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Abstract

We present a multigrid algorithm for the solution of the linear systems of equa-
tions stemming from the p−version of the Virtual Element discretization of a two-
dimensional Poisson problem. The sequence of coarse spaces are constructed decreas-
ing progressively the polynomial approximation degree of the Virtual Element space,
as in standard p-multigrid schemes. The construction of the interspace operators re-
lies on auxiliary Virtual Element spaces, where it is possible to compute higher order
polynomial projectors. We prove that the multigrid scheme is uniformly convergent,
provided the number of smoothing steps is chosen sufficiently large. We also demon-
strate that the resulting scheme provides a uniform preconditioner with respect to the
number of degrees of freedom that can be employed to accelerate the convergence of
classical Krylov-based iterative schemes. Numerical experiments validate the theoret-
ical results.

Introduction

In recent years there has been a tremendous interest in developing numerical methods
for the approximation of partial differential equations where the finite-dimensional space
is built upon an underlying mesh composed by arbitrarily-shaped polygonal/polyhedral
(polytopic, for short) elements. Examples of methods that have been proposed so far in-
clude Mimetic Finite Differences [28,34,47,48], Polygonal Finite Element Methods [52,53],
Discontinuous Galerkin Finite Element Methods [6, 8, 9, 15, 36–38] Hybridizable and Hy-
brid High Order Methods [40–42], and Gradient schemes [43, 45], for example. Recently,
in [23] the Virtual Element Method (VEM) has been introduced, and further devel-
oped for elliptic and parabolic problems in [22, 25]. VEMs for linear and nonlinear
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elasticity have been developed in [21, 24, 46], whereas VEMs for plate bending, Cahn-
Hilliard, Stokes, and Helmholtz problems have been addressed in [4, 5, 35, 50]. For dis-
crete topology optimization and fracture networks problems we refer to [7] and [29], re-
spectively. Moreover, several variants of the Virtual Element Method, including mixed,
H(div) and H(curl)-conforming, serendipity and nonconforming VEMs have been pro-
posed in [11,14,18–20,33,39,56].

All the above mentioned contributions focus on the h–version of the Virtual Element
Method. The p-version VEM was introduced in [26] for the 2D Poisson problem, consider-
ing quasi-uniform meshes. It was shown that, analogously to the p-version Finite Element
Method (FEM) case, if the solution of the problem has fixed Sobolev regularity, then the
convergence rate of the method in terms of p is algebraic, whereas if the solution is analytic
then the convergence rate is p exponential. In [27], the full hp-version VEM was stud-
ied based on employing meshes geometrically graded towards the corners of the domain
and properly choosing the distribution of polynomial approximation degree, so that the
convergence rate of the method is exponential in terms of the number of degrees of freedom.

So far, the issue of developing efficient solution techniques for the linear systems of
equations stemming from both the h-, p- or hp-versions of the VEM has not been addressed
yet. The main difficulty in the development of optimal (multilevel) solution techniques
relies on the construction of consistent coarse solvers which are non-trivial on grids formed
by general polyhedra. Very recently, using the techniques of [12,13] a multigrid algorithm
for the hp-version Discontinuous Galerkin methods on agglomerated polygonal/polyhedral
meshes has been analyzed in [10].

The aim of this paper is to develop efficient iterative solvers for the solution of the linear
systems of equations stemming from the p–version of the Virtual Element discretization of
a two-dimensional Poisson problem. We propose to employ a W-cycle p-multigrid multi-
grid algorithm, i.e. coarse levels are obtained by decreasing progressively the polynomial
approximation degree up to the coarsest level which corresponds to the lowest (linear)
Virtual Element (VE in short) space. The key point is the construction of suitable prolon-
gation operators between the hierarchy of VE spaces. With the standard VE space such
prolongation operators cannot be constructed based on employing only the degrees of free-
dom. For such a reason we introduce a suitable auxiliary VE space, which is identical to
the standard VE space from the algebraic point of view and which allows to construct
computable interspace operators but results into non-inherited sublevel solvers. This in
turn complicates the analysis of the multigrid algorithms, since we need to account for
non-inherited sublevel solvers. Employing a Richardson smoother and following the clas-
sical framework, see e.g. [32], we prove that the W- cycle algorithm converges uniformly
provided the number of smoothing steps is chosen sufficiently large. We also demonstrate
that the resulting multigrid algorithm provides a uniform preconditioner for the Precon-
ditioned Conjugate Gradient method (PCG), i.e., the number of PCG iterations needed
to reduce the (relative) residual up to a (user-defined) tolerance is uniformly bounded
independently of the number of degrees of freedom. Further, employing the Gauss-Seidel
smoother in place of the Richardson one can improve the performance of our iterative
scheme.

The extension of the present setting to h-multigrid methods, i.e. where the coarse
levels are formed by geometric agglomeration of the underlying grid is currently under
investigation.
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The remaining part of the paper is organized as follows. In Section 1, we introduce
the model problem, a Virtual Element Method approximating its solution, the associated
linear system and the multigrid algorithm; moreover, an auxiliary VE space, needed for
the construction of the algorithm, is presented. In Section 2, we present the W -cycle p
VEM multigrid algorithm; its convergence analysis is the topic of Section 3. Finally, in
Section 4, numerical results are shown.

Throughout the paper, we will adopt the standard notation for Sobolev spaces (see
[2, 44]). In particular, given ω ⊂ R2, L2(ω) and H1(ω) are the standard Lebesgue and
Sobolev spaces over ω, respectively, and ‖ · ‖0,ω, ‖ · ‖1,ω, and | · |1,ω, are the Lebesgue
and the Sobolev (semi)norms, respectively. We will write x . y and x ≈ y meaning that
there exist positive constants c1, c2 and c3 independent of the discretization and multigrid
parameters, such that x ≤ c1y and c2y ≤ x ≤ c3y, respectively. In addiction, P`(ω),
ω ⊂ Rd, d = 1, 2, denotes the space of polynomials of maximum degree ` ∈ N over ω, with
the the convention P−1(ω) = ∅. We will also employ the standard multi-index notation:

v = (v1, v2), α = (α1, α2), vα = vα1
1 vα2

2 . (1)

1 The model problem and the p-version Virtual Element
Method

Let Ω ⊂ R2 be a polygonal domain and f ∈ L2(Ω) we consider the following model
problem: find u ∈ V = H1

0 (Ω) such that:

a(u, v) =

∫
Ω
fv, ∀v ∈ V, (2)

where a(·, ·) = (∇·,∇·)0,Ω. Problem (2) is well-posed, cf. [32], for example. In the next
section we introduce the p-version of the Virtual Element Method and we discuss its
implementation. In Section 1.2, we build an auxiliary VE space that will be instrumental
to construct and analyse our multigrid algorithm.

1.1 The p-version Virtual Element Method

In this section, we introduce the p–version Virtual Element Method, based on polygonal
meshes with straight edges for the discretization of problem (2).

Let T be a fixed decomposition of Ω into non-overlapping polygonal elements E, and
let V and E be the set of all vertices and edges of T , respectively. We set Vb = V ∩∂Ω and
Eb = E ∩∂Ω. Given E generic polygon in T , we also define VE = V ∩∂E and EE = E ∩∂E
as the set of vertices and edges of polygon E, respectively. To each edge e ∈ E , we as-
sociate τ and n, the tangential and normal unit vector (obtained by a counter-clockwise
rotation of τ ), respectively.

For future use, it is convenient to split the (continuous) bilinear form a(·, ·) defined in
(2) into a sum of local contributions:

a(u, v) =
∑
E∈T

aE(u, v) ∀u, v ∈ V, where aE(·, ·) = (∇·,∇·)0,E .

In order to construct the p-VEM approximation of (2), we need the following ingredients:
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• Finite dimensional subspaces Vp(E) of V (E) = V ∩ H1(E) ∀E ∈ T and a finite

dimensional subspace Ṽp of V , such that Vp(E) = Vp|E ;

• Local symmetric bilinear forms aEp : Vp(E)× Vp(E)→ R ∀E ∈ T so that:

ap(up, vp) =
∑
E∈T

aEp (up, vp) ∀up, vp ∈ Vp; (3)

• A duality pairing 〈fp, ·〉p, where fp ∈ V ′p and V ′p is the dual space of Vp.

The above ingredients must be built in such a way that the discrete version of (2):{
find up ∈ Vp such that

ap(up, vp) = 〈fp, vp〉p, ∀vp ∈ Vp,
(4)

is well-posed and optimal a priori energy error estimates hold, cf. [26].

We begin by introducing the local space Vp(E); given E ∈ T and p ≥ 1, we set:

Vp(E) =
{
vp ∈ H1(E) | ∆vp ∈ Pp−2(E), vp|∂E ∈ Bp(∂E)

}
, (5)

where
Bp(∂E) =

{
vp ∈ C0(∂E) | vp|e ∈ Pp(e), ∀e ∈ EE

}
. (6)

We remark that the above definition coincides with the definition of the two dimensional
VE space introduced in [23] for the Poisson equation, and that clearly Pp(E) ⊆ Vp(E),
p ≥ 1. The global space is then obtained by gluing continuously the local spaces:

Vp =
{
vp ∈ H1

0 (Ω) ∩ C0(Ω) | vp|E ∈ Vp(E), ∀E ∈ T
}
. (7)

We note that for the sake of simplicity we are assuming a uniform p on each E ∈ T .
Nevertheless, it is possible to construct VEM with non-uniform degrees of accuracy over
T , see [27].

We endow the space (5) with the following set of degrees of freedom (dofs). To every
vp ∈ Vp(E) we associate:

• the values of vp at the vertices of E;

• the values of vp at p− 1 distinct internal nodes on each edge e ∈ EE ;

• the scaled internal moments:
1

|E|

∫
E
vpmα, (8)

where mα is an L2(E) orthonormal basis of Pp−2(E).

Reasoning as in [23, Proposition 4.1], it is easy to see that this is a unisolvent set of
degrees of freedom. We observe that the basis {mα}p−2

|α|=0 introduced in (8) can be built

by orthonormalizing (following, e.g., [16]) for instance the monomial basis given by:

qα =

(
x− xE

diam(E)

)α

∀α ∈ N2, |α| ≤ p− 2, (9)

where xE denotes the barycenter of the element E.
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Remark 1. The definition of the internal degrees of freedom in (8) differs from its classical
counterpart in [23,26] where the internal moments are defined with respect to the monomial
basis (9). The new choice of the internal degrees of freedom will play a crucial role in the
choice of the stabilization of the method, see Theorem 1.1, and in the choice of the space-
dependent inner product associated with the multigrid algorithm, see Theorem 2.1 below.

We define the canonical basis {ϕj}
dim(Vp(E))
j=1 as:

dofi(ϕj) = δij , i, j = 1, . . . ,dim(Vp(E)), where δij is the Kronecker delta. (10)

Owing the definition (5) of the local VE space and the choice of the degrees of freedom,
it is possible to compute the following operators:

• the L2(E) projection operator Π0
p−2 : Vp(E)→ Pp−2(E):

(Π0
p−2vp − vp, q)0,E = 0 ∀vp ∈ Vp(E), ∀q ∈ Pp−2(E); (11)

• the H1(E) projector Π∇p : Vp(E)→ Pp(E):
aE(Π∇p vp − vp, q) = 0, ∀q ∈ Pp(E),∫
E(Π∇p vp − vp) = 0, if p ≥ 2,∫
∂E(Π∇p vp − vp) = 0, if p = 1,

∀vp ∈ Vp(E), (12)

see [17,23] for details. We observe that the last two conditions in (12) are needed in order
to fix the constant part of the energy projector.

Next, we introduce the discrete right-hand side fp ∈ V ′p and the associated duality
pairing:

〈fp, vp〉p =
∑
E∈T

∫
E

Π0
max(p−2,1)fvp, (13)

where

vp =

{
1
|∂E|

∫
∂E vp if p = 1,

vp if p ≥ 2.

We observe that it is possible to compute up to machine precision the expression in (13),
because the action of the projector Π0

max(p−2,1) on all the elements of Ṽp(E) is computable.

For a deeper study concerning the approximation of the discrete loading term see [3,24,26].

Finally, we turn our attention to the local and global discrete bilinear forms. We
require that the local bilinear forms aEp : Ṽp(E) × Ṽp(E) → R satisfy, for all E ∈ T , the
two following assumptions.

(A1) p consistency:

aE(q, vp) = aEp (q, vp) ∀q ∈ Pp(E), ∀vp ∈ Vp(E); (14)

(A2) stability: there exist two positive constants 0 < α∗(p) < α∗(p) < +∞, possibly
depending on p, such that:

α∗(p)|vp|21,E ≤ aEp (vp, vp) ≤ α∗(p)|vp|21,E ∀vp ∈ Vp(E). (15)
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Assumption (A1) guarantees that the method is exact whenever the solution of (2) is
a polynomial of degree p, whereas assumption (A2) guarantees the well-posedness of
problem (4). Let now Idp be the identity operator on the space Vp(E), we set:

aEp (up, vp) = aE(Π∇p up,Π
∇
p vp) + SEp ((Idp −Π∇p )up, (Idp −Π∇p )vp) ∀up, vp ∈ Vp(E), (16)

where Π∇p is defined in (12) and the local bilinear form SEp (·, ·) as:

SEp (up, vp) =

dim(Ṽp(E))∑
i=1

dofi(up)dofi(vp) (17)

satisfies:
c∗(p)|vp|21,E ≤ SEp (vp, vp) ≤ c∗(p)|vp|21,E ∀vp ∈ ker(Π∇p ), (18)

where c∗(p) and c∗(p) might depend on p. We underline that the local discrete bilinear
form (16) satisfies (A1) and (A2) and, thanks to (18), the following bounds hold:

α∗(p)|up|21,Ω . ap(up, up), ap(up, vp) . α∗(p)|up|1,Ω|vp|1,Ω ∀up, vp ∈ Vp,

with:
α∗(p) = min(1, c∗(p)), α∗(p) = max(1, c∗(p)). (19)

The following result provides bounds in terms of p for the constants c∗(p) and c∗(p) in
(18).

Theorem 1.1. Let E ∈ T and let SEp (·, ·) be the stabilizing bilinear form defined in (17).
Then

c∗(p)|vp|21,E . SEp (vp, vp) . c∗(p)|vp|21,E ∀vp ∈ ker(Π∇p ),

where c∗(p) & p−6 and c∗(p) . p4.

Proof. The thesis follows by combining the forthcoming technical Lemmata 1.2 and 1.3.

An immediate consequence of Theorem 1.1 and (19) is that it holds:

α∗(p) & p−6, α∗(p) . p4, (20)

where α∗(p) and α∗(p) are given in (15).

Lemma 1.2. Let SEp,aux(·, ·) be the local auxiliary stabilization defined as:

SEp,aux(up, vp) =
p

hE
(up, vp)0,∂E +

p2

h2
E

(Π0
p−2up,Π

0
p−2vp)0,E . (21)

Then, it holds:

c∗(p)|vp|21,E . SEp,aux(vp, vp) . c∗(p)|vp|21,E ∀vp ∈ ker(Π∇p ), (22)

where c∗(p) & p−5, c∗(p) . p2, and where Π∇p is the energy projector defined in (12).

Proof. The thesis follows based on employing integration by parts, the properties of or-
thogonal projections and hp polynomial inverse estimates. It follows the lines of the proof
of [27, Theorem 4.1]; for the sake of brevity the details are not reported here.
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Lemma 1.3. Let E ∈ T and let SEp and SEp,aux be defined as in (17) and (21), respectively.
Then,

p−1SEp (vp, vp) ≤ SEp,aux(vp, vp) . p2SEp (vp, vp) ∀vp ∈ Vp(E).

Before showing the proof, we recall that given {ρp+1
j }pj=0 and {ξj}pj=0 the p+ 1 Gauß-

Lobatto nodes and weights on Î = [−1, 1], respectively, it holds:

p∑
j=0

q2(ξp+1
j )ρp+1

j . ‖q‖2
0,Î
≤

p∑
j=0

q2(ξp+1
j )ρp+1

j ∀q ∈ Pp(Î), (23)

cf. [30, (2.14)]. Moreover, it holds:

p−2 . ρp+1
j . 1 ∀j = 0, . . . , p+ 1, (24)

where the hidden constants are positive and independent of p, see [1, (25.4.32)].

Proof. By using (23) and (24), we obtain:

1

hE
p−1

card(EE)∑
j=1

dof2b,j(vp) .
p

hE
‖vp‖20,∂E .

p

hE

card(EE)∑
j=1

dof2b,j(vp), (25)

where dofb,j denotes the j-th boundary degree of freedom. This concludes the discussion
concerning the boundary term. Next, we study the bulk term in (21), and consider the
expansion of Π0

p−2vp into the L2(E) orthonormal basis {mα}p−2
|α|=0 introduced in (8):

Π0
p−2vp =

∑
|α|≤p−2

cαmα. (26)

Testing (26) with mβ, |β| ≤ p− 2, we obtain:

|E|dofβ(vp) =

∫
E
vpmβ =

∫
E

Π0
p−2vpmβ = cβ,

where dofβ(·) denotes the internal degrees of freedom associated with polynomial mβ. As
a consequence:

Π0
p−2vp =

∑
|α|≤p−2

|E|dofα(vp)mα. (27)

Parceval identity implies:

p2

h2
E

(Π0
p−2vp,Π

0
p−2vp)0,E =

p2

h2
E

∑
|α|≤p−2

|E|2dof2i,α(vp), (28)

where dofi,|α|(·) denotes the internal degree of freedom associated with polynomial mα.
The thesis follows from (25) and (28).

Remark 2. In order to guarantee the proper scaling in terms of h in (17), we should
multiply the internal dofs with |E|, see (28), and the boundary dofs by h−1

E , see (25).
Since we consider only the p–version of the virtual element method, then we can drop
these scaling factors.
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Finally, from [23,26] the following error bound in the energy norm holds:

|u− up|1,Ω .
α∗(p)

α∗(p)

{
Fp + inf

uI∈Ṽp
|u− uI |1,Ω +

∑
E∈T

inf
uπ∈Pp(E)

|u− uπ|1,E

}
, (29)

where u and up are the solution of (2) and (4), respectively, α∗(p) and α∗(p) are the
stability constants given in (15) and Fp is the smallest constant satisfying:

(f, vp)0,Ω − 〈fp, vp〉p ≤ Fp|vp|1,Ω ∀vp ∈ Ṽp.

From (29) and following [26], it is possible to prove p error bounds analogous to those in
the p-FEM case, see [51].

Finally, we focus on the construction of the linear system of equations stemming from
(4). By expanding the trial function up as a combination of the elements in the canonical
basis, see (10),

up =

dim(Vp)∑
i=1

dofi(up)ϕi =

dim(Vp)∑
i=1

(up)iϕi,

where up ∈ Rdim(Vp) is the set of dofs of up, and selecting vp as ϕj , j = 1, . . . ,dim(Vp), we
obtain:

Ap · up = fp, (30)

where:
(Ap)i,j = ap(ϕj , ϕi), (fp)i = 〈fp, ϕi〉p, i, j = 1, . . . ,dim(Vp), (31)

Both the right-hand side and the coefficient matrix are computable exactly up to machine
precision, see [17]. In the next section, we discuss the spectral condition number of the
stiffness matrix Ap.

1.1.1 The condition number of the stiffness matrix Ap

In (8) we defined the internal degrees of freedom associated with space Ṽp(E) defined in (5)
as the scaled moments with respect to an L2(E) orthonormal basis of Pp−2(E). We observe
that this choice is different from the usual choice adopted in standard VEM literature, see
e.g. [3, 17, 23], where the internal dofs are defined as the (scaled) moments with respect
to the monomial basis (9) of Pp−2(E). Our choice, which is a key ingredient in the proof
of Lemma 1.3. also plays a fundamental role in the spectral properties of the stiffness
matrix Ap defined in (31). Indeed, in Table 1 we compare the spectral condition number
κ(Ap) of the stiffness matrix Ap as a function of the degree of accuracy of the method p,
based on employing the two different sets of internal degrees of freedom, namely the scaled
moments with respect to the L2(E) orthonormal basis of Pp−2(E) or with respect to the
monomial basis (9). Results reported in Table 1 have been obtained on the Voronoi-Lloyd
polygonal mesh shown in Figure 1; the same kind of results have been obtained on meshes
made of squares and of quasi-regular hexagons. For the sake of brevity these results have
been omitted. From the results reported in Table 1 it is clear that Ap grows, as for
classical finite element methods, as p4 whenever the interior dofs are defined with respect
to an L2(E) orthonormal basis of Pp−2(E) whereas the condition number Ap blows up
exponentially if the scaled moments are defined with respect to the monomial basis (9).
That is, the choice (8) for the internal degrees of freedom is the right choice as it damps
the condition number of the stiffness matrix effectively and prevents round off errors, as
those observed, for example, in [26] where the monomial basis (9) was employed.
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Table 1 Condition number κ(Ap) of the stiffness matrix Ap as a function of p for two
different sets of internal degrees of freedom: (left) scaled moments with respect to an
L2(E) orthonormal basis of Pp−2(E) (orthogonalized basis); (right) scaled moments with
respect to the monomial basis (9) of Pp−2(E) (monomial basis). Voronoi-Lloyd polygonal
mesh.

p κ(Ap) κ(Ap)

1 1.3225e+01 7.2732e+01
2 4.9712e+02 1.0964e+03
3 7.5099e+02 1.2910e+05
4 1.1823e+03 1.5566e+07
5 1.9395e+03 1.6003e+09
6 3.5100e+03 1.7069e+11
7 6.0754e+03 1.7280e+13
8 1.0100e+04 1.7172e+15

Rate p4 a exp(bp), a = 0.18, b = 4.59

1.2 An auxiliary Virtual Element Space

In this section, we introduce an auxiliary VE space which will be crucial for the construc-
tion of the multigrid algorithm in Section 2. Hence, following the spirit of [3], we consider
a modification of Vp(E) into a diverse space on which we are able to compute a higher
order L2 projector. In particular, we set:

Ṽp(E) =

{
vp ∈ H1(E)

∣∣∣∣vp|∂E ∈ Bp(∂E), ∆vp ∈ Pp−1(E),

∫
E

(Π0
p−2vp − vp)mα = 0, |α| = p− 1

}
,

(32)
where we recall that α ∈ N2 is a multi-index.

Henceforth, we will denote by the expression enhancing constraints the following set
of constraints employed in the definition of Ṽp(E):∫

E
(Π0

p−2vp − vp)mα = 0, |α| = p− 1, ∀vp ∈ Ṽp(E). (33)

The definition of Ṽp(E) is different from the one presented in [3]. Moreover, we observe

that Pp(E) * Ṽp(E), but Pp−2(E) ⊆ Ṽp(E). To be more precise, owing to the L2(E)
orthonormality of the mα, it holds in fact:

Pp−2(E)⊕ (Pp(E)/Pp−2(E))
⊥Pp−1(E) ⊆ Ṽp(E),

where (Pp(E)/Pp−2(E))
⊥Pp−1(E) denotes the space of polynomials of degree p, not in the

space of polynomials of degree p− 2, orthogonal to all mα with |α| = p− 1.
We endow Ṽp with the same degrees of freedom of the space Vp introduced in (5).

Using the auxiliary local virtual space Ṽp introduced in (32), it is clear that we are able
to compute the following operator:

• Π0
p−1 : Vp(E)→ Pp−1(E), the L2 projection onto the space of polynomials of degree

p− 1, defined as in (11).

We stress that there is no chance to be able to compute explicitly Π0
p−1 as a map defined on

Vp(E), since the internal degrees of freedom are up to order p− 2, whereas this is possible
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in the new space Ṽp(E) we can do that since (33) allows to compute internal moments up
to order p− 1.

The global auxiliary VE space is obtained again by gluing continuously the local spaces
as done in (7):

Ṽp =
{
vp ∈ H1

0 (Ω) ∩ C0(Ω) | vp|E ∈ Ṽp(E), ∀E ∈ T
}
. (34)

The choice of the discrete bilinear form ap and of the right-hand side fp in (4) are
exactly the same as those in Section 1.1 for the space Vp.

It is crucial to remark that the linear systems stemming from the use of Vp and Ṽp are
the same. In fact, it is clear from (16) that the construction of the local discrete bilinear
forms depends uniquely on the choice of the set of the degrees of freedom (which we recall
are the same for the two spaces) and the energy projector Π∇p defined in (12), which is
computed without the need of (33).

Also the construction of the discrete right-hand side (13) does not depend on the choice
of the space since the L2 projector Πmax(1,p−2) defined in (11) is built using the internal
degrees of freedom only, while the enhancing constraints (33) are neglected.

Remark 3. The aforementioned equivalence between the two linear systems associated
with spaces Vp and Ṽp is of great importance in order to design and analyse the multigrid

algorithm in Section 2. However, Vp and Ṽp have significant differences.

The first issue we want to highlight is that the method associated with space Ṽp (34) is
not a “good” method from the point of view of the approximation property. It is possible
to show p approximation results on the first and the third term on the right hand side
of (29) following for instance [26, Sections 4 and 5]. The problematic term is the second
one, i.e. the best error term with respect to functions in the virtual space. The approach
used in [26], which is the p–version of [49, Proposition 4.2], does not hold anymore in the
enhanced version of VEM. At the best of the authors knowledge, the p approximation of
the “best virtual” error term in enhanced space is still an open problem. On the other
hand, the error analysis with space Vp is available in [26].

The second issue we underline, is that the space Ṽp (34) is more suited for the con-
struction of the multigrid algorithm than space Vp (7), as will be clear from Section 2.

Let us summarize the strategy we will follow. We consider a discretization of (2) by
means of the Virtual Element Method (4) employing as an approximation space Vp defined
in (7). The associated linear system (30) coincides algebraically with the one arising by
employing the VE space Ṽp defined in (34). For this reason, we can solve system (30) by

means of a multigrid algorithm based on the sequences of spaces Ṽp defined in (34).
Having the vector of degrees of freedom up, one can reconstruct functions in two

different spaces: either in space Vp defined in (7), or in space Ṽp defined in (34). The
discrete solution in the former space is the one to be taken into account, since it has the
proper p approximation properties.

2 Multigrid algorithm with non-inherited sublevel solvers

In this section, we present a p-VEM multigrid algorithm and the key ingredients for its
formulation.

In the construction of our multigrid algorithm, we will make use of two key ingredients.
The first one are suitable (computable) interspace operators, i.e. prolongation/restriction
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operators between two VE spaces. These operators will be constructed by employing the
properties of the following space-dependent inner product:

(wp, vp)p =

dim(Ṽp)∑
i=1

dofi(wp)dofi(vp) ∀wp, vp ∈ Ṽp. (35)

The second ingredient is a suitable smoothing scheme Bp, which aims at reducing the high
frequency components of the error.

We aim at introducing a multigrid iterative method for the solution of the linear system
in (30), which we recall is given by:

Ap · up = fp, (36)

where the coefficient matrix Ap and the right-hand side fp are the matrix representations

with respect to the their expansion in the canonical basis of space Ṽp, defined in (34), of
the operators:

(Apwp, vp)p = ap(wp, vp), (fp, vp)p = 〈fp, vp〉p, ∀wp, vp ∈ Ṽp, (37)

cf. (16) and (13), respectively.
In order to introduce our p-multigrid method, we consider a sequence of VE spaces

given by Ṽp, Ṽp−1, . . . , Ṽ1, where the `-th level is given by Ṽp−`, ` = 0, . . . , p − 1. Let
now consider the linear system of equations on level `: A` · z` = g`. We denote by

MG(`,g`, z
(0)
` ,m2) one iteration obtained by applying the `-th level iteration of our MG

scheme to the above linear system, with initial guess z
(0)
` and using m2 post-smoothing

steps, respectively. For ` = 1, (coarsest level) the solution is computed with a direct

method, that is MG(1,g1, z
(0)
1 ,m2) = A−1

1 g1, while for ` > 1 we adopt the recursive proce-
dure described in Algorithm 1.

Algorithm 1 `-th level of the p-multigrid algorithm

Coarse grid correction:

r`−1 = I``−1 · (g` −A` · z
(0)
` ); (restriction of the residual)

e`−1 = MG(`− 1, r`−1,0`−1,m2); (approximation of the residual equation . . . )
e`−1 = MG(`− 1, r`−1, e`−1,m2); (. . .Ap−1 · zp−1 = rp−1)

z
(1)
` = z

(0)
` + I``−1 · e`−1; (error correction step)

Post-smoothing:
for i = 2 : m2 + 1 do

z
(i)
` = z

(i−1)
` + B−1

` · (g` −A` · z
(i−1)
` );

end for

MG(`,g`, z
(0)
` ,m2) = z

(m2+1)
` .

In presenting Algorithm 1, we used some objects that are not defined so far. In
particular, I``−1 denotes the matrix representation of the interspace operators defined in
Section 2.2, while Bp denotes the matrix representation of the smoothing operator defined
in Section 2.3.

For a given, user defined tolerance tol and a given initial guess u
(0)
p , the full p-multigrid

algorithm employed to solve (36) is summarized in Algorithm 2; its analysis is presented
in the forthcoming Section 3.
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Algorithm 2 p-multigrid algorithm: ũp = MG(p, (fp, ũ
(0)
p ,m2).

r
(0)
p = fp −Ap · ũ(0)

p ;

while ‖r(i)
p ‖ ≤ tol‖fp‖ do

ũ
(i+1)
p = MG(p, fp, ũ

(i)
p ,m2);

r
(i+1)
p = fp −Ap · ũ(i+1)

p ;
i −→ i+ 1;

end while

Remark 4. As a byproduct, we underline that it is possible to employ multigrid algorithms
where two “adjacent” levels, associated to spaces Vp1 and Vp2 , respectively, satisfy |p1 −
p2| ≥ 2. In such cases, to build the interspace operators, it suffices to modify the definition
(32) by using a “larger” enhancing technique and imposing that the laplacian of functions
in the virtual space is a polynomial of higher degree, and then reduce the space with
additional constraints on the L2-projectors.

2.1 Space-dependent inner products

The aim of this section is to prove the following result on the space-dependent inner
product (35), which will be useful for the forthcoming analysis.

Theorem 2.1. Let (·, ·)p be defined as in (35). Then, the following holds true:

β∗(p)|vp|21,Ω . (vp, vp)p . β∗(p)|vp|21,Ω ∀vp ∈ Ṽp, (38)

where β∗(p) & p−8 and β∗(p) . 1.

In order to prove Theorem 2.1, it suffices to combine the forthcoming technical results.
The first one makes use of the following auxiliary space-dependent inner product defined
as:

(up, vp)p,aux =
∑
E∈T

(up, vp)p,aux;E ∀up, vp ∈ Ṽp, (39)

where the local contributions read:

(up, vp)p,aux;E = h−1
E (up, vp)0,∂E + h−2

E (Π0
p−1up,Π

0
p−1vp)0,E up, vp ∈ Ṽp(E), ∀E ∈ T . (40)

Lemma 2.2. Let (·, ·)p,aux be defined in (39). Then, it holds:

β̃∗(p)|vp|21,Ω . (vp, vp)p,aux . β̃∗(p)|vp|21,Ω ∀vp ∈ Ṽp, (41)

where β̃∗(p) & p−6 and β̃∗(p) . 1.

Before showing the proof, we recall that from [27, Theorem 7.5] the following inverse-
type holds holds:

‖q‖0,E . (p+ 1)2‖q‖−1,E q ∈ Pp(E), (42)

where:

‖ · ‖−1,E = sup
Φ∈H1

0 (E)\{0}

(·,Φ)0,E

|Φ|1,E
. (43)
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Proof. (Proof of Lemma 2.2) The proof is slightly different from the one for the stability
bounds (22); in fact, here we work on the complete virtual space and not on ker(Π∇p ),

being Π∇p defined in (12). In the following, we neglect the dependence on the size of the
elements since we are assuming that the mesh is fixed; the general case follows from a
scaling argument. The upper bound follows from a trace inequality and the stability of
orthogonal projection

(vp, vp)p,aux;E = ‖vp‖20,∂E + ‖Π0
p−1vp‖20,E . ‖vp‖1,E ∀vp ∈ Ṽp,

and summing up on all the mesh elements and applying the Poincarè inequality. For the
lower bound, by using an integration by parts and the definition of the local auxiliary
space (32), we have:

|vp|21,E =

∫
E
∇vp · ∇vp =

∫
E
−∆vpΠ

0
p−1vp +

∫
∂E

∂vp
∂n

vp. (44)

Owing to (42) and recalling that ∆vp ∈ Pp−1(E), we deduce:

‖∆vp‖0,E . p2‖∆vp‖−1,E = p2 sup
Φ∈H1

0 (E)\{0}

(∆vp,Φ)0,E

|Φ|1,E
= p2 sup

Φ∈H1
0 (E)\{0}

(∇vp,∇Φ)0,E

|Φ|1,E
. p2|vp|1,E .

(45)
We bound now the two terms appearing on the right-hand side of (44). Applying (45),
we have: ∫

E
∆vpΠ

0
p−1vp ≤ ‖∆vp‖0,E‖Π0

p−1vp‖0,E . p2‖Π0
p−1vp‖0,E |vp|1,E . (46)

Applying next a Neumann trace inequality [51, Theorem A.33], a one dimensional hp
inverse inequality, the interpolation estimates [54,55] and (45), we get:∫
∂E

∂vp
∂n

vp ≤
∥∥∥∥∂vp∂n

∥∥∥∥
− 1

2
,∂E

‖vp‖ 1
2
,∂E . (|vp|1,E + ‖∆vp‖0,E)p‖vp‖0,∂E . p3‖vp‖0,∂E |vp|1,E .

(47)
Substituting (46) and (47) in (44), we obtain:

|vp|1,E . p3(‖vp‖0,∂E + ‖Π0
p−1vp‖0,E),

whence
|vp|21,E . p6(vp, vp)p,aux;E .

The thesis follows summing on all the elements.

Lemma 2.3. Let (·, ·)p,aux and (·, ·)p be defined as in (39) and (35), respectively. Then it
holds:

p−2(vp, vp)p,aux . (vp, vp)p . (vp, vp)p,aux ∀vp ∈ Ṽp. (48)

Proof. The proof is a straightforward modification of the one of Lemma 1.3.

Remark 5. The choice (35) for the space-dependent inner product is crucial for the con-
struction of the interspace operators, see Section 2.2. Moreover, we point out that it
coincides with the usual choice for the space-dependent inner product in the hp DG-
Finite Element Framework, see [10,12]. The Finite Element counterpart of Theorem 2.1 is
much less technical, since it suffices to choose an L2 orthonormal basis of polynomials as
canonical basis; via Parceval identity, the (scaled) L2 norm is spectrally equivalent to the
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space-dependent inner product (35); thus, the employment of polynomial inverse inequal-
ity implies a straightforward relation with the H1 seminorm. In the VEM framework, it is
not possible to proceed similarly for two reasons. The first one is that, at the best of the
authors knowledge, inverse inequalities for functions in virtual spaces are not available;
the second reason is that an L2 orthonormal basis of functions in the virtual space is not
computable, since such functions are not known explicitly.

2.2 Interspace operators

In this section, we introduce and construct suitable prolongation and restriction operators
acting between the VE spaces V`−1 and V`, ` = p, p− 1, . . . , 2. First of all, we stress that
the sequence of local spaces Ṽp(E), and thus the associated sequence of global spaces Ṽp,
are not nested. As a consequence, we cannot define the prolongation interspace operator
simply as the natural injection, as done for instance in [10,12,31,32]. In our context, the
prolongation operator:

Ipp−1 : Ṽp−1 → Ṽp (49)

associates to a function vp−1 in Ṽp−1 a function Ipp−1vp−1 in Ṽp, having the same values as

vp−1 for all the dofs that are in common with space Ṽp−1, while the remaining values of
the dofs (i.e. the internal higher order ones) are computed using the enhancing constraints
presented in definition (32). More precisely, we define Ipp−1 : Ṽp−1 → Ṽp as:

Ipp−1vp−1 = vp−1, on ∂E,∫
E
Ipp−1vp−1mα =

∫
E
vp−1mα = dofα(vp−1), if |α| ≤ p− 3,∫

E
Ipp−1vp−1mα =

∫
E

Π0
p−3vp−1mα = 0, if |α| = p− 2,

(50)

since mα are the elements of an L2(E)-orthonormal basis of Pp(E). We recall that the
third equation in (50) follows from the enhancing constraints in the definition of local
spaces (32). The restriction operator Ip−1

p is defined as the adjoint of Ipp−1 with respect
to the space-dependent inner product defined in (35), i.e.:

(Ip−1
p vp, wp−1)p−1 = (vp, I

p
p−1wp−1)p ∀vp ∈ Ṽp, ∀wp−1 ∈ Ṽp−1. (51)

We remark that, thanks to definition (35) of the space-dependent inner product, the matrix
associated with Ip−1

p is the transpose of the matrix associated with the operator Ipp−1.

2.3 Smoothing scheme and spectral bounds

In this section, we introduce and discuss the smoothing scheme entering in the multigrid
algorithm. To this aim, we introduce the following space-dependent norms:

|||vp|||s,p =
√

(Aspvp, vp)p ∀vp ∈ Ṽp, s ∈ R+. (52)

We highlight that it holds:
|||vp|||21,p = ap(vp, vp).

Since the matrix Ap is a symmetric positive definite matrix, there exists an orthonormal
(with respect to the inner product (·, ·)p) basis of eigenvectors of Ap, and the associated

eigenvalues are real and strictly positive. Let {ψi, λi}
dim(Ṽp)
i=1 be the related set of eigenpairs.

We show now a bound of the spectrum of Ap in terms of p.
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Lemma 2.4. The following upper bound Λp for the spectrum of Ap holds true:

Λp .
α∗(p)

β∗(p)
, (53)

where α∗(p) and β∗(p) are introduced in (20) and (38), respectively.

Proof. Let λi be an eigenvalue of Ap and let ψi be the associated normalized eigenvector.
Then:

Ap ·ψi = λiψi =⇒ (Apψi, ψi)p = λi(ψi, ψi)p.

Owing to (15) and (38):

λi =
(Apψi, ψi)p

(ψi, ψi)p
=
ap(ψi, ψi)

(ψi, ψi)p
. α∗(p)

|ψi|21,Ω
(ψi, ψi)p

.
α∗(p)

β∗(p)
.

As a smoothing scheme, we choose a Richardson scheme, which is given by:

Bp = Λ̃p · Idp, (54)

where Λ̃p ≤ Λp. A numerical study concerning the (sharp) dependence of Λp on p of the
spectral bound Λp is presented in Section 4.

2.4 Error propagator operator

As in the classical analysis of the multigrid algorithms [32], in this section we introduce
and analyze the error propagator operator. To this aim, we firstly consider a “projection”
operator P p−1

p : Ṽp → Ṽp−1, defined as the adjoint of Ipp−1 with respect to inner product
ap(·, ·), i.e.:

ap−1(vp−1, P
p−1
p wp) = ap(I

p
p−1vp−1, wp) vp−1 ∈ Ṽp−1, wp ∈ Ṽp. (55)

The following auxiliary result holds.

Lemma 2.5. Let qp−1 ∈ Ṽp−1 be such that

Ap−1qp−1 = rp−1, with rp−1 = Ip−1
p (gp −Apz(0)

p ),

where Ip−1
p is defined in (51), while z

(0)
p is the initial guess of the algorithm and Ap and

Ap−1 are defined in (37). Then, it holds:

qp−1 = P p−1
p (zp − z(0)

p ), (56)

where P p−1
p is defined in (55).

Proof. As the proof is very similar to its analogous version in [32, Lemma 6.4.2], here we
briefly sketch it. For all vp−1 ∈ Ṽp−1:

ap−1(qp−1, vp−1) = (Ap−1qp−1, vp−1)p−1 = (rp−1, vp−1)p−1 = (Ip−1
p (gp −Apz(0)

p ), vp−1)p−1

= (Ap(zp − z(0)
p ), Ipp−1vp−1)p = ap(zp − z(0)

p , Ipp−1vp−1) = ap−1(P p−1
p (zp − z(0)

p ), vp−1).
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We now introduce the error propagator operator:{
E1,m2vp = 0,

Ep,m2vp =
[
Gm2
p

(
Idp − Ipp−1(Idp−1 − E2

p−1,m2
)P p−1

p

)]
vp,

(57)

where the relaxation operator Gp is defined as:

Gp = Idp −B−1
p Ap, Bp being introduced in (54). (58)

The following result holds.

Theorem 2.6. Let zp and z
(m2+1)
p be the exact and the multigrid solutions associated with

system (36), respectively. Then, given z
(0)
p initial guess of the algorithm, it holds:

zp − z(m2+1)
p = Ep,m2(zp − z(0)

p ), (59)

where Ep,m2 is defined in (57).

Proof. We follow the guidelines of [32, Lemma 6.6.2] and proceed by induction. The initial
step of the induction is straightforward since the system is solved exactly at the coarsest
level. Therefore, we assume (59) true up to p− 1 and we prove the claim for p.

Let qp−1, ep−1 and ep−1 be introduced in Algorithm 1; owing to the induction hypoth-
esis applied to the residual equation, we have:

qp−1 − ep−1 = Ep−1,m2(qp−1 − ep−1) = E2
p−1,m2

(qp−1 − 0) = E2
p−1,m2

(qp−1),

whence:
ep−1 = qp−1 − E2

p−1,m2
(qp−1) = (Idp−1 − E2

p−1,m2
)qp−1. (60)

Thus:

zp − z(m2+1)
p = zp − z(m2)

p −B−1
p (gp −Apz(m2)

p ) = (Idp −B−1
p Ap)(zp − z(m2)

p )

= (Idp −B−1
p Ap)

m2(zp − z(1)
p ) = Gm2

p (zp − z(1)
p ) = Gm2

p (zp − z(0)
p − I

p
p−1ep−1).

(61)

Inserting (56) and (60) in (61), we get:

zp − z(m2+1)
p = Gm2

p

(
zp − z(0)

p − I
p
p−1(Idp−1 − E2

p−1,m2
)P p−1

p (zp − z(0)
p )
)

= Gm2
p

(
Idp − Ipp−1(Idp−1 − E2

p−1,m2
)P p−1

p

)
(zp − z(0)

p ).

3 Convergence analysis of the multigrid algorithm

We prove in Section 3.5 the convergence of the multigrid algorithm presented in Section 2.
For the purpose, we preliminarily introduce some technical tools. In Section 3.1, we
discuss the so-called smoothing property associated with the Richardson scheme (54). In
Section 3.2, we show bounds related to the prolongation operator Ipp−1 (49) and its adjoint
with respect to the space-dependent inner product (35). Bounds concerning the error
correction steps are the topic of Section 3.3. Finally, in Sections 3.4 and 3.5, we treat the
convergence of the two-level and multilevel algorithm, respectively.
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3.1 Smoothing property

Lemma 3.1. (smoothing property) For any vp ∈ Ṽp, it holds that:∣∣∣∣∣∣Gm2
p vp

∣∣∣∣∣∣
1,p
≤ |||vp|||1,p,∣∣∣∣∣∣Gm2

p vp
∣∣∣∣∣∣
s,p

.

(
α∗(p)

β∗(p)

) s−t
2

(1 +m2)
t−s
2 |||vp|||t,p,

(62)

for some 0 ≤ t ≤ s ≤ 2, m2 ∈ N \ {0}, where α∗(p) and β∗(p) are defined in (20) and in
(38), respectively.

Proof. The proof is analogous to that in [12, Lemma 4.3]. For the sake of clarity, we report
the details. To start with, we rewrite vp in terms of the orthonormal basis of eigenvectors

{ψi}
dim(Ṽp)
i=1 of Ap as follows:

vp =

dim(Ṽp)∑
i=1

viψi, ∀vp ∈ Ṽp.

As a consequence,

Gm2
p vp =

(
Idp −

1

Λp
Ap

)m2

vp =

dim(Ṽp)∑
i=1

(
1− λi

Λp

)m2

viψi,

where Λp is the upper bound for the spectrum of Ap presented in Lemma 2.4. Then,
owing to the orthonormality of ψi with respect to the inner product (·, ·)p, we have:

∣∣∣∣∣∣Gm2
p vp

∣∣∣∣∣∣2
s,p

=

dim(Ṽp)∑
i=1

(
1− λi

Λp

)2m2

v2
i λ

s
i = Λs−tp

dim(Ṽp)∑
i=1

(
1− λi

Λp

)2m2 λs−ti

Λs−tp
λtiv

2
i

≤ Λs−tp max
x∈[0,1]

(xs−t(1− x)2m2)|||vp|||2t,p .
(
α∗(p)

β∗(p)

)s−t
(1 +m2)t−s|||vp|||2t,p,

where in the last inequality we used [12, Lemma 4.2] and (53).

3.2 Prolongation and projection operators

In this section, we prove bounds in the |||·|||1,p norm of the prolongation and the projection
operators defined in (49) and (55), respectively. We stress that this set of results deeply
relies on the new enhancing stategy presented in the definition of the virtual space (32).

We start with a bound on the prolongation operator.

Theorem 3.2. (bound on the prolongation operator) There exists cSTAB, positive constant
independent of the discretization and multigrid parameters, such that:

∣∣∣∣∣∣∣∣∣Ipp−1vp−1

∣∣∣∣∣∣∣∣∣
1,p
≤ cSTAB

√
α∗(p)β∗(p)

α∗(p)β∗(p)
|||vp−1|||1,p−1 ∀vp−1 ∈ Ṽp−1, (63)

where α∗(p), α
∗(p) are introduced in (20) whereas β∗(p) and β∗(p) are introduced in (38).
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Proof. Recalling bounds (15), (41) and the definition of the auxiliary space-dependent
inner product (39), we have:∣∣∣∣∣∣∣∣∣Ipp−1vp−1

∣∣∣∣∣∣∣∣∣2
1,p

=
∑
E∈T

∣∣∣∣∣∣∣∣∣Ipp−1vp−1

∣∣∣∣∣∣∣∣∣2
1,p;E

=
∑
E∈T

aEp (Ipp−1vp−1, I
p
p−1vp−1)

. α∗(p)a(Ipp−1vp−1, I
p
p−1vp−1) .

α∗(p)

β∗(p)
(Ipp−1vp−1, I

p
p−1vp−1)p.

(64)

We recall that:

(Ipp−1vp−1, I
p
p−1vp−1)p =

dim(Ṽp)∑
j=1

dof2j (I
p
p−1vp−1).

Since {Bp(∂E)}+∞p=1 defined in (6) is a sequence of nested space for all E ∈ T , we directly
have:

dof2b,j(I
p
p−1vp−1) = dof2b,j(vp−1),

where dofb,j(·) denotes the j-th boundary dof.

Now, we deal with the internal degrees of freedom. We cannot use the above nest-

edness argument since the sequence {Ṽp}
dim(Ṽp)
p=1 is made of non-nested spaces. In order

to overcome this hindrance, recalling the definition of the prolongation operator (50), we
write:

dofi,j(I
p
p−1vp−1) =

1

|E|

∫
E
Ipp−1vp−1mα =

{
1
|E|
∫
E vp−1mα if |α| ≤ p− 3,

0 if |α| = p− 2,

where dofi,j(·) denotes the j-th internal dof. As a consequence, it holds:

(Ipp−1vp−1, I
p
p−1vp−1)p = (vp−1, vp−1)p−1 = |||vp−1|||20,p−1. (65)

Next, we relate |||·|||0,p−1 with |||·|||1,p−1. We note that:

|||vp−1|||20,p−1 . β∗(p)|vp−1|21,E .
β∗(p)

α∗(p)
|||vp−1|||21,p−1, (66)

where we used in the last but one and in the last inequalities (38) and (15), respectively.
Combining (64), (65) and (66), we get the claim.

We show an analogous bound for the “projection” operator P p−1
p introduced in (55).

Theorem 3.3. (bound on the “projection” operator) There exists cSTAB, positive constant
independent of the discretization and multigrid parameters, such that:

∣∣∣∣∣∣P p−1
p vp

∣∣∣∣∣∣
1,p−1

≤ cSTAB

√
α∗(p)β∗(p)

α∗(p)β∗(p)
|||vp|||1,p ∀vp ∈ Ṽp, (67)

where α∗(p), α
∗(p) are introduced in (20) whereas β∗(p) and β∗(p) are introduced in (38).

The constant cSTAB is the same constant appearing in the statement of Theorem 3.2

Proof. It suffices to note that:∣∣∣∣∣∣P p−1
p vp

∣∣∣∣∣∣
1,p−1

= max
wp−1∈Ṽp−1\{0}

ap−1(P p−1
p vp, wp−1)

|||wp−1|||1,p−1

= max
wp−1∈Ṽp−1\{0}

ap(vp, I
p
p−1wp−1)

|||wp−1|||1,p−1

and then apply Theorem 3.2 along with a Cauchy-Schwarz inequality.
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3.3 Error correction step

In this section, we prove a bound for the error correction step discussed in the multigrid
algorithm, see Table ??.

Theorem 3.4. (bound on the error correction step) There exists a positive constant c
independent of the discretization parameters such that:∣∣∣∣∣∣∣∣∣(Idp − Ipp−1P

p−1
p )vp

∣∣∣∣∣∣∣∣∣
0,p
≤ c α

∗(p)

α∗(p)
3
2

β∗(p)
3
2

β∗(p)
|||vp|||1,p ∀vp ∈ Ṽp, (68)

where α∗(p), α
∗(p) are introduced in (20) whereas β∗(p) and β∗(p) are introduced in (38).

Proof. Applying (15) and (38), we have:∣∣∣∣∣∣∣∣∣(Idp − Ipp−1P
p−1
p )vp

∣∣∣∣∣∣∣∣∣2
0,p

. β∗(p)
∣∣∣(Idp − Ipp−1P

p−1
p )vp

∣∣∣2
1,Ω

. β∗(p)α∗(p)
−1
∑
E∈T

{
aEp ((Idp − Ipp−1P

p−1
p )vp, (Idp − Ipp−1P

p−1
p )vp)

}
.

Therefore, we deduce:∣∣∣∣∣∣∣∣∣(Idp − Ipp−1P
p−1
p )vp

∣∣∣∣∣∣∣∣∣2
0,p

. β∗(p)α∗(p)
−1
∑
E∈T

{
aEp (vp, vp) + aEp (Ipp−1P

p−1
p vp, I

p
p−1P

p−1
p vp)− 2aEp (vp, I

p
p−1P

p−1
p vp)

}
= β∗(p)α∗(p)

−1
∑
E∈T

{
aEp (vp, vp) + aEp (Ipp−1P

p−1
p vp, I

p
p−1P

p−1
p vp)− 2aEp−1(P p−1

p vp, P
p−1
p vp)

}
. β∗(p)α∗(p)

−1
∑
E∈T

{
aEp (vp, vp) +

α∗(p)β∗(p)

α∗(p)β∗(p)
aEp (P p−1

p vp, P
p−1
p vp)

}
,

where in the last inequality we applied Theorem 3.2 and we dropped the third term since
it is negative. Finally, applying Theorem 3.3, we obtain:∣∣∣∣∣∣∣∣∣(Idp − Ipp−1P

p−1
p )vp

∣∣∣∣∣∣∣∣∣2
0,p

.
α∗(p)2

α∗(p)3

β∗(p)3

β∗(p)2
|||vp|||21,p,

whence the claim.

3.4 Convergence of the two-level algorithm

In this section, we prove the convergence of the two-level algorithm.

Theorem 3.5. There exists a positive constant c2lvl independent of the discretization and
multilevel parameters, such that:∣∣∣∣∣∣∣∣∣E2lvl

p,m2
vp

∣∣∣∣∣∣∣∣∣
1,p
≤ c2lvlΣp,m2 |||vp|||1,p ∀vp ∈ Ṽp, (69)

where

Σp,m2 =

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 3
2

· 1√
1 +m2
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and E2lvl
p,m2

is the two-level error propagator operator:

E2lvl
p,m2

vp =
[
Gm2
p

(
Idp − Ipp−1P

p−1
p

)]
vp.

The constants α∗(p) and α∗(p) are introduced in (20), whereas the constants β∗(p) and
β∗(p) are introduced in (38).

Proof. Using the smoothing property (62) and Theorem 3.4, we get:

∣∣∣∣∣∣∣∣∣E2lvl
p,m2

vp

∣∣∣∣∣∣∣∣∣
1,p

=
∣∣∣∣∣∣∣∣∣Gm2

p (Idp − Ipp−1P
p−1
p )vp

∣∣∣∣∣∣∣∣∣
1,p

.
1√

1 +m2
·

√
α∗(p)

β∗(p)

∣∣∣∣∣∣∣∣∣(Idp − Ipp−1P
p−1
p )vp

∣∣∣∣∣∣∣∣∣
0,p

.
1√

1 +m2
·

√
α∗(p)

β∗(p)
· α
∗(p)

α∗(p)
3
2

· β
∗(p)

3
2

β∗(p)
|||vp|||1,p =

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 3
2

· 1√
1 +m2

|||vp|||1,p.

As a consequence of Theorem 3.5, we deduce that taking m2, number of postsmooth-
ing iterations large enough, the two-level algorithm converges, since the two-level error
propagator operator E2lvl

p,m2
is a contraction. We point out that a sufficient condition for

the convergence of the two-level algorithm is that the number of postsmoothing iterations
m2 must satisfy:

√
1 +m2 > c−1

2lvl

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 3
2

, (70)

see Remark 6 for more details. We stress that (70) is a sufficient condition only, in practice
the number of postsmoothing steps needed for the convergence of the algorithm is much
smaller; see numerical results in Section 4.

3.5 Convergence of the multilevel algorithm

In this section, we prove the main result of the paper, namely the convergence of our
p-VEM multigrid algorithm.

Theorem 3.6. Let Σp,m2 and c2lvl be defined as in Theorem 3.5. Let cSTAB be defined as
in Theorem 3.3. Let α∗(p) and α∗(p) be defined in (15) and β∗(p) and β∗(p) be defined
in (41). Then, there exists ĉ > c2lvl such that, if the number of postsmoothing iterations
satisfies:

√
1 +m2 >

c2
STABĉ

2

ĉ− c2lvl

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 5
2

, (71)

then, it holds:
‖Ep,m2vp‖1,p ≤ ĉΣp,m2‖vp‖1,p,

with ĉΣp,m2 < 1. As a consequence, this implies that the multilevel algorithm converges
uniformly with respect to the discretization parameters and the number of levels provided
that m2 satisfies (71), since Ep,m2 is a contraction.

Proof. From Theorem 3.5, we have that:

Σp,m2 =

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 3
2

· 1√
1 +m2

.
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Recalling (57), we decompose the error propagator operator as:

Ep,m2vp = Gm2
p (Idp−Ipp−1P

p−1
p )vp+G

m2
p Ipp−1E

2
p−1,m2

P p−1
p vp = E2lvl

p,m2
vp+G

m2
p Ipp−1E

2
p−1,m2

P p−1
p vp.

Thus:

|||Ep,m2vp|||1,p ≤
∣∣∣∣∣∣∣∣∣E2lvl

p,m2
vp

∣∣∣∣∣∣∣∣∣
1,p

+
∣∣∣∣∣∣∣∣∣Gm2

p Ipp−1E
2
p−1,m2

P p−1
p vp

∣∣∣∣∣∣∣∣∣
1,p

= I + II.

We bound the two terms separately. The first one is estimated directly applying the
two-level error result, namely Theorem 3.5:

I ≤ c2lvlΣp,m2 |||vp|||1,p.

On the other hand, the second term can be bounded applying the smoothing property
Lemma (3.1), the bounds regarding the interspace operator Theorem 3.2, the induction
hypothesis and Theorem 3.3. We can write:

II ≤
∣∣∣∣∣∣∣∣∣Ipp−1E

2
p−1,m2

P p−1
p vp

∣∣∣∣∣∣∣∣∣
1,p
≤ cSTAB

√
α∗(p)β∗(p)

α∗(p)β∗(p)

∣∣∣∣∣∣E2
p−1,m2

P p−1
p vp

∣∣∣∣∣∣
1,p−1

≤ cSTAB

√
α∗(p)β∗(p)

α∗(p)β∗(p)
ĉ2Σ2

p−1,m2

∣∣∣∣∣∣P p−1
p vp

∣∣∣∣∣∣
1,p−1

≤ c2
STABĉ

2α
∗(p)β∗(p)

α∗(p)β∗(p)
Σp−1,m2 |||vp|||1,p.

We note that owing to (20) and (38), the following holds true:

Σ2
p−1,m2

=

(
α∗(p− 1)β∗(p− 1)

α∗(p− 1)β∗(p− 1)

)3

· 1

1 +m2
≈
(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 3
2

· 1√
1 +m2

Σ2
p,m2

.

We deduce:

|||Ep,m2vp|||1,p ≤

(
c2lvl + c2

STABĉ
2

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 5
2

· 1√
1 +m2

)
Σp,m2︸ ︷︷ ︸

ζ

|||vp|||1,p.

We want that ζ is such that ζ < ĉΣp,m2 . In particular, we require:

c2lvl + c2
STABĉ

2

(
α∗(p)β∗(p)

α∗(p)β∗(p)

) 5
2

· 1√
1 +m2

< ĉ,

which is in fact equivalent to (71).

Remark 6. We briefly comment on equations (70) and (71) highlighting the origin of the
different terms:

* the term α∗(p)
α∗(p) ≈ p10 originates from the spectral property (18) of the stabilization

term SE ; if it were possible to provide a discrete bilinear form (15) with continuity

and coercivity constants provably independent of p, then α∗(p)
α∗(p) ≈ 1;

* the term β∗(p)
β∗(p) ≈ p

6 is related to (38) which is not p robust; again, if it were possible

to provide space-dependent inner products spectrally equivalent to the H1 seminorm,
then β∗(p)

β∗(p) ≈ 1.

The existence of a p independent stabilization of the method and the existence of a com-
putable virtual L2-orthonormal basis is still, at the best of the authors knowledge, an open
issue.
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4 Numerical results

In this section, we test the performance of the multigrid solver for the p-version of the
VEM by studying the behaviour of the convergence factor:

ρ = exp

(
1

N
ln

(
‖rN‖2
‖r0‖2

))
, (72)

where N denotes the iteration counts needed to reduce the residual below a given tolerance
of 10−8 and rN , r0 are the final and the initial residuals, respectively. We also show
that our multigrid algorithm can be employed as a preconditioner for the PCG method.
Throughout the section we fix the maximum number of iterations to 1000 and consider
three different kind of decompositions: meshes made of squares, Voronoi-Lloyd polygons
and quasi-regular hexagons; cf. Figure 1. In Section 4.1, we present some tests aiming at
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Figure 1: Meshes made of: squares (left), Voronoi-Lloyd polygons (centre), quasi-regular hexagons (right).

assessing the performance of our multigrid scheme with different smoothers. In Section 4.2
we show that our multigrid method can be successfully employed as a preconditioner
for the Congiugate Gradient (CG) iterative scheme, more precisely we consider a single
iteration of the multigrid algorithm as a preconditioner to accelerate the Preconditioned
CG method.

4.1 The p–multigrid algorithm as an iterative solver

In this section we investigate the performance of our multigrid scheme with different
smoothers. We consider both the Richardson scheme (54) as well as a symmetrized Gauß-
Seidel scheme as a smoother.

The first set of numerical experiment has been obtained based on employing a Richard-
son smoother. Before presenting the computed estimates of the convergence factor, we
investigate numerically the behaviour of the smoothing parameter Λp associated with the
Richardson scheme (54), for which a far-from-being-sharp bound is given in Lemma 2.4.
As shown in Figure 2, where Λp as a function of p is shown, the maximum eigenvalue of
Ap seems to behave even better than p2, which is the expected behaviour in standard Fi-
nite Elements. The numerical tests presented in the following have been obtained with an
approximation of Λp obtained (in a off line stage) with ten iterations of the power method.
In this section, we numerically investigate the behaviour of the multigrid algorithm using
a Richardson smoother. The results reported in Table 2 shows the computed convergence
factor defined in ρ (72) as a function of the number of level K, the number of postsmooth-
ing steps m2 = m, and the degree of accuracy p employed at the “finest level” on a
mesh made of squares, cf. Figure 1. Analogous results have been obtained on the other
decompositions; such results are not reported here for the sake of brevity. As expected,
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Figure 2: Maximum eigenvalue Λp of Ap as a function of p.

increasing the number of postsmoothing m2 implies a decreasing of the convergence factor
ρ. Moreover, a minimum number of smoothing steps is required to guarantee the con-
vergence of the underlying solver. We also observe that, as expected, even though both
two-level and multilevel solvers converge for a fixed value of m, the number of iterations
required to reduce the relative residual below the given tolerance grows with increasing p.
A numerical estimate of the minimum number of postsmoothing steps needed in practice

Table 2 Convergence factor ρ of the p–multigrid scheme as a function of K (number of
levels), p (“finest” level) and m2 (number of postsmoothing steps). Richardson smoother.
Mesh of squares.

p = 2 p = 3 p = 4 p = 5

K 2 2 3 3 4 3 4

m2 = 2 0.99 x 0.97 x 0.97 x x
m2 = 4 0.97 x 0.95 x 0.92 x x
m2 = 6 0.96 0.93 0.92 0.79 0.88 x 0.85
m2 = 8 0.95 0.69 0.89 0.74 0.84 0.98 0.82

to achieve convergence is reported in Table 3 for all the meshes depicted in Figure 1. This
represents a practical indication for (71) As expected, such a minimum number depends
on the polynomial degree employed in the finest level.

Table 3 Minimum number of postsmoothing steps needed to guarantee convergence.

p = 2 p = 3 p = 4 p = 5 p = 6

K 2 2 3 2 3 4 2 3 4 2 3 4

Square 1 6 1 10 5 1 14 8 5 42 15 8
Voronoi-Lloyd 7 14 5 12 11 5 14 10 11 36 24 9

Hexagons 7 25 6 12 20 5 9 10 19 17 7 9
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We next investigate the behaviour of our MG algorithm whenever a symmetrized
Gauß-Seidel scheme as a smoother is employed. We recall that the smoothing matrix
Bp associated with the symmetrized Gauß-Seidel operator now reads:

Bp =

{
Lp if the postsmoothing iteration is odd

LTp if if the postsmoothing iteration is even
(73)

where Lp is the lower triangular part of Ap. We have repeated the set of experiments
carried out before employing the same same set of parameters: the results are are shown
in Tables 4, 5. As expected, employing a symmetrized Gauß-Seidel smoother yields to
an iterative scheme whose convergence factor is smaller than in the analogous cases with
the Richardson smoother. In Table 5 we report the same results obtained on a mesh of
Voronoi-Lloyd polygonal elements keep on increasing the number of post smoothing steps:
as expected the performance of the algorithm improves further. The same kind of results
have been obtained on a regular hexagonal grid; for the sake of brevity these results have
been omitted.

Table 4 Convergence factor ρ of the p–multigrid scheme as a function of K (number of
levels), P (“finest” level) and m2 (number of postsmoothing steps). Gauß-Seidel smoother.
Mesh of squares.

p = 2 p = 3 p = 4 p = 5

K 2 2 3 3 4 3 4

m= 2 0.96 0.90 0.92 x 0.75 0.97 x
m= 4 0.92 0.69 0.85 0.57 0.57 0.72 x
m = 6 0.88 0.60 0.78 0.43 0.44 0.60 0.85
m = 8 0.84 0.53 0.72 0.34 0.35 0.53 0.82

Table 5 Convergence factor ρ of the p–multigrid scheme as a function of K (number of
levels), p (“finest” level) and m2 (number of postsmoothing steps). Gauß-Seidel smoother.
Mesh of Voronoi-Lloyd polygons.

p = 2 p = 3 p = 4 p = 5

K 2 2 3 3 4 3 4

m = 8 0.91 0.63 0.81 0.45 0.61 0.49 0.46
m = 10 0.89 0.57 0.77 0.37 0.54 0.44 0.43
m = 12 0.87 0.52 0.73 0.31 0.47 0.40 0.40
m = 14 0.86 0.48 0.69 0.25 0.42 0.37 0.37

4.2 The p–multigrid algorithm as a preconditioner for the PCG method

In this set of experiments we aim at demonstrating that a single iteration of the p–
multigrid algorithm can be successfully employed to precondition the CG method. In
this set of experiments, the coarsest level is given by p = 1. In all the test cases, we
have empoyed as a stopping criterion in order to reduce the (relative) residual below a
tolerance of 10−6, with a maximum number of iterations set equal to 1000. In Figure 3, we
compare the PCG iteration counts with our multigrid preconditioner, which is constructed
employing either a Richardson or a Gauß-Seidel smoother and m = 8 post-smoothing
steps. For the sake of comparison, we report the same quantities computed with the
unpreconditioned CG method and with the PCG method with preconditioner given by
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an incomplete Cholesky factorization. As before, the results reported in Figure 3 have
been obtained on the computational grids depicted in Figure 1. From Figure 3, we infer
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Figure 3: PCG iteration counts as a function of p with p–multigrid preconditioner (with either Richardson
or Gauß-Seidel smoothers). For the sake of comparison the CG iteration counts without preconditioning
and with an incomplete Cholesky preconditioner are also shown. For the p–multigrid preconditioner, the
coarsest level is p = 1 and the number of post-smoothing steps is 8. Meshes made of: Voronoi-Lloyd
polygons (left), quasi-regular hexagons (right).

that PCG iteration counts needed to reduce the residual below a given tolerance seems to
be almost constant whenever the multigrid preconditioner with Gauß-Seidel smoother is
employed, even for a relatively small number of smoothing steps. In contrast, as expected,
the incomplete Cholesky preconditioner does not provide a uniform preconditioner. Also,
the multigrid preconditioner with Richardson smoother seems to perform well at least on
regular hexagonal grids.
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[8] P. F. Antonietti, C. Facciolà, A. Russo, and M. Verani. Discontinuous Galerkin ap-
proximation of flows in fractured porous media on polygonal and polyhedral meshes.
MOX Report 55/2016, 2016.

[9] P. F. Antonietti, S. Giani, and P. Houston. hp–Version Composite Discontinuous
Galerkin Methods for elliptic problems on complicated domains. SIAM J. Sci. Com-
put., 35(3):A1417–A1439, 2013.

[10] P. F. Antonietti, X. Hu, P. Houston, M. Sarti, and M. Verani. Multigrid algorithms
for hp-version Interior Penalty Discontinuous Galerkin Methods on polygonal and
polyhedral meshes. In press on Calcolo, 2017.

[11] P. F. Antonietti, G. Manzini, and M. Verani. The fully nonconforming Virtual Ele-
ment Method for biharmonic problems. MOX Report 53/2016. Submitted, 2016.

[12] P. F. Antonietti, M. Sarti, and M. Verani. Multigrid algorithms for hp-Discontinuous
Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal., 53(1):598–618,
2015.

[13] P. F. Antonietti, M. Sarti, and M. Verani. Multigrid algorithms for high order Discon-
tinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering,
104:3–13, 2016.

[14] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming Virtual Element
Method. ESAIM Math. Model. Numer. Anal., 50(3):879–904, 2016.

[15] F. Bassi, L. Botti, A. Colombo, F. Brezzi, and G. Manzini. Agglomeration-based
physical frame DG discretizations: An attempt to be mesh free. Math. Models Meth-
ods Appl. Sci., 24(8):1495–1539, 2014.

[16] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini. On the flexibility of
agglomeration based physical space Discontinuous Galerkin discretizations. Journal
of Computational Physics, 231(1):45–65, 2012.

[17] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide
to the Virtual Element Method. Math. Models Methods Appl. Sci., 24(8):1541–1573,
2014.

[18] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. H(div) and H(curl)-
conforming Virtual Element Methods. Numer. Math., 133(2):303–332, 2016.

[19] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed Virtual Element
Methods for general second order elliptic problems on polygonal meshes. ESAIM
Math. Model. Numer. Anal., 50(3):727–747, 2016.

[20] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Serendipity Nodal VEM
spaces. Comput. & Fluids, 141:2–12, 2016.

[21] L. Beirão da Veiga, C. Lovadina, and D. Mora. A Virtual Element Method for elastic
and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg.,
295:327–346, 2015.

26



[22] L. Beirão da Veiga and G. Vacca. Virtual Element Methods for parabolic problems on
polygonal meshes. Numer. Methods Partial Differential Equations, 31(6):2110–2134,
2015.

[23] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, and A. Russo.
Basic principles of Virtual Element Methods. Mathematical Models and Methods in
Applied Sciences, 23(01):199–214, 2013.

[24] L. Beirão da Veiga, F. Brezzi, and L. Marini. Virtual Elements for linear elasticity
problems. SIAM Journal of Numerical Analysis, 51:794–812, 2013.

[25] L. Beirão Da Veiga, F. Brezzi, L. Marini, and A. Russo. Virtual Element Method for
general second order elliptic problems on polygonal meshes. Math. Models Methods
Appl. Sci., 26(4):729–750, 2016.

[26] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo. Basic principles of
hp Virtual Elements on quasiuniform meshes. Mathematical Models and Methods in
Applied Sciences, 26(8):1567–1598, 2016.

[27] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo. Exponential convergence
of the hp Virtual Element Method with corner singularity. https://arxiv.org/abs/
1611.10165, 2016.

[28] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Difference
Method for elliptic problems, volume 11 of MS&A. Modeling, Simulation and Appli-
cations. Springer, Cham, 2014.

[29] M. a. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. The Virtual Element
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