ways:
the discretization of functional data, and the discretization of the domain. In
Pini and Vantini (2013), data are projected on a finite dimensional functional
basis, and a family of tests is performed on the coefficients of the basis expan-
sion, by controlling the probability of falsely rejecting any set of consecutive
components of the basis expansion. In Vsevolozhskaya et al. (2014) a finite
partition of the domain in sub-intervals is a priori defined, and the significant
sub-intervals are selected, with a control of the probability of falsely selecting
any set of sub-intervals. Since the first approach relies on a basis expansion
of data, conclusions could change depending on the particular basis chosen to
project data. In the second case the choice of the initial partition in sub-intervals
can affect the conclusions.

In this paper we consider these two works as a starting point, exploiting
the sound properties of both procedures. In detail we propose a procedure
which neither rely on a basis expansion, nor on an a priori partition in sub-
intervals, to obtain a purely non-parametric inferential procedure able to detect
the portions of the domain presenting a rejection of the null hypothesis for
functional data embedded in L2. In detail, we propose an inferential procedure
providing: (i) an unadjusted p-value function providing for each point of the
domain a p-value controlling the point-wise error rate (i.e., given any point
where the null hypothesis is not violated in a L2 sense that will be defined,
the probability of wrongly selecting it as significant is controlled); and (ii) an
adjusted p-value function controlling the interval-wise error rate (i.e., given any
interval of the domain where the null hypothesis is not violated, the probability
of wrongly selecting it is controlled). We show how these p-value functions can
be thresholded to select the statistically significant parts of the domain.

The paper is structured as follows: in Section 2 we present the procedure in
a general inferential framework in FDA, giving the details of its implementation
in the particular case of testing the difference between two functional popula-
tions. Finally, Section 3 reports the application of the procedure to a benchmark
functional dataset, to test the differences between the mean daily temperatures
of different Canadian regions.

2 Methodology and theoretical properties

2.1 Functional interval-wise testing procedure

Suppose that, based on the observation of a set of L2 random functions over the
domain T = (a, b) ⊂ R, we aim at testing a functional null hypothesis H0 against
an alternative H1. For instance, in a two-sample framework, if we denote as µ1
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and µ2 the means of the two functional populations (µj ∈ L2(T ), j = 1, 2), the
null hypothesis H0 can be written as µ1 = µ2 and the alternative one as µ1 6= µ2.
Let I ⊆ T be an interval or a complementary interval of the form I = (t1, t2)
or I = T\(t1, t2), with a ≤ t1 < t2 ≤ b, respectively. We further define as HI0
and HI1 the restriction of the null and alternative hypotheses on I, respectively
(e.g., in a two-sample framework, HI0 : µI1 = µI2 and HI1 : µI1 6= µI2 , with µIj
j = 1, 2, the restrictions of µj over I). Note that H0 =

⋂
I⊆T H

I
0 .

In the general case, given an R-valued functional test statistic that could be
used to test H0 globally, we propose a procedure based on the following steps.

• Interval-wise testing: for any I ⊆ T , pI is defined as the p-value of the
functional test of HI0 vs. HI1 , based on the restriction of the chosen test
statistic on I.

• Definition of the p-value functions: the unadjusted p-value at point t
(i.e., p(t)) and the adjusted p-value at point t (i.e., p̃(t)) are defined as:

p(t) = lim sup
I→t

pI ; p̃(t) = sup
I3t

pI(t),

where with the notation I → t, we indicate that both the extremes of the
interval I converge to t.

• Domain selection: the significant intervals of the domain obtained by
controlling point-wise error rate or the inteval-wise error rate are selected
by thresholding the p-value functions p(t) or p̃(t), respectively.

2.2 Test of mean difference between two populations

We here further detail the procedure in the two-population framework, for testing
mean differences between two populations. Everything described here could be
possibly extended to more complex testing problems.

Suppose to observe two independent samples of random functions on the
L2(T ) space: ξji, where j = 1, 2 is the population index, i = 1, . . . , nj is the unit
index, and T = (a, b) ⊂ R. Let µj with j = 1, 2 denote the functional means of
the two populations. We want to test the following hypotheses:

H0 : µ1 = µ2 against H1 : µ1 6= µ2, (1)

where the equality is defined in the L2 sense (i.e., µ1 = µ2 ⇔
∫
T (µ1(t) −

µ2(t))
2dt = 0). In the case of rejection of the null hypothesis, we aim at selecting

the portions of the domain presenting a significant mean difference between the
two groups. To achieve this target we apply the procedure sketched in Subection
2.1, that is detailed in the following.

4



Interval-wise testing. In this phase a functional test is performed for every
open interval, and complementary interval of the domain. In particular, for any
interval I of the form (t1, t2), or T\(t1, t2) , with a ≤ t1 < t2 ≤ b, we perform
the functional test:

HI0 : µI1 = µI2 against HI1 : µI1 6= µI2 , (2)

where µIj is the restriction of µj over I.
For testing (2), different strategies are possible. In the two-population case,

when assuming the functional normality of data, it is possible to use parametric
functional tests over the corresponding domains, such as the ones proposed by
Horváth and Kokoszka (2012).

If the assumption of functional normality seems not realistic, one can rely
on non-parametric permutation methods to perform the tests. In detail, we
here propose to use for each interval the permutation test described in Hall and
Tajvidi (2002), using a test statistic based on the L2 distance between the two
sample means over I:

T I(ξ1,1, . . . , ξ1,n1 , ξ2,1, . . . , ξ2,n2) =
‖ξ1 − ξ2‖2L2(I)

|I|
=

1

|I|

∫
I

(
ξ1(t)− ξ2(t)

)2
dt,

(3)
where ξj = 1

nj

∑nj

i=1 ξji, j = 1, 2.

An exact permutation test for (2) can then be achieved by evaluating the
test statistic T I over all possible permutations of the data over the sample
units. In this framework the p-value of the corresponding test, denoted by pI , is
the proportion of the corresponding test statistics evaluated on permuted data
exceeding the statistics evaluated on the original data set. As usual, high values
of pI indicates no differences between the two functional means in I, while
low values of pI indicate significant differences in I between the two functional
means.

Definition of the p-value functions. In the second phase, an unadjusted
and an adjusted p-value function are evaluated over the domain T for testing
(1). In detail, the family of interval-wise tests defined in the first phase, are used
to define the unadjusted and adjusted functional p-values.

Definition 2.1. Consider the set of curves ξji ∈ L2(T ), with j = 1, 2, i =
1, . . . , nj, and T = (a, b) ⊂ R. Let ξji be a random sample from a functional
population of mean µj ∈ L2(T ), j = 1, 2. Let H0 and H1 denote, respectively,
the null and alternative functional hypotheses, and HI0 , HI1 their restriction on
I. Finally, let pI denote the p-value of the functional test of HI0 against HI1 .
Then, the unadjusted p-value function p(t) and the adjusted p-value function p̃(t)
are defined ∀t ∈ T as:

p(t) = lim sup
I→t

pI ; p̃(t) = sup
I3t

pI .
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Note that, even though in the L2 framework it is meaningless to talk about
point-wise evaluations of the functions ξji, the boundedness of the p-values pI

guarantees that both the unadjusted and the adjusted p-values are instead well
defined ∀t ∈ T .

In addition, being T an open limited interval of R, we have that L2(T ) ⊂
L1(T ), and thus the integral mean value theorem guarantees that, almost every-
where:

p(t) = lim
I→t

pI ,

and p(t) coincides almost everywhere with the p-value of the permutation test
based on the test statistic (ξ1(t)−ξ2(t))2, computed from the point-wise evalua-
tions of the almost everywhere continuous representatives of the L2-equivalence
classes of data ξji. Moreover, in the special case of data embedded in L2(T ) ∩
C0(T ), the identity above holds ∀t ∈ T .

We here report the theoretical properties of the unadjusted and adjusted
p-value functions p(t) and p̃(t).

• The unadjusted p-value p(t) is provided with a control of the point-wise
error rate (Theorem 1 of the Appendix), that is, ∀α ∈ (0, 1):

∀t ∈ T s.t. ∃I 3 t : HI0 is true⇒ P[p(t) ≤ α] ≤ α. (4)

• The adjusted p-value p̃(t) is provided with a control of the interval-wise
error rate (Theorem 2 of the Appendix), that is, ∀α ∈ (0, 1):

∀I ⊆ T : HI0 is true⇒ P [∀t ∈ I, p̃(t) ≤ α] ≤ α. (5)

In detail, property (4) implies that the probability of wrongly rejecting a point
belonging to a “true” interval is controlled. Property (5) implies instead that
the probability of wrongly rejecting a “true” interval is controlled.

Note that, since for almost every t ∈ T , p(t) coincides with the p-value of
the permutation test based on the test statistic (ξ1 − ξ2)2, we also have that,
∀α ∈ (0, 1):

for almost every t ∈ T s.t. ∃I 3 t : HI0 is true⇒ P[p(t) ≤ α] = α.

In the special case of data embedded in L2(T )∩C0(T ), point-wise error rate and
interval-wise error rate can be more easily defined starting from the point-wise
evaluations of data. Indeed, in this case, for each point t, p(t) allows the control
of the probability that the two means are wrongly detected as different in the
point t (i.e., the probability of detecting a difference in t whe µ1(t) = µ2(t)). On
the other hand, p̃(t) allows to control the probability that the two means are
wrongly detected as different over an interval I such that ∀t ∈ I, µ1(t) = µ2(t).

Finally, it is worth mentioning that both the unadjusted and the adjusted
p-value functions are consistent (Theorem 3 of the Appendix). In detail, ∀α ∈
(0, 1):

∀t ∈ T s.t. @I 3 t : HI0 is true⇒ P [p(t) ≤ α] −−−→
n→∞

1;
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∀I ⊆ T s.t. @J ⊆ I : HJ0 is true⇒ P [∀t ∈ I, p̃(t) ≤ α] −−−→
n→∞

1.

The special case of data embedded in L2(T ) ∩ C0(T ) provides a clear inter-
pretation of such consistency property. Indeed, for the unadjusted p-value, we
have that the probability of truly detecting any point t for which µ1(t) 6= µ2(t)
converge to one as the sample size increases. In addition, for the adjusted p-
value, we have that the probability of truly detecting any interval I for which
µ1(t) 6= µ2(t) ∀t ∈ I also converge to one as the sample size increases.

Domain selection. The intervals of the domain presenting a significant mean
difference between the two populations are selected by thresholding the p-value
functions evaluated in the previous step. In detail, if we are only interested in
controlling the point-wise error rate at level α ∈ (0, 1), we select the points t ∈ T
such that p(t) ≤ α. If instead we are interested in controlling the interval-wise
error rate at level α, we select the points t ∈ T such that p̃(t) ≤ α.

3 Case study: analysis of Canadian daily tempera-
tures

To illustrate the potential of the functional testing procedure illustrated in this
paper, we show here its application to the well known Canadian daily temper-
ature dataset (Ramsay and Silverman 2005). The case study reported in this
section is inspired by the pairwise comparisons between daily temperatures of
the Australian climatic regions reported in Hall and Tajvidi (2002). In detail,
we compare the information provided by the application of the functional test
proposed in Hall and Tajvidi (2002) with the result of the functional testing pro-
cedure here described. In addition, since in this case one could apply a natural
partition of the year into 12 months, we also compare our procedure with the
one proposed by Vsevolozhskaya et al. (2014). We first describe the dataset and
the results obtained from the analysis. At the end of this section we report some
details about the implementation of the test on these data.

The data set contains the average daily temperatures (over 30 years) recorded
at 35 weather stations of Canada. The 35 weather stations are divided into four
climate zones: Atlantic, Pacific, Continental, and Arctic. The station locations
and the functional data are reported in the bottom and top panels of Figure
1, respectively. The four different colors are associated to the different climatic
regions. As done by Hall and Van Keilegom (2007), we test for differences
between the average temperature of the four regions, in a pairwise perspective.

The Hall Tajvidi test provides for each comparison a global p-value pT . These
p-values are reported in Table 1. This test detects here significant differences
between all pairs of climatic zones. Nevertheless, it is not able to identify the
periods of the year presenting significant differences.
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Figure 1: Top: functional data set of average daily temperatures in the 35 weather stations.
Bottom: locations of the 35 Canadian weather stations. Each color of both panels is associated
with a different region: black-Arctic; green-Continental; red-Atlantic; blue-Pacific.

Pair difference pT

Arctic-Atlantic 0.000
Arctic-Continental 0.001

Arctic-Pacific 0.014
Atlantic-Continental 0.000

Atlantic-Pacific 0.000
Continental-Pacific 0.000

Table 1: Global p-values pT of the test of H0 : µ1 = µ2 against H1 : µ1 6= µ2 over the whole
interval T associated to each pairwise difference.
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The unadjusted and adjusted p-value functions evaluated according to the
procedure described in Section 2.2 are instead displayed in Figure 2, where each
different panel of the left column corresponds to a different couple of regions. In
detail, the unadjusted p-value function is reported in dashed black line, and the
adjusted p-value function is reported in full black line.

Focusing on the adjusted p-value p̃(t), it is possible to give a very clear
interpretation of these results. We notice that both Atlantic and Pacific areas
(red and blue curves, respectively) differ from the Arctic climate (black curves)
over the entire year (i.e., p̃(t) is strongly significant along the whole time domain).
The temperatures of these two areas also differ from the Continental ones (green
curves) during winter only (i.e., p̃(t) is strongly significant during the winter
period). The Continental and Arctic climates are significantly different during
the whole year but the winter months (i.e., p̃(t) is strongly significant from
February to November). Finally, the Atlantic and Pacific climates are pointed
out as significantly different during the first months of the year, from January
to March.

Let us now identify the periods of the year in which the differences occur by
limiting to 5% the probability that any period is wrongly selecting as significant.
This task is simply obtained by thresholding the adjusted p-value function p̃(t)
at the 5% level. The detected periods are reported in gray in the right panels of
Figure 2, together with the curves of the two gropus. The starting and ending
days of the significanlty different year periods are summarized in Table 2.

All results are interpretable in terms of Canadian climatic conditions (Stanley
2002). Indeed, due to the mitigating effect of the sea during winter, the temper-
atures in both the Atlantic and the Pacific regions are higher with respect to the
ones in both the Continental and the Arctic regions. During the rest of the year,
on the other hand, the temperature in the Continental region rises, reaching the
same level as the ones of the Atlantic and Pacific regions, whereas the Arctic
area temperatures stay lower. Finally, the difference between the Atlantic and
Pacific regions is exclusively due to the warmer period from January to March
of the latter, due to the influence of the warmer maritime air of Pacific Ocean.

Pair difference Period of the year

Arctic-Atlantic 01 Jan. − 31 Dec.
Arctic-Continental 02 Feb. − 15 Dec.

Arctic-Pacific 01 Jan. − 31 Dec.
Atlantic-Continental 17 Sep. − 24 Mar.

Atlantic-Pacific 13 Jan. − 16 Mar.
Continental-Pacific 13 Oct. − 08 Apr.

Table 2: Periods of the year presenting a significant difference between each pair of regions
controlling the interval-wise error rate at 5% level.

Finally, we report here a comparison between the conclusions that can be
drawn by applying the procedure described in this work and by applying the
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Figure 2: Left: unadjusted (black dashed line) and adjusted (black full line) p-value functions
associated to the pairwise differences between the average daily temperatures of four Canadian
climatic zones. The red lines represents the adjusted p-values associated to each month accord-
ing to the VGH test. Right: functional data of each pairwise comparison, and year periods
presenting a significant difference between each pair of regions controlling the interval-wise
error rate at 5% (gray areas).
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testing procedure proposed in Vsevolozhskaya et al. (2014) (we will refer to it as
VGH test). The latter one is based on partitioning the domain T into pre-defined
sub-intervals and then associating to each sub-interval a unique adjusted p-value
obtained by applying the close testing procedure over the sub-intervals. In terms
of control of the family-wise error rate, the adjusted p-values provided by VGH
test provide a strong control of the family-wise error rate over the family of sub-
intervals (i.e., for any set of sub-intervals onto which µ1 = µ2 the probability that
at least one of the sub-intervals is wrongly detected as significant is controlled)
but only a weak control of the family-wise error rate within each sub-interval
(i.e., the procedure does not distinguish between points of the same sub-interval
and thus it either rejects or does not reject the null hypothesis µ1 = µ2 on the
entire the sub-interval. Consequently the control of the family-wise error rate
on portions of the sub-interval is lost). Two are the consequences of this kind
of control of the family-wise error rate: (i) differently from the procedure here
proposed, the VGH test does not guarantee any control of the family-wise error
rate on generic intervals of the domain unless the pre-defined ones or their unions;
(ii) as the sample size goes to infinity, an interval (a, b) of the domain included
in one of the pre-defined sub-intervals has a probability one of being entirely
pointed out as significant also in the undesired case where the null hypothesis
µ1 = µ2 is not violated on (a, b) but on an other part of the sub-interval which
(a, b) belongs to.

In the case of Canadian daily temperatures, a natural partition of the year
domain can be constituted by the 12 months of the year. The adjusted p-values
associated to each month evaluated with the VGH test are reported with a solid
red line in the left panels of Figure 2. The results of the procedure we here
proposed and of the monthly-based VGH-procedure are generally coherent. The
main difference is here related to the temporal resolution in the selection of the
periods of the year presenting a significant difference. For instance, by means
of the VGH test, we can conclude that there is a significant difference at 5%
level between the temperatures of the Arctic and the Continental regions during
December (the associated adjusted p-value is 0.032). By means of the adjusted
p-value function p̃(t) we are able to provide a more precise information, that is,
that this difference is observed in the first 15 days of the month.

Of course, the temporal resolution of the VGH test could be in principle
improved by selecting a larger number of pre-defined sub-intervals. However in
the practice, when the number k of sub-intervals increases, the power of the
VGH test decreases (as in any procedure based on close testing), and more-
over its computational cost (which grows exponentially as 2k) becomes quickly
unaffordable.

Details on the implementation. As all FDA techniques, the procedure to
evaluate the unadjusted and adjusted p-value functions and select the significant
intervals of the domain described in Section 2 has to be numerically approxi-
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mated to deal with the analysis of real data.
Coherently with previous analyses of the Canadian daily temperature data

set presented in the literature (Ramsay and Silverman 2005), the functional
data have been obtained by means of a Fourier smoothing on 65 harmonics.
The number of harmonics was selected through a cross-validation procedure.

The test statistic (3) is evaluated by means of a numerical integration method,
through a trapezoidal rule based on a fine uniform grid of 365 knots. The same
evaluation is used to perform the test proposed by Vsevolozhskaya et al. (2014).

Since the number of permutations of the data to be explored to evaluate the
p-values is extremely high in at least some of the studied cases, a Conditional
Monte Carlo (CMC) algorithm is applied to estimate the p-values of the tests
of HI0 against HI1 for any interval I (Pesarin and Salmaso 2010). In the case of
the analysis reported in this section a CMC algorithm based on 1000 randomly
chosen permutations was employed. Note that, to decrease the computational
cost of the permutation method applied to any interval I, it is possible to perform
all tests based on the same set of permutations.

Finally, the p-values of the tests HI0 against HI1 for any interval I are dis-
cretized on a sufficiently fine grid. Relying on the continuity of the test statistic
(3) with respect to the extremes of the integration interval, the max and lim sup
of Definition 2.1 have been approximated with their discrete counterparts.

4 Discussion

In this paper we presented a non-parametric domain-selective inferential proce-
dure for functional data embedded in the L2(T ) space (where T is any limited
open interval of R). We defined the unadjusted and the adjusted p-value func-
tions, respectively p(t) and p̃(t), at each point t of the domain. We showed
how the unadjusted p-value function is provided with a control of the point-wise
error rate, while the adjusted p-value function is provided with a control of the
interval-wise error rate. Finally, based on the unadjusted and adjusted p-value
functions, we provided a strategy to select the intervals of the domain leading
to a rejection of the null hypothesis.

The main novelty of the proposed procedure consists in the extension of the
current works on inference for functional data, by direclty focusing on the domain
of the curves, instead of providing an overall result on the whole domain, and
introducing the concept of unadjusted and adjusted p-value functions. Since
the procedure is based on non-parametric permutation tests, it is fully non-
parametric. In detail, itsapplication neither requires to specify the distribution
of the functional data, nor to expand the data on a functional basis.

To show the potential of the proposed procedure in applications, we per-
formed in Section 3 an analysis of the Canadian daily temperatures data set
(Ramsay and Silverman 2005). We applied the procedure to test for pairwise
differences between the daily temperatures of four different climatic regions in
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Canada. The application of the proposed procedure to this data set show how
the latter is able to select the periods of the year presenting significant differ-
ences between each couple of regions, providing a clear interpretation of the test
results.

Appendix

In this section we provide the formal proofs of the theoretical results charac-
terizing the control provided by the unadjusted and adjusted p-value functions.
In the following, suppose then that we are addressing a testing problem in a
functional framework, over the domain T . Let p(t), and p̃(t) the p-value func-
tions defined according to the procedure described in Section 2. Note that all
results hold for the unadjusted and adjusted p-values associated to any type of
functional test of a null hypothesis H0 against an alternative H1 for which an R
valued test statistic is identified. The results only rely on the fact that, for any
interval I, the tests of HI0 against HI1 is exact and consistent, i.e.,

∀I ⊆ T : HI0 true⇒ P[pI ≤ α] = α (exactness);

∀I ⊆ T : HI0 false⇒ P[pI ≤ α] −−−→
n→∞

1 (consistency).

Our first result characterizes the type of control provided by the unadjusted
p-value p(t), that is a control of the point-wise error rate.

Theorem 1. The unadjusted p-value function p(t) is provided with a control of
the point-wise error rate. In detail, ∀α ∈ (0, 1):

∀t ∈ T s.t. ∃I 3 t : HI0 is true⇒ P[p(t) ≤ α] ≤ α.

Proof. Let t ∈ T , and I 3 t s.t. HI0 is true. This implies that, ∀J ⊆ I, HJ0 is also
true. Since every test is exact, P[pJ ≤ α] = α, ∀J ⊆ I, ∀α ∈ (0, 1). The unadjusted p-
value p(t) is then p(t) = lim supJ→t p

J . Note that the distribution of pJ is stochastically
dominated by the one of p(t). Indeed, if the latter was not true, it would imply that
∃α ∈ (0, 1) s.t. P[p(t) ≤ α] > P[pJ ≤ α]. Hence, since p(t) = inf |I|<ε

I3t
supJ⊆I

J3t
pJ , the

latter would imply that ∃J ⊆ I s.t. P[pJ ≤ α] > α, that is in contradiction with the
exactness of all tests. Hence, we have ∀α ∈ (0, 1): P[p(t) ≤ α] ≤ α.

In addition, the unadjusted p-value function p(t) coincides almost everywhere with
the p-value of the permutation test based on the test statistic (ξ1(t)−ξ2(t))2, computed
from the point-wise evaluations of the almost everywhere continuous representatives of
the L2-equivalence classes of data ξji. Such permutation test is an exact test for the
restriction of the null hypothesis on the point t Ht

0 against Ht
1. Since ∀I 3 t, Ht

0 ⊂ HI0 ,
we also have:

for almost every t ∈ T s.t. ∃I 3 t : HI0 is true⇒ P[p(t) ≤ α] = α.

�
The following result characterizes instead the type of control provided by the

adjusted p-value function p̃(t), that is, a control of the interval-wise error rate.
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Theorem 2. The adjusted p-value function p̃(t) is provided with a control of the
interval-wise error rate. In detail, ∀α ∈ (0, 1):

∀I ⊆ T : HI0 is true⇒ P [∀t ∈ I, p̃(t) ≤ α] ≤ α.

Proof. Let HI0 hold. Since the test of HI0 is exact, PHI
0

[pI ≤ α] = α. For any t ∈ I,

we have p̃(t) ≥ pI , so PHI
0

[∀t ∈ T, p̃(t) ≤ α] ≤ PHI
0

[pI ≤ α] = α. �
Finally, the following Theorem prove the consistency of the tests based on

both the adjusted and the adjusted p-value functions.

Theorem 3. The unadjusted p-value function p(t) and the adjusted p-value
function p̃(t) are consistent. In detail, ∀α ∈ (0, 1):

∀t ∈ T s.t. @I 3 t : HI0 is true⇒ P [p(t) ≤ α] −−−→
n→∞

1;

∀I ⊆ T s.t. @J ⊆ I : HJ0 is true⇒ P [∀t ∈ I, p̃(t) ≤ α] −−−→
n→∞

1.

Proof. First of all note that, by the definition of unadjusted and adjusted p-vale
functions, we have, ∀t ∈ T , p(t) ≤ p̃(t). Hence, it is sufficient to prove that p̃(t) is
consistent. Suppose that the interval I ⊆ T is such that, @J ⊆ I s.t. HJ0 is true. This
means that all intervals contained in I are “false” intervals. Let t ∈ I. Then, for any
interval K containing the point t, we have that HK0 is false, since on (K∩I) ⊆ I the null
hypothesis is false. Since each test is consistent, we have that, for n → ∞, the p-value
pK → 0 almost surely, ∀K 3 t. Since p̃(t) = supK3t p

K, we also have p̃(t) → 0 almost
surely. Hence, ∀α ∈ (0, 1), ∀t ∈ I, and for n → ∞, P[p̃(t) ≤ α] → 1. The latter holds
for any t ∈ I, hence:

∀I ⊆ T s.t. @J ⊆ I : HJ0 is true⇒ P [∀t ∈ I, p̃(t) ≤ α] −−−−→
n→∞

1.

�
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