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Abstract

Motivated by the functional data analysis of a data set of ultrasound
tongue profiles, we present the multi-aspect interval-wise testing (multi-
aspect IWT), i.e., a local non-parametric inferential technique for functional
data embedded in Sobolev spaces. multi-aspect IWT is a non-parametric
procedure that tests differences between groups of functional data jointly
taking into account the curves and their derivatives. The multi-aspect IWT
provides adjusted multi-aspect p-value functions that can be used to select
intervals of the domain imputable for the rejection of a null hypothesis.
As a result, it can impute the rejection of a functional null hypothesis to
specific intervals of the domain and to specific orders of differentiation. We
show that the multi-aspect p-value functions are provided with a control of
the family-wise error rate, and are consistent. We apply the multi-aspect
IWT to the functional data analysis of a data set of tongue profiles recorded
for a study on Tyrolean, a German dialect spoken in South Tyrol. We test
differences between five different manners of articulation of the uvular /r/:
vocalized /r/, approximant, fricative, tap, and trill. multi-aspect IWT-
based comparisons result in an informative and detailed representation of
the regions of the tongue where a significant difference is located. Authors’
names are alphabetically ordered.
Keywords: Functional Data Analysis, Inference, Interval-Wise Error Rate,
Derivatives, Articulatory Phonetics.

1 Introduction

Speech sounds are produced by a mechanism that we may summarize in three
main phases. First, the respiratory system pushes air out of the lungs, thus

1



providing the energy. This airflow travels the trachea up to the larynx where it
passes between two muscular folds, called the vocal folds. Second, in the larynx,
the passage of air may set the vocal folds vibrating or not: in the former case
we obtain voiced sounds, in the latter voiceless sounds are produced. Third, the
signal is modulated by changing the shape of the vocal tract. Tongue, lips, jaw
and soft palate, namely the articulators, are actively involved in this “shaping”
process, or articulatory process. The dynamic coordination of the articulators
result in the production of linguistic sounds, such as consonants and vowels
(Ladefoged and Johnson 2011). Articulatory phonetics is the branch of speech
sciences, within the main field of linguistics, that studies the production of speech
sounds by observing the movements of the articulators (Gick et al. 2013).

In the articulatory process, the tongue plays a central role because of its
anatomy and physiology. This organ is composed by a group of highly orga-
nized muscle that work together to achieve the articulatory target: four extrinsic
muscles act to change the position of the tongue in the mouth and four intrinsic
muscles act to change its shape. This “interesting engineering feat” (Seikel et al.
2000, p. 336) allows fast (up to 160 cm/s, Löfqvist 2011) and at the same time
fine (Qyarnström et al. 1994) motor movements of the tongue, notwithstanding
its massive structure.

This work aims at developing a statistical comprehensive approach to infer if
and how the tongue change while different sounds are pronounced by the same
speaker. The analysis focuses on different manners of uvular - i.e., produced by
the tongue back interacting with the uvula, the small piece of tissue hanging at
the back of the palate - articulation of the /r/ sound in the Tyrolean dialect,
a German dialect spoken in South Tyrol (Italy). Phonologically the sounds
included in the data set are different variants of one abstract underlying category
of /r/ sound (called allophones). As a consequence, they are minimally different
objects from the articulatory point of view, since they share the same point of
articulation in the vocal tract and differ only in the manner of articulation. To
this purpose, we analyze a data set of tongue sagittal profiles of five variants of
uvular /r/1:

r trill: it is produced by holding the back of the tongue very close to the uvula
so that the airflow between the articulators sets them in motion, alternately
sticking them together and moving them apart. The trill variant stands
for a consonant.

t tap: it is produced with a rapid movement of the back of the tongue upward
to contact the palato-uvular region, then returning to the floor of the
mouth. It is a consonant.

f fricative: it is produced by constricting airflow through a narrow channel
at the place of articulation, causing a turbulent aperiodic sound. It stands

1All /r/-variants were classified via a combination of auditory feedback and waveform and
spectrogram inspection using the software Praat (Boersma and Weenink 2010)
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for a consonant, i.e., there is narrow constriction but not full contact be-
tween the tongue and the palate.

a approximant: as in the case of f, the tongue is close to the uvula but
without the tract being narrowed to such an extent that a turbulent sound
is produced.

voc vocalization: the airstream passes through the vocal tract without
major obstacles or constriction being posed by the tongue. In this case,
vocalization variant stands for a back vowel, i.e., something in between an
[a] and an [o].

Data were collected by using ultrasound imaging technique at the Alpine Lab-
oratory of Phonetic Sciences of the Free University of Bozen - Bolzano, Italy
(Vietti et al. 2015).

The comparison between the groups of curves can be naturally embedded
within the framework of null hypothesis significance testing of functional data.
Looking at tongue profiles as functions (e.g., Ferraty and Vieu 2006; Ramsay
and Silverman 2002, 2005) has two main advantages: (i) the whole structure of
data is considered, instead on focusing only at some specific features; and (ii)
derivatives of the data are straightforwardly defined, and they can be analyzed
to provide different insights on the same data.

The literature dealing with null hypothesis significance testing of functional
data has pursued different approaches which can be categorized in parametric
and non parametric methods on the one hand, and global and local methods
on the other one. Parametric methods rely on parametric distributional models
(e.g., Gaussianity) to compute the distribution of the test statistic (or statistics)
under the null hypothesis while non parametric methods rely on computation-
ally intensive re-sampling techniques (e.g., bootstrapping or permuting) able to
bypass the parametric distributional model assessment. Global methods pro-
vides the tester with a “simple” rejection or non-rejection of the null hypothesis.
Local methods instead restate the testing problem at the functional domain level
providing the tester with portions of the domain where the null hypothesis is
rejected or not rejected.

The majority of works dealing with inference for functional data rely on
global parametric methods (e.g., Spitzner et al. 2003; Cuevas et al. 2004; Abramovich
and Angelini 2006; Horváth and Kokoszka 2012; Staicu et al. 2014), but there
is a consistent literature pertaining also global non-parametric methods (e.g.,
Hall and Tajvidi 2002; Cardot et al. 2004; Corain et al. 2014). Recently, some
works have been proposed in the framework of local parametric techniques
(Abramovich and Heller 2005) and local non-parametric techniques (Cox and
Lee 2008; Vsevolozhskaya et al. 2014; Pini and Vantini 2016, 2017).

In this work we consider local non-parametric inferential methods as a start-
ing point, and we extend the literature of this field by introducing the possibility
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of jointly testing multiple aspects of the data related to differential informa-
tion. When dealing with functional data, it is natural to compute derivatives,
which can carry a lot of information on the data themselves. Nevertheless, all
mentioned inferential techniques just focus on the vertical position of the data,
without considering the information carried out by derivatives. The impact of
considering differential quantities together with functional data in the analysis
is well known the literature. It has been deeply investigated in different areas
of it such as smoothing (e.g., Ramsay and Silverman 2005), registration (e.g.,
Srivastava et al. 2011), or dimensional reduction (e.g., Dalla Rosa et al. 2014;
Poyton et al. 2006; Ramsay and Silverman 2005). Nevertheless, derivative-based
approaches have been completely (and surprisingly) overlooked by the literature
focusing on inference on functional data.

In the literature of non-parametric tests of univariate data, some methods
have been proposed to jointly test several aspects of the data (e.g., differences
between two populations in terms of mean and variance). This problem is of-
ten referred-to as “multi-aspect” testing (Brombin and Salmaso 2009; Pesarin
and Salmaso 2010; Salmaso and Solari 2005). In this work, we extend local
non-parametric inferential methods and multi-aspect testing in order to jointly
exploit all information carried out by the functions and their derivatives. Our
proposed technique - namely, multi-aspect interval-wise testing (multi-aspect
IWT) - is an inferential tool for functional data able to select the portions of the
domain imputable for the rejection of a null hypothesis, and to assess whether
the rejection is imputable to specific derivatives (e.g., vertical positions, slopes,
or concavities) of the functions.

The paper is structured as follows. In Section 2 we describe the multi-aspect
interval-wise testing. The method is first described in the case of testing differ-
ences between two functional populations, and then extended to more complex
null hypothesis testing problems. Section 3 reports the analysis of the tongue
profiles. Section A describes a simulation study assessing the performances of
our proposed method, and finally Section 4 draws some conclusions and discuss
future developments. All computations and images have been created using R
(R Core Team 2016). The procedure and analyses presented in this work have
been implemented in the R package tongue.analysis.

2 Methods: Multi-Aspect Interval-Wise Testing

We start describing our approach to functional inference by tackling one of the
simplest and most frequently encountered null hypothesis testing problem, i.e.:
the two-population test. Later in the manuscript we will discuss how to ex-
tend the approach to other more complex null hypothesis testing problems (e.g.,
functional ANOVA).
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2.1 Functional Two-population Test

The aim of the multi-aspect IWT in the two-population framework is to test
differences between two groups of curves and to select the orders of differenti-
ation and the parts of the domain which are imputable for the rejection of the
functional null hypothesis. We embed the testing problem in the space Hd(T )
of all real-valued squared-integrable functions on the domain T with squared-
integrable derivatives up to order d (where T is an interval of R of the form
(a, b). We first describe how to split the problem by performing a test on each
derivative order separately (Subsection 2.1.2), and then discuss how to combine
such partial tests to take into account multiplicity (Subsection 2.1.2). Finally, we
discuss the theoretical properties of the obtained procedure (Subsection 2.1.3).

Let (Ω,F ,P) be a probability space on the space Hd(T ). Assume that

{ξ1i}i=1,...,n1

iid∼ ξ1 and {ξ2i}i=1,...,n2

iid∼ ξ2 are two independent random samples
drawn from the random functions ξ1 and ξ2, respectively, mapping from Ω to
Hd(T ). We aim at testing - in a nonparametric framework - the null hypoth-
esis of distributional equality of the random functions ξ1 and ξ2 against the
alternative hypothesis of difference in distribution:

H0 : ξ1
d
= ξ2 against H1 : ξ1

d

6= ξ2. (1)

With respect to the standard approach, in case of rejection of the null hypothesis,
we aim at imputing the rejection to: (i) specific intervals of the domain of
functional data, and (ii) specific aspects of functional data that can be naturally
conveyed by derivatives.

Our proposal starts from the work by Pini and Vantini (2017) which ap-
proaches the problem of testing hypotheses (1) in the L2(T ) setting by defining
an adjusted p-value function p̃ : T → [0, 1] that can be thresholded to select
intervals of the domain imputable of the rejection of H0. To define the adjusted
p-value function, the authors propose to perform a functional test comparing
the means of the two populations on every interval I ⊆ T . Then, for each point
t ∈ T , the adjusted p-value p̃(t) is defined as the supremum of the p-values of
all tests pertaining to intervals including t. Finally, the authors prove that this
approach provides a control of the so-called interval-wise error rate (IWER), i.e.,
for every interval of the domain where the null hypothesis is true, the selection
procedure allows to control the probability that the interval is wrongly selected.

In this work, to address the problem of testing differences between the two
data distributions taking derivatives into account, first we define - for each
derivative order - an adjusted partial p-value function, which controls the IWER,
singularly for each order of differentiation. Then, we define - for each order of
differentiation - an adjusted multi-aspect p-value function, to jointly control the
IWER on derivatives of order 1, . . . , d.
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2.1.1 Adjusted partial p-value functions.

Let I ⊆ T be a generic interval of the form [t1, t2], with a ≤ t1 < t2 ≤ b.
Consider the restriction of test (1) on interval I:

HI0 : ξI1
d
= ξI2 against HI1 : ξI1

d

6= ξI2 , (2)

being ξIj , j = 1, 2 the restriction of ξj on interval I. A standard functional
permutation test can be performed to test (2) by selecting a global test statistic
stochastically greater under HI1 than under HI0 .For instance, Hall and Tajvidi
(2002) propose a test statistic based on the L2 distance between the two sam-

ple means T I =
∫
I
(
ξ1(t)− ξ2(t)

)2
dt. The test statistic is evaluated under

all possible rearrangements (permutations) of the data ξ11, . . . , ξ1n1 , ξ21, . . . , ξ2n2

over the sample units, and the p-value is computed as the proportion of per-
mutations leading to a test statistic larger or equal to the one computed on
the non-permuted data. The resulting test is exact regardless of the test statis-
tic chosen to compare the two samples and of data distribution (Pesarin and
Salmaso 2010). This yields the possibility of testing several aspects of the data
distribution by choosing different test statistics, each focusing on a particular
deviation from the null hypothesis. Let TDk denote a test statistic focusing on
the order of differentiation k ∈ {1, . . . , d} (some examples of test statistics TDk
will be discussed in Subsection 2.2). Let pI

Dk
be the p-value of the permutation

test (2) based on test statistics TDk . For each order of derivative, an adjusted
p-value function can be computed following the line depicted in Pini and Vantini
(2017):

p̃Dk(t) = sup
I3t

pIDk . (3)

The function p̃Dk(t) provides information about the kth order of differentiation,
and is provided with a control of the IWER. Specifically, ∀α ∈ (0, 1):

∀I ⊆ T : HI0 true⇒ P [∀t ∈ I, p̃Dk(t) ≤ α] ≤ α. (4)

For k = 0, . . . , d we refer to p̃DK (t) as the adjusted partial p-value function of
order k.

2.1.2 Adjusted multi-aspect p-value functions.

For any k = 0, . . . , d, the corresponding adjusted partial p-value function p̃Dk(t)
can be legitimately used to perform the statistical test (1) (Pini and Vantini
2017). We are here not interested in a-priori selecting a specific value of k such
to explore a specific order of differentiation but rather in exploring all the d+ 1
orders of differentiation. The driving idea is to simultaneously exploit different
test statistics to solve the same null hypothesis testing problem such to have a
deeper insight on the rejection of the null hypothesis. If - to achieve this task -
a naive thresholding of the d+ 1 adjusted partial p-value functions p̃Dk(t) were
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Figure 1: Left: original test of H0 against H1; Center: partial tests focusing on three different
aspects associated to alternative hypotheses H1k for k = A,B,C s.t. H1k ⊂ H1; Right: regions
identified by means of multi-aspect testing.

performed, the control of IWER would be lost and a biased domain selection
criterion would be obtained. Specifically - for each interval where the null hy-
pothesis is true - the probability that at least one among the d + 1 adjusted
partial p-value functions p̃Dk(t) is s.t. p̃Dk(t) ≤ α would not be controlled.
To recover this property and regain the control of the IWER while simultane-
ously exploring different levels of differentiation we propose to embed the IWT
approach in a multi-aspect testing framework based on the Close Testing Pro-
cedure (CTP, e.g., Marcus et al. 1976) of partial tests. The integration of the
IWT and multi-aspect testing - which will be detailed in the following - will lead
to the definition of d+ 1 adjusted multi-aspect p-value functions that are used
to perform domain selection while controlling the FWER simultaneously on the
d+ 1 levels of differentiation.

To better understand the idea of multi-aspect testing, look at Figure 1. As-
sume that we were aiming at testing a null hypothesis H0 against the comple-
mentary alternative hypothesis H1 = HC

0 . In addition, assume for instance that
we are focusing on differences in three specific aspects of the data distribution,
related to the three alternative hypotheses H1A, H1B, and H1C . The key points
of multi-aspect tests are: (i) when the original null hypothesis H0 is true, all
partial null hypotheses (i.e., H0A = HC

1A, H0B = HC
1B, and H0C = HC

1C) are true
(i.e., for k = A,B,C: H0 ⊂ H0k) and thus any partial test (i.e., H0A vs H1A,
H0B vs H1B, and H0C vs H1C) can be used also to test the original null hypoth-
esis H0 against H1; (ii) when the partial tests are performed simultaneously the
probability of type-I error has to be controlled for the original null hypothesis
H0 (i.e., a control of the Family-wise error rate is required on the entire family
of partial tests). The major advantage of multi-aspect tests with respect to a
standard test is to provide a better and more detailed insight on the rejection of
the original null hypothesis H0 (i.e., indeed when d partial tests are performed,
2d possible conclusions are possible). The drawback is basically their computa-
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tional burden and a possible lost of power due to both the conservativeness of
the procedure used to strongly control the Family-wise error rate and to the fact
that the truth of all partial null hypotheses does not necessarily imply the truth
of the original null hypothesis (i.e., typically H0 6=

⋂
k=A,B,C H0k).

Going back to our main goal, which is testing the equality in distribution of
two Hd-valued random functions, the multiple aspects that we aim at investi-
gating are differences in the d + 1 orders of differentiation. For each interval I
we replace the original test (2):

HI0 : ξI1
d
= ξI2 against HI1 : ξI1

d

6= ξI2 ,

with d+ 1 partial tests, each focusing on a derivative order:

HI0 : ξI1
d
= ξI2 against HI1k : Ak[D

kξI1 ] 6= Ak[D
kξI2 ], (5)

with k = 0, 1, . . . , d. In partial tests (5), we introduced the operators Ak

which specifically denote the specific distributional aspect of the distribution
of DkξIj that we aim at testing. Ak maps from the space of L2(T )-valued ran-
dom functions to the space of R-valued functions on the domain T . Depending
on the desired focus, Ak can extract a moment-related function, such as the
mean function (i.e., HI1k : E[DkξI1 ] 6= E[DkξI2 ]), the variance function (i.e.,
HI1k : Var[DkξI1 ] 6= Var[DkξI2 ]), a higher moment function (e.g., skewness, kur-
tosis), or alternatively a quantile-related function, such as the median function
or the inter-quartile range function. For simplicity, in the rest of the paper we
assume that the same distributional aspect is tested for all orders of differen-
tiation (i.e., A0 = . . . = Ad). We will indicate it as A. Note that, without
any computational or theoretical difficulty, our proposal can be used also to
test different distributional aspects for different orders of differentiation and/or
different distributional aspects for the same order of differentiation.

To perform the d + 1 partial tests (5) we rely on the possibility (provided
by permutation tests) of using different test statistics to test the same null
hypothesis. We indeed implement d + 1 permutation tests, specifically, relying
on test statistics which are sensitive to specific violations of the null hypothesis
HI0 (i.e., HI1k). Finally, to achieve the strong control of the FWER onto the
d+ 1 partial tests we rely on CTP. In detail, one has to simultaneously test H0

against each possible combination of the partial alternative hypotheses of the
family, and reject the null hypothesis against each partial alternative hypothesis
only if all joint tests involving that partial alternative hypothesis lead to the
rejection of the null hypothesis H0. Specifically, we perform 2d+1 − 1 IWTs
based on “multi-derivative” tests:

HI0 : ξI1
d
= ξI2 against HI1k : A[DkξI1 ] 6= A[DkξI2 ], (6)

with k being any non empty subset of {0, 1, . . . , d} and Dk the linear differ-
ential operator mapping each function of Hd(T ) in the column vector of the

8



corresponding derivatives. Let pI
Dk denote the p-value of test (6). The adjusted

p-value function p̃Dk(t) for test (6) is p̃Dk(t) = supI3t p
I
Dk . Finally, the d+1 ad-

justed multi-aspect p-value functions
≈
pDk(t) are calculated by taking for each

order of differentiation the point-wise maximum of all adjusted p-value functions
p̃Dk(t) involving that order of differentiation, i.e., for k = 0, 1, . . . , d:

≈
pDk(t) = sup

k3k
p̃Dk(t) = sup

k3k
sup
I3t

pIDk . (7)

2.1.3 Theoretical properties

The following theorems characterize the inferential properties of the adjusted

multi-aspect p-value functions
≈
pDk(t). All proofs are reported in the Appendix.

Theorem 1. Weak control of the IWER. Assume that all multi-derivative
tests (6) of HI0 against HI1k are exact. Then, if HI0 is true, the d + 1 adjusted

multi-aspect p-value functions
≈
pDk(t) defined in (7) are provided with a control of

the interval-wise error rate over all d+1 orders of differentiation simultaneously.
In detail, ∀α ∈ (0, 1):

∀I ⊆ T : HI0 true⇒ P
(
∃t ∈ I, ∃k ∈ {0, 1, . . . , d} :

≈
pDk(t) ≤ α

)
≤ α.

Theorem 2. Strong control of the IWER. Assume that all multi-derivative
tests of HI0k against HI1k are exact. Then, the d + 1 adjusted multi-aspect p-

value functions
≈
pDk(t) defined in (7) are provided with a strong control of the

interval-wise error rate over all d + 1 orders of differentiation simultaneously.
Specifically, for all I ⊆ T , let kInull = {k ∈ {0, 1, . . . , d} s.t. HI0k is true} and
HI0knull =

⋂
k∈knull H

I
0k. Then, ∀α ∈ (0, 1):

∀I ⊆ T : HI0knull true⇒ P
(
∃t ∈ I, ∃k ∈ kInull :

≈
pDk(t) ≤ α

)
≤ α.

Theorem 3. Interval-wise consistency. Assume that all multi-derivative
tests (6) of HI0 against HI1k are consistent. Then, if HI1k is true on the whole

interval I, the d + 1 adjusted multi-aspect p-value functions
≈
pDk(t) defined in

(7) are marginally consistent. In detail, ∀α ∈ (0, 1), ∀k ∈ {1, . . . , d}:

∀I ⊆ T : ∀J ⊆ I, HJ1k true⇒ P
(
∀t ∈ I,≈pDk(t) ≤ α

)
−−−−−−−→
n1+n2→∞

1.

Theorem 1 states that – even for finite sample sizes – if a thresholding of

the adjusted multi-aspect p-value functions
≈
pDk(t) is performed at level α, for

each interval where the two functional populations ξ1 and ξ2 are identically
distributed, the probability of wrongly detecting a difference on at least one
order of differentiation in at least one point is guaranteed to be lower than α.
Note that, by Theorem 1, the control of the IWER only holds when the null
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hypothesis of equality in distribution is not violated. If on the same interval the
two populations are not identically distributed, and such difference is imputable
to just few derivatives orders, Theorem 1 does not guarantee a control over the
subset of derivatives related to true partial null hypotheses. This latter stronger
control of the IWER - which is not guaranteed when tests HI0 against HI1k are

exact - is instead guaranteed if also tests HI0k := HI
C

1k against HI1k are exact
(Theorem 2). As we will show in Sections 2.2 and 2.3, in the practice the type
of control (i.e., strong or weak) of the IWER provided by the procedure depends
on the specific choice for the test statistics and on the particular distributional
aspect that is tested. Finally, Theorem 3 guarantees that if on an interval the
two populations are different in terms of the k-th derivative, the probability of
correctly detecting the complete interval goes to one as the sample size increases.

Remark. In the practice, functional data are the result of a smoothing process
of point-wise noisy evaluations of the functional datum. On the one hand, all
used smoothing techniques (e.g., penalized and regression splines or local regres-
sion) allow to obtain estimates of functional data as regular as one desires (i.e.,
choosing d as large as one may desire). On the other hand, accuracy in estimat-
ing the function and its derivatives dramatically decreases as the order of the
estimated derivative increases (e.g., Ramsay and Silverman 2005; Ferraty and
Vieu 2006). Hence, the number d of derivatives to be included in the analysis
should be determined from a compromise between the wish of including higher
order derivatives able to provide new perspectives on the data and the likewise
commendable desire of preserving the statistical power of the testing procedure.
Indeed, a poor estimation of high order derivatives may lead to extremely large
variances in the two samples of derivatives (i.e., under-smoothing) or to annihi-
late the differences between the two samples of derivatives (i.e., over-smoothing).
Unfortunately, a satisfactory compromise between these two extremes is not al-
ways likely to exist as the order of differentiation increases. With respect to
our proposal, the inclusion in the procedure of high order derivatives that were
poorly estimated may possibly lead to an increase of the value of the adjusted
multi-aspect p-value functions, thus still preserving the control of the IWER
but resulting in a consequent loss of power. From a computational perspective,
including high order (and possibly uninformative) derivatives in the analysis
would anyhow increase the computational burden of the procedure. The num-
ber of multi-derivative tests to be included in the multi-aspect IWT increase
indeed exponentially in the number of considered derivatives.

2.2 Comparing means or variances of two functional populations

In the multi-aspect IWT procedure, the original test (1) is replaced by a set
of partial tests (5) on a particular distributional aspect of the distribution of
the k-th derivatives. The choice of the test statistic for partial tests (5) and
multi-derivative tests (6) directly depends on the investigated aspect of the dis-
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tribution. In this Subsection we give some possible choices of test statistics
depending on the choice of A, and discuss the exactness and consistency prop-
erties of the corresponding multi-aspect IWT in the light of Theorems 1, 2, and
3. In detail, we particularly focus on the two following cases:

A = E. Applying the multi-aspect IWT for testing differences in the means of
the first d orders of differentiation (Subsection 2.2.1);

A = Var. Applying the multi-aspect IWT for testing differences in the variances
of the first d orders of differentiation (Subsection 2.2.2).

2.2.1 Comparing the means of two functional populations

Assume that we want to perform a comparison between the two populations in
terms of means of the first d orders of differentiation:

HI0 : ξI1
d
= ξI2 against HI1k : E[DkξI1 ] 6= E[DkξI2 ], (8)

where E denotes the expectation. For each order of differentiation k = 0, . . . , d,
we propose to employ global test statistics which simply integrates over I the
square of the classical asymptotic z-test statistic used in the scalar setting, i.e.:

T IDk =
1

|I|

∫
I

(
s2
Dkξ1

(t)

n1
+
s2
Dkξ2

(t)

n2

)−1 (
Dkξ1(t)−Dkξ2(t)

)2
dt. (9)

Where the integral is defined in a Lebesgue sense. In equation (9), and for

j = 1, 2, Dkξj and s2
Dkξj

are the sample mean function and the sample variance

variance function of the kth derivatives Dkξji, respectively. The corresponding
test statistic for multi-derivative tests is the integrated version of the following
multivariate Hotelling’s T 2-like statistics:

T IDk =
1

|I|

∫
I

(
Dkξ1(t)−Dkξ2(t)

)′(SDkξ1(t)

n1
+
SDkξ2(t)

n2

)−1 (
Dkξ1(t)−Dkξ2(t)

)
dt,

(10)

where Dkξj(t) and SDkξj (t) respectively indicate the sample mean function and

sample variance-covariance matrix function of the random vector Dkξj(t) for
j = 1, 2. Note that - for every differentiation order k and every combination
of differentiation orders k respectively - the test statistics T I

Dk
and T I

Dk are
dimensionless quantities. Hence, they does not depend on the units of measure
of the functional data and of the domain.

With such choices partial tests (5) and multi-derivative tests (6) are exact
and consistent. Hence, both Theorems 1 and 3 hold, and the resulting multi-
aspect IWT is provided with a weak control of the IWER and it is consistent
regardless of the functional distributions and sample sizes. For having instead
the strong control, the tests of HI0k against HI1k and the tests of HI0k against
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HI1k are needed to be exact. Such property is not generally true for permutation
tests above regardless of the data distribution. Under HI0k, the two populations
does not share necessarily the same distribution, and consequently data are not
exchangeable with respect to units. So, the distribution of T I

Dk might not be a
uniform discrete. Nevertheless, further knowledge about the specific application
may turn out into further distributional assumptions which can be sufficient for
obtaining a strong control. A renowned case is the one of shifted populations.
If we know that the two functional populations differ at most for an additive term
∆ (i.e., ξ1

d
= ξ2 +∆ with ∆ ∈ Hd(T )), we trivially have HI0k : Dk∆I = 0 against

HI1k : Dk∆I 6= 0. In this case, it is straightforward to prove that under H0k the
n1 + n2 kth derivatives are exchangeable. Being the test statistics T I

Dk based

on the kth derivatives with k ∈ k exclusively, all multi-derivative tests of HI0k
against HI1k are exact. The standard scenario of two homoscedastic Gaussian
populations, which is often encountered in the literature, fits within this special
case.

2.2.2 Comparing the variances of two functional populations

Assume that we want to perform a comparison between the two populations in
terms of variances of the first d orders of differentiation:

HI0 : ξI1
d
= ξI2 against HI1k : Var[DkξI1 ] 6= Var[DkξI2 ]. (11)

When comparing two groups in terms of variances, the adjusted partial p-
value functions for derivative orders k can be computed from permutation tests
based on the integrated point-wise statistic V I

Dk
:

V IDk =

∫
I

(
log

sDkξ1(t)

sDkξ2(t)

)2

dt, (12)

where, for j = 1, 2: sDkξj (t) is the sample standard deviation of the kth deriva-
tives at time t for the jth sample. The multi-derivative tests indexed by k can
be instead built on the following extension of statistic V I

Dk
to the multivariate

case:

UIDk =

∫
I

∑
k∈k

(
log

sDkξ1(t)

sDkξ2(t)

)2

dt. (13)

Also in this case the test statistics V I
Dk

and UI
Dk are dimensionless quantities,

hence, they does not depend on the units of measure of the functional data and
of the domain. With such choices the partial tests (5) and the multi-derivative
tests (6) are all exact and consistent. Hence, Theorems 1 and 3 hold, and
the resulting multi-aspect IWT is provided with a weak control of the IWER
and it is consistent regardless of the family of the two functional distributions
and of the sample sizes. Also in thsi case further knowledge about the specific
application may turn out into further distributional assumptions which can be
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sufficient for obtaining a strong control of the IWER. A renowned case is the one
of shrunk/dilated populations around the common mean. If we know
that the two functional populations share the common mean µ and could differ
at most for a multiplicative term δ (i.e., (ξ1 − µ) d

= δ · (ξ2 − µ) with δ ∈ R+ and
µ ∈ Hd(T )), we trivially have HI0k : δ = 0 and HI1k : δ 6= 0. In this case we have
that HI0k ≡ H0 for all k and so that all multi-derivative tests of HI0k against
HI1k are exact. The scenario of two Gaussian populations with the same mean
fits within this case. Moreover, for large sample sizes the strong control of the
IWER can be achieved also in the case of different means by simply re-centering
the two samples to a common value.

Remark. In the framework that we proposed - and in most applicative cases
- the target of the analysis is comparing the two populations either in terms
of means, or in terms of variances. Nevertheless, means and variances can be
considered themselves as different aspect of the same distribution. Hence, it
is possible - if needed - to compare the two populations in terms of mean and
variance jointly, in the framework of multi-aspect testing. This would require to
extend the procedure by performing multiple tests on each possible combination
of the considered aspects, i.e., mean and variances of each set of derivative or-
ders. All tests can be constructed, for instance, by applying the non-parametric
combination of single-aspect tests (Pesarin and Salmaso 2010). Note that, as
on one hand, this extension would increase the amount of information provided
by the procedure, on the other hand it would increase the computational com-
plexity, and possibly decrease the power of the resulting overall procedure, due
to the high amount of tests included in the CTP. Hence, also in this case the
amount of aspects jointly included in the analysis should be determined from a
compromise between the wish of adding relevant information to the study and
the desire of preserving the statistical power of the procedure.

2.3 Extensions to the Functional ANOVA

The procedure detailed in Subsection 2.1 for testing differences between two
populations can be extended to test different functional hypotheses. What is
required to perform the multi-aspect IWT in a general framework is to define
suitable test statistics to be applied to test the null hypothesis on each interval of
the domain, both for partial tests, and for multi-derivative tests. We here detail
how to extend multi-aspect IWT to test differences between several functional
populations.

2.3.1 Functional ANOVA for comparing means

Assume that we observe J > 2 groups of functional data. Assume that, for
all group j = 1, . . . , J , data {ξji}i=1,...,nj are i.i.d. observations drawn from
the random function ξj , mapping from Ω to Hd(T ). We aim at testing the

13



null hypothesis of distributional equality between all ξj against the alternative
hypothesis of difference in distribution between at least two random functions:

H0 : ξ1
d
= ξ2

d
= . . . d

= ξJ against H1 : ∃j, j′ s.t. ξj
d

6= ξj′ . (14)

In the framework of multi-aspect testing, and keeping in mind that we are in-
terested in comparing the means, test (14) can be split in the following partial
tests on interval I:

HI0 : ξI1
d
= ξI2

d
= . . . d

= ξIJ against HI1k : ∃j, j′ s.t. E[Dkξj ] 6= E[Dkξj′ ]. (15)

The adjusted partial p-value functions for FANOVA test (14) can be com-
puted from permutation tests based on the integrated F -test statistic. Let
k ∈ {0, . . . , d} denote the explored derivative order. The associated test statistic
F I
Dk

is:

F IDk =

∫
I

∑J
j=1 nj

(
Dkξj(t)−Dkξ(t)

)
/(J − 1)∑J

j=1

∑nj
i=1

(
Dkξji(t)−Dkξj(t)

)
/(n− J)

dt. (16)

The multi-derivative tests can be instead built on the following statistic, that
is the opposite integrated Wilk’s lambda statistic LI

Dk :

LIDk = −
∫
I

log
|WDkξ(t)|

|BDkξ(t) +WDkξ(t)|
dt, (17)

where BDkξ(t) and WDkξ(t) are respectively the between and within sample

variance-covariance matrices of data Dkξ(t):

BDkξ(t) =
J∑
j=1

nj

(
Dkξj(t)−Dkξ(t)

)(
Dkξj(t)−Dkξ(t)

)′
WDkξ(t) =

J∑
j=1

nj∑
i=1

(
Dkξij(t)−Dkξj(t)

)(
Dkξij(t)−Dkξj(t)

)′
.

Note that the theoretical properties of the multi-aspect IWT in this case
are the same as for the case of comparing two means. In detail, all multi-
derivative tests HI0 against HI1k are exact for any sample size and consistent,
so we have weak control of the IWER and consistency. Similarly to the two
population case we have the strong control of the IWER in the case of “at-most-
shifted” populations with the special case of homoscedastic Gaussian population
included.

2.3.2 Functional ANOVA for comparing variances

Assume that we observe J > 2 groups of functional data. Assume that, for
all group j = 1, . . . , J , data {ξji}i=1,...,nj are i.i.d. observations drawn from
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the random function ξj , mapping from Ω to Hd(T ). We aim at testing the
hypotheses (14), and we are interested in comparing the variances of the gropus.
Test (14) can be then split in the following partial tests on interval I:

HI0 : ξI1
d
= ξI2

d
= . . . d

= ξIJ against HI1k : ∃j, j′ s.t. Var[Dkξj ] 6= Var[Dkξj′ ].
(18)

When comparing J > 2 groups in terms of variances, the adjusted partial
p-value functions for the derivative orders k ∈ {0, . . . , d}, can be computed from
permutation tests based on the integrated Bartlett’s test statistic BI

Dk
:

BIDk =

∫
I

(n− J) ln |Spooled
Dkξ

(t)| −
∑J

j=1 (nj − 1) ln |SDkξj (t)|

1 + 1
3(J−1)

[∑J
j=1

(
1

nj−1

)
− 1

n−J

] dt,

where Spooled
Dkξ

(t) = 1
n−J

∑J
j=1 (nj − 1)SDkξj (t).

The multi-derivative tests indexed by k can be instead built on the integrated
Box’s M test statistic MI

Dk :

MIDk =

∫
I

(n− J) ln |Spooled
Dkξ

(t)| −
J∑
j=1

(nj − 1) ln |SDkξj(t)|

dt.

As before we always have the weak control of the IWER and consistency
since all all multi-derivative tests HI0 against HI1k are exact for any sample size
and consistent. For example, similarly to the two population case, the strong
control of the IWER holds in the case of “at-most-shrunk/dilated” populations
with the same mean with the special case of Gaussian populations with the same
mean included. Moreover, for large sample sizes the strong control of the IWER
can be achieved also in the case of different means by simply re-centering the J
samples to a common value.

3 Functional data analysis of articulatory data

3.1 Data acquisition and processing

Eighty Tyrolean words containing /r/ were selected in order to elicit the phoneme
in all possible syllable contexts and positions: our dataset is the result of a two
repetition of the list of the selected words by a 33 y.o. female native Tyrolean
speaker with no reported speech disorders. The tongue positions during the
pronunciation of each word was obtained via the Ultrasound Tongue Imaging
technique (UTI). UTI makes it possible to record midsagittal or coronal plane
tongue movements by placing an ultrasound (US) transceiver under the speakers’
chin. The transceiver produces an ultrasound beam that travels upward through
the tongue body. When the beam reaches the upper surface of the tongue it is
scattered, refracted or reflected back because of the mismatch between the high
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Figure 2: Left: snapshot of a dynamic ultrasound image. Right: same snapshot processed by
the Articulate Assistant Advance software.
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Figure 3: Sample mean curves of the five groups identified by the /r/ variants. Each image
displays the tongue root on the left side and the tongue tip on the right side.

density of the muscles and the low density of the air (acoustic impedance). The
reflection of the beam off the tongue surfaces is then detected by the transceiver
and a white line is produced on the ultrasound image. The higher is the density
mismatch, the brighter is the imaged tongue profile. Left panel of Figure 2 is an
example of result of the US imaging procedure.

In order to record and analyze ultrasound tongue images the Ultrasonix
Tablet Research system coupled to a C9-5/10 transceiver and the Articulate
Assistant Advance (AAA) software were used. The AAA software (v. 2.16)
enables to draw curves on top of ultrasound video frames and extract tongue
curves from US recordings. Figure 2 on the right reports an illustration of the
AAA environment. A fan shaped grid composed of 42 radial axes is constructed
matching the path taken by the US beams that radiate out from the probe so
to specify the area of the image that contains valid US data. An upper limit
corresponding to the palate and a lower limit roughtly corresponding to the
genioglossus muscle are also set. Within the defined area the AAA software
searches for the brighter point on each of the 42 axes by means of looking for
the gradient of the image. The result of this process is a set of 42 coordinates
of the identified points for each tongue profile.

A penalized cubic B-spline smoothing procedure was used to obtain the an-
alyzed functional data from the 42 discrete observations. As suggested in the
literature (e.g., Ramsay and Silverman 2005), since our analysis aims at test-
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ing differences up to the second derivative of data, we used B-splines of order
six, introducing a penalty term on squared L2 norm of the fourth derivative
of the curve. Even though spatial coordinates are different for each curve, for
sake of replicability we choose to use a common grid of knots for all curves.
The knots position on the t-axis is found as the projection of the intersection
points between the half circle that rounds up the mean curve of the n functions,
and the radiant split of the AAA software (see the right panel of Figure 2).
The smoothing parameter is computed through the generalized cross-validation
method. Figure 3 shows the obtained smoothed vertical positions, slopes and
concavities (first row), and the sample mean/variance curves of the five groups
identified by the /r/ variants (second/third row). Different colors are linked to
different /r/ variants emerged from the spectroacoustic analysis.

3.2 Results

First, a multi-aspect IWT-based FANOVA (14) is performed to test if there is a
significant difference between at least two among the five variants, focusing on
detecting differences between the means (test statistics (9), (10)). The result is
summarized in Figure 4. The left panel shows the three level-2 adjusted p-value

functions
≈
pD0(t) (red),

≈
pD1(t) (green), and

≈
pD2(t) (blue). On the right panel

we report the intervals presenting statistically significant differences between the
groups. The titles of the two images report the overall p-value (i.e., the p-value
of the functional test on the whole domain jointly on all derivatives), as well as
the three global p-values for the test based on curves, slopes, and concavities.

First of all, for each domain point there is a significant difference between at
least two variants in the vertical positions of the tongue. The slopes of the five
variants are significantly different on each domain point except for the central
part, i.e. in the range [75, 90], due to the fact that the place of articulation is
common to all variants: the speaker can not change the tongue slope in that
portion without changing the place of articulation. Significant differences in
concavity may be noticed in an anterior region of the tongue, if compared to the
major place of articulation. This result might represent a novel acquisition of
the analysis, indicating the presence a secondary articulation feature in some of
the r-variants.

To understand more in detail the specific differences between the five vari-
ants, we performed a multi-aspect IWT-based analysis on each pairwise group
comparison. The results are summarized in Figure 5. The main diagonal of
the figure reports the smoothed tongue profiles of the five /r/ variants. Lower
extra-diagonals report the multi-aspect adjusted p-value functions of the three
derivative orders. Upper extra-diagonals report the intervals where statistically
significant differences between each couple of groups occur for each derivative
order. First of all, note that voc curves are statistically different from all other
variants except for a. This sounds reasonable if you remind that the vocalized
/r/ is a vowel-like sound while all the others are consonants, and that from
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Figure 4: Results of the FANOVA test on the mean equality of groups. Left: multi-aspect
adjusted p-value function for curves (red), first derivatives (green), and second derivatives
(blue). Right: domain intervals selected as statistically relevant for each derivative order.
Selected intervals are marked by using different color gradations corresponding to 5% and 1%
levels. Each box displays the tongue root/tip on the left/right side.

the articulatory perspective the approximant variant is much more similar to a
vowel than to a consonant. In addition, only voc distinguishes itself because of
concavity. This can be explained observing that vocalized variants do not have
to touch the palate. Indeed concavity of voc curves should be smaller smaller
than the one of consonants.

Finally, let us focus on the images reporting a vs. f and voc vs. f. They
are similar if we consider vertical positions. If we look at comparisons involving
the first and second derivative orders, the picture changes: a vs. f box does not
show relevant differences while voc vs. f box does. This supports the choice of
distinguishing between vocalized and approximant variants. The approximant
/r/ is like a vowel if we look at the degree of constriction, but it shows slope and
concavity own of consonants. This confirms that the proposed method makes it
possible to capture different articulatory properties of sounds.

4 Conclusions

We presented the multi-aspect IWT procedure, an inferential method for func-
tional data able to take into account the information about derivatives. Multi-
aspect IWT is first presented in the framework of testing differences between
two functional populations. In this framework, in case of rejecting the null
hypothesis of equality in distribution, multi-aspect IWT is able to select the
derivative orders presenting significant differences between the two populations,
and the intervals of the domain imputable for such a difference for each deriva-
tive order. This is done by providing a multi-aspect adjusted p-value function
for each explored derivative order. We proved that the technique is provided
with a multi-aspect control of the interval-wise error rate. If significant inter-
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Figure 5: Results of the pairwise tests on the mean equality of groups. Main diagonal:
smoothed tongue profiles. Lower extradiagonals: level-2 adjusted p-value functions. Upper
extra-diagonals: mean functions of the compared groups and domain intervals selected as sta-
tistically relevant at 5% (light) and 1% levels (dark). Each box displays the tongue root/tip
on the left/right side.
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vals are selected by thresholding the multi-aspect adjusted p-value functions at
level α: for any interval where the null hypothesis is true, the probability of
detecting a difference is guaranteed to be lower than α. We discussed how to
extend multi-aspect IWT to the framework of testing differences between more
than two functional populations (Functional ANOVA), and to test differences
between the variances of two or more populations.

The procedure can be applied considering derivatives up to any order. Nev-
ertheless considering higher derivative orders poses two main disadvantages: (i)
high derivative orders are often difficult to estimate when dealing with real data;
and (ii) adding up derivative orders would decrease the power of the procedure.
In general, we suggest studying the orders of derivatives that are informative for
the interpretation of the results.

The implementation of the multi-aspect IWT procedure and part of the data
analyzed in the current paper are provided in the tongue.analysys R package,
included within this paper as supplementary material. The package provides
functions to smooth the data, to perform the multi-aspect IWT for comparing
means and/or variances, and plotting functions to create graphical outputs like
the ones presented in Figure 5.

We applied the multi-aspect IWT to the analysis of tongue profiles for a
study on allophonic variations of /r/ in Tyrolean, a German dialect spoken in
South Tyrol. We tested differences between the profiles of the tongue of a native
speaker of Tyrolean pronouncing five variants of uvular /r/. The five groups
of curves correspond to five different manners of articulation: vocalized /r/,
approximant, fricative, tap, and trill. We showed how the multi-aspect IWT is
able in this case of giving a deep understanding of the differences between the
five groups, providing practitioners with a lot of useful information.

In this work we studied the tongue profiles of a single person during a session
of recording. Future works might go deeper into the matter by addressing multi-
subject and multi-session cases. That would require aligning functional data
(Ramsay and Silverman 2005). Note that in such a case, the multi-aspect IWT
will be still an appropriate statistical tool.
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A Simulation study

In this Section we report the results of a simulation study aiming at assessing the
properties of the multi-aspect IWT. The simulation study is devoted to explore
an example in which we aim at testing differences between groups in terms of
variance. In such a case, on one hand Theorems 1 and 3 guarantee respectively
the weak control of the IWER and the marginal interval-wise consistency. The-
orem 2 - on the other hand - can only be applied in the case of shrunk/dilated
populations around the common mean.

Functional data are simulated on the interval [0, 1] from a simple model
consisting of one constant term plus one harmonic. We simulate two independent
samples of functional data ξji : [0, 1]→ R of sizes n1 = n2 = 10 according to the
following models:

ξ1i(t) = A1i +B1i sin(2πt) + C1i cos(2πt) i = 1, . . . , n1;

ξ2i(t) = A2i +B2i sin(2πfInflt) + C2i cos(2πfInflt) i = 1, . . . , n2,

where the term fInfl is a fixed inflation factor for the frequency of the second
population, while terms Aji, Bji, and Cji (with j = 1, 2) are independent random
variables sampled independently from the following uniform distributions:

A1i, B1i, C1i
iid∼ U

[
−
√

12

2
,+

√
12

2

]

A2i
iid∼ U

[
−
√

12

2
σInfl,+

√
12

2
σInfl

]
; B2i, C2i

iid∼ U

[
−
√

12

2
,+

√
12

2

]
.

Consequently, the mean and variance of the coefficients are:

E[A1i] = E[B1i] = E[C1i] = 0

E[A2i] = E[B2i] = E[C2i] = 0

Var[A1i] = Var[B1i] = Var[C1i] = 1

Var[A2i] = σInfl; Var[B2i] = Var[C2i] = 1.

The term σInfl is a fixed inflation factor for the variance of the second population.
Hence, the two populations are identically distributed if and only if σInfl =
fInfl = 1. Note that if fInfl = 1, the two populations are shrunk/dilated
around the common mean and conditions of Theorem 2 are met.
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We test differences between these two functional samples by means of the
multi-aspect IWT by embedding the data in H2([0, 1]) and jointly testing the
data and their first derivatives (i.e., d = 1). Note that we have E[ξ1i(t)] =
E[Dξ1i(t)] = E[ξ2i(t)] = E[Dξ2i(t)] = 0, i.e., the means of the functions and on
the first derivatives of the two populations coincide. The variances of the data
of the two samples and of the corresponding first derivatives are instead:

Var[ξ1i(t)] = 1 + sin2(2πt) + cos2(2πt) = 2;

Var[ξ2i(t)] = σ2Infl + sin2(2πt) + cos2(2πt) = σ2Infl + 1;

Var[Dξ1i(t)] = (2π)2 sin2(2πt) + (2π)2 cos2(2πt) = (2π)2;

Var[Dξ2i(t)] = (2πfInfl)
2 sin2(2πt) + (2πfInfl)

2 cos2(2πt) = (2πfInfl)
2.

So, the two populations differ for their variances in a constant way through the
whole domain. The terms σInfl and fInfl influence separately the variance of
the functional data and the one of the first derivatives. A natural choice in this
case is then to apply the multi-aspect IWT for the comparison of variances 11
based on statistics (12) and (13).

We first describe the results of the multi-aspect IWT when applied to one in-
stance of the simulated data. Then, we present the results - in terms of point-wise
probability of rejecting the null hypothesis and IWER - obtained by simulating
the data-sets from the described model 5000 times.

A.1 Analysis of one instance of the simulated data.

Figure 6 on the top displays an instance of the simulated data for the values
(σInfl, fInfl) ∈ {1, 7} × {1, 5}. Figure 6 on the bottom displays the adjusted
multiple-aspect p-value functions for testing the functional data displayed on
the top panels of the same Figure. The four panels are associated to the four
simulated data sets shown in the top panels of the same Figure. The adjusted
p-value functions corresponding to functional data and first derivatives are dis-
played with red and green lines, respectively.

The results can be summarized as follows:

σInfl = 1, fInfl = 1. We have ∀t ∈ [0, 1]:
≈
pD0(t) > 0.1,

≈
pD1(t) > 0.1. Hence, we

have no evidence for rejecting the null hypothesis of equality in distribu-
tion.

σInfl = 7, fInfl = 1. We have ∀t ∈ [0, 1]:
≈
pD0(t) < 0.05,

≈
pD1(t) > 0.1. Hence,

we have a strong evidence for stating that the two populations differ in
terms of vertical positions, but not in terms of slopes.

σInfl = 1, fInfl = 5. We have ∀t ∈ [0, 1]:
≈
pD0(t) > 0.8,

≈
pD1(t) < 0.05. Hence,

we have a strong evidence for stating that the two populations differ in
terms of slopes, but not in terms of vertical positions.
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Figure 6: Top panels: instance of the simulated data of the two samples for the values
(σInfl, fInfl) ∈ {1, 7} × {1, 5}; Bottom panels: adjusted multiple-aspect p-value functions
≈
pD0(t) and

≈
pD1(t) for the same data.
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σInfl
1.0 2.5 4.0 5.5 7.0

fInfl

1 0.1 9.3 57.9 85.7 95.4
2 0.0 10.5 60.3 86.8 95.5
3 0.1 10.9 62.1 87.0 95.6
4 0.0 11.6 61.8 87.5 95.8
5 0.1 11.6 62.9 87.6 95.9

Table 1: Probability of rejection (in percent-
age) of H0 against H10 at level α = 5%.

σInfl
1.0 2.5 4.0 5.5 7.0

fInfl

1 0.1 0.1 0.1 0.1 0.1
2 30.4 32.6 34.3 34.5 34.6
3 82.2 83.6 84.8 85.0 85.0
4 95.9 96.5 96.8 96.8 96.8
5 99.0 99.0 99.1 99.1 99.1

Table 2: Probability of rejection (in percent-
age) of H0 against H11 at level α = 5%.

σInfl
1.0 2.5 4.0 5.5 7.0

fInfl

1 2.4 1.5 1.6 1.6 1.6
2 0.9
3 0.8
4 1.0
5 0.9

Table 3: IWER at level α = 5%.

σInfl = 7, fInfl = 5. We have ∀t ∈ [0, 1]:
≈
pD0(t) < 0.05,

≈
pD1(t) < 0.05. Hence,

we have a strong evidence for stating that the two populations differ both
in terms of vertical positions and in terms of slopes.

A.2 Point-wise probability of rejection and IWER.

We now discuss the point-wise probability of rejecting the null hypothesis H0

in favor of H10 (i.e., difference in the vertical positions) and H11 (i.e., difference
in terms of slopes), and the IWER. Probabilities are estimated by generating
5000 data-sets from the described models and computing the probabilities of
rejecting the null hypothesis at the nominal level α = 0.05. First note that -
since the generative model is stationary - the point-wise probability of rejection
is constant through all the domain. Hence, without loss of generality we report
in Tables 1 and 2 the probability of rejecting the null hypothesis on the point
t = 0.5, respectively in favor of H10 and H11.

Table 3 reports instead the IWER, that is in this case, the probability of
rejecting H0 on at least one point of the domain in at least one derivative order
in the scenario σInfl = fInfl = 1, the probability of rejecting H0 on at least one
point of the domain in the test on vertical positions in the scenarios σInfl =
1, fInfl 6= 1, and the probability of rejecting H0 on at least one point of the
domain in the test on slopes in the scenarios σInfl 6= 1, fInfl = 1. The weak
control of the IWER is achieved if IWER ≤ α in the scenario σInfl = fInfl = 1,
while the strong control is achieved if IWER ≤ α also in all other scenarios
where at least one null hypothesis is true.

Note that as expected when the null hypothesis is true (σInfl = fInfl = 1)
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the point-wise probability of rejection in both partial tests and the IWER are
controlled. The probability of correctly detecting a difference in the variance of
vertical positions increases in the term σInfl for all values of fInfl. Conversely,
the probability of correctly detecting a difference in the variance of slopes in-
creases in the term fInfl for all values of σInfl. Interestingly, the IWER is also
controlled here in a strong sense in all explored cases (i.e., also when fInfl 6= 1).
In this explored case the strong control of the IWER seems to be quite robust
with respect to violations of the assumptions of Theorem 2.

B Proofs

Theorem 1. Let I denote an interval where HI0 is true, i.e., ξI1
d
= ξI2 . Consider

the test of hypotheses:

HI0 : ξI1
d
= ξI2 against HI1{0,...,d} : ∃k ∈ {0, . . . , d} s.t. A[DkξI1 ] 6= A[DkξI2 ],

that is the multi-derivative test (6) including all explored derivative orders. This
test is also exact. This implies that we are on the conditions of Theorem 3 of
Pini and Vantini (2017). Specifically, ∀α ∈ (0, 1):

P (∃t ∈ I,∃k ∈ {0, . . . , d} s.t. p̃D{0...,d}(t) ≤ α) ≤ α.

Finally, note that, ∀k ∈ {0, . . . , d}, the k-th order multi-aspect adjusted p-

value function
≈
pDk(t) is the supremum of all adjusted p-value functions of tests

including k. So, we have, ∀k ∈ {0, . . . , d}, ∀t ∈ I:

≈
pDk(t) ≥ p̃D{0...,d}(t).

Hence, we can conclude that ∀α ∈ (0, 1):

P
(
∃t ∈ I, ∃k ∈ {0, . . . , d} s.t.

≈
pDk(t) ≤ α

)
≤ α.

Theorem 2. Let I ⊆ T be an interval of the domain, and let us define

kInull =
{
k ∈ {0, . . . , d}s.t.HI0k is true

}
.

Consider the test of hypotheses

HI
0kInull

: ∀k ∈ kInullA[DkξI1 ] = A[DkξI2 ]

against

HI
1kInull

: ∃k ∈ kInull s.t. A[DkξI1 ] 6= A[DkξI2 ].
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This test is exact, so we are on the conditions of Theorem 3 of Pini and Vantini
(2017). Specifically, ∀α ∈ (0, 1):

P
(
∃t ∈ I,∃k ∈ kInull s.t. p̃

D
kI
null

(t) ≤ α
)
≤ α.

Finally, note that, ∀k ∈ kInull, the k-th order multi-aspect adjusted p-value func-

tion
≈
pDk(t) is the supremum of all adjusted p-value functions of tests including

k. So, we have, ∀k ∈ kInull, ∀t ∈ I:

≈
pDk(t) ≥ p̃

D
kI
null

(t).

Hence, we can conclude that ∀α ∈ (0, 1):

P
(
∃t ∈ I,∃k ∈ kInull s.t.

≈
pDk(t) ≤ α

)
≤ α.

Theorem 3. Let k ∈ {0, . . . , d}, and let I denote an interval such that ∀J ⊆
I, HJ1k is false. This also implies that ∀k 3 k, ∀J ⊆ I: HJ1k is false. All
partial tests of HJ0 against HJ1k and all multi-derivarive tests of HJ0 against
HJ1k are consistent. Hence, the conditions of Theorem 4 of Pini and Vantini
(2017) hold, and all partial and multi-derivative interval-wise tests are consistent.
Specifically, ∀k 3 k, ∀α ∈ (0, 1) and for n→∞:

P (∀t ∈ I, p̃Dk(t) ≤ α)→ 1.

i.e., ∀k 3 k, ∀t ∈ I, p̃Dk(t)
a.s.−−−→
n→∞

0. At this point, note that
≈
pDk(t) =

supk3k p̃Dk(t). Hence we also have ∀t ∈ I, ≈pDk(t)
a.s.−−−→
n→∞

0, i.e., ∀α ∈ (0, 1) and

for n→∞:
P
(
∀t ∈ I, ≈pDk(t) ≤ α

)
→ 1.

C Results of variance inspection

Figures 7 and 8 report the results of the FANOVA test and pairwise tests com-
paring the variants in terms of variances (see Subsection 2.2.2).
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Figure 7: Results of the FANOVA test on the variance equality of groups. On the left side,
the level-2 adjusted p-value function for curves (red), first derivatives (green), and second
derivatives (blue). On the right side, the domain intervals selected as statistically relevant
for each derivative order. Selected intervals are marked by using different color gradations
corresponding to 5% and 1% levels, visualized by the dashed grey lines in the image on the left
side. Each box displays the tongue root/tip on the right/left side.
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Figure 8: Results of the pairwise tests on the variance equality of groups. Main diagonal:
smoothed tongue profiles. Lower extradiagonals: level-2 adjusted p-value function for curves
(red), first derivatives (green), and second derivatives (blue). Upper extra-diagonals: domain
intervals selected as statistically relevant for each derivative order. Selected intervals are marked
by using different color gradations corresponding to 5% and 1% levels, visualized by the dashed
grey lines in the image on the left side. Each box displays the tongue root/tip on the right/left
side.
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