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Abstract

The aim of this work is to present a reduced mathematical model for
describing fluid flow in porous media featuring open channels or fractures.
The Darcy’s law is assumed in the porous domain while the Stokes-Brinkman
equations are considered in the fractures. We address the case of fractures
whose thickness is very small compared to the characteristic diameter of the
computational domain, and describe the fracture as if it were an interface
between porous regions. We derive the corresponding interface model govern-
ing the fluid flow in the fracture and in the porous media, and establish the
well-posedness of the coupled problem. Further, we introduce a finite element
scheme for the approximation of the coupled problem, and discuss solution
strategies. We conclude by showing the numerical results related to several
test cases and compare the accuracy of the reduced model compared with the
non-reduced one.

1 Introduction

Reduced models of fluid flow in fractured media have an intrinsic interest due to
their potential applications in different domains, and have been studied by a number
of authors; see, for example, [2, 24, 30, 21] and references therein. Typically, Darcy’s
equations are used to model the fluid flow in the porous media, a heterogeneous
N -dimensional domain, made of regions featuring different permeabilities. Thin
regions in the form of “inclusions” are called fractures; in the numerical approxima-
tion they might require excessive mesh refining and increased computational costs
when treated as fully N dimensional regions. For this reason, reduced models in
which fractures are represented as N − 1 manifolds are often used; then suitable
fracture flow equations are derived and coupled with classical porous media flow
equations [25, 21]. Such model reduction is obviously intended to represent the
heterogeneity of the permeability field; in fact, the basic model of both the porous
domain and the fracture domain is the Darcy’s model.
In this work, we focus on highly-permeable or even open fractures, in which flow
can be described by the Stokes-Brinkman equations: more specifically, we address
the coupling of a Darcy model for fluid flow in a porous domain, with a reduced
Stokes-Brinkman model of fluid flow within a fracture of the domain. This problem
has obvious applications in fields like geophysics or hydrogeology. For instance,
it may describe hydrocarbon migration, or groundwater flows, or more generally
two-phase flows in fractured soils [7]. The intrinsic interest in having both accurate
and computationally cheap models describing such phenomena is still promoting
the investigation of advanced numerical techniques. Fractures can substantially
modify the flow pattern, acting as either barriers or highly permeable channels, in
which most of the fluid is collected and redistributed. Recent works [3] confirm that
reduced models can accurately capture such effects. Finally, let us mention that
incompressible flow models are used also in medicine to describe tissue perfusion,
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transport of nutrients from arterial vessels to cells, or heat transfer with application
to hyperthermia [15] and other clinical treatments [20].

Often, transverse dimensions of fractures or vessels are negligible when compared
to the dimensions of the considered porous matrices. For this reason geometrical
multiscale models treating fractures or vessels as entities with lower dimension are
very interesting. Those reduced models may lead to significant computational ad-
vantages as it is not necessary to solve the full Brinkman model at the small spatial
scale in the fracture or in the vessel. Moreover, our approach makes it possible to
treat different geometrical multiscale couplings, such as the classical 2D porous do-
main with a 1D fracture (see Figure 1(a)), a 3D porous domain with a 2D fracture
(see Figure 1(b)) or a more exotic 3D porous domain with a 1D fracture (see Figure
1(c)), modeling, for instance, blood vessels surrounded by biological tissues [13, 20].
We warn the reader that the distinction between “fracture” and “vessel” uniquely
refers to the geometry of the problem (see Figure 1). More particularly, in both
cases we consider a direct interaction between a free fluid and a porous medium.
Therefore the effects that, e.g., the physiological structure of blood vessel (multiple
layers of poro-elastic materials) have on the fluid motion are not taken into account.
The only difference between the two situations is that in the case of the fracture
the reduced model lives on a bi-dimensional surface (2D/3D coupling) whereas in
the case of the vessel it is one-dimensional and lives on the mean line of the vessel
(1D/3D coupling).
The paper is organized as follows. In section 2 we provide the basic equations of
our mathematical model. In section 3 we derive the reduced model for a fracture
in a 2D domain, and present the analysis of the coupled problem. In section 4 we
briefly explain how the model can be extended to the case of a planar fracture in
a 3D domain or of a vessel in a 3D domain. Section 5 is devoted to the numerical
approximation of the reduced coupled problem while in section 7 we provide nu-
merical simulations on a test case. Finally we present some conclusions in section
8.

Ω1
Ω2

Ωf

γ

(a)

Ω1 Ω2Ωf

(b)

Ω Ωf

(c)

Figure 1: Reference geometries for the problems considered. (a), 1D fracture in a 2D
domain; (b) 2D fracture in a 3D domain; (c) 1D vessel in a 3D domain.

2 The coupled Darcy-Brinkman model

In this introductory section we wish to briefly recall the Darcy and the Brinkman
model, and discuss the coupling conditions.
The Darcy model is often used to describe the motion of an incompressible fluid in
a porous medium. Indeed, it is a widely accepted approximation of the filtration
problem for low velocity flow in which inertial effects can be neglected. It can be
written as:

u = −K∇p in Ωp, (1a)
∇ · u = q in Ωp, (1b)
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where Ωp is the domain occupied by the porous media, K is a bounded symmetric
positive definite permeability tensor, and u and p are respectively the velocity and
the pressure in the porous medium. Equation (1a) is the Darcy law (see [14]) while
(1b) is the equation of mass balance. Usually the source term q is equal to 0.
The Brinkman model we will use to describe the flow motion in the fracture or in
the vessel is instead a generalization of the Stokes model that represents a valid
approximation of the Navier-Stokes equations at low Reynolds numbers. It reads:

βu− ε∆u +∇p = f in Ωf , (2a)
∇ · u = 0 in Ωf , (2b)

where Ωf is the domain that describes the fracture, u and p represent the velocity
and the pressure in the fracture, respectively, β is a scalar, ε is the inverse of
the Reynolds number and f is a momentum source term. More precisely, we are
interested in a slightly different formulation in which the scalar β is replaced by
K−1
f , the inverse of a permeability tensor and in which a mass source term can be

present in equation (2b), i.e.:

K−1
f u− ε∆u +∇p = f in Ωf , (3a)

∇ · u = g in Ωf . (3b)

The model (3) is interesting because it contains as special cases both the Darcy and
the Brinkman model.

Remark 1 Equations (3) arise in the time discretization of the classical Stokes
model with Kf = I∆t, being I the identity matrix and ∆t the time step.

When coupling the (1) with (3), suitable coupling conditions have to be provided at
the interface, say ΓDB , of the two subregions in order to ensure the well-posedness
of the coupled problem. A first classical choice is to require the normal flux to be
continuous:

uD · nD = uB · nD on ΓDB , (4)

where uD is the Darcy velocity at the interface, uB the Brinkman one and nD is
the external normal unit vector to the Darcy domain. Equation (4) is not sufficient
to close the model. Many proposals for additional coupling conditions have been
made; in this paper we consider a variant of the well known Beavers, Joseph and
Saffman conditions ([5] and [39]). Starting from the works by Jager and Mikelic [26]
and Discacciati [16], we first simplify the Beavers, Joseph and Saffman conditions.
Let us suppose that the interface ΓDB is smooth enough to allow for the definition
of a unique unit vector nS perpendicular to the interface and oriented from the
fracture towards the porous medium. Introducing also a generic unit vector τ
belonging to the uniquely defined tangential plane at a generic point of fracture-
medium interface, the simplified Beavers, Joseph and Saffman equations may be
written as:

ε
∂uB
∂nB

· τ = 0 on ΓDB , (5a)

pB − ε
∂uB
∂nB

· nB = pD on ΓDB , (5b)

where the subscript D stands for quantity to refer to the Darcy model, B to the
Brinkman one. In particular, tangential viscous losses are neglected in (5a), whose
general form is ε∂uB∂nB

· τ = αuB · τ , α > 0. However, this simplification does
not alter the generality of the presentation. Moving from this set of equations, in
the first part of this work, we will derive a reduced model in which the fracture
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problem is averaged along the cross-sections of the fracture and is replaced by a
lower dimensional problem. Such technique applies to the case of a bi-dimensional
(or tri-dimensional) porous domain with a thin fracture, which yields after model
reduction a 2D-1D (or 3D-2D) coupled problem, or to the case of a three-dimensional
porous domain including a vessel fracture, giving rise to a reduced 3D-1D coupled
model. In each case, the strategy that we adopt to obtain a reduced model for the
coupled problem (1), (3), (4) and (5) can be schematically summarized through the
following steps:

i) At every point of the average line/surface of the fracture or vessel, introduce
a local orthonormal reference system.

ii) Project the Brinkman equations on the coordinate system introduced at step
i).

iii) Average the resulting equations over every cross section.

iv) Introduce suitable closure conditions based on convenient assumptions on the
profile of pressure and normal flux in the fracture or in the vessel.

v) Obtain the weak formulation of the problem by eliminating the flux on the
Darcy-Brinkman interface with the closure conditions introduced at step iv).

After the derivation of the reduced model, we will investigate its well-posedness,
then we will present some numerical results, showing that the relevant features of
fluid flow in a fractured porous domain are well captured by our model.

3 A fracture in a bi-dimensional domain

In this section we provide a detailed description of the reduced model for a fracture
in a bi-dimensional domain.

3.1 Geometry of the problem

Let Ω ⊂ R2 be a bounded domain consisting of three open bi-dimensional subsets
Ω1, Ω2 and Ωf such that Ω = Ω1 ∪ Ω2 ∪ Ωf (see Figure 1(a)). Moreover suppose
that Ωf separates Ω1 from Ω2. Under these assumptions Ω1 ∩Ωf = ∅, Ω2 ∩Ωf = ∅
and Ω1 ∩ Ω2 = ∅. In particular, Ωf corresponds to the fracture while Ω1 and Ω2

correspond to two regions occupied by the porous medium. We also suppose that
∂Ωf and ∂Ωi are Lipschitz continuous boundaries. We call the Stokes-Brinkman

Figure 2: Domains, boundaries and interfaces.

interfaces γ1 = Ω1 ∩Ωf and γ2 = Ω2 ∩Ωf . We denote by Γ1 the remaining part of
∂Ω1, with Γ2 the remaining part of ∂Ω2 and with Γf the remaining part of ∂Ωf . We
denote with Γ1,D the part of Γ1 where a Dirichlet boundary condition is assigned
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and Γ1,N that where a Neumann boundary condition is given. Same considerations
hold for Γ2 and Γf . Note that Γf is made of two separate segments. We suppose
that on each of these segments either a Dirichlet or a Neumann boundary condition
is assigned (mixed Dirichlet/Neumann conditions on the same segment are not
allowed). For the sake of simplicity we suppose that Γ1,D, Γ2,D and Γf,D are
nonempty subsets of Γ1, Γ2 and Γf , respectively. Moreover we introduce n1, n2

and nf , the external normal unit vectors to Ω1, Ω2 and Ωf respectively. Figure 2
shows the nomenclature introduced.
Furthermore we suppose that the distance separating Ω1 from Ω2 is small with
respect to the size of the porous media. In this sense we can think that Ωf develops
along a line γ. More precisely we can represent Ωf = {x ∈ R2 : x = y+ξ δ2n} where
y ∈ γ, δ is the width of Ωf , ξ ∈ [−1; 1] and n is the unit vector normal to γ at the
point y directed from Ω1 to Ω2

1. If γ is smooth enough [41] we can introduce an
intrinsic curvilinear reference system, whose variables are the arc length s ∈ [0, L]
(which uniquely identifies the points of γ, L being the total length) and ξ. The
corresponding unit vectors are the normal unit vector n and the tangential unit
vector τ . At every point s on γ, the unit vector n uniquely identifies a section of
the subdomain Ωf . Moreover, at every s, n and τ may be used to define a local
orthogonal reference system. With little abuse of notation, in this work we denote
by the same symbol different functions defined on γ, γ1 or γ2, if they have the same
values at each section. For example, for a given function f defined on one of the
three lines, say γ1, we may define a new function f̃ whose value at a given point
of another line, say γ2, is equal to the value of f at the corresponding point at the
same s-section. When it is clear from the context on which line such a function is
defined, we may use the same symbol for f and its “projection” f̃ . Moreover, it is
useful to refer the integral of f on γ1 to the integral of f̃ on γ2, using the associated
change of variables. Assume that there exists r̄ > δ/2 such that the curvature
radius r of γ is larger than or equal to r̄ for every s; then, the Jacobian J for such
change of variable satisfies

0 < tmin =
rmin − δ/2
rmin + δ/2

≤ |J| ≤ rmin + δ/2
rmin − δ/2

= tmax,

where rmin is the minimum curvature radius of γ.

Before getting into the details of the derivation of the reduced model, let us in-
troduce some useful transformations. Let R be the orthonormal matrix mapping
the canonical basis [e1, e2] onto the local basis [n, τ ], and its normal and tangential
projectors:

R =
[

nT

τT

]
=
[

nT

0T

]
+
[

0T

τT

]
= N + T. (6)

We will need to refer the differential operators to the local coordinates. Notice that,
for a given scalar field u and unit vector v, we have ∂u/∂v = ∇u · v: hence, using
this identity with v = n and v = τ , we get

∂u

∂n
n +

∂u

∂τ
τ = (RTR)∇u = ∇u.

Similarly, for a vector field u, the trace of a tensor being invariant under changes
of variables, we have

∂u
∂n
· n +

∂u
∂τ
· τ = trace(RJRT ) = trace(J) = ∇ · u,

1The choice of the orientation is arbitrary.
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where J = ∂ui/∂xj is the Jacobian matrix of u. As regards second order operators
of a scalar field, we observe that for each unit vector v we have ∂2u/∂2v = v ·Hv,
where H = ∂2u/∂xi∂xj is the Hessian matrix of u. Using this identity we have

∂2u

∂2n
+
∂2u

∂2τ
= trace(RHRT ) = trace(H) = ∆u.

We point out that these relationships are only meant to refer the above differential
operators to derivatives along orthogonal directions (n and τ , in our case) different
from those of the canonical basis. In particular, we are not considering any change
of variables. Instead, we will use such expressions in order to separate the normal
and tangential components of the model variables in the derivation of the reduced
model.

3.2 Mathematical formulation of the original problem

With the notations introduced in section 3.1 the mathematical formulation of the
full coupled problem reads as: find u,u1,u2, p, p1 and p2 such that (i = 1, 2):

ui = −Ki∇pi in Ωi
∇ · ui = qi in Ωi

K−1
f u− ε∆u +∇p = g in Ωf

∇ · u = q in Ωf
u · ni = ui · ni on γi

−ε ∂u∂nf · τ = 0 on γi

p− ε ∂u∂nf · nf = pi on γi

pi = pi on Γi,D
Ki∇pi · ni = hi on Γi,N

u = u on Γf,D
ε ∂u∂nf − pnf = h on Γf,N

, (7)

where pi and u are assigned Dirichlet boundary conditions and hi and h are assigned
Neumann boundary conditions. We denote by Kimax the maximum absolute value
of the elements of the tensor Ki and λmin(Ki) the minimum eigenvalue of the same
tensor which is strictly positive by assumption.

3.3 Derivation of The Reduced Model

As anticipated in section 2, to obtain a reduced model we project the Brinkman
equation in the fracture on the local orthogonal reference system at every s on γ,
and then we average the resulting equations on the corresponding s-cross-section of
Ωf . Let us consider the mass conservation equation in Ωf ,

∇ · u = q.

Projecting this equation on the reference system made of unit vectors n and τ leads
to:

∂u
∂n
· n +

∂u
∂τ
· τ = q.

Integrating the resulting equation over the segment [y− (δ/2)n,y + (δ/2)n] where
y ∈ γ yields:

u · n|γ2 − u · n|γ1 + δ
∂

∂τ
Uτ = δ Q,
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where we have set Uτ = 1
δ

∫ δ/2
−δ/2 u · τ dn and Q = 1

δ

∫ δ/2
−δ/2 q dn. Finally, using

equations (4) and given that ∂
∂τ = ∂

∂s we obtain a one-dimensional mass balance
law on γ with an additional term that accounts for the interaction with the Darcy
problem in Ω1 and Ω2:

u1 · n1|γ1 + u2 · n2|γ2 = δ (
∂

∂s
Uτ −Q) on γ. (8)

Remark 2 If the domain is fractureless (i.e. δ = 0) equation (8) states the conti-
nuity of the normal flux at the interface between the two porous media.

Let us apply the matrix R defined in (6) to equation (3a), yielding:

RK−1
f RTRu− εR∆u + R∇p = Rg. (9)

Given two vectors a and b in R2 we define Mab = aTK−1
f b. Using such notation

we can split Equation (9) as:

Mnn(u · n) + Mnτ (u · τ )− ε∂
2u
∂n2

· n− ε∂
2u
∂τ 2

· n +
∂p

∂n
= gn, (10a)

Mτn(u · n) + Mττ (u · τ )− ε∂
2u
∂n2

· τ − ε∂
2u
∂τ 2

· τ +
∂p

∂τ
= gτ , (10b)

where we have set gn = g · n, gτ = g · τ . Averaging equation (10a) across γ as we
did for the mass balance equation we obtain:

δMnnUn + δMnτUτ − ε
∂u
∂n
· n
∣∣∣
γ2

+ ε
∂u
∂n
· n
∣∣∣
γ1
− δε∂

2Un

∂τ 2
+ p|γ2 − p|γ1 = δGn,

where we have set Un = 1
δ

∫ δ/2
−δ/2 u · n dn and Gn = 1

δ

∫ δ/2
−δ/2 g · n dn. Using coupling

conditions (5b) we obtain a one-dimensional law for the flux between the two Darcy
domains:

p2|γ2 − p1|γ1 = δ

(
Gn −MnnUn −MnτUτ + ε

∂2Un

∂s2

)
. (11)

Remark 3 If the domain is fractureless (i.e. δ = 0), equation (11) expresses the
continuity of pressure, i.e. the natural Darcy-Darcy coupling condition.

Analogously, by averaging equation (10b) across γ we obtain:

δ(MτnUn + MττUτ )− ε∂u
∂n
· τ
∣∣∣
γ2

+ ε
∂u
∂n
· τ
∣∣∣
γ1
− δ ε ∂

2Uτ

∂τ 2
+ δ

∂P

∂τ
= δGτ ,

where P = 1
δ

∫ δ/2
−δ/2 p dn and Gτ = 1

δ

∫ δ/2
−δ/2 g · τ dn. Using coupling conditions (5)

we obtain a one-dimensional balance law for the momentum on γ:

δ

(
MτnUn + MττUτ − ε

∂2Uτ

∂s2
+
∂P

∂s
−Gτ

)
= 0. (12)

Remark 4 If the domain is fractureless, equation (12) vanishes. This is coherent
with the fact that for a Darcy-Darcy coupled model only two coupling conditions are
required.

Remark 5 The lines γ1 and γ2 are distinct and do not coincide with γ. In partic-
ular, the reduced one-dimensional model lives on the “mid-line” γ and the geometry
of the porous medium remains unaltered. Our approach is new with respect to what
has usually been proposed in other works, where the two lines γ1 and γ2 are collapsed
in order to obtain a single interface problem [30, 13, 21]. In particular, for the case
of a 1D vessel in a 3D domain, we can avoid the difficulties of treating singular
solutions.

7



3.4 Closure conditions

The coupling of the Darcy equations in Ω1 and Ω2 with the reduced model for the
fracture flow just derived takes place by means of interface data. Precisely, on one
hand the normal velocities of the Darcy model appear as source terms in the fluid
mass balance equation (8) of the fracture model; on the other, the values of the
normal velocities and fluid pressure of the fracture model over the interfaces γi,
i = 1, 2, are needed to solve the Darcy flow to impose the interface conditions on γi
in eq. (7). Unfortunately, the reduced model is unable to extrapolate the fracture
boundary values p|γi and u|γi · ni (referred to as FBV) from the corresponding
average values P and Un, so that suitable closure assumptions are needed. The
idea, taken from [19, 20, 36], is to make some a priori hypotheses on the profiles of
pressure and normal velocity on a generic s-section of Ωf . Specifically, the profiles
are given by interpolation of the FBV. Once the profiles are known, the average
values P , Un are easily expressed in terms of the FBV, that we can further eliminate
in favour of the Darcy’s variables pi and ui · ni using the coupling conditions (4),
(5b). The interface conditions on γi in eq. (7) can thus be recast as algebraic
equations coupling the Darcy’s variables pi, ui ·ni, with the reduced model variables
P , Un. We considered different profiles: a constant or linear pressure profile, and a
constant, linear, quadratic or piecewise linear normal velocity profile. Note that not
all the possible combinations may be used to obtain the number of closure conditions
required. The closure conditions for the combinations considered are reported in
Table 1. We can see that they are equivalent, in that all of them (except for the
CC case) may be rewritten as:

θp1|γ1 − αu1 · n1|γ1 = θP − αUn + (1− θ)(P − p2|γ2), (13a)
θp2|γ2 − αu2 · n2|γ2 = θP + αUn + (1− θ)(P − p1|γ1), (13b)

where α = 2ε
δ and θ ∈ [0, 1] is a nondimensional parameter depending on the profile.

Table 1 also reports the different values of θ for the closure models considered.

Profiles Closure Conditions θ
P C 0 = δ(P − p2|γ2) NA
Un C 0 = δ(P − p1|γ1)
P C − 2εu1 · n1|γ1 = − 2εUn + δ(P − p2|γ2) 0
Un L − 2εu2 · n2|γ2 = + 2εUn + δ(P − p1|γ1)

P L δp1|γ1 − 4εu1 · n1|γ1 = δP − 4εUn + δ(P − p2|γ2) 1
2Un L δp2|γ2 − 4εu2 · n2|γ2 = δP + 4εUn + δ(P − p1|γ1)

P C 2δp1|γ1 − 6εu1 · n1|γ1 = 2δP − 6εUn + δ(P − p2|γ2) 2
3Un Q 2δp2|γ2 − 6εu2 · n2|γ2 = 2δP + 6εUn + δ(P − p1|γ1)

P C 3δp1|γ1 − 8εu1 · n1|γ1 = 3δP − 8εUn + δ(P − p2|γ2) 3
4Un PCL 3δp2|γ2 − 8εu2 · n2|γ2 = 3δP + 8εUn + δ(P − p1|γ1)

Table 1: List of closure conditions depending on the profile associated to P and Un on
a generic section of Ωf and the corresponding tuning parameter θ for the closure model
introduced. Relations are valid section by section. Labels have the following meaning:
C=Constant, L=Linear, Q=Quadratic, PCL= Piecewice Continuous Linear (linear be-
tween γ1 and γ and between γ and γ2).

Remark 6 The units of α are those of a hydraulic resistance. More precisely, α
relates the s-section net balance of normal fluxes entering in (or exiting from) the
fracture to the average pressure P on γ and to the pressures p1 and p2 in the porous
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media through the relation:

α(u1 · n1|γ1 + u2 · n2|γ2) = p1|γ1 + p2|γ2 − 2P.

Note that if the average pressure P exceeds the average of p1 and p2 there is a net
flux exiting from the fracture at the s-section considered while if P is lower than
the average of p1 and p2 there is a net flux entering in the fracture at the s-section
considered. From now on, we suppose that ε 6= 0 so that also α 6= 0. Under this
assumption, fluxes u1 · n1 and u2 · n2 may be expressed as:

u1 · n1|γ1 = Un +
θ

α
(p1|γ1 − P ) +

1− θ
α

(p2|γ2 − P ),

u2 · n2|γ2 = −Un +
θ

α
(p2|γ2 − P ) +

1− θ
α

(p1|γ1 − P ).

Note that interface fluxes u1 · n1 and u2 · n2 are obtained from the average normal
flux Un through pressure corrections depending on θ.

3.5 Weak formulation of the reduced coupled problem

Let us start considering just the problem in the porous media, supposing for the time
being that P and αUn are known. We want to propose a variational formulation
for the pressure in the porous media. Particularly we want to find a couple (p1, p2)
such that (i = 1, 2):

−∇ · (Ki∇pi) = qi in Ωi,
pi = pi on Γi,D,

Ki∇pi · ni = hi on Γi,N ,
θp1|γ1 − αu1 · n1|γ1 = θP − αUn + (1− θ)(P − p2|γ2) on γ1,
θp2|γ2 − αu2 · n2|γ2 = θP + αUn + (1− θ)(P − p1|γ1) on γ2.

(15)

First, we introduce the following spaces:

V1 = H1
Γ1,D

(Ω1) = {v ∈ H1(Ω1) : v|Γ1,D = 0},
V2 = H1

Γ2,D
(Ω2) = {v ∈ H1(Ω2) : v|Γ2,D = 0}.

and assume that the boundary data are pi ∈ H
1
2 (Γi,D), hi ∈ H−

1
2 (Γi,N ), i = 1, 2.

As Γ1,D 6= ∅ and Γ2,D 6= ∅ by assumption, we can use the gradient seminorm in such
spaces and the Poincaré inequality holds with constant CPi (for the domain Ωi).
Let us consider a vector function v = (v1, v2) belonging to V = V1 × V2. On the
Hilbert space V we use the graph norm ‖v‖2V = ‖v1‖2V1

+ ‖v2‖2V2
= ‖∇v1‖2L2(Ω1) +

‖∇v2‖2L2(Ω2). Multiplying the first Equation in (15) by a test function r = (r1, r2) ∈
V and integrating over the considered domains we obtain:

−
∑
i=1,2

∫
Ωi
∇ · (Ki∇pi) ridx =

∑
i=1,2

∫
Ωi
qi ri dx,

where p = (p1, p2) ∈ H1(Ω1)×H1(Ω2). Integrating by parts and using the boundary
conditions we have: ∑

i=1,2

∫
Ωi

Ki∇pi · ∇ri dx−
∫
γi

Ki∇pi · ni ri dx

=
∑
i=1,2

∫
Ωi
qi ri dx +

∫
Γi,N

hi ri dx.
(16)

Given that −Ki∇pi · ni = ui · ni we can use closure conditions (13a) and (13b)
in order to eliminate the normal fluxes on the interface from the (16). Finally we
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obtain: ∫
Ω1

K1∇p1 · ∇r1 dx +
∫

Ω2
K2∇p2 · ∇r2 dx

+ θ
α

∫
γ1
p1 r1 dx + 1−θ

α

∫
γ1
p2 r1 dx + θ

α

∫
γ2
p2 r2 dx + 1−θ

α

∫
γ2
p1 r2 dx

=
∫

Ω1
q1 r1 dx +

∫
Γ1,N

h1 r1 dx−
∫
γ1
Un r1 dx + 1

α

∫
γ1
P r1 dx

+
∫

Ω2
q2 r2 dx +

∫
Γ2,N

h2 r2 dx +
∫
γ2
Un r2 dx + 1

α

∫
γ2
P r2 dx.

Let us introduce the bilinear forms a(·, ·), f2(·, ·) and e2(·, ·) and the linear functional
L(·), defined as:

a(p, r) =
∫

Ω1
K1∇p1 · ∇r1 dx +

∫
Ω2

K2∇p2 · ∇r2 dx + θ
α

∫
γ1
p1 r1 dx

+ 1−θ
α

∫
γ1
p2 r1 dx + θ

α

∫
γ2
p2 r2 dx + 1−θ

α

∫
γ2
p1 r2 dx,

LV (r) =
∫

Ω1
q1 r1 dx +

∫
Γ1,N

h1 r1 dx +
∫

Ω2
q2 r2 dx +

∫
Γ2,N

h2 r2 dx,

f2(U, r) =
∫
γ2
Un r2 dx−

∫
γ1
Un r1 dx,

e2(P, r) = δ
2ε

∫
γ1
P r1 dx + δ

2ε

∫
γ2
P r2 dx.

Owing to the surjectivity of the trace operator, introducing a lifting Rg ∈ H1(Ω1)×
H1(Ω2) of the Dirichlet data (p1, p2) the problem can be rewritten as: find p−Rg =
p̄ ∈ V such that:

a(p̄, r) = LV (r) + f2(U, r) + e2(P, r)− a(Rg, r) ∀r ∈ V. (17)

The bilinear form a(·, ·) and the linear functionals LV (·), f2(U, ·) and e2(P, ·) are
continuous on V . Moreover, a(·, ·) is coercive under the assumption:

θ ≥ tmax

tmax + tmin
. (18)

In fact, we have:

a(p,p) ≥ λmin(K1)‖p1‖2V + λmin(K2)‖p2‖2V + θ
α

∫
γ1
p2

1 dx

+ 1−θ
α

∫
γ1
p2 p1 dx + θ

α

∫
γ2
p2

2 dx + 1−θ
α

∫
γ2
p1 p2 dx.

Therefore, to prove the coercivity of the form a(·, ·), a sufficient condition is that:

θ

α

∫
γ1

p2
1 dx +

1− θ
α

∫
γ1

p2 p1 dx +
θ

α

∫
γ2

p2
2 dx +

1− θ
α

∫
γ2

p1 p2 dx ≥ 0. (19)

As
θ

α

∫
γ1

p2
1 dx +

θ

α

∫
γ2

p2
2 dx ≥

θ

α
tmin(‖p1‖2L2(γ) + ‖p2‖2L2(γ)),∣∣∣ 1−θα ∫

γ1
p2 p1 dx + 1−θ

α

∫
γ2
p1 p2 dx

∣∣∣ ≤ 2 1−θ
α tmax

∣∣∣∫γ p1p2dx
∣∣∣

≤ 2 1−θ
α tmax

‖p1‖2L2(γ)+‖p2‖
2
L2(γ)

2 ,

to verify the condition (19) it is sufficient to impose:

1− θ
α

tmax(‖p1‖2L2(γ) + ‖p2‖2L2(γ)) ≤
θ

α
tmin(‖p1‖2L2(γ) + ‖p2‖2L2(γ)),

which solved for θ gives the (18).
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Note that if γ is a straight line (18) becomes θ ≥ 1/2. Moreover, if the assumption
(18) is satisfied then the solution of problem (17) exists and is unique and the
following bound holds:

‖p‖V ≤
1
Ka
‖L̃V ‖V ′ ,

where Ka = min{λmin(K1), λmin(K2)} is the coercivity constant of a(·, ·) and:

L̃V (r) = LV (r) + f2(U, r) + e2(P, r)− a(Rg, r).

Indeed these results follow from the Lax-Milgram Lemma.
Let us now focus on the reduced problem on γ, supposing that the Darcy’s

pressures pi and velocities ui = −Ki∇pi in Ω1 and Ω2 are known:

δ ( ∂∂sUτ −Q) = (u1 · n1|γ1 + u2 · n2|γ2) on γ,

δ (MnnUn +MnτUτ − ε ∂
2Un

∂s2 ) = δ Gn + p1|γ1 − p2|γ2 on γ,

δ (MτnUn +MττUτ − ε∂
2Uτ

∂s2 + ∂P
∂s ) = δ Gτ on γ,

+ Boundary Conditions on ∂γ.

(20)

As Γf,D 6= ∅ by assumption, by averaging u over that segment we obtain a Dirichlet
boundary condition U for [Un, Uτ ]T . We denote with ∂γD the boundary/ies of
γ where the averaged Dirichlet condition is assigned. Let us define the following
spaces,

X = (H1
∂γD (γ))2 = {v ∈ (H1(γ))2 : v|∂γD = 0}, M = L2(γ).

Equip X with the gradient seminorm (the latter is indeed a norm, thanks to the
Poincaré inequality), and assume the boundary data U ∈ H 1

2 (Γf,D). Multiplying
the Equations (20) times test functions R ∈ M , Vn ∈ H1

∂γD
(γ) and Vτ ∈ H1

∂γD
(γ)

and integrating over γ we obtain:∫
γ
δ ∂
∂sUτ Rds+

∫
γ
δ (MnnUn + MnτUτ − ε ∂

2Un

∂s2 )Vn ds

+
∫
γ
δ (MτnUn + MττUτ − ε∂

2Uτ

∂s2 + ∂P
∂s )Vτ ds

=
∫
γ
(δ Q+ u1 · n1|γ1 + u2 · n2|γ2)Rds

+
∫
γ
(δ Gn + p1|γ1 − p2|γ2)Vn ds+

∫
γ
δ Gτ Vτ ds.

(21)

Introducing the matrix M and the vectors U, V and G defined as:

M =
[

Mnn Mnτ

Mτn Mττ

]
, U =

[
Un

Uτ

]
, V =

[
Vn

Vτ

]
, G =

[
Gn

Gτ

]
,

the Equation (21) can be rewritten as:∫
γ
δ ∂
∂sUτ Rds+

∫
γ
δMU ·V ds−

∫
γ
δ ε ∂

2U
∂s2 ·V ds+

∫
γ
δ ∂P∂s Vτ ds

=
∫
γ
(δ Q+ u1 · n1|γ1 + u2 · n2|γ2)Rds

+
∫
γ
(p1|γ1 − p2|γ2)Vn ds+

∫
γ
δG ·V ds.

(22)

Let us introduce an averaged Neumann boundary term H = [Hn, Hτ ]T that is
obtained by integrating over Γf,N (in the case the latter is a nonempty set) the
Neumann boundary data h ∈ H− 1

2 (Γf,N ) as follows, where s may be 0 or L:

Hn(s) =
1
δ

∫ y(s)+(δ/2)n

y(s)−(δ/2)n

h(s) · n dx, Hτ (s) =
1
δ

∫ y(s)+(δ/2)n

y(s)−(δ/2)n

h(s) · τ dx.

11



By integrating by parts the Equation (22), exploiting the property that V has null
trace on ∂γD we obtain:∫

γ
δ ∂∂sUτRds+

∫
γ
δMU ·V ds+

∫
γ
δε ∂U∂s ·

∂V
∂s ds−

∫
γ
δ ∂∂sVτ P ds

=
∫
γ
(δ Q+ u1 · n1|γ1 + u2 · n2|γ2)Rds+

∫
γ
(p1|γ1 − p2|γ2)Vn ds

+
∫
γ
δG ·V ds+ δ [H ·V]∂γN ,

(23)

where we denoted ∂γN ⊂ {0, L} the boundary of γ where the averaged Neumann
condition is assigned.

Remark 7 In Equation (23) there is a term containing u1 ·n1|γ1 and u2 ·n2|γ2 . As
u1 ·n1|γ1 and u2 ·n2|γ2 belong to H−1/2(γi), their duality with a function belonging
to L2(γ) is not well defined. To avoid using ad hoc variational spaces we use again
the closure conditions (13a) and (13b) and express the fluxes in terms of pressures
and Un.

Accordingly, using (13a) and (13b) we can rewrite Equation (23) as:∫
γ
δ ∂
∂sUτ Rds+

∫
γ
δMU ·V ds+

∫
γ
δ ε ∂U∂s ·

∂V
∂s ds

−
∫
γ
δ ∂
∂sVτ P ds+

∫
γ

2
αP Rds

=
∫
γ
δ QRds+

∫
γ

1
α (p1|γ1 + p2|γ2)Rds+

∫
γ
(p1|γ1 − p2|γ2)Vn ds

+
∫
γ
δG ·V ds+ δ [H ·V]∂γN .

(24)

Introducing the bilinear forms c(·, ·), b(·, ·), d(·, ·), f1(·, ·) and e1(·, ·) and the linear
functionals LX(·) and LM (·) defined as follows:

c(U,V) = δ
∫
γ

MU ·V ds+ δ ε
∫
γ
∂U
∂s ·

∂V
∂s ds,

b(U, R) = −δ
∫
γ
∂
∂sUτ Rds,

d(P,Q) = δ
ε

∫
γ
P Rds,

LX(V) = δ
∫
γ
G ·V ds+ δ [H ·V]∂γN ,

LM (R) = δ
∫
γ
QRds,

f1(V,p) =
∫
γ
(p2|γ2 − p1|γ1)Vn ds,

e1(R,p) = δ
2ε

∫
γ
(p1|γ1 + p2|γ2)Rds,

and a lifting Rg ∈ H1(γ) of U, the problem can be rewritten in the following
variational form: find (Ũ = U−Rg, P ) in X ×M such that

c(Ũ,V) + b(V, P ) = LX(V)− f1(V,p)− c(Rg,V) ∀V ∈ X

b(Ũ, R)− d(P,R) = −LM (R)− e1(R,p)− b(Rg, R) ∀R ∈M.
(25)

All the bilinear forms and the linear functionals introduced are continuous over the
respective spaces, moreover the bilinear forms c(·, ·) and d(·, ·) are coercive on X
and M , respectively. Under these assumptions, the well-posedness of (25) follows
(see, for instance, [37]).

After studying the well-posedness of the uncoupled Darcy’s problem and reduced
fracture model, let us focus on the full coupled model. With the previously intro-
duced notations, the coupled model reads as follows: find (U, P,p) ∈ X ×M × V
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such that
c(U,V) + b(V, P ) + f1(V,p) = LX(V)− c(Rg,V) ∀V ∈ X
b(U, R)− d(P,R) + e1(R,p) = −LM (R)− b(Rg, R) ∀R ∈M
−f2(U, r)− e2(P, r) + a(p, r) = LV (r)− a(Rg, r) ∀r ∈ V

. (26)

To assert the well-posedness of problem (26) let us introduce the following result:

Theorem 1 Suppose that X, M and V are three Hilbert spaces normed with ‖ ·‖X ,
‖ · ‖M and ‖ · ‖V respectively. Consider the following variational problem: find
(u, p, φ) ∈ X ×M × V such that: c(u, v) + b(v, p) + f1(v, φ) = LX(v) ∀v ∈ X

b(u, r)− d(p, r) + e1(r, φ) = LM (r) ∀r ∈M
−f2(u, ψ)− e2(p, ψ) + a(φ, ψ) = LV (ψ) ∀ψ ∈ V

, (27)

where: c(·, ·), d(·, ·) and a(·, ·) are bilinear continuous and coercive forms on X,
M , and V respectively, b(·, ·), f1(·, ·), f2(·, ·), e1(·, ·), e2(·, ·) are bilinear continuous
forms on X ×M , X × V , X × V , M × V and M × V , respectively, and LX(·),
LM (·) e LV (·) are linear and continuous functionals on X, M and V , respectively.
Moreover suppose that:

i) There exists a parameter δ such that the coercivity constant Kc and Kd of the
bilinear forms c(·, ·) and d(·, ·) can be written as Kc = δC and Kd = δD where
C and D are positive constants.

ii) There exist two functions F (δ) and E(δ) such that:

|f1(v, ψ)− f2(v, ψ)| ≤ δF (δ)‖v‖X‖ψ‖V ∀v ∈ X, ∀ψ ∈ V,
|e1(r, ψ) + e2(r, ψ)| ≤ δE(δ)‖r‖M‖ψ‖V ∀r ∈M, ∀ψ ∈ V.

iii) There exist δ and two constants Emax, Fmax such that, if 0 ≤ δ ≤ δ:

0 ≤ E(δ) ≤ Emax, 0 ≤ F (δ) ≤ Fmax.

Then there exists δ∗ < δ such that ∀δ : 0 < δ < δ∗ the solution of the Problem (27)
exists and is unique. Moreover δ∗ can be chosen as:

δ∗ = min
{

1
3

KaCD

CE2
max +DF 2

max

, δ

}
. (28)

Besides, under these assumptions the following estimates hold:

‖φ‖V , ‖p‖M , ‖u‖X ≤
1

Ks(δ)
(CLX + CLX + CLV ), (29)

where CLX , CLM and CLV are the continuity constants of the functionals LX , LM
and LV , respectively, Ks(δ) = δK∗s , and K∗s is a constant depending on C, D, Emax

and Fmax.

Proof. Let us introduce the product spaceH = X×M×V , so that h = (hX , hM , hV ),
and define ‖h‖2H = ‖hX‖2X + ‖hM‖2M + ‖hV ‖2V .
Consider the bilinear form s(·, ·) : H × H → R and the linear functional LH(·) :
H → R defined as:

s(h, z) = c(hX , zX) + b(zX , hM ) + f1(zX , hV ) + b(hX , zM )− d(hM , zM )
+ e1(zM , hV )− f2(hX , zV )− e2(hM , zV ) + a(hV , zV ),

LH(z) = LX(zX) + LM (zM ) + LV (zV ).
(30)
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Problem (27) is equivalent to finding h ∈ H such that:

s(h, z) = LH(z) ∀z ∈ H. (31)

Let us show that s(·, ·) satisfies the hypotheses of the Banach-Nečas-Babuška The-
orem2 [18]. s(·, ·) and LH(·) are continuous. We will show that, for δ small enough,
there exists Ks = δK∗s (C,D,Emax, Fmax) > 0 such that:

sup
z∈H,z6=0

s(h, z)
‖z‖H

≥ Ks‖h‖H . (32)

Choose z = (hX ,−hM , hV ); correspondingly ‖z‖H = ‖h‖H , and:

s(h, z) ≥ δ C ‖hX‖2X + δ D ‖hM‖2M + ϑKa‖hV ‖2V + (1− ϑ)Ka‖hV ‖2V
−δF (δ)‖hX‖X‖hV ‖V − δE(δ)‖hM‖M‖hV ‖V ,

for any parameter ϑ ∈ (0, 1), were Ka is the coercivity constant of a(·, ·). We want
to find under which condition there exist two positive constants αX and αM such
that:

IX = δ C ‖hX‖2X − δF (δ)‖hX‖X‖hV ‖V + ϑKa‖hV ‖2V
≥ δαX(‖hX‖2X + ‖hV ‖2V ),

IM = δ D ‖hM‖2M − δE(δ)‖hM‖M‖hV ‖V + (1− ϑ)Ka‖hV ‖2V
≥ δαM (‖hM‖2M + ‖hV ‖2V ).

(33)

In fact, in that case (32) follows with Ks = δK∗s , K∗s = min{αX , αM}.
Consider first IX . For any ε > 0, by Young’s inequality we have

IX ≥ δ
[
(C − F (δ)ε) ‖hX‖2X +

(
ϑKa

1
δ
− F (δ)

1
ε

)
‖hV ‖2V

]
.

We then choose ε = 1
2

C
F (δ) and get

IX ≥ δ
[

1
2
C‖hX‖2X +

(
ϑKa

1
δ
− 2

F (δ)2

C

)
‖hV ‖2V

]
≥ δC

[
1
2
‖hX‖2X +

F 2
max

C2
‖hV ‖2V

]
if δ < min

{
δ, ϑ

1
3
KaC

F 2
max

}
, (34)

i.e. αX = min
{
C
2 ,

F 2
max
C

}
. Analogously, we get

IM ≥ δD
[

1
2
‖hM‖2M +

E2
max

D2
‖hV ‖2V

]
if δ < min

{
δ, (1− ϑ)

1
3
KaD

E2
max

}
, (35)

i.e. αM = min
{
D
2 ,

E2
max
D

}
. From (34) and (35), choosing ϑ such that

ϑ
1
3
KaC

F 2
max

= (1− ϑ)
1
3
KaD

E2
max

=
1
3

KaCD

CE2
max +DF 2

max

= δ̂, (36)

we have that, for all 0 < δ < δ∗ = min{δ, δ̂},

Ks = δK∗s = δmin
{
C

2
,
D

2
,
F 2

max

C
,
E2

max

D

}
> 0, (37)

2From now on we will refer to it as the BNB Theorem.
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and condition (32) follows. The condition:

sup
h∈H

s(h, z) > 0 ∀z 6= 0, (38)

can be proved by proceeding in the same way. As all the hypotheses of the BNB
Theorem are satisfied the existence and uniqueness of the solution of problem (31)
follows and consequently the solution of problem (27) exists and is unique. BNB
Theorem also provides the a priori estimate (29), since

‖h‖H ≤
1
Ks

(CLX + CLM + CLV ). (39)

Note that this result states that problem (25) is well posed for δ small enough,
but at the same time the stability constant Ks degenerate for δ → 0 (linearly).
Precisely, eq. (36) and (37) quantify on one hand “how small” δ has to be (see the
expression of δ̂), and on the other hand the dependance of Ks on δ, C, D, Emax,
Fmax. This is of particular interest when considering the Galerkin approximation
of (25), since δ enters the error estimate (see section 5) via Ks. �

The boundedness assumption on E(δ) and F (δ) in Theorem 1 can be relaxed,
as stated below.

Remark 8 Theorem 1 still holds if the hypothesis iii) is replaced by the following
one:

iii-d) There exists δ and four constants mf > 0, me > 0, rf < 1/2 and re < 1/2
such that, if 0 ≤ δ ≤ δ:

E(δ) ≤ meδ
−re , F (δ) ≤ mfδ

−rf .

In this case δ∗ = δ∗(Ka, C,D,me,mf , re, rf ), K∗s = K∗s (C,D,me,mf ).

Remark 8 follows using exactly the same arguments of Theorem 1. In particu-

lar, (34) can be written as IX ≥ δC
[

1
2‖hX‖

2
X + m2

f

C2 ‖hV ‖2V
]

provided that δ <

min{δ,
(
ϑKaC
3m2

f

) 1
1−2rf }, and a similar estimate can replace eq. (35).

Finally, let us show that problem 26 satisfies the assumptions of Theorem 1 if we
choose the parameter δ to be the width of the fracture. Then the following result
hold:

Theorem 2 There exists a positive number δ∗ such that if 0 < δ < δ∗ the solution
of Problem 26 exists and is unique.

Proof. Problem (26) has the same form of (27) and it is easy to show that c(·, ·),
d(·, ·) and a(·, ·) are bilinear continuous and coercive forms on X, M , and V respec-
tively, b(·, ·), f1(·, ·), f2(·, ·), e1(·, ·), e2(·, ·) are bilinear continuous forms on X×M ,
X × V , X × V , M × V and M × V , respectively, and LX(·), LM (·) and LV (·) are
linear and continuous functionals on X, M and V , respectively. Let us prove that
the assumptions of the Theorem 1 are satisfied. The coercivity constants Kc = ε δ
and Kd = 1

ε δ are as required by the first hypothesis of Theorem 1 (with C = ε,
D = 1

ε ). Let us identify the two functions F (δ) and E(δ). For what concerns F (δ),
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let ∆F = |f1(V, r)− f2(V, r)|; we then have

∆F =
∣∣ ∫
γ
(r2|γ2 − r1|γ1)Vndx−

∫
γ2
r2|γ2Vndx +

∫
γ1
r1|γ1Vndx

∣∣
=

∣∣∣ ∫γ(r2|γ2 − r1|γ1)Vndx−
∫
γ
r2|γ2Vn

r±δ/2
r dx +

∫
γ
r1|γ1Vn

r∓δ/2
r dx

∣∣∣
=

∣∣ ∫
γ
r2|γ2Vn

(
1− r±δ/2

r

)
dx−

∫
γ
r1|γ1Vn

(
1− r∓δ/2

r

)
dx
∣∣

=
∣∣∣∫γ r2|γ2Vn

∓δ/2
r dx−

∫
γ
r1|γ1Vn

±δ/2
r dx

∣∣∣
≤ δ/2

rmin

(∣∣∣∫γ r2|γ2Vndx
∣∣∣+
∣∣∣∫γ r1|γ1Vndx

∣∣∣)
≤ δ/2

rmin

(
‖r2|γ2‖L2(γ) + ‖r1|γ1‖L2(γ)

)
‖Vn‖L2(γ)

≤ δ/2
rmin

√
tmax

(
‖r2|γ2‖L2(γ2) + ‖r1|γ1‖L2(γ1)

)
‖Vn‖L2(γ)

≤ δ 1
2

(rmin+δ/2)1/2

rmin(rmin−δ/2)1/2
(CT1 + CT2)CPf ‖r‖V ‖V ‖X ,

where CT1 and CT2 are trace constants and CPf is the Poincaré constant. Therefore
we can define F (δ) as:

F (δ) =
1
2

(rmin + δ/2)1/2

rmin(rmin − δ/2)1/2
(CT1 + CT2)CPf .

For what concerns E(δ), let ∆E = |e1(R, r) + e2(R, r)|; we have

∆E =
∣∣ δ

2ε

∫
γ
(r2|γ2 + r1|γ1)P dx + δ

2ε

∫
γ2
r2|γ2P dx + δ

2ε

∫
γ1
r1|γ1P dx

∣∣
=

∣∣∣ δ2ε ∫γ(r2|γ2 + r1|γ1)P dx + δ
2ε

∫
γ
r2|γ2P

r±δ/2
r dx + δ

2ε

∫
γ
r1|γ1P

r∓δ/2
r dx

∣∣∣
≤ δ

2ε
2rmin+δ/2

rmin

∫
γ
|(r2|γ2 + r1|γ1)P | dx

≤ δ
2ε

2rmin+δ/2
rmin

(‖r2|γ2‖L2(γ) + ‖r1|γ1‖L2(γ))‖P‖M

≤ δ
2ε

√
tmax

2rmin+δ/2
rmin

(‖r2|γ2‖L2(γ2) + ‖r1|γ1‖L2(γ1))‖P‖M

≤ δ
2ε

√
tmax

2rmin+δ/2
rmin

(CT1 + CT2) ‖r‖V ‖P‖M

≤ δ 1
2ε

(2rmin+δ/2)(rmin+δ/2)1/2

rmin(rmin−δ/2)1/2
(CT1 + CT2) ‖r‖V ‖P‖M ,

therefore we can define E(δ) as:

E(δ) =
1
2ε

(rmin + δ/2)1/2(2rmin + δ/2)
rmin(rmin − δ/2)1/2

(CT1 + CT2) .

The estimates for F (δ) and E(δ) are clearly uniformly bounded w.r.t. δ for δ small.
In fact, as we have δ/2 < r ≤ rmin, for any number r̃ < rmin, we have that for all
0 < δ < 2r̃ the following inequalities hold:

0 ≤ F (δ) ≤ 1
2

(rmin+r̃)1/2

rmin(rmin−r̃)1/2
(CT1 + CT2)CPf ,

0 ≤ E(δ) ≤ 1
2ε

(rmin+r̃)1/2(2rmin+r̃)
rmin(rmin−r̃)1/2

(CT1 + CT2) ,

i.e. the third hypotesis of Theorem 1 is satisfied. For instance, we can take r̃ =
rmin/2 so that Fmax =

√
3

2rmin
(CT1 + CT2)CPf , Emax = 5

√
3

4ε (CT1 + CT2) and choose
δ∗ as:

δ∗ = min
{
rmin, δ̂

}
, δ̂ =

16Ka ε r
2
min

9 (CT1 + CT2)2
(

25 r2
min + 4C2

Pf

) .
As a result, we see that a small δ∗ can be due to degeneration of ε, of the coercivity
constant Ka = min{λmin(K1), λmin(K2)}, or to high curvatures r−1

min. �
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4 Extension to the case of a fracture or a vessel in
a three-dimensional domain

In this section we indicate how the model detailed in section 3 can be extended to
the case of a fracture or a vessel in a three-dimensional porous medium (see Figure
1). The substantial difference with respect to the 2D case is that in every point
of the mean surface of the fracture or of the mean line of the vessel, the intrinsic
reference system is constituted by three orthonormal unit vectors instead of two.

The case of a fracture in a three-dimensional domain. In this case there are
two tangential and one normal unit vectors. The procedure highlighted in section
2 can be carried out without too many difficulties, the derivation of the reduced
model is straightforward and the same closure conditions used in section 3 may be
used to couple the reduced model with the Darcy problem in the porous medium.
However in order to obtain a unique equation on the whole mean surface of the
fracture a suitable reference system should be introduced on such surface. The
well-posedness of the problem under the assumption that the width of the fracture
is small enough may be proved by either Theorem 1 or one of its variants. The
structure of the variational problem is in fact the same as (26) but the variational
spaces of the reduced models are defined on a bi-dimensional geometry. For a
detailed description of this case refer to [28].

The case of a vessel in a three-dimensional domain. In this case there are
two normal and one tangential unit vectors. This time a suitable reference system
must be chosen at every section of the vessel so that the two normal unit vectors
vary with continuity with respect to the arc length. The averaging operations may
be carried out straightforwardly, however (5a) and (5b) have to be rewritten in the
following vector form:

pDn̂ = pSn̂− εN∂u
∂n̂ on ΓDB , (40a)

0 = −εT∂u
∂n̂ on ΓDB . (40b)

Here n̂ = [cos(β), sin(β)] represents the normal external unit vector of the vessel
with respect to the orthonormal bi-dimensional reference system given by the two
normal unit vectors; β is the angular coordinate in a bi-dimensional polar coordinate
system in which n1 is the polar axis. Beside this, the following revised closure
condition must be used instead of (13a) and (13b):

θp(β)− α(u · n)(β) = θP + αUn1 cosβ + αUn2 sinβ

+(1− θ)(P − p(β + π)),
(41)

where Un1 and Un2 represent the projection of the average flux on the two normal
unit vectors and f(β) represents the value of a generic function f on the boundary
of the considered section at angular coordinate β. The weak formulation of the
coupled problem can be recast in the form (27), where the parameter δ is now the
vessel cross-sectional area. The well-posedness for small δ is obtained owing to
Remark 8 with re = rf = 1

4 . For a detailed description of this case we refer to [28].

5 Numerical approximation of the coupled prob-
lem

In this section we briefly address the numerical solution of the reduced model prob-
lem proposed in this paper. We consider the standard Galerkin finite element
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approximation of the coupled problem (26), and introduce the discrete subspaces
Xh ⊂ X for the velocity in the fracture, Mh ⊂ M for the fracture pressure, and
Vh ⊂ V for the Darcy pressures. Recall the definition of the bilinear form s(·, ·) and
linear form LH(·) from (30), let Hh = Xh×Mh×Vh ⊂ H and consider the discrete
problem of finding hh ∈ Hh such that

s(hh, zh) = LH(zh) ∀zh ∈ Hh. (42)

Theorem 3 If 0 < δ < δ∗, problem (42) has a unique solution, satisfying

‖h− hh‖H ≤ C
1
δ

inf
zh∈Hh

‖h− zh‖H . (43)

As a consequence, using standard Pk finite elements of degree k ≥ 1 for the spaces
Xh, Vh, and standard Pk−1 elements for the space Mh, and assuming that the
solution h = (U, P,p) ∈ Hk+1(γf )×Hk(γf )×Hk+1(Ω1,2), we have

‖h− hh‖H ≤ C
hk

δ

(
|U|2Hk+1(γ) + |P |2Hk(γ) +

∑
i=1,2

|pi|2Hk+1(Ωi)

) 1
2
. (44)

Proof. For any (gX , gM , gV ) = g ∈ H, denote g̃ = (gX ,−gM , gV ). Proceeding as
in the proof of Theorem 1, for 0 < δ < δ∗ and ∀zh ∈ Hh, we have s(zh, z̃h) ≥
Ks(δ)‖zh‖2H , ‖z̃h‖H = ‖zh‖H . Hence, the discrete solution exists and is unique.
Analogously, for e = h−hh and any zh ∈ Hh, owing to the Galerkin orthogonality
we have

Ks(δ)‖e‖2H ≤ s(e, ẽ) = s(e, h̃− z̃h) ≤ Cs‖e‖H‖h− zh‖H ,

where Cs is the continuity constant of s. Owing to the estimate Ks(δ) = δK∗s of
Theorem 1, eq. (43) follows. Eq. (44) follows as well using standard interpolation
estimates observing that ‖g‖2H = ‖gX‖2H1(γ) + ‖gM‖2L2(γ) + ‖gV ‖2H1(Ω1)×H1(Ω2). �

We observe that, thanks to the estimate of the stability constant Ks(δ) provided
in Theorem 1, we can quantify the dependence of the error estimate on δ. We also
point out that, since every triple of finite element spaces Xh×Mh× Vh is (inf-sup)
stable, other choices of finite element different from those mentioned in Theorem 3
are possible. For instance, we could opt for the cheaper P1×P1×P1 triple instead of
the P1×P0×P1 (k = 1) retaining convergence of order 1 under the same regularity
assumptions. In fact, all the numerical computations of section 7 were performed
using equal order (linear) continuous finite elements.

Concerning the numerical solution of such of the linear system (42), due to the
partitioned structure of the system matrix the use of preconditioned methods for
the Schur complement (see for example [35, 9, 10, 17, 22, 32, 38]) may be of interest.
In particular, diagonal or triangular preconditioners may lead to solve separately
a Poisson problem in the porous medium and a Stokes problem in the fracture.
For both these problems a wide variety of highly effective numerical methods and
preconditioners are available (see for example [4, 6, 12, 27, 29, 31, 33, 40, 43] for
the Darcy problem or [1, 8, 11, 23, 34, 42, 44] for the Stokes/Brinkman problem).

6 Extension to a network of fractures

The multiscale strategy presented in this work can be easily extended to networks.
For the sake of simplicity, in this section we will describe the modeling of a simple
network constituted by one bifurcating fracture. Consider three domains Ωi sepa-
rated by a Y -shaped region Ωf as in Figures 3, where i ∈ I = {0, 1, 2}. We shall

18



(a) (b)

Figure 3: In (a): a branching channel Ωf (in gray) with three exterior subdomains Ωi.
In (b): magnified view of the bifurcation.

use modular arithmetics in I, for instance i + 1 = 0 for i = 2. Denote by γi+2 the
one-dimensional centerline of the branch between Ωi and Ωi+1, let γ = ∪i∈Iγi, and
let γi denote the interface between Ωi and Ωf .
As in section 3, we will use local coordinates s, ξ in Ωf around each branch γi.
The domain Ωf is then covered by a global atlas by using a suitable partition
of unity. Using local coordinates, we can easily construct continuous mappings
f ∈ L2(γi+1) × L2(γi+2) 7→ f̃ ∈ L2(γi) and f ∈ L2(γ) 7→ f̂ ∈ L2(γi), which
are the counterparts of the extension maps described in section 3.1, and provide
respectively values taken on the “opposite” channel – porous medium interface,
and on the centerline of the channel. For instance, the values f̃ on γi can be
defined using the partition of unity to combine the values of f at the corresponding
s-points on γi+1 and γi+2; the same argument holds for f̂ , which is constructed
starting from values on γ. In practice this means that, away from the junction on
γi, f̃ is defined by the value of fi+1 or fi+2 at the corresponding s-section on γi+1

or γi+2 respectively, while near the junction a smooth transition between fi+1 and
fi+2 takes place. However, despite the particular definition of such mappings, the
analysis of our model only requires that two constants C̃, Ĉ > 0 exist such that
‖f̃‖L2(γi) ≤ C̃‖f‖L2(γi+1)×L2(γi+1), ‖f̂‖L2(γi) ≤ Ĉ‖f‖L2(γ). Let Γi,D,Γi,N ⊂ ∂Ωi be
respectively the Dirichlet and Neumann boundaries. Consider the following flow
problem: find p = (p0, p1, p2) ∈ H1(Ω0)×H1(Ω1)×H1(Ω2) such that

−∇ · (Ki∇pi) = qi in Ωi,
pi = pi on Γi,D,

Ki∇pi · ni = hi on Γi,N ,
θpi − αui · ni = θP̂ − αÛn + (1− θ)(P̂ − p̃) on γi,

with ui = Ki∇pi. As in section 3, the coercivity of the corresponding bilinear form
a is easily obtained for θ ∈ [0, 1] big enough (depending on the value of C̃, Ĉ).

The critical issue is the reduced model for the network of fractures, whose un-
knowns are U = (U0,U1,U2) ∈ H1(γ1)×H1(γ2)×H1(γ2) and P = (P0, P1, P2) ∈
L2(γ) = L2(γ1)×L2(γ2)×L2(γ2), and in particular the coupling conditions at the
junction.

In the sequel, we will denote by a star∗ any quantity evaluated at the junction.
We propose to treat the junction as a lumped 0D element, featuring a hydraulic
pressure P ∗. This pressure is actually the Lagrange multiplier associated to the
mass balance equation at the junction. Assuming that the tangent unit vectors
τ ∗i at the endpoints of each branch γi corresponding to the junctions are directed
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outwards, the mass balance reads ∑
i∈I

δiU
∗
i,τ = 0, (45)

i.e. the net flow rate entering the 0D element is zero. Moreover, the balance of the
momentum requires that the stress at the junction equals P ∗, that is

−εi
∂Ui

∂s
+ Pi = P ∗, ∀i ∈ I. (46)

In this way, the junction boundary of each branch is treated as a Neumann bound-
ary, the prescribed stress being defined by the incompressibility condition at the
junction. Accordingly, the vector H containing the prescribed stresses at the
junction boundaries in the weak formulation of the reduced model (24), is given
by H = H∗ = [P ∗, 0]T . In a compact form, the weak formulation of the re-
duced model (24) for a single fracture is modified straightforwardly as follows: find
U = (U0,U1,U2) ∈ H1(γ0) × H1(γ1) × H1(γ2), P = (P0, P1, P2) ∈ L2(γ) ≡
L2(γ0)× L2(γ1)× L2(γ2) and P ∗ ∈ R such that∫

γ

δ
∂

∂s
Uτ Rds+

∫
γ

δMU ·V ds+
∫
γ

δ ε
∂U
∂s
· ∂V
∂s

ds

−
∫
γ

δ
∂

∂s
Vτ P ds+

∫
γ

2
α
P Rds

−P ∗
(∑
i∈I

δiV
∗
i,τ

)
+

(∑
i∈I

δiU
∗
i,τ

)
R∗

= L(V, R,p; δ, α,Q,G,H),

(47)

for each V = (V0,V1,V2) ∈ H1(γ0) × H1(γ1) × H1(γ2), R = (R0, R1, R2) ∈
L2(γ) ≡ L2(γ0)×L2(γ1)×L2(γ2) and R∗ ∈ R, where L is a linear functional w.r.t.
V, R and p, depending on the parameters δ, α, Q, G and H. Notice that the
integrals on γ are meant to be the sum of integrals on each branch γi. It is easy to
see that, for small δ, Theorem 1 can still be invoked to obtain the well-posedness
of the coupled problem.

7 Numerical simulations

In this section we present the results of numerical simulations on a test problem that
refers to the simple geometry made of two unitary squares separated by a fracture
of width δ represented in Figure 4. Consider the reduced model for a fracture in a
bi-dimensional porous media introduced in section 3. We suppose that Ω1 and Ω2

contain an isotropic porous medium with permeability tensors k1I and k2I, respec-
tively. In this test case, if not otherwise specified, we adopt the simpler Stokes model
for describing fluid flow in the fracture (referring to section 3, this implies M = 0)
and we suppose there are no external forces or mass sources. Dirichlet boundary
conditions for pressure are imposed on segments D1L and D2R, whereas Dirichlet
boundary condition for mean tangential velocity and homogeneous Neumann con-
ditions for mean normal strain are enforced on ST and SB . On the remaining part
of the boundary, either Dirichlet boundary conditions or homogeneous Neumann
boundary conditions are imposed, depending on the test case considered.
A monolithic direct solver (UMFPACK) was used to solve the algebraic system (42).
All the simulations have been performed using the free software FreeFem++ version
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D1L D2R

D2T

D2BD1B

D1T ST

SB

Figure 4: Reference domain for the test problem.

3.9 3. Classical unstructured FEM meshes for the solution of the problem are auto-
matically built by the software using Delunay triangulation and 50 nodes for each
of the square edges for a total of 6789 degrees of freedom. In case of comparison
with the unreduced model the exact solution is obtained through FEM on a very
fine grid (200 nodes for each of the square edges and 50 nodes for fracture shorter
edges for a total of 140528 degrees of freedom). To assemble the FE matrices for
the reduced model in the fracture we used the special emptymesh command of the
software.

Remark 9 In case of a linear fracture in a bi-dimensional domain, our analysis
still holds when γ1 and γ2 coincide. Notice that this simplification cannot be applied
neither in the case of a curved fracture nor in that of a vessel in a three dimensional
domain.

7.1 Test case 1: Irrigation

In this test case we impose a flux entering in the fracture through SB equal to 10,
a homogeneous Dirichlet condition for the pressure on D1L and D2R and for the
tangential velocity on ST , and homogeneous Neumann boundary conditions on the
pressure on the remaining part of the boundary. If the pressures imposed on D1L

and D2R are equal, and so are the values k1 and k2, the solution is expected to be
symmetric. Besides, as we supposed there is a flow entering through the bottom
side of the fracture but not exiting from the top side of the fracture, it is reasonably
guessed that the fluid exits the lateral walls of the fracture and propagates into the
porous medium. This behaviour is correctly reproduced by our reduced model as
shown in Figure 5. Moreover we would expect that, if the the permeability in one of
the two subdomains containing the porous medium is much higher than in the other
one, the fluid will flow at a higher rate in the domain with higher permeability. Even
this situation is correctly reproduced by the reduced model, as shown in Figure 6.

7.2 Test case 2: Brinkman

In this test case we consider the same set of boundary condition imposed in the
previous test case but we substitute the reduced Stokes model in the fracture with
the Brinkman one. Particularly we adopted M = 10I as the mass matrix of the
Brinkman model. As in the previous case the solution is expected to be symmetric
but nonlinear pressure and tangential velocity are expected in the fracture due to
the presence of the dissipative term. This behaviour is correctly reproduced by our
reduced model as shown in Figure 7.

3For more details see http://www.freefem.org/ff++/.
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(a) Pressure fields in Ω1, Ωf and Ω2. (b) Velocity fields in Ω1 and Ω2.
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(c) Average pressure along γ.
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(d) Average velocities along γ.

Figure 5: In (a): pressure fields in Ω1, Ω2 and Ωf for the ”Symmetric Irrigation” test
problem. Pressure in Ωf is plotted under the assumption that it is a constant function
over any given transversal section. In (b): velocity fields in Ω1 and Ω2. In (c): average
pressure along γ. In (d): average tangential velocity (solid line) and the average normal
velocity (dashed line) along γ. Parameters for the simulation are: δ = 0.1, ε = 1, θ = 1,
k1 = 1, k2 = 1, pD1L = 0, pD2R = 0, UτSB = 10, UτST = 0 and M = 0.
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(a) Pressure fields in Ω1, Ωf and Ω2. (b) Velocity fields in Ω1 and Ω2.
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(c) Average pressure along γ.
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(d) Average velocities along γ.

Figure 6: In (a): pressure fields in Ω1, Ω2 and Ωf for the ”Symmetric Irrigation” test
problem. Pressure in Ωf is plotted under the assumption that it is a constant function
over any given transversal section. In (b): velocity fields in Ω1 and Ω2. In (c): average
pressure along γ. In (d): average tangential velocity (solid line) and the average normal
velocity (dashed line) along γ. Parameters for the simulation are: δ = 0.1, ε = 1, θ = 1,
k1 = 0.01, k2 = 1, pD1L = 0, pD2R = 0, UτSB = 10, UτST = 0 and M = 0.
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(a) Pressure fields in Ω1, Ωf and Ω2. (b) Velocity fields in Ω1 and Ω2.
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(c) Average pressure along γ.
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(d) Average velocities along γ.

Figure 7: In (a): pressure fields in Ω1, Ω2 and Ωf for the “Brinkman” test problem.
Pressure in Ωf is plotted under the assumption that it is a constant function over any
given transversal section. In (b): velocity fields in Ω1 and Ω2. In (c): average pressure
along γ. In (d): average tangential velocity (solid line) and the average normal velocity
(dashed line) along γ. Parameters for the simulation are: δ = 0.1, ε = 1, θ = 1, k1 = 1,
k2 = 1, pD1L = 0, pD2R = 0, UτSB = 10, UτST = 0 and M = 10I.

7.3 Test Case 3: Filtration in a porous medium in the pres-
ence of a fracture

In this test case we impose homogeneous Dirichlet condition for mean tangential
velocity on SB and ST and for pressure on D2R, whereas we impose a positive
constant pressure equal to 10 on D1L. We expect a continuous flux between D1L

and D2R due to the difference of pressure at the edges. This behaviour is correctly
reproduced by the reduced model as shown in Figure 8.

7.4 Test Case 4: Comparison with the results obtained from
the unreduced model

We now compare the behaviour of the reduced model and that of the unreduced
one for different values of the width of the fracture δ (0.2, 0.1, 0.05, 0.025 e 0.0125)
and the grid size h (0.2, 0.1, 0.05, 0.025, 0.0125). Consider again the geometry
reported in Figure 4 with the following parameters: ε = 1, θ = 1, k1 = 0.01, k2 = 1,
pD1L = 20, pD2B = 20, pD2T = −20(x + δ/2), pD2R = 10, pD2B = 10(x − δ/2),
pD2T = 10, UτSB = 10 and UτST = 5. We considered the relative error for the L2

and H1 norms of pressure in Ω1 ∪ Ω2, L2 and H1 norms of mean tangential and
normal velocity in the fracture, and the L2 norm of pressure in the fracture. We
can highlight the following behaviours:

• The relative error is decreasing when h is increased but reaches a plateau (a
lower threshold) due to the intrinsic error of the reduced model. The value
of the plateau depends on the width δ of the fracture and decreases when δ
decreases.
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(a) Pressure fields in Ω1, Ωf and Ω2. (b) Velocity fields in Ω1 and Ω2.
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(c) Average pressure along γ.
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Figure 8: In (a): pressure fields in Ω1, Ω2 and Ωf for the ”Symmetric Irrigation” test
problem. Pressure in Ωf is plotted under the assumption that it is a constant function
over any given transversal section. In (b): velocity fields in Ω1 and Ω2. In (c): average
pressure along γ. In (d): average tangential velocity (solid line) and the average normal
velocity (dashed line) along γ. Parameters for the simulation are: δ = 0.1, ε = 1, θ = 1,
k1 = 1, k2 = 1, pD1L = 10, pD2R = 0, UτSB = 0, UτST = 0 and M = 0.

• For fixed h, the relative error decreases with δ, however if h is too large the
error may instead increase.

The same kind of behaviour occurs for all the norms considered. In case h is small
enough the relative error is under 10− 15% in case of large fracture width (δ = 0.2,
i.e. one fifth of the carachteristic dimension of the porous media) and large h (0.1 or
0.2). The relative error decreases significantly to 0.1− 5% in case of small fracture
width (δ = 0.025, i.e. 1/40 of the carachteristic dimension of the porous media) and
small h (0.0125). As an example in Figure 9 we presented the typical dependance
of the relative error (in this case referred to the L2 norm of pressure in Ω1 ∪Ω2) on
δ and h.

Remark 10 For the test case presented in sections 7.1, 7.2 and 7.3 the results of
the reduced model are excellent. Relative errors for quantities that are non-null in
the exact solution are below 0.005% even in the case of large fracture (δ = 0.1, i.e.
1/10 of the carachteristic dimension of the porous media) and large h (0.2). This
behaviour is due to the fact that the solution (pressure in Ω1 and Ω2 and mean
pressure, mean normal velocity and mean tangential velocity in the fracture) of the
exact (unreduced) problem are linear functions.

7.5 Test Case 5: T-Junction

We now present the results obtained for the problem illustrated in Figure 10.
Areas featuring different permeability values are considered inside the porous me-
dia; besides, the presence of a T-Junction fractures network allows us to assess the
performance of the extension of our model to the case of a network that has been
introduced in section 6. The parameters for this simulation are δi = 0.05, ε = 1 and
θ = 1. As shown in Figure 11, the fluid exits the fractures and propagates into the
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(a) Relative error verus h for fixed δ.

(b) Relative error versus δ for fixed h.

Figure 9: In (a): relative error for the L2 norm of pressure in Ω1 ∪ Ω2 for the problem
presented in section 7.4 depending on δ for fixed h. In (b): relative error for the L2 norm
of pressure in Ω1 ∪Ω2 for the problem presented in section 7.4 depending on h for fixed δ.

porous media. This is due to the fact that the Dirichlet boundary conditions for
Uτ are not balanced (50 + 10 entering and 10 exiting the fracture). In the porous
media the fluid flows following different paths depending on the permeability dis-
tribution: high permeability zones tend to attract fluid from the neighbour regions,
whereas low permeability or impermeable regions tend to deviate the fluid apart
from themselves. A density plot for the pressure in the porous media is shown in
Figure 12. Figures 13(a), 13(b) and 13(c) show the mean tangential velocity inside
the three fractures. Note that in Figures 13(a), 13(b) and 13(c) a positive value of
the mean tangential velocity means that the flow is directed towards the junction
whereas a negative value indicates that the flow is directed towards the external
boundaries. Figures 14(a), 14(b) and 14(c) show instead the mean pressure inside
the three fractures that is almost constant apart from a small area in proximity of
the low permeability channel present in domain Ω3. With further computations on
the numerical solution it is also possible to verify that the mass balance equation
(45) and the stress balance equation (46) at the T-Junction are satisfied.
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Figure 10: Reference geometry, permeability values and boundary conditions for
the T-Junction test case.

Figure 11: Velocity fields and streamlines in the porous media for the T-Junction
test case.
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Figure 12: Density plot and contourline of pressure in the porous media for the
T-Junction test case.
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Figure 13: Mean tangential velocities in the fractures γ1 (Figure 13(a)), γ2 (Figure
13(c)) and γ3 (Figure 13(b)). Note that γ1 separates the domain Ω2 from the
domain Ω3, γ2 the domain Ω1 from Ω3, and γ3 the domain Ω1 from Ω2. Positive
values indicate that the mean velocity is directed towards the T-Junction.
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Figure 14: Mean pressure values in the fractures γ1 (Figure 14(a)), γ2 (Figure 14(c))
and γ3 (Figure 14(b)).
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8 Conclusions

In this work we proposed a multiscale model for incompressible fluid flow in porous
media with fractures, based on the coupling of Darcy and Brinkman equations. This
model significantly differs from previously proposed models, since i) it allows the
treatment of viscous flow inside fractures, and ii) the interfaces between the fracture
and the porous domain are kept separated, which makes simpler the analysis and
the determination of the coupling conditions in several cases. The well-posedness
of the problem is asserted under the assumption that the fracture or the vessels are
small enough. Suitable numerical approaches to effectively solve the problem have
been provided. Moreover, the simulations highlight the potential of this model to
reproduce the relevant aspects related to the presence of fractures.
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