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Abstract

The numerical approximation of partial differential equations (PDEs)
posed on complicated geometries, which include a large number of small
geometrical features or microstructures, represents a challenging computa-
tional problem. Indeed, the use of standard mesh generators, employing
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simplices or tensor product elements, for example, naturally leads to very
fine finite element meshes, and hence the computational effort required to
numerically approximate the underlying PDE problem may be prohibitively
expensive. As an alternative approach, in this article we present a review
of composite/agglomerated discontinuous Galerkin finite element methods
(DGFEMs) which employ general polytopic elements. Here, the elements
are typically constructed as the union of standard element shapes; in this
way, the minimal dimension of the underlying composite finite element
space is independent of the number of geometrical features. In particular,
we provide an overview of hp–version inverse estimates and approxima-
tion results for general polytopic elements, which are sharp with respect
to element facet degeneration. On the basis of these results, a priori error
bounds for the hp–DGFEM approximation of both second–order elliptic
and first–order hyperbolic PDEs will be derived. Finally, we present nu-
merical experiments which highlight the practical application of DGFEMs
on meshes consisting of general polytopic elements.

1 Introduction

In many application areas arising in engineering and biological sciences, for ex-
ample, one is often required to numerically approximate partial differential equa-
tions (PDEs) posed on complicated domains which contain small (relative to the
size of the overall domain) geometrical features, or so-called microstructures.
The key underlying issue for all classes of finite element/finite volume methods
is the design of a suitable computational mesh upon which the underlying PDE
problem will be discretized. On the one hand, the mesh should provide an accu-
rate description of the given geometry with a granularity sufficient to compute
numerical approximations to within desired engineering accuracy constraints.
On the other hand, the mesh should not be so fine that the computational time
required to compute the desired solution is too high for practical turn-around
times. These issues are particularly pertinent when high–order methods are em-
ployed, since in this setting it is desirable to employ relatively coarse meshes, so
that the polynomial degree may be suitably enriched.

Standard mesh generators typically generate grids consisting of triangular/quad-
rilateral elements in two-dimensions and tetrahedral/hexahedral/prismatic/pyramidal
elements in three-dimensions. On the basis of the mesh, in the traditional fi-
nite element setting, the underlying finite element space, consisting of (continu-
ous/discontinuous) piecewise polynomials, is then constructed based on mapping
polynomial bases defined on a canonical/reference element to the physical do-
main. In the presence of boundary layers, anisotropic meshing may be exploited;
however, in areas of high curvature the use of such highly-stretched elements may
lead to element self-intersection, unless the curvature of the geometry is care-
fully ‘propagated’ into the interior of the mesh through the use of isoparametric
element mappings. The use of what we shall refer to as standard element shapes
necessitates the exploitation of very fine computational meshes when the geom-
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etry possesses small details or microstructures. Indeed, in such situations, an
extremely large number of elements may be required for a given mesh generator
to produce even a ‘coarse’ mesh which adequately describes the underlying ge-
ometry. Thereby, the solution of the resulting system of equations emanating,
for example, from a finite element discretization of the underlying PDE on the
resulting coarse mesh, may be impractical due to the large numbers of degrees
of freedom involved. Moreover, since this initial coarse mesh already contains
such a large number of elements, the use of efficient multilevel solvers may be
difficult, as an adequate sequence of coarser grids which represent the geometry
is unavailable. As an example arising in biological applications, in Figure 1, we
show a finite element mesh of a porous scaffold employed for in vitro bone tissue
growth, cf. [4, 5]. Here, the mesh, consisting of 3.2 million elements, has been
generated based on µCT image data represented in the form of voxels.

Figure 1: Example of a porous scaffold used for in vitro bone tissue growth,
cf. [4, 5].

From the above discussion, we naturally conclude that, when standard ele-
ment shapes are employed, the dimension of the underlying finite element space
is proportional to the complexity of the given computational geometry. A natu-
ral alternative is to consider the exploitation of computational meshes consisting
of general polytopic elements, i.e., polygons in two-dimensions and polyhedra in
three-dimensions. In the context of discretizing PDEs in complicated geome-
tries, Composite Finite Elements (CFEs) have been developed in the articles
[33, 32] and [1, 31] for both conforming finite element and discontinuous Galerkin
(DGFEM) methods, respectively, which exploit general meshes consisting of ag-
glomerated elements consisting of a collection of neighbouring elements present
within a standard finite element method. A closely related technique based
on employing the so-called agglomerated DGFEM has also been considered in
[7, 8, 9]. From a meshing point of view, the exploitation of general polytopic ele-
ments provides enormous flexibility. Indeed, in addition to meshing complicated
geometries using a minimal number of elements, they are naturally suited to
applications in complicated/moving domains, such as in solid mechanics, fluid
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structure interaction, geophysical problems, including earthquake engineering
and flows in fractured porous media, and mathematical biology, for example. In-
deed, general element shapes are often exploited as transitional elements in finite
element meshes, for example, when fictitious domain methods, unfitted methods
or overlapping meshes are employed, cf. [16, 17, 18, 36, 39], for example. The use
of similar techniques in the context of characteristic-based/Lagrange–Galerkin
methods is also highly relevant. The practical relevance and potential impact
of employing such general computational meshes is an extremely exciting topic
which has witnessed a vast amount of intensive research in recent years by a num-
ber of leading research groups. In the conforming setting, we mention the CFE
method [33, 32], the Polygonal Finite Element Method [45], and the Extended
Finite Element Method [27]. These latter two approaches achieve conformity
by enriching/modifying the standard polynomial finite element spaces, in the
spirit of the Generalized Finite Element framework of Babuška & Osborn in
[6]. Typically, the handling of non-standard shape functions carries an increase
in computational effort. The recently proposed Virtual Element Method [11],
overcomes this difficulty, achieving the extension of conforming finite element
methods to polytopic elements while maintaining the ease of implementation of
these schemes; see also the closely related Mimetic Finite Difference method, cf.
[12, 14, 22], for example.

In this article we present an overview of CFEs, and in particular consider
their construction and analysis within the hp–version DGFEM setting. With
this in mind, we follow the work presented in [33, 32, 1]; the inclusion of general
polytopic meshes which admit arbitrarily small/degenerate (d− k)–dimensional
element facets, k = 1, . . . , d− 1, where d denotes the spatial dimension, will also
be discussed, following [21, 20]. The structure of this article is as follows. In
Section 2, we introduce composite/agglomerated DGFEMs for the numerical ap-
proximation of second–order elliptic PDEs. Section 3 is devoted to the stability
and a priori analysis of the proposed method; in particular, we derive hp–version
inverse estimates and approximation results which are sharp with respect to el-
ement facet degeneration. In Section 4 we analyze the hp–version DGFEM
discretization of first–order hyperbolic PDEs on polytopic meshes. The prac-
tical performance of the proposed DGFEMs for application to incompressible
fluid flow problems is studied in Section 5. Finally, in Section 6 we summarize
the work presented in this article and draw some conclusions.

2 Construction of composite finite element methods

The original idea behind the construction of CFEs, as presented in [32, 33] for
conforming finite element methods, is to exploit general shaped element domains
upon which elemental basis functions may only be locally piecewise smooth.
In particular, an element domain within a CFE may consist of a collection of
neighbouring elements present within a standard finite element method, with
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the basis function of the CFE being constructed as a linear combination of
those defined on the standard finite element subdomains. The extension of this
general approach to the DGFEM setting has been considered in the series of
articles [1, 30, 31]; see also [2, 29] for their application within Schwarz-type
domain decomposition preconditioners. For related work on the application of
DGFEMs on meshes consisting of agglomerated elements, we refer to the articles
[7, 8, 9]. We note that in the context of DGFEMs, the elemental finite element
bases simply consist of polynomial functions, since inter-element conformity is
not required.

For generality, we introduce CFE methods based on the construction pro-
posed in [33] and [1]. Here, the philosophy underlying CFE methods is to con-
struct finite element spaces based on first generating a hierarchy of meshes,
such that the finest mesh does indeed provide an accurate representation of the
underlying computational domain, followed by the introduction of appropriate
prolongation operators which determine how the finite element basis functions
on the coarse mesh are defined in terms of those on the fine grid. In this man-
ner, CFEs naturally lend themselves to adaptive enrichment of the finite element
space by locally varying the hierarchical level from which an element belongs,
cf. [9, 31].

For concreteness, throughout this section, we concentrate on the numerical
approximation of the Poisson equation. However, we stress that this class of
methods naturally extends to a wide range of PDEs; indeed, it is the treatment
of the underlying second–order PDE operator which gives rise to a number of
theoretical and practical difficulties which we will address Section 3. With this
in mind, given that Ω is a bounded, connected Lipschitz domain in Rd, d > 1,
with boundary ∂Ω, consider the following PDE problem: find u such that

−∆u = f in Ω, (1)

u = g on ∂Ω, (2)

where f ∈ L2(Ω) and g is a sufficiently regular boundary datum. In particular,
it is assumed that Ω is a ‘complicated’ domain, in the sense that it contains
small details or microstructures.

2.1 Composite/agglomerated meshes

The approach developed in [33], cf. also [1], is to construct the underlying physi-
cal/agglomerated meshes by first introducing a hierarchy of overlapping reference
and logical meshes, from which a very fine geometry–conforming mesh, consisting
of standard–shaped elements, may be defined, based on possibly moving nodes
in the finest logical mesh onto the boundary ∂Ω of the computational domain.
The coarse mesh, consisting of polytopic elements, is then constructed based
on agglomerating elements which share the same parent within the underlying
refinement tree.
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More precisely, given an open bounded Lipschitz domain Ω, which potentially
contains small features/microstructures, we first define the coarsest reference
mesh RH ≡ Rh1 to be an overlapping grid in the sense that it does not resolve
the boundary ∂Ω of the domain Ω. In particular, we let RH = {κ̂} be a coarse
conforming shape–regular mesh consisting of (closed) standard element domains
κ̂, cf. above, whose open intersection is empty such that

Ω ⊂ ΩH =

 ⋃
κ̂∈RH

κ̂

◦ and κ̂◦ ∩ Ω 6= ∅ ∀κ̂ ∈ RH ,

where, for a closed set D ⊂ Rd, D◦ denotes the interior of D.
On the basis of the coarse mesh RH , a hierarchy of reference meshes Rhi ,

i = 2, 3, . . . , `, are now constructed based on adaptively refining the coarse mesh
RH with a view to improving the approximation of the boundary of Ω. With
this in mind, given an input tolerance TOL, we proceed as follows:

1. Set Rh1 = RH , the mesh counter i = 1, and store the elements κ̂ ∈ Rh1
as the root nodes of the refinement tree T̂; we assign these elements with
a level number L = 1.

2. Writing children(κ̂) to denote the number of children that element κ̂ pos-
sesses, construct the refinement set R:

R =
{
κ̂ ∈ T̂ : children(κ̂) = 0 ∧ κ̂◦ ∩ ∂Ω 6= ∅ ∧ hκ̂ > TOL

}
, (3)

where hκ̂ = diam(κ̂).

3. If R = ∅, then STOP. Otherwise, for each κ̂ ∈ R, refine the element
κ̂ =

⋃nκ̂
i=1 κ̂i. Here, we store the child elements κ̂i, i = 1, . . . , nκ̂, within the

tree T̂, where κ̂ is their parent, level(κ̂i) = level(κ̂) + 1, i = 1, . . . , nκ̂, and
level(κ̂) denotes the level of the element κ̂ in T̂. We point out that nκ̂ will
depend on both the type of element to be refined, and the type of refine-
ment, i.e., isotropic/anisotropic. For isotropic refinement of a quadrilateral
element κ̂ in two–dimensions, we have that nκ̂ = 4.

4. Perform any additional refinements to undertake necessary mesh smooth-
ing, for example, to ensure that the resulting mesh is 1–irregular, cf. [1].

5. Update mesh counter i = i+ 1 and construct the reference mesh Rhi from
the tree structure T̂ in the following manner:

Rhi =
{
κ̂ ∈ T̂ : level(κ̂) = i ∨ (level(κ̂) ≤ i ∧ children(κ̂) = 0)

}
.

6. Return to Step 2. and continue to iterate until either the condition in
3. is satisfied, or a maximum number of allowable refinements have been
undertaken.
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Remark 2.1. We point out that the above procedure provides a generic refine-
ment algorithm which may be employed to generate the sequence of reference
meshes {Rhi}`i=1, though alternative sequences of hierarchical meshes may be
exploited within the CFE framework.

On the basis of the reference meshes {Rhi}`i=1, we now define the corre-
sponding sequences of logical and physical meshes {Lhi}`i=1 and {Mhi}`i=1, re-
spectively. To this end, we first consider the finest reference mesh Rh` : given
that the stopping criterion in step 2. above, cf. (3), is satisfied, then vertex
nodes x̂v ∈ κ̂, κ̂ ∈ Rh` , which are close to the boundary ∂Ω in the sense that

dist(x̂v, ∂Ω)� hκ̂,

are moved onto the boundary of the computational domain. As a result of this
node movement procedure, some of the elements stored in the tree T̂ may end up
lying outside of Ω; these are subsequently removed from T̂ to yield the cropped
tree T. On the basis of the cropped tree data structure T, the logical meshes
are constructed based on agglomerating elements which share a common parent
within a given level of the mesh tree hierarchy T. More precisely, following
[30], we introduce the following notation: for κ̃C ∈ T, with level(κ̃C) = j, we
write Fji (κ̃C), j ≥ i, to denote the unique element κ̃P ∈ T with level(κ̃P) = i
who is directly related to κ̃C in the sense that κ̃C ⊂ κ̃P ; i.e., κ̃C has resulted
from subsequent refinement of κ̃P . In the trivial case when j = i, Fji (κ̃C) = κ̃C .
Thereby, the logical meshes {Lhi}`i=1 may be constructed from T as follows:

Lhi = {κ̃ : (κ̃ ∈ T ∧ level(κ̃) ≤ i ∧ children(κ̃) = 0)

∨(κ̃ = ∪κ̃′∈Tκ̃′ : children(κ̃′) = 0 ∧ Fji (κ̃
′) = P, j = level(κ̃′)

∧P is identical for all members of this set)} .

We point out that in the absence of any node movement the finest reference and
logical meshes Rh` and Lh` , respectively, are identical.

Finally, the set of physical meshes {Mhi}`i=1 are defined based on moving
the nodes in the respective logical meshes {Lhi}`i=1. More precisely, writing N̂`
to denote the set of nodal points which define the finest logical mesh Lh` , the
process of node movement naturally defines a bijective mapping

Φ : N̂` → N`,

where N` denotes the set of mapped vertex nodes. The mapping Φ can then be
employed to map an element κ̃ ∈ Lh` to the physical element κ. For simplicity,
we denote this mapping by Φ also; hence, we write

Φ(κ̃) = κ.

With this notation, the physical meshes {Mhi}`i=1 may be defined as follows:

Mhi = {κ : κ = Φ(κ̃) for some κ̃ ∈ Lhi},
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(a) RH = Rh1 (b) Rh2 (c) Rh3

(d) LH = Lh1 (e) Lh2 (f) Lh3

(g) MCFE ≡Mh1 (h) Mh2 (i) Mh3

Figure 2: Hierarchy of meshes: (a)–(c) Reference meshes; (d)–(f) Logical Meshes;
(g)–(i) Corresponding physical meshes.
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i = 1, . . . , `. We point out that both the logical and physical meshes {Lhi}`i=1 and
{Mhi}`i=1, respectively, may consist of general polygonal/polyhedral element
domains. We refer to the coarsest physical mesh Mh1 as the CFE mesh, and
accordingly write MCFE ≡ Mh1 . As a simple example, in Figure 2, we consider
the case when Ω is the unit square, which has had both the rectangular region
(1/4, 3/4) × (1/8, 3/8) and the circular region enclosed by r < 3/8, where r2 =
(x− 1)2 + (y − 1)2, removed. Here, we show the reference, logical, and physical
meshes {Rhi}`i=1, {Lhi}`i=1, and {Mhi}`i=1, respectively, when ` = 3.

2.2 Finite element spaces

Given the set of physical (polytopic) meshes {Mhi}`i=1, constructed in the previ-
ous section, we introduce the corresponding sequence of DGFEM finite element
spaces V (Mhi ,pi), i = 1, . . . , `, respectively, consisting of piecewise discontinu-
ous polynomials. To this end, for each element κ ∈MCFE(≡Mh1), we associate
a positive integer pκ, henceforth referred to as the polynomial degree of the el-
ement κ ∈ MCFE, and collect the pκ in the vector p1 = (pκ : κ ∈ MCFE). The
polynomial degree vectors pi, i = 2, . . . , `, associated with the respective meshes
Mhi , i = 2, . . . , `, are then defined in such a manner that the polynomial degree
of the child element contained within the refinement tree T is directly inherited
from its parent element. More precisely,

pi = (pκ, κ ∈Mhi : pκ = pκ′ , where κ′ = Fj1(κ) ∧ level(κ) = j, κ′ ∈MCFE).

With this in mind, we write

V (Mhi ,pi) = {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ) ∀κ ∈Mhi},

i = 1, . . . , `, where Pp(κ) denotes the set of polynomials of degree at most p ≥ 1
defined over the general polytope κ.

With this construction, noting that the meshes {Mhi}`i=1 are nested, we
deduce that

V (Mh1 ,p1) ⊂ V (Mh2 ,p2) ⊂ . . . ⊂ V (Mh` ,p`).

We now introduce the classical prolongation (injection) operator from V (Mhi , p)
to V (Mhi+1

, p), 1 ≤ i ≤ `− 1, given by

P i+1
i : V (Mhi ,pi)→ V (Mhi+1

,pi+1), i = 1, . . . , `− 1.

Hence, the prolongation operator from V (Mhi ,pi) to V (Mh` ,p`), 1 ≤ i ≤ `−1,
is defined by

Pi = P ``−1P
`−1
`−2 . . . P

i+1
i .

With this notation, we may write V (Mhi ,pi), 1 ≤ i ≤ ` − 1, in the following
alternative manner

V (Mhi ,pi) = {u ∈ L2(Ω) : u = P>i φ, φ ∈ V (Mh` ,p`)}, (4)
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where the restriction operator P>i is defined as the transpose of Pi, with respect
to the standard L2(Ω)–inner product.

Remark 2.2. The exploitation of the prolongation operator Pi within the defini-
tion of the finite element spaces V (Mhi ,pi), i = 1, . . . , `, stated in (4) allows for
the introduction of different spaces, depending on the specific choice of Pi. Here,
cf. also [1], the finite element spaces are constructed so that on each (composite)
element κ ∈Mhi, i = 1, . . . , `, the restriction of a function v ∈ V (Mhi ,pi) to κ
is a polynomial of degree pκ. In the case when the finite element spaces consist
of continuous piecewise polynomials, cf. [33], for example, alternative prolonga-
tion operators are employed which leads to basis functions which are piecewise
polynomials on each composite/polytopic element domain.

The space V (Mh1 ,p1) ≡ V (MCFE,p) is referred to as the composite finite
element space. We stress that the dimension of V (MCFE,p) is independent of
the underlying domain Ω in the sense that it does not directly depend on the
number of microstructures contained in Ω. Indeed, the dimension of V (MCFE,p)
can be chosen by the user; of course, if V (MCFE,p) is not sufficiently rich, then
the accuracy of any computed finite element approximation uh ∈ V (MCFE,p)
may be low. However, given the construction of the composite finite element
mesh MCFE, the underlying numerical scheme naturally lends itself to adaptive
enrichment of the finite element space V (MCFE,p), cf. [31, 30].

Remark 2.3. As a final remark, we note that an alternative approach for the
construction of the composite finite element mesh MCFE is to simply employ a
standard mesh generator to produce a fine mesh Mfine which accurately de-
scribes the domain Ω. Then coarse agglomerated meshes may be constructed
based on employing graph partitioning algorithms. One of the most popular soft-
ware packages employed for this purpose is METIS [37], cf. [20, 29]. From a
theoretical point of view, this setting is more difficult to analyse; we shall return
to this issue in Section 3.

To define the forthcoming DGFEM, cf. Section 2.3, we define the broken
Sobolev space Hk(Ω,MCFE) with respect to the subdivision MCFE up to com-
posite order k in the standard fashion:

Hk(Ω,MCFE) = {u ∈ L2(Ω) : u|κ ∈ Hkκ(κ) ∀κ ∈MCFE}.

Moreover, for u ∈ H1(Ω,MCFE), we define the broken gradient∇hu by (∇hu)|κ =
∇(u|κ), κ ∈MCFE.

2.3 Discontinuous Galerkin methods on polytopic meshes

In this section, we consider the DGFEM discretization of the second-order elliptic
PDE model problem (1)–(2). For concreteness, we focus our attention on the
hp-version of the (symmetric) interior penalty DGFEM.
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For the proceeding analysis, we introduce the concept of mesh interfaces and
faces, cf. [21]. In order to admit hanging nodes/edges, which are permitted in
MCFE, the interfaces of MCFE are defined to be the intersection of the (d − 1)–
dimensional facets of neighbouring elements; on the boundary an interface is
simply a (d−1)–dimensional facet of κ ∈MCFE. In the two–dimensional setting,
i.e., d = 2, the interfaces of a given element κ ∈ MCFE simply consists of line
segments ((d − 1)–dimensional simplices). For d = 3, we assume that each
interface of an element κ ∈ MCFE may be subdivided into a set of co-planar
triangles; we use the terminology ‘face’ to refer to a (d−1)–dimensional simplex
(line segment or triangle for d = 2 or 3, respectively), which forms part of the
boundary (interface) of an element κ ∈MCFE. For d = 2, the face and interface
of an element κ ∈MCFE coincide.

Following [20, 21], we assume that a sub-triangulation into faces of each
mesh interface is given if d = 3, and denote by FCFE the union of all open mesh
interfaces if d = 2 and the union of all open triangles belonging to the sub-
triangulation of all mesh interfaces if d = 3. In this way, FCFE is always defined
as a set of (d− 1)–dimensional simplices. Further, we write FCFE = FICFE ∪ FBCFE,
where FICFE denotes the union of all open (d − 1)–dimensional element faces
F ⊂ FCFE that are contained in Ω, and FBCFE is the union of element boundary
faces, i.e., F ⊂ ∂Ω for F ∈ FBCFE. The boundary ∂κ of an element κ and the sets
∂κ \ ∂Ω and ∂κ ∩ ∂Ω will be identified in a natural way with the corresponding
subsets of FCFE.

Given κ ∈MCFE, the trace of a function v ∈ H1(Ω,MCFE) on ∂κ, relative to
κ, is denoted by v+

κ . Then for almost every x ∈ ∂κ\∂Ω, there exists a unique
κ′ ∈MCFE such that x ∈ ∂κ′; with this notation, the outer/exterior trace v−κ of v
on ∂κ\∂Ω, relative to κ, is defined as the inner trace v+

κ′ relative to the element(s)
κ′ such that the intersection of ∂κ′ with ∂κ\∂Ω has positive (d−1)–dimensional
measure.

Next, we introduce some additional trace operators. Let κi and κj be two
adjacent elements of MCFE and let x be an arbitrary point on the interior face
F ∈ FICFE given by F = ∂κi ∩ ∂κj . We write ni and nj to denote the outward
unit normal vectors on F , relative to ∂κi and ∂κj , respectively. Furthermore,
let v and q be scalar- and vector-valued functions, which are smooth inside each
element κi and κj . By (vi,qi) and (vj ,qj), we denote the traces of (v,q) on F
taken from within the interior of κi and κj , respectively. The averages of v and
q at x ∈ F ∈ FICFE are given by

{{v}} =
1

2
(vi + vj), {{q}} =

1

2
(qi + qj),

respectively. Similarly, the jumps of v and q at x ∈ F ∈ FICFE are given by

[[v]] = vi ni + vj nj , [[q]] = qi · ni + qj · nj ,

respectively. On a boundary face F ∈ FBCFE, such that F ⊂ ∂κi, κi ∈ MCFE, we
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set
{{v}} = vi, {{q}} = qi, [[v]] = vini [[q]] = qi · ni,

with ni denoting the unit outward normal vector on the boundary ∂Ω.
With this notation, the symmetric interior penalty DGFEM for the numerical

approximation of (1)–(2) is given by: find uh ∈ V (MCFE,p) such that

BDiff(uh, vh) = FDiff(vh) (5)

for all vh ∈ V (MCFE,p), where

BDiff(w, v) =
∑

κ∈MCFE

∫
κ
∇w · ∇v dx−

∑
F∈FCFE

∫
F

(
{{∇hv}} · [[w]] + {{∇hw}} · [[v]]

)
ds

+
∑

F∈FCFE

∫
F
σ [[w]] · [[v]] ds,

FDiff(v) =

∫
Ω
fv dx−

∑
F∈FBCFE

∫
F
g(∇hv · n− σv) ds.

Here, the non-negative function σ ∈ L∞(FCFE) is the discontinuity stabilization
function; the precise definition of σ is given in Lemma 3.4 below.

3 Stability and approximation results

In this section we consider the stability and error analysis of the hp–version
DGFEM defined in (5). We point out that the original a priori error analysis
of the DGFEM (5) on CFE meshes was first undertaken in the article [1], based
on exploiting the work developed in both the CFE and DGFEM settings in the
articles [33] and [35], respectively. Indeed, the analysis presented in [1] was based
on bounding the error in terms of Sobolev norms of an extension, cf. Theorem
3.1 below, of the analytical solution u from an element belonging to the logical
mesh to its respective element in the reference mesh, assuming the mapping
Φ is sufficiently regular. This approach is advantageous since the (coarsest)
reference mesh Rh1 consists of non-overlapping standard–shaped elements. In
order to treat general polytopes, where an underlying reference and logical mesh
may not be available, for example, on meshes generated from graph partitioning
software, cf. Remark 2.3, we proceed based on employing the recent analysis
developed in [21].

In contrast to the case when standard element domains are employed, the
exploitation of general polytopic elements presents a number of key challenges for
the construction and analysis of stable numerical schemes. In particular, shape–
regular polytopes may admit arbitrarily small/degenerate (d − k)–dimensional
element facets, k = 1, . . . , d − 1, under mesh refinement, where d denotes the
spatial dimension. Thereby, standard inverse and approximation results must be
carefully extended to the polytopic setting in such a manner that the resulting
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bounds are indeed sharp with respect to facet degeneration. With this in mind,
we now summarise a number of key results derived in [21].

Firstly, we outline the key assumptions on the underlying CFE mesh MCFE.

Assumption 3.1. There exists a positive constant CF , independent of the mesh
parameters, such that

max
κ∈MCFE

(card {F ∈ FCFE : F ⊂ ∂κ}) ≤ CF .

In order to deal with the case of general polytopic meshes, i.e., when refer-
ence/logical meshes are not available, we need to assume the existence of the
following coverings of the mesh.

Definition 3.1. A covering T] = {K} related to the polytopic mesh MCFE is a
set of shape-regular d–simplices K, such that for each κ ∈ MCFE, there exists a
K ∈ T] such that κ ⊂ K. Given T], we denote by Ω] the covering domain given
by Ω] =

(
∪K∈T]K̄

)◦
.

Assumption 3.2. There exists a covering T] of MCFE and a positive constant
OΩ, independent of the mesh parameters, such that

max
κ∈MCFE

Oκ ≤ OΩ,

where, for each κ ∈MCFE,

Oκ = card
{
κ′ ∈MCFE : κ′ ∩ K 6= ∅, K ∈ T] such that κ ⊂ K

}
.

Thereby,
diam(K) ≤ Cdiamhκ,

for each pair κ ∈MCFE, K ∈ T], with κ ⊂ K, for a constant Cdiam > 0, uniformly
with respect to the mesh size.

Remark 3.1. We note that for the classes of meshes constructed in Section 2.1,
the coarsest reference mesh, subject to the (potential) application of the mapping
Φ, may serve as the covering mesh T]; in this setting Assumption 3.2 is trivially
satisfied.

The proceeding hp–approximation results and inverse estimates for polytopic
elements are based on considering d–dimensional simplices, where standard re-
sults can be applied. With this in mind, we introduce the following element
submesh.

Definition 3.2. For each element κ in the computational meshMCFE, we define
the family Fκ[ of all possible d–dimensional simplices contained in κ and having
at least one face in common with κ. The notation κF[ will be used to indicate a
simplex belonging to Fκ[ and sharing with κ ∈MCFE a given face F .

Equipped with these results, we first consider the derivation of hp–version
inverse estimates on general polytopes.
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3.1 Inverse estimates

Inverse estimates, which bound a norm of a polynomial on an element face by
a norm on the element itself, are fundamental for the study of the stability and
error analysis of DGFEMs. In order to derive bounds which are sharp with
respect to small/degenerate (d−k)–dimensional element facets, k = 1, . . . , d−1,
we first introduce the following definition.

Definition 3.3. Let M̃CFE denote the subset of elements κ, κ ∈ MCFE, such
that each κ ∈ M̃CFE can be covered by at most mMCFE shape-regular simplices Ki,
i = 1, . . . ,mMCFE, such that

dist(κ, ∂Ki) < Cas diam(Ki)/p
2
κ,

and
|Ki| ≥ cas|κ|

for all i = 1, . . . ,mMCFE, for some mMCFE ∈ N and Cas, cas > 0, independent of
κ and MCFE.

We now state the main result of this section; see [21] for details of the proof.

Lemma 3.1. Let κ ∈ MCFE, F ⊂ ∂κ denote one of its faces, and M̃CFE be
defined as in Definition 3.3. Then, for each v ∈ Pp(κ), we have the inverse
estimate

‖v‖2L2(F ) ≤ CINV(p, κ, F )
p2|F |
|κ|
‖v‖2L2(κ), (6)

with

CINV(p, κ, F ) := Cinv


min

{
|κ|

supκF
[
⊂κ |κF[ |

, p2d

}
, if κ ∈ M̃CFE,

|κ|
supκF

[
⊂κ |κF[ |

, if κ ∈MCFE\M̃CFE,

and κF[ ∈ F
κ
[ as in Definition 3.2. Furthermore, Cinv is a positive constant,

which if κ ∈ M̃CFE depends on the shape regularity of the covering of κ given in
Definition 3.3, but is always independent of |κ|/ supκF

[
⊂κ |κF[ | (and, therefore, of

|F |), p, and v.

Remark 3.2. Loosely speaking, the proof of Lemma 3.1 is based on exploiting
standard inverse inequalities, cf. [43], for example, together with Definition 3.3.

Indeed, for κ ∈ M̃CFE, the essential idea is to derive two bounds, one based
on extending results from [28], and one based on employing an L∞(κ) bound.
Taking the minimum of these two bounds gives rise to an inverse inequality which
is both sharp with respect to the polynomial degree p, and moreover is sensitive
with respect to the measure of the face F relative to that of the element κ.
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We finish this section by recalling the inverse estimate for the H1-(semi)norm
derived in [20], cf. also [3]. In this setting, the shape regularity assumption on
the covering T], cf. Definition 3.1, must be strengthened as follows.

Assumption 3.3. The subdivision MCFE is shape regular in the sense of [24],
i.e., there exists a positive constant Cshape, independent of the mesh parameters,
such that:

∀κ ∈MCFE,
hκ
ρκ
≤ Cshape,

with ρκ denoting the diameter of the largest ball contained in κ.

Following, [20], we also require the following assumption.

Assumption 3.4. Every polytopic element κ ∈ MCFE\M̃CFE, admits a sub-tri-
angulation into at most nMCFE shape-regular simplices ki, i = 1, 2, . . . , nMCFE,
such that κ̄ = ∪nMCFE

i=1 k̄i and
|ki| ≥ ĉ|κ|

for all i = 1, . . . , nMCFE, for some nMCFE ∈ N and ĉ > 0, independent of κ and
MCFE.

Lemma 3.2. Given Assumptions 3.3 and 3.4 are satisfied, for each v ∈ Pp(κ),
the following inverse inequality holds

‖∇v‖2L2(κ) ≤ C̃inv
p4

h2
κ

‖v‖2L2(κ), (7)

where C̃inv is a positive constant, independent of the element diameter hκ and
the polynomial order pκ, but dependent on the shape regularity of the covering
of κ, if κ ∈ M̃CFE, or the sub-triangulation of κ, if κ ∈MCFE\M̃CFE.

3.2 Approximation results

Functions defined on Ω can be extended to the covering domain Ω] based on
employing the following extension operator, cf. [44].

Theorem 3.1. Let Ω be a domain with a Lipschitz boundary. Then there exists
a linear extension operator E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v
and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.

We point out that the assumptions stated in Theorem 3.1 on the domain Ω
may be weakened. Indeed, [44] only requires that Ω is a domain with a minimally
smooth boundary; the extension to domains which are simply connected, but
may contain microscales, is treated in [42].

With the above notation, we now quote Lemma 4.2 from [21].
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Lemma 3.3. Let κ ∈ MCFE, F ⊂ ∂κ denote one of its faces, and K ∈ T]
denote the corresponding simplex such that κ ⊂ K, cf. Definition 3.1. Suppose
that v ∈ L2(Ω) is such that Ev|K ∈ Hkκ(K), for some k ≥ 0. Then, given
Assumption 3.2 is satisfied, there exists Π̃v, such that Π̃v|κ ∈ Ppκ(κ), and the
following bounds hold

‖v − Π̃v‖Hq(κ) ≤ C
hsκ−qκ

pkκ−qκ

‖Ev‖Hkκ (K), kκ ≥ 0,

for 0 ≤ q ≤ kκ, and

‖v − Π̃v‖L2(F ) ≤ C|F |1/2
h
sκ−d/2
κ

p
kκ−1/2
κ

Cm(pκ, κ, F )1/2‖Ev‖Hkκ (K), kκ > d/2,

where

Cm(pκ, κ, F ) = min

{
hdκ

supκF
[
⊂κ |κF[ |

,
1

p1−d
κ

}
.

Here, sκ = min{pκ + 1, kκ} and C is a positive constant, which depends on the
shape-regularity of K, but is independent of v, hκ, and pκ.

3.3 Error analysis of the DGFEM

On the basis of the results stated in Sections 3.1 & 3.2, we now proceed with the
stability and error analysis of the DGFEM defined in (5). To this end, following
the work presented in [40], we begin by defining the following extensions of the
forms BDiff(·, ·) and FDiff(·):

B̃Diff(w, v) =
∑

κ∈MCFE

∫
κ
∇w · ∇v dx +

∑
F∈FCFE

∫
F
σ [[w]] · [[v]] ds

−
∑

F∈FCFE

∫
F

(
{{Π2(∇hv)}} · [[w]] + {{Π2(∇hw)}} · [[v]]

)
ds,

F̃Diff(v) =

∫
Ω
fv dx−

∑
F∈FBCFE

∫
F
g(Π2(∇hv) · n− σv) ds,

respectively. Here, Π2 : [L2(Ω)]d → [V (MCFE,p)]d denotes the orthogonal L2-
projection onto the finite element space [V (MCFE,p)]d. Thereby, face integrals
involving the terms {{Π2(∇hw)}}, {{Π2(∇hv)}} and Π2(∇hv) are well defined for
all v, w ∈ S = H1(Ω)+V (MCFE,p), as these terms are now traces of elementwise
polynomial functions. Moreover, it is clear that

B̃Diff(w, v) = BDiff(w, v) for all w, v ∈ V (MCFE,p),

and
F̃Diff(v) = FDiff(v) for all v ∈ V (MCFE,p).
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Hence, we may rewrite the discrete problem (5) in the following equivalent man-
ner: find uh ∈ V (MCFE,p) such that

B̃Diff(uh, vh) = F̃Diff(vh) ∀vh ∈ V (MCFE,p). (8)

Given the discrete nature of the L2–projection operator Π2, the DGFEM for-
mulation (8) is no longer consistent.

For the proceeding error analysis, we introduce the DG-norm |‖·|‖Diff by

|‖w|‖Diff =
( ∑
κ∈MCFE

∫
κ
|∇w|2 dx +

∑
F∈FCFE

∫
F
σ|[[w]]|2 ds

)1/2
,

for w ∈ S and σ > 0.
With this notation, we recall the following coercivity and continuity proper-

ties of the bilinear form B̃Diff(·, ·) derived in [21].

Lemma 3.4. Let σ : FCFE → R+ be defined facewise by

σ(x) =


Cσ max

κ∈{κ+,κ−}

{
CINV(pκ, κ, F )

p2
κ|F |
|κ|

}
, x ∈ F ∈ FICFE, F = ∂κ+ ∩ ∂κ−,

CσCINV(pκ, κ, F )
p2
κ|F |
|κ|

, x ∈ F ∈ FBCFE, F = ∂κ ∩ ∂Ω,

(9)
with Cσ > 0 large enough, depending on CF , and independent of p, |F |, and |κ|.
Then, given Assumption 3.1 holds, we have that

B̃Diff(v, v) ≥ Ccoer|‖v|‖2Diff for all v ∈ S,

and
B̃Diff(w, v) ≤ Ccont|‖w|‖Diff |‖v|‖Diff for all w, v ∈ S,

where Ccoer and Ccont are positive constants, independent of the discretization
parameters.

Remark 3.3. We point out that Lemma 3.4 assumes that the number of element
faces remains bounded under mesh refinement, cf. Assumption 3.1. However,
based on the computations undertaken in [3], in practice we observe that Ccoer

remains uniformly bounded on sequences of agglomerated polygons which violate
this condition. Indeed, for Cσ = 10 numerical experiments suggest that Ccoer ≥
0.8.

Given the definition of the discontinuity stabilization function σ stated in
Lemma 3.4, we now state the following a priori error bound.

Theorem 3.2. Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain, and
let MCFE = {κ} be a subdivision of Ω consisting of general polytopic elements
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satisfying Assumption 3.1. Further, T] = {K} denotes the associated cover-
ing of Ω consisting of shape-regular d–simplices as in Definition 3.1, satisfy-
ing Assumption 3.2. Let uh ∈ V (MCFE,p) be the DGFEM approximation to
u ∈ H1(Ω) defined by (5) with the discontinuity stabilization parameter given
by (9), and suppose that u|κ ∈ Hkκ(κ), kκ > 1 + d/2, for each κ ∈ MCFE, such
that Eu|K ∈ Hkκ(K), where K ∈ T] with κ ⊂ K. Then, the following bound holds:

|‖u− uh|‖2Diff ≤ C
∑

κ∈MCFE

h
2(sκ−1)
κ

p
2(kκ−1)
κ

(1 + Gκ(F,CINV, Cm, pκ)) ‖Eu‖2Hkκ (K),

where

Gκ(F,CINV, Cm, pκ) = pκh
−d
κ

∑
F∈FCFE

Cm(pκ, κ, F )σ−1|F |

+ p2
κ|κ|−1

∑
F∈FCFE

CINV(pκ, κ, F )σ−1|F |+ h−d+2
κ p−1

κ

∑
F∈FCFE

Cm(pκ, κ, F )σ|F |,

with sκ = min{pκ + 1, kκ} and pκ ≥ 1. Here, C is a positive constant which is
independent of the discretization parameters.

Proof. See [21] for details.

Remark 3.4. For uniform orders pκ = p ≥ 1, h = maxκ∈MCFE hκ, sκ = s,
s = min{p + 1, k}, k > 1 + d/2, under the assumption that the diameter of the
faces of each element κ ∈ MCFE is of comparable size to the diameter of the
corresponding element, the a priori error bound stated in Theorem 3.2 coincides
with the bounds derived in [35, 41], for example, for DGFEMs defined on stan-
dard element domains. In particular, this bound is optimal in h and suboptimal
in p by p1/2.

4 Hyperbolic PDEs

In this section we consider the generalization of CFE/DGFEMs posed on gen-
eral polytopic meshes for the numerical approximation of first–order hyperbolic
PDEs. To this end, we consider the following model problem: find u such that

∇ · (bu) + cu = f in Ω, (10)

u = g on ∂−Ω, (11)

where c ∈ L∞(Ω), f ∈ L2(Ω), and b = (b1, b2, . . . , bd)
> ∈ [W 1

∞(Ω)]d. Here, the
inflow and outflow portions of the boundary ∂Ω are defined, respectively, by

∂−Ω =
{

x ∈ ∂Ω : b(x) · n(x) < 0
}
, ∂+Ω =

{
x ∈ ∂Ω : b(x) · n(x) ≥ 0

}
,
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where n denotes the unit outward normal vector to the boundary ∂Ω. Through-
out this section, we assume that the following (standard) positivity condition
holds: there exists a positive constant γ0 such that

c0(x)2 = c(x) +
1

2
∇ · b(x) ≥ γ0 a.e. x ∈ Ω. (12)

The DGFEM approximation to (10)-(11) is then given by: find uh ∈ V (MCFE,p)
such that

BHyp(uh, vh) = FHyp(vh) (13)

for all vh ∈ V (MCFE,p), where

BHyp(w, v) =
∑

κ∈MCFE

{∫
κ

(
− wb · ∇v + cwv

)
dx +

∫
∂κ
H(w+

κ , w
−
κ ,nκ)v+

κ ds

}
,

FHyp(vh) =

∫
Ω
fvh dx.

Here, H(w+
κ , w

−
κ ,nκ)|∂κ, which depends on both the inner– and outer–trace of w

on ∂κ, κ ∈ MCFE, and the unit outward normal vector nκ to ∂κ, is a numerical
flux function; this serves as an approximation to the normal flux (bu) · nκ on
the boundary of each element κ ∈ MCFE. The numerical flux function H(·, ·, ·)
may be chosen to be any two-point monotone Lipschitz function which is both
consistent and conservative; see [38, 46], for example. In the current setting, the
most natural choice of numerical flux is the standard upwind flux given by

H(u+
h , u

−
h ,nκ)|F =

{
b · nκ lims→0+ uh(x− sb) F ⊂ ∂κ\∂−Ω, κ ∈MCFE,
b · nκ g F ⊂ ∂κ ∩ ∂−Ω, κ ∈MCFE,

for all F ∈ FCFE, cf. [26].
Using the above definition of the numerical flux functionH(·, ·, ·), the DGFEM

(13) can be rewritten in the following equivalent form: find uh ∈ V (MCFE,p)
such that

B̃Hyp(uh, vh) = F̃Hyp(vh)

for all vh ∈ V (MCFE,p), where

B̃Hyp(w, v) =
∑

κ∈MCFE

∫
κ

(
− wb · ∇v + cwv

)
dx

+
∑

κ∈MCFE

{∫
∂+κ

b · nκw+
κ v

+
κ ds+

∫
∂−κ\∂−Ω

b · nκw−κ v+
κ ds

}
,

F̃Hyp(vh) =

∫
Ω
fvh dx−

∑
κ∈MCFE

∫
∂−κ∩∂−Ω

b · nκ gv+
κ ds.
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Remark 4.1. We note that, upon application of integration by parts element-
wise, the bilinear form B̃Hyp(·, ·) may be written in the familiar form:

B̃Hyp(w, v) =
∑

κ∈MCFE

∫
κ

(
∇ · (bw) v + cwv

)
dx

−
∑

κ∈MCFE

{∫
∂−κ\∂−Ω

b · nκ (w+
κ − w−κ )v+

κ ds+

∫
∂−κ∩∂−Ω

b · nκw+
κ v

+
κ ds

}
,

cf. [35, 20], for example.

4.1 Error analysis

The analysis of the DGFEM (13) in the hp–version setting may be tackled by a
number of different approaches. In the articles [13, 34], additional streamline–
diffusion terms are included within the underlying discretization method; in
this setting, optimal hp–error bounds may then be derived in a straightforward
manner. However, as noted in [34], the streamline–diffusion stabilization offers
very little, if any, practical advantage over the standard DGFEM (with no sta-
bilization), and is mainly employed for analysis purposes. In the absence of
streamline–diffusion stabilization, under the assumption that

b · ∇hξ ∈ V (MCFE,p) ∀ξ ∈ V (MCFE,p), (14)

holds, together hp–optimal approximation results for the local L2–projector,
optimal hp–bounds for (13) have been derived in the article [35] for meshes
consisting of shape-regular d–parallelepipeds. For hp–optimal approximation
results of the L2–projector on d–simplices, we refer to [23].

Following [20], for the case when general polytopic elements are admitted,
in the absence of optimal hp–approximation results for the local L2–projection
operator, we prove an inf-sup condition for the bilinear form B̃Hyp(·, ·), with
respect to the following streamline DGFEM-norm:

|‖v|‖2SD = |‖v|‖2Hyp +
∑

κ∈MCFE

τκ‖b · ∇v‖2L2(κ), (15)

where

|‖v|‖2Hyp =
∑

κ∈MCFE

(
‖c0v‖2L2(κ) +

1

2
‖v+
κ ‖2∂κ∩∂Ω +

1

2
‖v+
κ − v−κ ‖2∂−κ\∂Ω

)
.

Here, c0 is defined as in (12) and ‖·‖τ , τ ⊂ ∂κ, denotes the (semi)norm associated
with the (semi)inner product (v, w)τ =

∫
τ |b · n|vw ds. Finally, the streamline–

diffusion parameter τκ, κ ∈MCFE, is given by

τκ =
1

‖b‖L∞(κ)

1

p2
κ

min
F⊂∂κ

supκF
[
⊂κ |κF[ |
|F |

d ∀κ ∈MCFE, (16)
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for d = 2, 3 and pκ ≥ 1, and κF[ is as defined in Definition 3.2. In the case when
pκ = 0, τκ is formally defined to be zero.

Under the assumption that (14) holds, the following inf-sup condition for the
bilinear form B̃Hyp(·, ·), with respect to the streamline DGFEM-norm (15), may
be established, cf. [20]; this represents a generalization of the results in [15, 19].

Theorem 4.1. Given Assumptions 3.1, 3.3, and 3.4 hold, there exists a positive
constant Λs, independent of the mesh size h and the polynomial degree p, such
that:

inf
ν∈V (MCFE,p)\{0}

sup
µ∈V (MCFE,p)\{0}

B̃Hyp(ν, µ)

|‖ν|‖SD|‖µ|‖SD
≥ Λs. (17)

On the basis of the inf-sup condition stated in Theorem 4.1, together with
the approximation results given in Lemma 3.3, we deduce the following a priori
error bound for the DGFEM (13).

Theorem 4.2. Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain, and
MCFE = {κ} be a subdivision of Ω consisting of general polytopic elements satis-
fying Assumptions 3.1, 3.3, and 3.4. Further, let T] = {K} denote the associated
covering of Ω consisting of shape-regular d–simplices as in Definition 3.1, which
satisfies Assumption 3.2. Let uh ∈ V (MCFE,p) be the DGFEM approximation
to u ∈ H1(Ω) defined by (13) and suppose that u|κ ∈ Hkκ(κ), kκ > 1 + d/2, for
each κ ∈MCFE, such that Eu|K ∈ Hkκ(K), where K ∈ T] with κ ⊂ K. Then, the
following error bound holds:

|‖u− uh|‖2SD ≤ C
∑

κ∈MCFE

h2sκ
κ

p2kκ
κ

Gκ(F,Cm, pκ, τκ)‖Eu‖2Hkκ (K), (18)

where

Gκ(F,Cm, pκ, τκ) = ‖c0‖2L∞(κ) + γ2
κ + τ−1

κ + τκβ
2
κp

2
κh
−2
κ

+βκpκh
−d
κ

∑
F⊂∂κ

Cm(pκ, κ, F )|F |, (19)

sκ = min{pκ+1, kκ} and pκ ≥ 1. Here, γκ = ‖c1‖L∞(κ), with c1(x) = c(x)/c0(x),
c0 as in (12), and βκ = ‖b‖L∞(κ). The positive constant C is independent of the
discretization parameters.

Remark 4.2. For uniform orders pκ = p ≥ 1, h = maxκ∈MCFE hκ, sκ = s,
s = min{p + 1, k}, k > 1 + d/2, under the assumption that the diameter of the
faces of each element κ ∈ MCFE is of comparable size to the diameter of the
corresponding element, the error bound stated in Theorem 4.2 reduces to

|‖u− uh|‖Hyp ≤ |‖u− uh|‖SD ≤ C
hs−

1
2

pk−1
‖u‖Hk(Ω);
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which is optimal in h and suboptimal in p by p1/2. This generalizes the error
estimate derived in [35] to general polytopic meshes under the same assumption
(14).

Remark 4.3. On the basis of the error analysis undertaken in both the current
section and Section 3, a priori error bounds for the DGFEM discretization of
second–order PDEs with non-negative characteristic form on general polytopic
meshes may be established; for details, we refer to our recent article [20].

5 Numerical experiments

In this section we present a series of computational examples to illustrate the
performance of the DGFEM on general classes of polytopic meshes. The com-
putational validation of the error bounds derived in Theorems 3.2 and 4.2 have
been presented in [21] and [20], respectively; cf., also, [1]. Thereby, for the pur-
poses of this section we consider the numerical approximation of incompressible
flows in complicated geometries, cf. [30]. Throughout this section, we select
Cσ = 10, cf. Lemma 3.4.

5.1 Example 1: Flow through a complicated T–pipe domain

In this first example we consider the application of goal–oriented dual–weighted–
residual mesh adaptation for the DGFEM discretization of the incompressible
Navier–Stokes equations, cf. [10]. To this end, the computational domain Ω is
defined to be an upside–down T–shaped pipe, which has had a series of randomly
located, randomly sized, holes removed from both the vertical and horizontal
sections. Figure 3(a) depicts the initial composite mesh, constructed based on
employing the algorithm outlined in Section 2, which consists of only 128 polyg-
onal elements. Here, the inflow boundary is specified at the top of the vertical
section of the pipe, i.e., along y = 6, 4 ≤ x ≤ 8, where Poiseuille flow enters
Ω; the left-hand and right-hand side boundaries of the horizontal portion of the
pipe, located at x = 0, 0 ≤ y ≤ 3 and x = 12, 0 ≤ y ≤ 3, respectively, are defined
to be outflow Neumann boundaries. No slip boundary conditions are imposed on
the remaining walls of the T–pipe geometry, together with the boundaries of the
circular holes; finally, we set Re = 100. This test case represents a modification
of the test problem considered in [30].

Here we consider goal–oriented control of the error in the target functional J ,
defined by J(u, p) = p(10, 1.5) ≈ 3.49924E-3, where u and p denote the velocity
and pressure of the underlying flow, respectively. More precisely, following the
notation in [30], we may establish an (approximate) error representation formula
of the form

J(u, p)− J(uh, ph) ≈
∑

κ∈MCFE

ηκ,
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(a)

(b)

Figure 3: Example 1. (a) Initial composite finite element mesh consisting of
128 polygonal elements; (b) Composite mesh after 9 adaptive refinements with
13356 elements.

where uh and ph denote the DGFEM approximation to u and p, respectively,
and ηκ, κ ∈ MCFE, denote the corresponding (weighted) error indicators, which
depend on both uh and ph, as well as the approximate solution of a corresponding
dual problem; for full details, see [30].

In Table 1, we demonstrate the performance of exploiting an adaptive mesh
refinement strategy based on marking elements for refinement according to the
size of the local error indicators |ηκ|. Here, set the polynomial degrees for the ap-
proximation of the velocity field equal to 2, and employ piecewise discontinuous
linear polynomials for the approximation of the pressure. In Table 1 we show
the number of elements in the composite mesh MCFE, the number of degrees of
freedom in the underlying finite element space, the true error in the functional
J(u, p)−J(uh, ph), the computed error representation formula

∑
κ∈MCFE

ηκ, and
the effectivity index θ =

∑
κ∈MCFE

ηκ/(J(u, p) − J(uh, ph)). Here, we see that,
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No of Eles No of Dofs J(u, p)− J(uh, ph)
∑

κ∈MCFE
ηκ θ

128 1920 -2.207E-2 -1.583E-2 0.72

206 3090 -4.720E-3 -2.478E-3 0.52

356 5340 -3.720E-3 -1.909E-3 0.51

618 9270 -1.620E-3 -8.014E-4 0.49

1079 16185 -8.216E-4 -4.427E-4 0.54

1749 26235 -3.929E-4 -1.965E-4 0.50

2996 44940 -1.707E-4 -7.457E-5 0.44

4861 72915 -8.728E-5 -7.197E-5 0.82

8000 120000 -2.164E-5 -2.324E-5 1.07

13356 200340 -5.073E-6 -5.073E-5 1.00

Table 1: Example 1: Adaptive algorithm. We present the number of elements in
the composite mesh MCFE and the corresponding number of degrees of freedom
in V (MCFE,p) (first two columns), the computed error in the target functional
(third column), the sum of the (weighted) error indicators (fourth column), and
the effectivity index (last column) at each step of the adaptive algorithm.
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Figure 4: Example 1: Comparison between uniform and adaptive mesh refine-
ment.

even on such coarse finite element meshes, the quality of the computed error
representation formula is relatively good, in the sense that the effectivity indices
are not too far away from unity. Indeed, as the mesh is refined, we observe that
θ improves and approaches one. We note that practical/engineering accuracy
can be attained using a very small number of degrees of freedom; indeed, fewer

24



degrees of freedom are necessary than what would be required to accurately
mesh the domain Ω using standard element shapes. The results presented in
Table 1 are plotted in Figure 4; here, we also compare the performance of the
adaptive mesh refinement strategy with uniform mesh refinement. We observe
that initially both strategies lead to a comparable error in the computed target
functional of interest J , for a given number of degrees of freedom; however, as
both refinement procedures continue, the adaptive algorithm leads to over an
order of magnitude improvement in the error in J for a comparable number of
degrees of freedom.

5.2 Example 2: Flow past a 3D scaffold geometry

In this final example, we consider incompressible flow past the three–dimensional
scaffold geometry shown in Figure 1. More precisely, the domain Ω is defined to
be the elliptical cylinder {(x, y) : (x−x0)/a2 + (y− y0)2/b2 < 1}× (0.015, 1.14),
with the scaffold removed; here (x0, y0) = (4.1325, 4.1625), a = 4.1175, and
b = 4.1475. Based on the work undertaken in the article [25], we model a
Newtonian fluid with density ρ = 1000kg/m3 and viscosity µ = 8.1×10−4Pa ·s.
Prescribing a flow rate of 53µms−1 yields a Reynolds number, Re = 2 × 10−3.
The fine mesh which accurately describes Ω is generated based on image data
supplied by Prof. El Haj & Dr. Kuiper. Here, only a coarse model has been
employed; a more detailed description of the scaffold geometry is presented in
the articles [4, 5]. However, even for this ‘coarse’ model, the underlying fine finite
element mesh consists of 15.8 million elements. To demonstrate the exploitation
of general polytopic elements generated by agglomeration, we employ METIS
[37] to generate a very coarse mesh consisting of only 32,000 elements. We
prescribe an inlet Poiseuille flow on the top of the geometry, where z = 1.14,
together with no-slip wall boundary conditions on both the outer vertical walls
of the elliptical cylinder, as well as on the scaffold itself. The bottom portion of
the geometry located at z = 0.015 is identified as an outflow Neumann boundary.
In Figure 5 we plot the iso-surface of the magnitude of the velocity field; for the
purposes of visualization, it was necessary to split the upper and lower regions of
the computational domain. Clearly, by employing such a coarse agglomeration,
we cannot expect that the computed DGFEM solution is sufficiently accurate,
even within engineering constraints. However, this example clearly highlights
a key issue we mentioned in Section 1: by employing polytopic elements, the
dimension of the underlying finite element space is no longer proportional to the
complexity of the geometry. Indeed, by exploiting a posteriori error estimation,
cf. Example 1 above, then agglomerated elements may be marked for refinement;
these can then be refined by again employing graph partitioning algorithms to
the set of fine elements which form each marked (agglomerated) element. In this
way, adaptive refinement of agglomerated elements, without the need to store
mesh refinement trees, may be undertaken in a relatively simple manner, in
order to automatically design polytopic meshes to yield reliable error control in
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quantities of interest. This will be investigated as part of our future programme
of research.

(a)

(b)

Figure 5: Example 2. Plot of the norm of the velocity field: (a) Upper section;
(b) Lower section.

6 Concluding remarks

In this article, we have studied the application of DGFEMs on general finite
element meshes consisting of polytopic elements. This class of methods is par-
ticularly attractive for a number of important reasons: (i) In the context of
PDEs posed on complex domains Ω, the dimension of the underlying finite ele-
ment space is independent of the number of small scale features/microstructures
present in Ω; (ii) Adaptivity can easily be employed to enhance the error in the
computed numerical solution by only refining regions of the domain which di-
rectly contribute to the error in given quantities of interest; (iii) High-order/hp–
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finite elements are naturally admitted; (iv) The construction of coarse grid
solvers for multilevel iterative solvers can easily be handled, cf. [2, 29]. In our
present work, see, in particular, our recent articles [21, 20], great care has been
taken to derive both inverse estimates and approximation results which are sharp
with respect to element facet degeneration. This is particularly important for
the definition of the interior penalty stabilization arising in the discretization of
second–order elliptic PDEs. We believe this class of methods has huge potential
for a wide variety of application areas, and in particular for problems arising in
geophysics and biology. Indeed, as we have shown in Section 5, very complicated
geometries can be treated, and with the use of general agglomerated refinement
strategies, efficient and reliable computations may be undertaken. However,
work on developing efficient quadrature and evaluation of appropriate stable
polynomial bases on general polytopes still needs further work. Other future
areas of research also include exploiting mesh partitioning algorithms for mesh
refinement purposes, as well as the design and analysis of multilevel iterative
solvers on polytopic meshes, for a wider range of application areas.
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