
MOX-Report No. 28/2015

Beading instability in soft cylindrical gels with capillary
energy: weakly non-linear analysis and numerical

simulations

Taffetani, M.; Ciarletta, P.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Beading instability in soft cylindrical gels with capillary energy:

weakly non-linear analysis and numerical simulations

Matteo Taffetani1 Pasquale Ciarletta2

June 10, 2015

1 MOX, Dipartimento di Matematica, Politecnico di Milano Fondazione CEN
Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

E-mail: matteo.taffetani@polimi.it
2 MOX, Dipartimento di Matematica, Politecnico di Milano Fondazione CEN

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
CNRS and Institut Jean le Rond d’Alembert, UMR 7190, Université Paris 6
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Abstract

Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a
competition between surface tension and bulk elastic energy. In contrast to the Rayleigh-
Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward
a stable beading, which strongly differs from the buckling arising in compressed elastic
cylinders.
This work proposes a novel theoretical and numerical approach for studying the onset and
the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-
Hookean hyperelastic material with capillary energy at the free surface, subjected to axial
stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability
analyses for the problem, and numerical simulations, investigating the fully non-linear
evolution of the beaded morphology, are performed. The theoretical results prove that an
axial elongation can not only favour the onset of beading, but also determine the nature
of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also
derived from finite element numerical simulations, showing two peculiar morphological
transitions when varying either the axial stretch or the material properties of the gel.
Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection
sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal
imperfection can resonate with the corresponding marginally stable solution, thus selecting
the emerging beading wavelength.
In conclusion, the results of this study provide novel guidelines for controlling the beaded
morphology in different experimental conditions, with important applications in micro-
fabrication techniques, such as electrospun fibres.

1 Introduction

Shape instability in elastic materials has historically been a subject of great interest in ap-
plied mechanics. Early works focused on determining the stability conditions for avoiding the
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loss of structural integrity and functionality, e.g. in shell structure [33]. Conversely, a more
recent idea is to control the conditions triggering the onset of the instability and the pattern
evolution for guiding applications in many fields [29], such as developing tunable pattern [44],
improving the efficiency of electronic devices [13, 28] or understanding the shape emergence
in biological systems [37].

As pointed out in the review proposed by Li et al. [30], three main classes of instability
mechanisms can be identified: wrinkling, folding and creasing (also referred to as sulcification).
Since the pioneering work of Biot [5] on the wrinkling of an incompressible elastic half-space,
it has been shown that a compressive strain may trigger a bifurcation in systems which are
uniquely governed by bulk elasticity. More recently, Cao and Hutchinson [10] evaluated the
wrinkling to creasing transition in compressed elastomers, whilst the nature of sulcification
in a compressed elastic half-space has been investigated by Hohlfeld and Mahadevan [25] and
Tallinen et al. [46], also introducing numerical tools. Theoretical and numerical analysis of
the wrinkling onset and post-buckling evolution in film-substrate systems under compression
has been proposed by Cao and Hutchinson [9] and Hutchinson [26] for a wide range of material
properties. The formation of stable folds in compressed thin films over soft substrates has
been, instead, investigated by Brau et al. [7]. In layered materials, the competition of the bulk
energies has been also found to determine pattern selection and dynamics in many biological
systems, from solid tumours [15] to tubular tissues [19], in dependence of both size and elastic
effects.

When a superficial energy is considered, its competition with the bulk energy has been
found to trigger morphological transitions both under compression and elongation. This phe-
nomenon is well known in fluid mechanics since the experimental work of Savart [42] and the
theoretical analysis of Reyleigh [40]: the Rayleigh-Plateau instability (RPI) describes how a
viscous fluid jet can undergo a varicose shape transition driven by the competition between
the surface tension and the fluid inertia. Regarding viscous fluids, the capillary instabilities
are still widely studied for their importance in guiding fabrication techniques [41], such as the
use of droplet impact to select patterns in folded solid structures [2].
Competition between bulk and superficial energies in solids can be found in the case of the
Asaro-Tiller-Grinfeld instability [3, 23], a typical example of how the combination of the
superficial tension and the accumulation of the elastic stresses makes a folded structure ener-
getically more favourable during the deposition process of an elastic solid on a substrate, and
in case of soft layers under equal bi-axial compressive strain, where the emergence of different
surface patterns has been proved by means of a weakly non-linear analysis [16].
Focusing on the particular case of soft elastic cylinders with a superficial energy, Barriere et
al. [4] proved that capillarity may drive the onset of a long-wavelength peristaltic pattern
without the application of any external strain, differently from the short-wavelength buckling
arising in compressed cylinders with negligible surface effects [47]. More recently, Mora et
al. [35] proposed a linear stability analysis for this elastocapillary problem, validating their
theoretical predictions with experiments made on soft gel fibres. It has been proved that a
typical length Lec, defined as the ratio between the surface tension and the shear modulus of
the material, controls the peristaltic instability, competing with the characteristic dimension
of the body: therefore, the miniaturization of the elastic system is intuitively found to favour
the onset of a shape instability. Recent experiments have also shown that, when Lec is of
the same order of the characteristic dimension, a fibre elongation can even favour the onset
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of this instability, as seen in soft elastic gels [34], electrospun fibres [21, 36], stretched nerves
[37] and mitochondria [27].
Despite this large availability of experimental evidences, there still lacks a comprehensive
mathematical analysis describing the interplay between the geometry, the applied stretch
and the material properties for driving pattern formation, especially far beyond the linear
stability threshold. The aim of this work is to provide a theoretical foundation of beading
instability, through both linear and weakly non-linear stability analysis, and to perform a
numerical investigation of its fully non-linear behaviour. The cylinder is assumed to behave
as a neo-Hookean incompressible hyperelastic material with a capillary energy at the free
surface. In fact, soft gels as the ones investigated in Matsuo and Tanaka [34] and Mora et
al. [35], are mostly composed by water immersed in a cross-linked polymeric network, which
allow absorbing even larger quantities of water without dissolving. Accordingly, soft gels can
undergo drastic volume changes in response to solvent concentration, showing a solid elastic
behaviour with fluid-like surface tension at the free surface [43].

The paper is organized as follow. In Section 2, we introduce the elastocapillary model and
we derive a variational formulation using a suitable generating function for the axisymmetric
problem. The linear stability analysis is performed in Section 3 whilst the weakly non-linear
study is derived in Section 4. Two different experimental conditions are investigated: (i)
the elastocapillary ratio Lec is kept fixed whilst the fibre is elongated; (ii) the elastocapillary
ratio is changed at constant stretch. The derivation of amplitude equations for the peristaltic
pattern is given in Section 5. The numerical model, described in Section 6, is used to analyse
the fully non-linear regime, after being validated against the theoretical results. An imper-
fection sensitivity analysis is performed in Section 7, whilst the main results of this work are
summarized and discussed in Section 8, together with some concluding remarks.

2 Elastocapillary model

In this Section we present the theoretical model of the elastocapillary problem under analysis.
First, we introduce the kinematics and constitutive assumptions. Second, we propose a vari-
ational formulation of the axisymmetric problem using a non-linear stream function. Finally,
we derive the Euler-Lagrange equations of the problem and the basic axisymmetric solution.

2.1 Kinematic and constitutive assumptions

Let us consider a solid cylinder of undeformed outer radius R0 and undeformed length L0.
In cylindrical coordinates, the set [R,Θ, Z] defines the polar coordinates in the material
configuration, whilst the set [r, θ, z] refers to spatial configuration. The cylinder has volume
Ω0 and boundary Γ0 := (R = R0) in its undeformed configuration; so that a generic point
P ∈ Ω0 is described by the material position vector X. The mapping χ biunivocally identifies
the spatial position x = χ (X) in the deformed configuration, in which the cylinder has a
volume Ω and a boundary Γ. Accordingly, the deformation gradient tensor F can be defined
as

F = Grad (χ) (1)
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where Grad indicates the material gradient operator; the right and left Cauchy-Green tensors
C and B read

C = FTF; B = FFT (2)

The cylinder is made of a soft gel, which can be modelled by a bulk elastic energy asso-
ciated with a capillary energy at the free surface. Thus, its total potential energy Π can be
decomposed into an elastic contribution Ψe and a superficial term Ψs

Π = Ψe + Ψs (3)

where the presence of body forces is neglected. The cylinder is assumed to behave as an
incompressible neo-Hookean hyperelastic material of strain energy density Ψ, so that the
elastic energy Ψe can be written as

Ψe =

∫
Ω0

ΨdΩ0 =

∫
Ω

Ψ
1

J
dΩ =

∫
Ω0

[µ
2

(I1 − 3)− p (J − 1)
]
dΩ0 (4)

where µ is the shear modulus, J = detF is the Jacobian of the transformation, I1 = tr(C)
is the first invariant of C and p is the Lagrangian multiplier enforcing the incompressibility
constraint. Due to the incompressibility assumption, J = 1 has been imposed in the following
equations.
Being N and n the unit normal vectors to the external surface in reference of spatial con-
figurations, the Nanson’s formula states that ndΓ = F−TNdΓ0. Accordingly, the superficial
contribution to the potential energy can be written as

Ψs =

∫
Γ
γdΓ =

∫
Γ0

γ

‖F−TN‖
dΓ0 (5)

where γ is the surface tension of the soft solid with the environment.
Being ρ0 the density of the material, the kinetic energy K can be expressed as:

K =
1

2

∫
Ω0

ρ0vs
2dΩ0 =

1

2

∫
Ω
ρ0vs

2dΩ (6)

where vs is the spatial velocity vector. The elastic stress measures in the material and spatial
configurations are given through the first Piola-Kirchhoff stress tensor P and the Cauchy
stress tensor σ, respectively, which read:

P =
∂Ψe

∂F
=
(
µFT − pF−1

)
σ = FP = µB− pI

(7)

Thus, the equilibrium equations in reference and spatial configurations can be written as:

ρ0v̇s = DivP in Ω0

ρ0v̇s = divσ in Ω
(8)

where Div and div are the material and spatial divergence operators, respectively. Moreover,
the boundary conditions at the free surface read:

N ·P = γC0N in Γ0

n · σ = γCn in Γ
(9)
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where C0 = tr (K0) and C = tr (K) are the traces of the material and spatial curvature
tensors at free surface, K0 and K, respectively.

Let the cylinder be subjected to an axial strain λz; then, in a cylindrical reference system,
the homogeneous, axisymmetric solution of the elastocapillary problem is given by:

r =
R√
λz
, z = λzZ and θ = Θ (10)

so that the deformation gradient tensor rewrites:

F =
1√
λz

er ⊗ER +
1√
λz

eθ ⊗EΘ + λzez ⊗EZ (11)

where the orthonormal bases in the reference cylindrical configuration, [ER,EΘ,EZ ], and in
the current cylindrical configuration, [er, eθ, ez], are introduced. The corresponding value p0

of the Lagrange multiplier is given by the boundary conditions in Equation (9):

p0 =
µ

λz
+
γ

r0
(12)

with r0 = R0
λz

being the deformed outer radius of the stretched cylinder.
The stability of the axisymmetric solution can be studied applying an infinitesimal displace-
ment over the basic finite deformation [38], deriving the incremental elastic problem through
series expansion of the equilibrium equations in Equation (8) with boundary conditions in
Equations (9). Using this approach, the incremental boundary value problem can be written
as a function of four scalar functions, being the three components of the incremental displace-
ment and the relative perturbation of the Lagrangian multiplier p around the homogeneous
state described by the Equations (11) and (12).
Another approach will be used in this paper: the linear stability analysis will be performed
by perturbing only one scalar field, representing the generating function of an incompressible
axisymmetric mapping [17, 18]. Accordingly, we derive a variational formulation that does
not require the introduction of a Lagrangian multiplier, since the incompressibility constraint
is exactly fulfilled by a stream function which is the elastic equivalent of the one used for
incompressible two-dimensional viscous flows. This will allow a more straightforward deriva-
tion of the weakly non-linear analysis. We remark that the generating function has been first
proposed by Carroll [11], while the isochoric transformation considered in this work is adapted
from Ciarletta [14].

2.2 Definition of a stream function for axisymmetric deformations

As proposed by Ciarletta [14], we identify an intermediate configuration of volume Ω and
boundary Γ in the set of mixed coordinates [R,Θ, z], where the orthonormal triad is con-
stituted by the mixed unit vectors [ER,EΘ, ez]. For sake of simplicity, in the following, we
drop the angular coordinate since an axisymmetric problem is considered. A stream function
φ (R, z) enforcing the incompressibility constraint can be written as

r2 = 2φ,z and Z =
1

R
φ,R (13)
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where comma denotes partial derivative. Therefore, the deformation gradient tensor F rewrites
in terms of the stream function as:

F =


φ,Rz√

2φ,z
−

φ,zz
(
φ,RR−

φ,R
R

)
√

2φ,zφ,Rz

φ,zzR

φ,Rz
√

2φ,z
0

φ,R
φ,RzR

− φ,RR
φ,Rz

R
φ,Rz

0

0 0
√

2
√
φ,z

R

 (14)

It can be easily checked that detF = 1 is automatically satisfied.

2.3 Variational formulation and Euler-Lagrange equations

Accordingly, the elastic energy Ψe, the superficial energy Ψs and the kinetic energy K rewrite
in terms of the stream function in Equation (13) as:

Ψe =

∫
Ω

ΨedΩ = 2π

∫ R0

0

∫ L0λz

0

1

2
µ

 1

2φ,z

φ,Rz − φ,zz

(
φ,RR −

φ,R
R

)
φ,Rz

2

+

(
φ,R
φ,RzR

−
φ,RR
φ,Rz

)2

+
φ2
,zzR

2

2φ2
,Rzφ,z

+
R2

φ2
,Rz

+
2φ,z
R2
− 3

)
φ,RzdRdz

(15)

Ψs =

∫
Γ

ΨsdΓ = 2πγ

∫ L0λz

0

(√
2φ,z + φ2

,zz

)
dz (16)

K =

∫
Ω
KdΩ = 2π

∫ R0

0

∫ L0λz

0

1

2
ρ0

φ2
,Rt

φ2
,Rz

+

(
φ,zt√
2
√
φ,z
−

φ,Rtφ,zz√
2φ,Rz

√
φ,z

)2
φ,RzdRdz (17)

The Lagrangian functional L can, than, be written as

L (φR, φz, φ,RR, φ,zz, φ,Rz) = K −Π (18)

Using a variational approach, the equilibrium is derived by imposing the minimization of
the Lagrangian L, that means δL = 0 with respect to any variation of the stream function.
After integration by parts, the corresponding bulk Euler-Lagrange equation reads:(
∂Ψe

∂φ,RR

)
,RR

+

(
∂Ψe

∂φ,Rz

)
,Rz

−
(
∂K

∂φ,Rt

)
,Rt

+

(
∂Ψe

∂φ,zz

)
,zz

−
(
∂K

∂φ,zt

)
,zt

−
(
∂Ψe

∂φ,R

)
,R

−
(
∂Ψe

∂φ,z

)
,z

= 0

(19)
The fourth order partial differential Equation (19) requires four boundary conditions. Two
of them are given by imposing the regularity of the solution at R = 0; the other two arise
from the surface Euler-Lagrange equations to arbitrary variations on φ and φ,R at the outer
radius, respectively:

∂Ψe

∂φ,R
−
(
∂Ψe

∂φ,RR

)
,R

−
(
∂Ψe

∂φ,Rz

)
,z

+

(
∂Ψs

∂φ,zz

)
,zz

−
(
∂Ψs

∂φ,z

)
,z

= 0 at R = R0 (20)
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∂Ψe

∂φ,RR
= 0 at R = R0 (21)

Within the proposed variational framework, the stability analysis will be performed by consid-
ering a perturbation on φ (R, z), so that incremental boundary value problem will be derived
by performing a series expansion of Equation (19) with the boundary conditions in Equations
(20) and (21).

3 Linear stability analysis

In terms of the basic stream function φ0(R, z), the homogeneous solution in Equation (10)
can be rewritten as

φ0(R, z) =
R2 z

2λz
(22)

Let us now consider an infinitesimal periodic perturbation φ1(R, z, t) around the homogeneous
condition. Setting |ε| � 1, the solution at the first order using variables separation reads:

φ(R, z, t) = φ0 (R, z) + εφ1(R, z, t) = φ0 (R, z) + εRu

(
R√
λz

)
eIk(z−V t) + c.c. (23)

where V is the axial velocity of the travelling wave, e identifies the exponential function,
I denotes the imaginary unit, k =

2πnf
L0

defines the axial perturbation mode, with nf a

positive integer number, u
(

R√
λz

)
is an unknown scalar function and c.c. indicates the complex

conjugate.

For sake of clarity, we set in the following r = R/
√
λz so that u

(
R√
λz

)
= u (r) = u.

Substituting Equation (23) in Equation (19), the bulk Euler-Lagrange equation at the first
order in ε rewrites

L1,1 [Lq,1 (u)] = 0 (24)

where:

Lf,j =

(
∂2

∂r2

)
+

1

r

∂

∂r
− 1

r2
− f2j2k2 (25)

for j ∈ N+ and f = (1, q). The parameter q is defined as

q =

√
λz

(
λ2
z −

V 2

c2

)
(26)

with c =
√
µ/ρ0 being the speed of sound inside the material. The first boundary condition

can be obtained from Equation (20) as

L1,1 (u) + 2k2u = 0 at r = r0 =
R0√
λz

(27)

whereas the second boundary condition from Equation (21) reads(
r
((

2k2r2 + 1
)
u′ + r

(
−ru′′′ − 2u′′

))
− u

+k2r2
(
ru′ + u

)
q2 +

γ

µ
k2λzru

(
1− k2r2

))
= 0 at r = r0 =

R0√
λz

(28)
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The solution of Equation (24) with boundary conditions in Equations (27) and (28) de-
pends on parameter q. In the following, we will focus on two different situations: (i) q 6= 1;
(ii) q = 1. For sake of clarity, let us also introduce two dimensionless quantities: (i) k̄ = kR0,
representing the dimensionless wavenumber; and (ii) the elastocapillary ratio Lec

R0
= γ

(µR0) ,

representing the ratio between the elastocapillary length Lec = γ
µ and the undeformed radius

R0 of the cylinder.

3.1 Linear stability analysis for q 6= 1

If q 6= 1, Equation (24) admits the modified Bessel functions of first order I1 and K1 as
eigensolutions [48]. Imposing the regularity of the solution at r = 0, the solution of Equation
(24) rewrites

u =
I1 (krq)

I1 (kr0q)
+ β

I1 (kr)

I1 (kr0)
(29)

The coefficient β can be derived from Equations (27) and (29) as:

β = −q
2 + 1

2
(30)

The dispersion relation can be obtained from Equation (28) by inserting the solution in
Equation (29) and the value of β as in Equation (30). In terms of dimensionless quantities,
the dispersion relation becomes:

λz
(
q2 − 1

)(Lec
R0

√
λz
(
λz − k̄2

)
− 2√

λz

)
+ k̄

−(q2 + 1
)2
I0

(
k̄√
λz

)
I1

(
k̄√
λz

) +
4qI0

(
k̄q√
λz

)
I1

(
k̄q√
λz

)
 = 0

(31)
It can be shown from Equation (31), that the marginal stability curve with the minimum ap-

plied stretch λz corresponds to the stationary condition V = 0, so that q = λ
3/2
z . Accordingly,

the dispersion relation simplifies as:

2
√
λz
(
λ3
z − 1

)
+ k̄

4λ
3
2
z
I0

(
k̄λz
)

I1

(
k̄λz
) − (λ3

z + 1
)2 I0

(
k̄√
λz

)
I1

(
k̄√
λz

)
+

Lec
R0

λ2
z

(
λ3
z − 1

)(
1− k̄2

λz

)
= 0

(32)
This relation shows that the occurrence of a beading instability is driven by both the applied
stretch λz and the elastocapillary ratio Lec

R0
, as shown in Figure 1. In fact, if we let k̄ be the

independent variable, the marginal stability threshold are depicted in terms of either
(
Lec
R0

)th
,

when different λz are applied (see Figure 1(a), all lines except the black one), or λthz at fixed
values of Lec

R0
(see Figure 1(b)). In particular, it is found that, in all the cases, the instability

first occurs at long wavelength, i.e. for k̄ → 0, and, within this limit, the condition for beading
instability onset reduces to:

γ = 2µR0

(
λ3
z + 2

)
λ

3
2
z

(33)

The application of an axial elongation favours the onset of beading. Indeed, Equation (33)
allows also to estimate a lower limit of Lec/R0 = 4

√
2 ≈ 5.65 under which no instability can

occurs whatever is the stretch applied: at that point, the limit stretch is λthz = 21/3 ≈ 1.26.
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3.2 Linear stability analysis for q = 1

When q = 1, the solution of Equation (24) can be found by applying the Wronskian method.
Imposing the regularity at r = 0, the solution can be written as

u = I1 (kr) + β

K1 (kr)

r∫
0

rI2
1 (kr) dr − I1 (kr)

r∫
0

rI1 (kr)K1 (kr) dr

 (34)

In this case, coefficient β is derived from Equation(27) with Equation (34), being:

β = −
(
4
√
πk2I1(kr)

)
Dβ

(35)

with

Dβ = 2
√
πkr0

((
−kr0I0(kr0)2 + I1(kr0)I0(kr0) + kr0I1(kr0)2

)
K1(kr0)− I1(kr0)2K0(kr0)

)
−I1(kr0)MG

(36)

and MG describing the Maijer G-function G2,2
2,4

(
k2r2

0|
1, 3

2
1, 2, 0, 0

)
[1].

The corresponding dispersion relation is obtained from Equation (28), substituting Equa-
tions (34) and (35), being:

2µR0I0

(
k̄√
λz

)
2 − 1

k̄2
I1

(
k̄√
λz

)
2
(
γλ3/2

z

(
λz − k̄2

)
+ 2µR0

(
k̄2 + λz

))
= 0 (37)

The dispersion relation confirms that the instability first occurs at long wavelengths. Taking
the limit for k̄ → 0, it becomes:

6R0

Lec
− λ

3
2
z = 0 (38)

The condition q = 1 implies λz =
(V 2+

√
V 4+4c4)

(2c2)
, so that λz ≥ 1. The first marginally unstable

elastocapillary ratio
(
Lec
R0

)th
from Equation (38) corresponds to λz = 1, which implies the

stationary condition V = 0. From Equation (37), the simplified dispersion relation rewrites:

2I0(k̄)2 +
1

k̄2

(
Lec
R0

(
k̄2 − 1

)
− 2

(
k̄2 + 1

))
I1(k̄)2 = 0 (39)

The plot of this function is presented in Figure 1(a) (black curve). The threshold condition
Lec = 6R0, found in Barriere et al. [4] using linear elasticity, is recovered in our analysis both
imposing λz = 1 in Equation (33) or computing the limit for k̄ → 0 of Equation (39). It is
worth mentioning that the results provided in this subsection are slightly different from the
ones proposed by Mora et al. [35] since we require our solution to be regular at r = 0 as
shown in Equation (34).

4 Weakly non-linear stability analysis

The two different conditions on the parameter q that have been discussed during the linear
stability analysis are related to two particular experimental situations. The condition q 6= 1
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Figure 1: Linear stability thresholds versus the dimensionless wavenumber k̄ for (a) the elas-
tocapillary ratio Lec

R0
, at different stretched λz, and (b) the applied stretch λz, at different

elastocapillary ratios Lec
R0

. The case q = 1 in our study is represented by the black line in (a).

corresponds to the case of a cylinder stretched of an amount λz when the elastocapillary ratio
is kept fixed [21, 37, 36]: in the following, it will be denoted as Case (1). Condition q = 1,
instead, corresponds to the case of an unstretched cylinder, λz = 1, when its elastocapillary
ratio is varied [35]: in the following, it will be denoted as Case (2). The experimental coun-
terparts of the mathematical assumption are necessary to define the control parameters of
the beading instability to be used in the following weakly non-linear analysis. The control
parameters will be the axial stretch λz in Case (1) and the shear modulus µ in Case (2).
Indeed, assuming constant values for γ and R0 in the latter case, µth is uniquely determined

from
(
Lec
R0

)th
.

The purpose of this Section is to investigate the weakly non-linear evolution of the perturba-
tion amplitude of the linearly unstable waves in the vicinity of the marginal stability threshold.
The order parameter ε for the two cases under analysis are given by:ε =

√
λz−λthz
λthz

if Case(1) : LecR0
= constant

ε =
√

µth−µ
µth

if Case(2) : λz = 1
(40)

A multiple-scale approach will be used in the following to perform the weakly non-linear
analysis. Assuming a small deviation from the linear threshold in Equation (40), the velocity
V of the near-critical travelling wave can be estimated to scale as{

V ∝ V1ε =
√

3cλthz ε if Case(1) : LecR0
= constant

V ∝ V1ε = c
√

8R0
Lec

ε if Case(2) : λz = 1
(41)

where the first case has been derived taking into account the definition of q in Equation
(26), whilst the second arises from the dispersion relation in Equation (37). Therefore, we
can introduce a slow temporal variable τ for the near-critical wave such that τ = ε tτc , where

τc = lc
V1

with lc being the characteristic length of the problem, taken equal to R0 in both the
cases. Accordingly, the stream function can be rewritten as:

φ (R, z, t)→ φ

(
R, z, ε

t

τc

)
(42)
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Assuming a series expansion in ε, the stream function can be expressed as:

φ (R, z, τ) = φ0 (R, z) +
∞∑
n=1

εnφn (R, z, τ) (43)

where the term φ1 is written in analogy to the linear term in Equation (23), while the higher
orders are built by resonating the lower orders as follows:

φ1 = Ru
(

R√
λz

)
A (τ) eIkz + c.c.

φ2 = R
(
G
(

R√
λz

)
|A (τ)|2 + g

(
R√
λz

)
Ie2IkzA (τ)2

)
+ c.c.

φ3 = R
(
H
(

R√
λz

)
eIkzA (τ) |A (τ)|2 + h

(
R√
λz

)
e3IkzA (τ)3

)
+ c.c.

(44)

In this multiple-scale approach, the temporal dependence is now absorbed by the complex
variable A (τ) that describes the weakly non-linear amplitude of the perturbation just above
the linear threshold, which will be fixed by the weakly non-linear effects.
The expression of all the scalar functions in Equation (44) will be derived solving the series
expansion of the relative bulk and surface Euler-Lagrange equations. Since the beading in-
stability occurs for k̄ → 0, we will expand such equation up to the leading order in k̄, i.e. the
fifth for the Case (1) and the seventh for the Case (2). Accordingly, the hypothesis under this
choice is to consider a cylinder of small aspect ratio, that means the length of the cylinder is
much larger than its radius, k̄ = 2πR0/L � 1. In the following subsections, we will derive
(i) the series expansions of bulk and surface Euler-Lagrange equations and (ii) their general
solutions. For sake of simplicity, the coefficients in the expression of the functions u, G, g, H
and h will be reported in the A. All the algebraic expressions presented in the following are
derived using the software Mathematica 9.0 (Wolfram Research, Champaign, Illinois).

4.1 Higher order solutions for the stream function in Case (1)

Let us first derive the the higher order solutions for the stream function in Equation (44) for
the experimental situation described in Case (1).

4.1.1 Second order solution of the stream function

At the second order in ε, the bulk Euler-Lagrange equation in the term |A|2 yields to

L2
0 (G) = 0 (45)

where L0 = ∂2

∂r2
+ 1
r
∂
∂r −

1
r2

is the Laplacian operator in cylindrical coordinates, whose solution
is:

G = C4r
3 + C2r +

C1

r
+ C3r log r (46)

Since the function G must be regular in r = 0 and should satisfy the correspondent surface
Euler-Lagrange equation, coefficients C1, C2, C3 and C4 must vanish so that there is no
contribution at this order.
The second-order bulk Euler-Lagrange equation in the term Ie2IkzA2 reads

L1,2 [Lq,2 (g)] +
k5
√
λz
(
λ3
z − 1

)2 (
12λ3

z + 7
)
r

2r2
0

+O(k5) = 0 (47)

11



The solution of this fourth order differential equation can be written as summation of a
homogeneous solution, which is similar to the first order solution but with a wavelength
doubling, and the particular solution. Imposing regularity in r = 0, the solution reads:

g = α2

I1

(
2krλ

3/2
z

)
I1

(
2kr0λ

3/2
z

) + β2
I1(2kr)

I1(2kr0)
−
k
(
−12λ9

z + 17λ6
z + 2λ3

z − 7
)
r

32λ
5/2
z r2

0

(48)

where α2 and β2 are two constants to be determined from the following two surface conditions
given by 

γλz

(
128k2λ

5/2
z r3

0(α2 + β2)− 32λ
5/2
z r0(α2 + β2)

+14k3
(
λ3
z − 1

)2 (
3λ3

z + 2
)
r2

0 − k
(
λ3
z − 1

)2 (
6λ3

z + 7
))

+2µr0

(
16k2λ

5/2
z r3

0

(
λ3
z(2α2 + β2) + β2

)
+ 32λ

5/2
z r0

(
α2 + β2λ

3
z

)
+k3

(
λ3
z − 1

)2 (
3λ3

z + 5
)
λ3
zr

2
0 + k

(
λ3
z − 1

)2 (
15λ3

z + 7
))

= 0

α2

(
λ3
z + 1

)
+ 2β2 +

k(λ3z−1)
2
(λ3z(16−k2r20)+7)
λ
5/2
z r0

= 0

(49)

The third order solution for the stream function will be derived in the next paragraph.

4.1.2 Third order solution of the stream function

At the third order in ε, the bulk Euler-Lagrange equation in the term eIkzA |A|2 is given by:

L1,1 [Lq,1 (H)] = 0 (50)

This equation admits the same solution proposed for Equation (24); than, it can be written
as

H = α31

I1

(
krλ

3/2
z

)
I1

(
kr0λ

3/2
z

) + β31
I1 (kr)

I1 (kr0)
(51)

The two boundary conditions to determine the coefficients α31 and β31 are

γ2λ2
z

(
8r2

0(α31 + β31)− k2
(
8r4

0(α31 + β31) + 3λ10
z − 9λ7

z + 9λ4
z − 3λz

))
+γλzµr0

(
k2
(
2λ3

zr
4
0(6α31 + 7β31) + 2r4

0(16α31 + 15β31)

+27λ13
z − 57λ10

z + 9λ7
z + 45λ4

z − 24λz
)

−16r2
0

(
α31

(
λ3
z + 3

)
+ 2β31

(
λ3
z + 1

)))
+4µ2r2

0

(
k2
(
λ6
zr

4
0(2α31 + β31) + λ3

zr
4
0(4α31 + 3β31)

+2β31r
4
0 − 6λ16

z − 24λ13
z + 108λ10

z − 120λ7
z + 42λ4

z

)
+8
(
λ3
z + 2

)
r2

0

(
α31 + β31λ

3
z

))
= 0

γλz

(
3k2λz

(
λ3
z − 1

)3 − 8r2
0

(
α31λ

3
z + α31 + 2β31

))
+4µr0

(
4
(
λ3
z + 2

)
r2

0

(
α31λ

3
z + α31 + 2β31

)
− 3k2λ4

z

(
λ3
z − 1

)3)
= 0

(52)
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The third-order bulk Euler-Lagrange equation in the term e3IkzA3 reads:

L1,3 [Lq,3 (h)] = 0 (53)

whose solution is:

h = α3

I1

(
3krλ

3/2
z

)
I1

(
3kr0λ

3/2
z

) + β3
I1 (3kr)

I1 (3kr0)
(54)

where the regularity of the function in r = 0 is already considered by dropping off the
dependence on the Bessel function of second kind K1. Finally, the two surface conditions
impose

2γ2λ2
z

(
k2
(
108r4

0(α3 + β3) + λ10
z − 3λ7

z + 3λ4
z − λz

)
− 12r2

0(α3 + β3)
)

+γλzµr0

(
48r2

0

(
α3

(
λ3
z + 3

)
+ 2β3

(
λ3
z + 1

))
−k2

(
54λ3

zr
4
0(6α3 + 7β3) + 54r4

0(16α3 + 15β3) + 15λ13
z − 49λ10

z + 57λ7
z − 27λ4

z + 4λz
))

−4µ2r2
0

(
k2
(
27λ6

zr
4
0(2α3 + β3) + 27λ3

zr
4
0(4α3 + 3β3)

+54β3r
4
0 − 10λ16

z + 40λ13
z − 60λ10

z + 40λ7
z − 10λ4

z

)
+24

(
λ3
z + 2

)
r2

0

(
α3 + β3λ

3
z

))
= 0

4µr0

(
4
(
λ3
z + 2

)
r2

0

(
α3λ

3
z + α3 + 2β3

)
+ k2

(
λ3
z − 1

)3
λ4
z

)
−γλz

(
8r2

0

(
α3λ

3
z + α3 + 2β3

)
+ k2λz

(
λ3
z − 1

)3)
= 0

(55)

which allow to determine the two coefficients α3 and β3.

4.2 Higher order solutions for the stream function in Case (2)

In the following, we will derive the higher order solutions for the stream function in Equation
(44) for the experimental situation described in Case (2).

4.2.1 Second order solution of the stream function

At the second order in ε, the boundary value problem in the term |A|2 is the same as for Case
(1), so it is found that G = 0.
The second-order bulk Euler-Lagrange equation in the term Ie2IkzA2 reads:

L2
1,2 (g)− 19k7r +O(k7) = 0 (56)

Again, the solution of this fourth order differential equation is given by the sum of the homo-
geneous and the particular solutions, being:

g = αI1 (2kr)+β

K1 (2kr)

r∫
0

rI2
1 (2kr) dr − I1 (2kr)

r∫
0

rI1 (2kr)K1 (2kr) dr

+
19

32
k3r (57)
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The constants α2 and β2 can be determines from the two following boundary conditions:

48α2k
3
(
γ
(
23k4r4

0 + 42k2r2
0 − 12

)
+ 2µr0

(
5k4r4

0 + 18k2r2
0 + 12

))
−3γ

(
k7r2

0

(
31β2r

4
0 − 411

)
+ k5

(
88β2r

4
0 + 78

)
− 24β2k

3r2
0

)
+2kµr0

(
36k4

(
6k2r2

0 + 11
)
− β2

(
17k6r6

0 + 84k4r4
0 + 72k2r2

0 − 144
))

= 0

− 1
144k

7µr3
0

(
−96α2r

2
0 + 7β2r

4
0 + 36

)
− 1

24k
5µr0

(
−96α2r

2
0 + 10β2r

4
0 − 69

)
+k3

(
8α2µr0 − 3

2β2µr
3
0

)
− β2kµr0 = 0

(58)

The third order solution for the stream function will be derived in the next paragraph.

4.2.2 Third order solution of the stream function

At the third order in ε, the bulk Euler-Lagrange equation in the term eIkzA |A|2 rewrites:

L2
1,1 (H) = 0 (59)

whose solution, after imposing the regularity in r = 0, is given by:

H = α31I1 (kr) + β31

K1 (kr)

r∫
0

rI2
1 (kr) dr − I1 (kr)

r∫
0

rI1 (kr)K1 (kr) dr

 = 0 (60)

The boundary conditions from the surface Euler-Lagrange equations read:

−48α31k
2
(
γ2
(
23k4r4

0 + 168k2r2
0 − 192

)
− 32γµr0

(
4k4r4

0 + 27k2r2
0 − 48

)
− 12µ2r2

0

(
5k4r4

0 + 72k2r2
0 + 192

))
+3γ2

(
k6
(
31β31r

6
0 + 2304

)
+ 352β31k

4r4
0 − 384β31k

2r2
0

)
−4γµr0

(
β31

(
131k6r6

0 + 1416k4r4
0 − 2304k2r2

0 + 4608
)

+ 29376k6
)

−12µ2r2
0

(
β31

(
17k6r6

0 + 336k4r4
0 + 1152k2r2

0 − 9216
)
− 36864k6

)
= 0

96k2
(
α31

(
k4r4

0 + 24k2r2
0 + 192

)
(γ − 6µr0) + 72k4(γ − 4µr0)

)
−β31

(
7k6r6

0 + 240k4r4
0 + 3456k2r2

0 + 9216
)

(γ − 6µr0) = 0

(61)

which allow to determine the coefficients α31 and β31.
The third-order bulk Euler-Lagrange equation in the term e3IkzA3 reads:

L2
1,3 (g) = 0 (62)

whose regular solution is:

h = α3I1 (3kr) + β3

K1 (3kr)

r∫
0

rI2
1 (3kr) dr − I1 (3kr)

r∫
0

rI1 (3kr)K1 (3kr) dr

 (63)
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The corresponding surface conditions are given by:

144α3k
2
(
γ2
(
621k4r4

0 + 504k2r2
0 − 64

)
− 32γµr0

(
108k4r4

0 + 81k2r2
0 − 16

)
−12µ2r2

0

(
135k4r4

0 + 216k2r2
0 + 64

))
+γ2

(
−
(
k6
(
7533β3r

6
0 + 512

)
+ 9504β3k

4r4
0 − 1152β3k

2r2
0

))
+4γµr0

(
β3

(
10611k6r6

0 + 12744k4r4
0 − 2304k2r2

0 + 512
)

+ 704k6
)

+12β3µ
2r2

0

(
1377k6r6

0 + 3024k4r4
0 + 1152k2r2

0 − 1024
)

= 0

−7776α3γk
6r4

0 − 20736α3γk
4r2

0 − 18432α3γk
2 + 46656α3k

6µr5
0

+124416α3k
4µr3

0 + 110592α3k
2µr0 + 567β3γk

6r6
0 + 2160β3γk

4r4
0

+3456β3γk
2r2

0 − 1296β3k
4r4

0

(
21k2r2

0 + 8
)

log(r0)(γ − 6µr0)

+648β3k
4r4

0

(
21k2r2

0 + 8
)

log
(
r2

0

)
(γ − 6µr0) + 1024β3γ − 3402β3k

6µr7
0

−12960β3k
4µr5

0 − 20736β3k
2µr3

0 − 6144β3µr0 + 768γk6 − 3072k6µr0 = 0

(64)

which allow determining the coefficients α3 and β3.

5 Derivation of the Ginzburg-Landau equations

The weakly non-linear analysis aims at deriving the evolution equations for the amplitude
of the near-critical waves, also known as Ginzburg-Landau equations. The classical method
would consist in calculating the higher order solutions of the stream function until a solvability
condition on the amplitude A (τ) must be imposed in order to avoid the presence of secular
terms. Since this would require lengthy calculation, an alternative approach based on energetic
consideration will be used in the following. In fact, since we deal with a conservative system,
the Lagrangian functional L is invariant with respect to time, thus the Noether’s theorem
states that the total energy of the system is a conserved quantity [32]. Therefore, the time
derivative of the total mechanical energy E must vanish, so that:

dE

dt
= 0→ ∂

∂τ

∫
Ω̄

(K + Ψe) dΩ̄ +

∫
Γ̄

(Ψs) dΓ̄

 = 0 (65)

which allows deriving the Ginzburg-Landau equations for the amplitudes of the near-critical
waves. Indeed, let us consider a series expansion of E in ε up to the fourth order as

E (u, g,H) = E0 (u) +

4∑
n=1

εnEn (u, g,H) (66)

where En are the coefficients of the energy series expansion, which depend on the scalar
function u, g and H calculated in the previous Sections. In particular it is found that:

• the term E0 is a constant, representing the energy of the basic homogeneous solution:

E0 =
πµR2

0

k (λthz )
2

(
1− 3λthz

2
+

(
λthz
)3

2

)
+

2πγR0

kλthz
(67)
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• the terms E1 and E3 vanish because of the periodicity;

• the term E2 is null because it reduces to the incremental power of the first-order solution
[16];

• the term E4 reads:

E4 = κ

∣∣∣∣dA (τ)

dτ

∣∣∣∣2 + ν |A (τ)|2 − ψ

2
|A (τ)|4 (68)

Taking the time derivative of total energy E the Ginzburg-Landau equations for the amplitude
evolution of the near-critical modes become [22]:

κ
d2A (τ)

dτ2
+ νA (τ)− ψ |A (τ)|2A (τ) = 0 (69)

where κ =
R0∫
0

γvdR, ψ = −

(
R0∫
0

αvdR+ αs

)
, ν =

R0∫
0

βvdR + βs and the complex conjugate

equation also exists. The expression of the coefficients γv, αv, βv, αs, βs in Equation (68) are
reported in B. The static solution Ast of Equation (69) is:

Ast =

√
ν

ψ
(70)

Accordingly, if ν
ψ > 0 then the static solution is stable, and the pitchfork bifurcation is

supercritical, meaning that the beading amplitude grows continuously as the square root of
the distance from the threshold value of the order parameter. Conversely, if ν

ψ < 0 the static
solution is unstable and the pitchfork bifurcation is subcritical. Thus, we expect that the
beading amplitude might have a discontinuity after the marginal stability threshold, which is
controlled by non-linear effects of higher orders.
Table 1 collects the numerical results for the coefficients in Equation (69) for several choices
of the geometrical and material parameters for the Case (1) and Case (2), also indicating the
nature of bifurcation.

Case (1): varying λz; fixed Lec
R0(

Lec
R0

)
L0
R0

k̄ λthz Ast

628 0.01 1.0372 1.762I (sub)
5.9 62.8 0.1 1.0619 1.142I (sub)

31.4 0.2 1.1675 0.151 (super)

Case (2): varying Lec
R0

; fixed λz = 1

λz
L0
R0

k̄
(
Lec
R0

)th
Ast

6283.19 0.001 6.00001 0.139I (sub)
1 628.32 0.01 6.0001 0.461 (super)

125.67 0.05 6.0151 5.696 (super)

Table 1: Numerical values for the static solution Ast for Case (1) and Case (2) calculated from
the weakly non-linear analysis for selected values of k̄ and, hence, of L0/R0. The corresponding
type of bifurcation is indicated in brackets (sub= subcritical, super=supercritical). We set
Lec
R0

= 5.9 for the Case (1), and λz = 1 for the Case (2).
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6 Numerical simulations of the post-buckling behaviour

In the theoretical part of this work we performed both a linear and a weakly non-linear
stability analysis for the beading of an axially stretched elastic soft cylinder, having a surface
tension such that its elastocapillary length is comparable to its radius. In this Section, we
propose a numerical investigation having a two-fold purpose: first, validating the analytical
results; second, performing numerical simulations to investigate the fully non-linear beading
morphology far beyond the linear stability threshold.

6.1 Description of the numerical model

The numerical model is implemented by using the open source tool for solving partial dif-
ferential equations FEniCS [31]. We modelled a two-dimensional axisymmetric cylinder of
initial length L0 and radius R0. Periodic boundary conditions for the radial displacement
are imposed on the extremities of the geometry. A non-linear elastic neo-Hookean material
having a given surface tension is taken into account, using the potential energies in Equation
(3). Since the theoretical analysis predicted that the critical wave is stationary, i.e. V = 0,
a quasi-static simulation has been performed. In order to exactly enforce the incompress-
ibility constraint, a mixed formulation with triangular Taylor-Hood elements (maximum of
4000 elements) has been implemented: the displacements in the two orthogonal directions are
approximated by continuous piecewise quadratic functions whereas the pressure by continu-
ous piecewise linear function. The solution has been found through an incremental iterative
Newton-Raphson method and, in each iteration, the calculation are conducted by using the
linear algebra back-end PETSc (Portable, Extensible Toolkit for Scientific Computation) and
the linear system is solved through a LU (Lower-Upper) decomposition.

Figure 2 depicts an example of the implemented geometry and the mesh used for the sim-
ulations: although the model is axisymmetric, a three-dimensional rendering is also presented
for sake of clarity.

a

b

c

d

amplitude

2a

width W

rmin

rmax

R0

k

πλ2
z

Figure 2: Example of geometry and mesh of the numerical model. (a) Undeformed 2D mesh;
(b) deformed 2D mesh; (c) 3D rendering of undeformed sample; (d) 3D rendering of the
deformed sample. In (b) the beading amplitude a = rmax−rmin

2 and bead width w, computed
as the length of the portion of the cylinder whose radius r is such that r > rmax+rmin

2 , are
shown. We also define the normalized width as w̄ = w

λz(2π/k) .
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According to the choice of the control parameters for the two cases under investigation,
the simulations have been performed by increasing the stretch λz (Case (1)) and by decreasing
the shear modulus µ (Case (2)).

6.2 Validation of the theoretical predictions

The validation of the theoretical results is performed comparing the prediction and the numer-
ical outputs on two quantities: (i) the linear threshold computed for the selected conditions
presented in Tables 2 and 3 of the Appendix B for both cases (1) and (2); (ii) the weakly
non-linear predictions for the wave amplitude computed for selected supercritical conditions
in the Case (2).

6.2.1 Comparison between the theoretical and the numerical linear stability
thresholds

Let us first validate our finite element code by comparing the numerical results with the predic-
tions of the linear stability analysis. For this purpose, we introduce a sinusoidal imperfection
in the mesh of the undeformed cylinder having the first unstable wavenumber predicted by
our theoretical results and an amplitude of 1/100 of the initial radius R0.
The comparison of the linear stability threshold is performed by calculating the ratio between
the total energy Enum in the simulated cylinder with respect to the homogeneous basic solu-
tion E0. As depicted in Figure 3, the simulations, that are performed for selected conditions
presented in Tables 2 and 3, predict very well the theoretical linear stability thresholds against
λz and Lec

R0
. The numerical thresholds are calculated as the values of the control parameters

at which the ratio (Enum − E0)/E0 = 10−5.

6.2.2 Comparison between the theoretical and the numerical results for the
weakly non-linear beading amplitude

Let us now compare the theoretical predictions of the weakly non-linear stability analysis
with the results of the numerical simulations. In particular, we compare the amplitude of
the beaded cylinders arising from the static solution of the Ginzburg-Landau equation in
(70) with the resulting morphology in simulations. As depicted in Figure 2, the weakly non-
linear amplitude a of the supercritical beading theoretically scales beyond the linear stability
thresholds as:

a ∼ 2ku|R=R0A
stε (71)

where Equation (13) has been used.
It is found that the amplitude of the perturbation computed through the numerical model
(dotted lines) fits very well with the theoretical predictions (dashed lines) in the weakly non-
linear regime, as shown in Figure 4. Four different choices of k̄ have been considered for the
Case (2) corresponding to supercritical bifurcations.

6.3 Fully non-linear beading and phase diagrams

Once that the numerical code has been validated with the theoretical predictions of the linear
and the weakly non-linear stability analysis, we use it to evaluate the fully non-linear beading
of the soft cylinder. In Figure 5(a), we first compare the amplitude of the beading computed
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Figure 3: (a) Normalized energy plots in function of the control parameter λz for three
selected choices of k̄ and Lec

R0
collected in Table 2. (b) Normalized energy plots in function

of the elastocapillary ratio Lec
R0

for four selected choices of k̄ collected in Table 3. Circles
indicate the theoretical predictions. In the two cases, theoretical and simulated linear stability
thresholds are reported below. (a) λthz,theo = 1.168 - λthz,sim = 1.154 (light green line); λthz,theo =

1.097 - λthz,sim = 1.093 (cyan line); λthz,theo = 1.118 - λthz,sim = 1.117 (magenta line). (b)(
Lec
R0

)th
theo

= 6.16 -
(
Lec
R0

)th
sim

= 6.04 (black line);
(
Lec
R0

)th
theo

= 6.36 -
(
Lec
R0

)th
sim

= 6.24 (blue

line);
(
Lec
R0

)th
theo

= 6.69 -
(
Lec
R0

)th
sim

= 6.49 (red line);
(
Lec
R0

)th
theo

= 8.64 -
(
Lec
R0

)th
sim

= 8.22 (dark

green line).

through the fully non-linear simulation with the experimental results presented in Mora et
al. [35], that are of the type investigated into Case (2). The critical wavenumbers of the
beading are k̄ = 0.15 and k̄ = 0.22, corresponding to nf = 2 and nf = 3, respectively, for
the experimental geometry of a gel fibre with L0 = 20mm and R0 = 0.24mm. In both cases
the bifurcation is found to be supercritical, i.e. characterized by a continuous increase of the
beading amplitude beyond the linear stability threshold.
In Figure 5(b) we show the evolution of the beading amplitude for a condition taken from
Case (2), when the fibre is subjected to a cyclical change of the order parameter µ. Shortly
beyond the first supercritical bifurcation at around µ = 18.5Pa (k̄ = 0.52 in Table 3), we find
a second subcritical bifurcation at around µ = 18.4Pa characterized by both a sudden jump
and an hysteresis of the beading amplitude.

Finally, in Figure 6 we provide a quantitative measure of the beading amplitude a and
the normalized width w̄ for both the cases. In particular, Figure 6(a) show that, for Case (1),
the amplitude first grows as the square root of the distance from the stretch thresholds, then
saturates at a constant value, until the beading is completely recovered by further increasing
the finite axial stretch. In Figure 6(b), we report the same geometrical results for the Case (2)
in function of the ratio between the elastocapillary length and the cylinder radius. Beyond
the linear stability threshold (Lec = 6.14R0 in the presented condition), the amplitude grows
continuously while the morphology evolves towards a bead-on-a-string structure. The numer-
ical simulations permit to extract a qualitative representation of the deformed morphologies,
as presented under the corresponding plots.
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Figure 4: Amplitude evolution of the perturbation for four different k̄ investigated in the Case
(2). Dashed lines indicate the theoretical predictions in the nearby of the linear thresholds,
given by Equation (71). The comparison between numerical and theoretical results is per-
formed in the range

[
0.98µthsim − µthsim

]
: SSE = 2.48 · 10−5 (blue dots); SSE = 1.57 · 10−4

(green dots); SSE = 1.25 · 10−3 (red dots); SSE = 3.67 · 10−3 (cyan dots)

7 Imperfection sensitivity analysis

The linear and the weakly non-linear analysis for the Case (1) have shown that: (i) in the
limit k̄ → 0, the linear thresholds in terms of the axial stretch are very close each others
for different wavenumbers, with critical value being k̄ = 2πR0/L0; (ii) in such cases, the
bifurcation is found to be subcritical. It is well known in stability problems of elastic structures
that subcritical bifurcations are very sensitive to surface imperfections [8, 10] implying that
the evolution of the imperfect system might differs significantly from the perfect case. In
order to quantify this effect on the beading onset and evolution, we perform in this Section
an imperfection sensitivity analysis on the stretched cylinder.
Let us consider an initial imperfection in the soft cylinder such that the radial coordinate R
is given by

R ∈
[
0, R0 + ξ2 2π

kimp

(
eIkimpz + e−Ikimpz

)]
(72)

where kimp represents the wavenumber of the initial surface imperfection and ξ � 1 a small
parameter fixing its initial amplitude. In order to investigate the interaction between the
imperfection mode and all the possible near-critical modes at the linear order, we can rewrite
the stream function φ (R, z, τ) in form of Fourier summation as

φ (z,R, τ) = φ0 + ξψ1 (z,R, τ) (73)

with
ψ1 (z,R, t) =

∑
n6=0

An (τ)RUne
Ikimpnz (74)

where n is an integer number representative of the generic wavenumber such that k∗ = |nkimp|,
An (τ) is the amplitude of the n− th mode, so that A−n is the complex conjugate of An, and
Un the linear solution u found in Section 3.1 for the corresponding wavenumber k∗. As done
for the previous weakly non-linear analysis in the perfect system, the evolution equations can
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Figure 5: (a) Comparison between the experimental data presented in Mora et al. [35]
and the results of our numerical simulations. The star markers indicate the experimental
values, whereas the results of two corresponding simulations are reported as green and blues
dotted lines. The dashed line indicates the power law fit proposed in Mora et al. [35], i.e.
a = 34.1 (25.6− µ)0.71 (b) Beading amplitude for a decreasing value of shear modulus µ (red
line) and for its subsequent increasing (black line): the supercritical bifurcation predicted
by the weakly non-linear analysis (at µ = 18.5Pa) is followed by a secondary subcritical
bifurcation (at about µ = 18.4Pa) with a sudden jump and an hysteresis of a.

be found by imposing the conservation of the total energy. Accordingly, the total mechanical
energy E for such an imperfect system rewrites:

E =

2π
kimp∫
0

R0+ξ2ζ(z)∫
0

(K +W ) Φ,RzdRdz +

2π
kimp∫
0

Esup|R=R0+ξ2ζ(z)

≈

2π
kimp∫
0

R0∫
0

(K +W ) Φ,RzdRdz +

2π
kimp∫
0

ξ2ζ(z) |(K +W ) Φ,Rz|R=R0
+

2π
kimp∫
0

Esup|R=R0+ξ2ζ(z)

(75)

where ζ(z) = 2π
kimp

(
eIkimpz + eIkimpz

)
. Let us consider the following scaling where αimp of the

order O(1) indicates the increment of stretch:

λz = λz0 (1− ξαimp) ; τ =
√
ξαimp

t

τc
(76)

and the slow time-scale τ has been derived using the same procedure shown in Equation (41).
The series development up to the third order in ξ of the total mechanical energy E is derived
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Figure 6: (a) Amplitude (red line) and normalized width w̄ (blue line) over the applied stretch
in the Case (1), with Lec

R0
= 5.9, k̄ = 0.2, R0 = 0.24µm, µ = 20Pa. (b) Amplitude (red line)

and normalized width w̄ (blue line) over the elastocapillary ratio in the Case (2), with k̄ = 0.15
and R0 = 0.2mm.

as:

E = Eb0 + Es0 + ξ (Eb1 + Es1) + ξ2 (Eb2 + Es2)

+ ξ3

∑
n 6=0

(
(νn,b + νn,s)

∣∣∣∣∂An(τ)

∂τ

∣∣∣∣2 + (βn,b + βn,s) |An(τ)|2

+
∑

m6=0,m 6=n
(Q(m,n) +Qs(m,n))Am(τ)An−m(τ)A−n(τ)

+B + (ω1,b + ω1,s) (A1(τ)−A−1(τ))


(77)

where the expressions of all the coefficients are presented in the C, and the subscripts b and
s represent the contribution of the bulk and the surface terms, respectively. Imposing the
conservation of the total mechanical energy, the following condition arises:

dE

dτ
=
∑
p

[
∂E

∂A′p
A′′p (τ) +

∂E

∂Ap
A′p (τ)

]
= 0 (78)

which results in an infinite number of Ginzburg-Landau equations for the near-critical modes,
being:

2νp,bA
′′
p (τ) + 2 (βp,b + βp,s)Ap (τ) + (ω1,b + ω1,s) (δ1,p − δ−1,p)

+
∑

n6=0,n6=p
[K(p, n)An (τ)Ap−n (τ)] = 0 (79)

where K(p, n) = Q(−n,−p) + Q(p, n) + Q(−n, p − n) and the orthogonality property of the
integrals has been used.

22



1 1.02 1.04 1.06 1.08 1.1 1.12
0

20

40

60

80

100

λz

B
s
t

1

 

 

Lec

R0

= 5.75

Lec

R0

= 5.80

(a)

1 1.02 1.04 1.06 1.08 1.1 1.12
0

1

2

3

4

5

6

λz

B
s
t

2

 

 

Lec

R0

= 5.75

Lec

R0

= 5.80

(b)

Figure 7: Plot of the static amplitudes (a) Bst
1 and (b) Bst

2 over the applied stretch λz for Lec
R0

equal to 5.8 and 5.75. In both the cases, the cylinders have radius R0 = 0.2µm and a shear
modulus µ = 20Pa; the initial imperfection is set to ξ = 0.0003 with normalized wavenumber
kimp = 0.01.

This system of amplitude equations admits a solution in the form Ap = IBp, with Bp real and
B−p = −Bp, such that:

2Iνp,bB′′p (τ) + 2I (βp,b + βp,s)Bp (τ) + (ω1,b + ω1,s) (δ1,p − δ−1,p)

−
∑

n6=0,n 6=p
[K(p, n)Bn (τ)Bp−n (τ)] = 0 (80)

In order to find the static solutions Bst for the amplitude modes, we must solve:

2I (βp,b + βp,s)B
st
p + (ω1,b + ω1,s) (δ1,p − δ−1,p)−

∑
n6=0,n6=p

[
K(p, n)Bst

n B
st
p−n
]

= 0 (81)

As a first analysis, let us compute the two-mode approximation of the static solution, i.e.
determining Bst

p for p = 1, 2 assuming that Bst
p = 0 if p > 2. Setting p = 2 in Equation (81),

Bst
2 =

K(2, 1)

2I (β2,b + β2,s)

(
Bst

1

)2
(82)

and Bst
1 can be found by substituting Equation (82) into Equation (81) for p = 1, being

2I (β1,b + β1,s)B
st
1 + (ω1,b + ω1,s) + (K(1,−1) +K(1, 2))

K(2, 1)

2I (β2,b + β2,s)

(
Bst

1

)3
= 0 (83)

The resulting values for Bst
1 and Bst

2 are depicted in Figure 7 over the applied stretch λz
for two different values for the elastocapillary ratio and a given surface imperfection.

It is found that both Bst
1 and Bst

2 are real functions only for λz < λ̄z. This limiting value
λ̄z, that depends on the choice of Lec

R0
, is just beyond the stability threshold for the perfect

system and it can be possibly related to the presence of a turning point, which might suggest
the presence of a subcritical bifurcation, as observed in the perfect system. Moreover, the
amplitude Bst

2 is found to be much lower than the corresponding value of Bst
1 (about 100
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times), indicating that the imperfect solution is dominated by the first-order resonating term
of the modal imperfection.
Accordingly, the theoretical analysis allows to predict the evolution of the beaded cylinder
radius r0,imp as

r0,imp =

√√√√2

(
R2

0,imp

2λz
− ξBst

1 kimpR0,impu1|R=R0,imp

(
eIkimpz + e−Ikimpz

))
(84)

where the series development of the stream function up to the first order in ξ is considered,
R0,imp = R0 +ξ2 2π

kimp

(
eIkimpz + e−Ikimpz

)
and the static amplitudes Bst

1 are depicted in Figure

7(a). Finally, such theoretical predictions are found in very good agreement with the corre-
sponding numerical results, as depicted in Figure 8 for the two different choices of Lec

R0
= 5.57

and Lec
R0

= 5.80.
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Figure 8: Comparison between the theoretical predictions (solid lines) and the numerical
results (circles) for Lec

R0
= 5.57 (black) and Lec

R0
= 5.8 (red) in the Case (1). The two cylinders

have radius R0 = 0.2µm and a shear modulus µ = 20Pa, with the initial imperfection set
to ξ = 0.0003 and normalized wavenumber kimp = 0.01. The theoretical predictions and the
numerical results are compared in terms of the parameter R2: R2 = 0.98 (red); R2 = 0.98
(black).

8 Discussion

In this work we have investigated the onset and the non-linear development of beading in
axially stretched soft cylinders with a surface tension. We have performed both a theoretical
study, deriving the linear and the weakly non-linear stability analysis for the problem, and
numerical simulations, investigating the fully non-linear evolution of the beaded morphology.
Firstly, we have proposed an elastocapillary model in which the incompressibility constraint
is enforced through the definition of a non-linear stream function in finite elasticity. Then, we
have proposed a variational formulation deriving the Euler-Lagrange equations which define
the boundary value problem for the soft cylinder. The problem is governed by two dimen-
sionless parameters: the applied stretch λz and the elastocapillary ratio Lec/R0 = γ/(µR0).
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Accordingly, the linear stability analysis has been performed by considering a small pertur-
bation on the stream function and the resulting dispersion relations has been derived for two
relevant experimental conditions, i.e. varying λz at fixed Lec/R0, and varying Lec/R0 for
λz = 1.
The results of the linear stability analysis are collected in Figure 1. It is found that a large-
wavelength beading can occur if the elastocapillary length Lec is of the same order of mag-
nitude of the undeformed cylinder radius R0. In particular, we recovered the threshold value
Lec = 6R0 if λz = 1, whilst we find that the presence of an axial elongation favour the
onset of beading, which can occur up to a value Lec/R0 = 4

√
2 ≈ 5.65 for a limit stretch

λthz = 21/3 ≈ 1.26. This novel finding suggests that the axial stretch can be used in fabrica-
tion techniques to control the beading formations in soft fibres.
Secondly, we have performed a weakly non-linear analysis in order to investigate the nature
of the elastocapillary bifurcation in the two cases under consideration, studying the evolution
of the beading amplitude of the near-critical waves beyond the linear stability threshold. For
this purpose, we have used a multiple-scale analysis in which the order parameters of the
bifurcations are given in Equation (40), with the scaling arguments provided by Equation
(41). After calculating the higher order solutions for the stream function, we have derived the
Ginzburg-Landau equations in (69) for the beading evolution by enforcing the conservation
of the total mechanical energy. The resulting pitchfork bifurcation is always found to be sub-
critical for very slender cylinders (i.e. L0 � R0), whilst it can turn supercritical for thicker
cylinders, as shown in Table 1 and in B for a larger number of configurations. Moreover, the
applied stretch λz is found to possibly control the nature of the bifurcation when considering
independently the geometrical and material parameters, defined through R0/L0 and Lec/R0,
respectively. Indeed, the weakly non-linear analysis has shown that a supercritical bifurcation
is favoured for axially stretched shorter cylinders.
Thirdly, we have implemented a finite element code of the elastocapillary model to study the
fully non-linear beading of the soft cylinder. The numerical code has been validated using the
results of both the linear and the weakly non-linear stability analysis, showing a very good
agreement with the linear stability threshold and the beading amplitude for the supercritical
bifurcation, as shown in Figure 4. The fully non-linear numerical results have highlighted two
different beading dynamics for the cases under consideration. In Figure 6(a), it is shown that
the beading amplitude rapidly saturated at a constant value as the axial stretch is increased
beyond the linear stability threshold. Conversely, the width first increases and then decreases
with respect to the width of the linear stability mode. These results are of utmost importance
for applications in fabrication techniques, since they demonstrate that the morphology of the
beaded fibre can be completely controlled by the applied stretch. If λz = 1, Figure 6(b) shows
that the beading amplitude monotonically grows as the elastocapillary ratio increases beyond
the linear stability threshold, whilst its relative width monotonically decreases, showing the
fast transition towards a bead-on-a-string morphology. Moreover, the numerical results have
shown that after a first supercritical beading, the soft cylinder can undergo a secondary sub-
critical bifurcation, which is characterized by both a sudden jump and an hysteresis in the
beading amplitude, as shown in Figure 5(b). The resulting phase diagrams for the two cases
are summarized in Figure 6.

Since the bifurcation is subcritical for very slender cylinders, we have finally performed a
sensitivity analysis in order to study the pattern selection in cylinders with sinusoidal surface
imperfections. In this case, the modal imperfection is assumed to interact with an infinite
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number of near-critical modes, with a scaling given by Equation (76), and the system of
infinite Ginzburg-Landau equations in (79) has been derived. It is found that the imperfec-
tion mode resonates with the corresponding linear stability solution, therefore the sinusoidal
imperfection is found to select the beading wavelength for very slender cylinders. This is in
accordance with previous experimental data, showing that the emerging beaded wavelength
does not scale as L0, as predicted by the linear stability analysis for the perfect system [6, 34].

Although our work is focused on a simplified fluid-like surface energy, we highlight that
the proposed variational approach allows for considering more sophisticated effects, such as
diffuse interface fluid models [39] and solid behaviours, e.g. elastic material surfaces [24],
elastic boundary coating with bending stiffness [45] or second-gradient effects [20].

In conclusion, we have proposed here a novel theoretical and numerical approach for
studying the onset and the fully non-linear development of the elastocapillary beading in soft
cylinders subjected to axial stretch. The results of this study provide important guidelines for
controlling the beaded morphologies in different experimental conditions, with important ap-
plications in micro-fabrication techniques, such as electrospun fibres [21]. The morphological
insights provided by the proposed approach might also be relevant for modelling some recent
experimental findings in biological systems, such at the beading of stretched nerves [37] and
the shape transitions observed in mithocondria during the development of neurodegenerative
diseases [12, 27]. Further work will be devoted to improve the numerical code for studying the
post-buckling evolution of beading after a subcritical bifurcation, developing suitable numer-
ical methods for improving the convergence and the algorithm sensitivity to the geometrical
and the material parameters.
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A Weakly non-linear stability analysis

In this Appendix, the coefficients for the higher order solutions of the unknown functions
presented in Equation (44) are reported for both the Case (1) and the Case (2).

A.1 Higher order solutions for Case (1)

The second order solution of the stream function in the term Ie2Ikz |A|2 is given by the function
g whose coefficients are calculated imposing the boundary conditions in Equation (49) into
Equation (48). The coefficient α2 reads

α2 =
k
(
λ3
z − 1

)
Nα2

32λ
5/2
z r0

(
γλz

(
4k2r2

0 − 1
)

+ µr0

(
λ3
z

(
k2r2

0 + 2
)
− k2r2

0 + 4
)) (85)

with

Nα2 =γλz
(
28k2r2

0 + λ3
z

(
4k4r4

0 + 19k2r2
0 + 4

)
− 7
)

+µr0

(
−7k2r2

0 + λ6
z

(
k4r4

0 − 2k2r2
0 − 32

)
+ λ3

z

(
k4r4

0 − 3k2r2
0 + 46

)
+ 28

) (86)
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The coefficient β2 is given by

β2 = −
k
√
λz
(
λ3
z − 1

)
Nβ2

32r0

(
γλz

(
4k2r2

0 − 1
)

+ µr0

(
λ3
z

(
k2r2

0 + 2
)
− k2r2

0 + 4
)) (87)

with

Nβ2 =γλz
(
4k4r4

0 + 6λ3
z

(
7k2r2

0 − 1
)

+ 5k2r2
0 + 3

)
+2µr0

(
3k2λ6

zr
2
0 − k2r2

0 + λ3
z

(
k4r4

0 − 8k2r2
0 + 15

)
+ 6
) (88)

The third order solution of the stream function in the term eIkzA |A|2 is given by the function
H, whose coefficients are calculated imposing the boundary conditions in Equation (52) into
Equation (51). The coefficient α31 reads

α31 =
3k2λ2

z

(
λ3
z − 1

)2
Nα31

8r2
0 (2 (λ3

z + 2)µr0 − γλz)
(
4γλz

(
k2r2

0 − 1
)

+ µr0

(
λ3
z

(
k2r2

0 + 8
)
− k2r2

0 + 16
)) (89)

with

Nα31 = −4γ2
(
k2λzr

2
0 + λz

)
+ γµr0

(
3λ3

z

(
5k2r2

0 + 16
)
− k2r2

0 + 64
)

+ 4λ2
zµ

2r2
0

(
λ3
z

(
k2r2

0 − 8
)

+ k2r2
0 − 112

) (90)

The coefficient β31 is given by

β31 =
3k2λ2

z

(
λ3
z − 1

)2
Nβ31

4r2
0 (2 (λ3

z + 2)µr0 − γλz)
(
4γλz

(
k2r2

0 − 1
)

+ µr0

(
λ3
z

(
k2r2

0 + 8
)
− k2r2

0 + 16
)) (91)

with

Nβ31 = 2γ2
(
k2λzr

2
0 + λ4

z

)
− γµr0

(
λ3
z

(
7k2r2

0 + 26
)

+ 18λ6
z + 12

)
+ 4λ2

zµ
2r2

0

(
λ3
z

(
32− k2r2

0

)
+ 4λ6

z + 24
) (92)

The third order solution of the stream function in the term e3IkzA2 is given by the function
h whose coefficients are calculated imposing the boundary conditions in Equation (55) into
Equation (54). The coefficient α3 reads

α3 = −
k2λ2

z

(
λ3
z − 1

)2
Nα3

24r2
0 (2 (λ3

z + 2)µr0 − γλz)
(
4γλz

(
9k2r2

0 − 1
)

+ µr0

(
λ3
z

(
9k2r2

0 + 8
)
− 9k2r2

0 + 16
))
(93)

with

Nα3 = −4γ2λz
(
27k2r2

0 − 7
)

+ γµr0

(
3λ3

z

(
135k2r2
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)
− 27k2r2
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)

+ 4λ2
zµ

2r2
0

(
λ3
z
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+ 27k2r2
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) (94)

The coefficient β3 is given by

β3 =
k2λ2

z

(
λ3
z − 1

)2
Nβ3

12r2
0 (2 (λ3

z + 2)µr0 − γλz)
(
4γλz

(
9k2r2

0 − 1
)

+ µr0

(
λ3
z

(
9k2r2

0 + 8
)
− 9k2r2

0 + 16
))
(95)

with

Nβ3 = 2γ2λz
(
−27k2r2

0 + 2λ3
z + 5

)
+ γµr0

(
λ3
z

(
189k2r2

0 − 46
)
− 30λ6

z − 4
)

+ 4λ2
zµ

2r2
0

(
27k2λ3

zr
2
0 + 20λ6

z − 8
) (96)
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A.2 Higher order solutions for Case (2)

Similarly to the Case (1), the coefficients of the same functions are presented for the Case
(2). The second order solution of the stream function in the term Ie2Ikz |A|2 is given by the
function g whose coefficients are calculated imposing the boundary conditions in Equation
(58) into Equation (57). The coefficient α2 reads

α2 =
3k2Nα2

16Dα2
(97)

with

Nα2 = γ
(
1331k8r8

0 + 4816k6r6
0 + 15600k4r4

0 + 17424k2r2
0 − 3744

)
+ 4µr0

(
118k8r8

0 + 651k6r6
0 + 2124k4r4

0 + 4536k2r2
0 + 6480

) (98)

and

Dα2 = γ
(
k2r2

0

(
25k8r8

0 − 30k6r6
0 − 2148k4r4

0 − 6192k2r2
0 − 5184

)
+ 1728

)
− 2µr0

(
k2r2

0

(
k8r8

0 + 54k6r6
0 + 684k4r4

0 + 2736k2r2
0 + 5184

)
+ 5184

) (99)

The coefficient β2 is given by

β2 = −
18k4

(
3γ
(
61k6r6

0 + 117k4r4
0 + 166k2r2

0 − 12
)

+ 2µr0

(
34k6r6

0 + 109k4r4
0 + 162k2r2

0 + 252
))

Dβ2

(100)
with

Dβ2 = γ
(
k2r2

0

(
−25k8r8

0 + 30k6r6
0 + 2148k4r4

0 + 6192k2r2
0 + 5184

)
− 1728

)
+ 2µr0

(
k2r2

0

(
k8r8

0 + 54k6r6
0 + 684k4r4

0 + 2736k2r2
0 + 5184

)
+ 5184

) (101)

The third order solution of the stream function in the term eIkzA |A|2 is given by the function
H whose coefficients are calculated imposing the boundary conditions in Equation (61) into
Equation (60). The coefficient α31 read

α31 = − 144k4Nα31

(γ − 6µr0)Dα31
(102)

with

Nα31 = 4γ2
(
25k6r6

0 + 324k4r4
0 + 576k2r2

0 + 2304
)

− γµr0

(
457k6r6

0 + 7632k4r4
0 + 51840k2r2

0 + 175104
)

+ 24µ2r2
0

(
13k6r6

0 + 528k4r4
0 + 8832k2r2

0 + 27648
) (103)

and

Dα31 = γ
(
k2r2

0

(
25k8r8

0 − 120k6r6
0 − 34368k4r4

0 − 396288k2r2
0 − 1327104

)
+ 1769472

)
− 2µr0

(
k2r2

0

(
k8r8

0 + 216k6r6
0 + 10944k4r4

0 + 175104k2r2
0 + 1327104

)
+ 5308416

) (104)

Coefficient β31 is given by

β31 = −
6912k6Nβ31

(γ − 6µr0)Dβ31
(105)
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with

Nβ31 = γ2
(
25k4r4

0 + 216k2r2
0 + 192

)
− 4γµr0

(
29k4r4

0 + 336k2r2
0 + 1344

)
+ 8µ2r2

0

(
11k4r4

0 + 312k2r2
0 + 2880

) (106)

and

Dβ31 = γ
(
k2r2

0

(
25k8r8

0 − 120k6r6
0 − 34368k4r4

0 − 396288k2r2
0 − 1327104

)
+ 1769472

)
− 2µr0

(
k2r2

0

(
k8r8

0 + 216k6r6
0 + 10944k4r4

0 + 175104k2r2
0 + 1327104

)
+ 5308416

) (107)

The third order solution of the stream function in the term e3IkzA2 is given by the function
h whose coefficients are calculated imposing the boundary conditions in Equation (64) into
Equation (63). Coefficient α3 reads

α3 =
16k4Nα3

9(γ − 6µr0)Dα3
(108)

with

Nα3 = γ2
(
27k2r2

0

(
795k4r4

0 + 896k2r2
0 − 384

)
− 2048

)
+ 648γk4r4

0

(
21k2r2

0 + 8
) (

2 log(r0)− log
(
r2

0

))
(2γ − 11µr0)

+ γµr0

(
−75897k6r6

0 − 72144k4r4
0 + 58752k2r2

0 + 5120
)

− 24µ2r2
0

(
9k2r2

0

(
153k4r4

0 + 336k2r2
0 + 128

)
− 1024

) (109)

and

Dα3 = 648k4r4
0

(
21k2r2

0 + 8
) (

2 log(r0)− log
(
r2

0

))(
γ
(
621k4r4

0 + 504k2r2
0 − 64

)
+ 2µr0

(
27k2r2

0

(
5k2r2

0 + 8
)

+ 64
))

+ γ
(
27k2r2

0

(
2025k8r8

0 − 1080k6r6
0 − 34368k4r4

0 − 44032k2r2
0 − 16384

)
+ 65536

)
− 6µr0

(
9k2r2

0

(
81k8r8

0 + 1944k6r6
0 + 10944k4r4

0 + 19456k2r2
0 + 16384

)
+ 65536

) (110)

The coefficient β3 is given by

β3 =
256k6Nβ3

(γ − 6µr0)Dβ3
(111)

with

Nβ3 = γ2
(
1755k4r4

0 + 1224k2r2
0 − 448

)
− 32γµr0

(
189k4r4

0 + 99k2r2
0 − 80

)
− 24µ2r2

0

(
27k2r2

0

(
5k2r2

0 + 8
)

+ 64
) (112)

and

Dβ3 = 648k4r4
0

(
21k2r2

0 + 8
) (

2 log(r0)− log
(
r2

0

))(
γ
(
621k4r4

0 + 504k2r2
0 − 64

)
+ 2µr0

(
27k2r2

0

(
5k2r2

0 + 8
)

+ 64
))

+ γ
(
27k2r2

0

(
2025k8r8

0 − 1080k6r6
0 − 34368k4r4

0 − 44032k2r2
0 − 16384

)
+ 65536

)
− 6µr0

(
9k2r2

0

(
81k8r8

0 + 1944k6r6
0 + 10944k4r4

0 + 19456k2r2
0 + 16384

)
+ 65536

) (113)
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B Series expansion of the total energy

The coefficients of the energy term in Equation (68), corresponding to the fourth order ex-
pansion in ε of the total energy, are presented for both the Case (1) and the Case (2).

B.1 Coefficients in the term E4 for Case (1)

For sake of completeness, a slightly different notation is used in this subsection. According
to the scaling proposed in Equation (40) for Case (1), the control parameter λz is perturbed
around the linear threshold λthz such that λz = λthz

(
ε2 + 1

)
. In the energy expansion there is

the need of making explicit this dependence for the function u introduced in Equation (23):
therefore, in this subsection, u = u (r, λz) and the derivative will be presented as u(l1,l2) where
the l1 indicates the order of derivation with respect to the first argument and l2 the derivative
with respect to the second one. No change of notation is done for the other functions. The
coefficient γv becomes

γv =
2πρ0

((
k2R2 + λthz

)
u2 +R2

(
u(1,0)

)2
+ 2
√
λthz Ru

(1,0)u
)

kRτ2
c

(114)
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Coefficient αv can be written as

αv =
2πµ

kλthz R
5(

−6k4R5u
(
u(1,0)

)3 (
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)3/2
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(
u(2,0)

)2 (
λthz

)3/2
+ 8k3R4u2g′

(
λthz

)3/2

−2R3uH ′
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(
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√
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The coefficient αs reads

αs = −πγk
√
λthz

2R3
0(

24kλthz R0

(
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)
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0
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The coefficient βv is given by

βv =
2πµ
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(117)

Finally, the coefficient βs reads

βs =
πγk

√
λthz u

((
k2R2

0 − 3λthz
)
u− 4λthz

(
λthz − k2R2

0

)
u(0,1)

)
R0

(118)

B.2 Coefficients in the term E4 for Case (2)

Also for Case (2), a slightly different notation with respect to the manuscript is used in this
subsection. According to the scaling proposed in Equation (40) for Case (2), the control
parameter µ is perturbed around the linear threshold µth such that µ = µth

(
ε2 + 1

)
. In this

case the explicit dependence of function u presented in Equation (23) on parameter µ should
be stated: therefore, in this subsection, u = u (r, µ) and the derivative will be presented as
u(l1,l2) where the l1 indicates the order of derivation with respect to the first argument and
l2 the derivative with respect to the second one. No change of notation is done for the other
functions.
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The coefficient γv reads

γv =
2πρ0

((
k2R2 + 1

)
u2 +R2
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The coefficient αv can be written as

αv =
2πmuth
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The coefficient αs, instead, is given by

αs =
πγk
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−24kR0
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The coefficient βv reads

βv =
2πµth
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(122)

Finally, we have that βs = 0.

B.3 Weakly non linear results for Case (1) and Case (2)

The weakly non-linear analysis proposed in Section 4 allows to identify the nature of bifur-
cation and to estimate the amplitude evolution in the nearby of the linear threshold. The
Tables 2 and 3 in this Appendix present other configurations than the ones proposed in the
manuscript, both for the Case (1) and the Case (2), respectively. Some of these configurations
have been also evaluated numerically as shown in the plots in Sections 6 and 7.

Lec
R0

Ast λthz

k̄ = 0.01 k̄ = 0.1 k̄ = 0.2 k̄ = 0.01 k̄ = 0.1 k̄ = 0.2

6.2 - - 2.350I (sub) - - 1.0156
6.1 - - 2.033I (sub) - - 1.0514
6.0 - 3.039I (sub) 0.763 (super) - 1.0208 1.0973
5.9 1.762I (sub) 1.142I (sub) 0.151 (super) 1.0372 1.0619 1.1675
5.8 0.773I (sub) 0.881I (sub) 1.0851 1.1184
5.75 0.582I (sub) 0.637 (super) 1.1169 1.1609
5.7 0.469I (sub) 1.1609

Table 2: Numerical values for the solution Ast and the relative nature of bifurcation for
the Case (1), computed from the weakly non-linear analysis for selected conditions of k̄ and
Lec
R0

. These values are obtained for an undeformed radius R0 = 0.2µm and a shear modulus
µ = 20Pa

34



L0
R0

k̄
(
Lec
R0

)th
Ast

6283.19 0.001 6.00001 0.139I (sub)
628.32 0.01 6.0001 0.461 (super)
125.67 0.05 6.0151 5.696 (super)
62.83 0.10 6.0606 2.903 (super)
41.88 0.15 6.1381 2.002 (super)
28.56 0.22 6.3052 1.451 (super)
20.94 0.30 6.5934 1.123 (super)
12.08 0.52 8.2277 0.381 (super)

Table 3: Numerical values for the static solution Ast and the relative nature of bifurcation for
the Case (2) computed from the weakly non-linear analysis for selected conditions of k̄. The
ratio L0

R0
, assuming the lowest mode m = 1, is also shown to be used as control parameter

to discriminate the turning point between subcritcality and supercriticality. These values are
obtained imposing γ = 36.5mN/m and R0 = 0.24mm consistently with the experimental
condition shown in Mora et al. [35].

C Imperfection sensitivity analysis: coefficients of the energy
series expansion

In this Appendix, we show the expression of the coefficient presented in Equation (77), describ-
ing the series expansion up to the third order in ξ of the total energy used for the imperfection
sensitivity analysis in Section 7. At the zeroth order, the bulk and the superficial contributions
can be written, respectively, as

Eb0 =
π
((
λthz
)3 − 3λthz + 2

)
µR2

0

2kimp (λthz )
2 (123)

and

Es0 =
2πγR0√
λthz kimp

(124)

At the first order in ξ, the bulk and the superficial contributions can be written, respec-
tively, as

Eb1 = −αimp
π
((
λthz
)3

+ 3λthz − 4
)
µR2

0

2kimp (λthz )
2 (125)

Es1 = αimp
πγR0√
λthz kimp

(126)

At the second order in ξ, the bulk and the superficial contributions can be written, re-
spectively, as

Eb2 = −α2
imp

3π(λthz − 2)µR2
0

2kimp (λthz )
2 (127)

Es2 = α2
imp

3πγR0

4kimp
√
λthz

(128)
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At the third order in ξ, the coefficients are presented as show in Equation (77). The bulk

and superficial contributions that multiply the term
∣∣∣∂An(τ)

∂τ

∣∣∣2 are given by

νn,b =
2αimpρ0π

kimpτ2
c

∫ R0

0

(
1

R

(
λthz + kimp2n

2R2U2
n + 2

√
λthz RUnU

(1,0)
n +R2

(
U (1,0)
n

)2
))

dR

(129)

νn,s = 0 (130)

The bulk and superficial contributions that multiply the term (|An (τ)|)2 are

βn,b = − π2µ

kimpλthz R
3(

R

(
2λthz U

(0,1)
n

(√
λthz

(
k2
imp

(
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)3
n2R2 + 2k2

impn
2R2 − λthz

)
U (1,0)
n +R

(
k2
impn

2R2 − λthz
)
U (2,0)
n

)
+R

((
3k2
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(
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)3
n2R2 + λthz

)(
U (1,0)
n
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+2U (1,0)
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(
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(
k2
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(
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√
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(
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(
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(131)

and

βn,s =


πγkimp

√
λthz n

2Un
(
λthz (k2impn2(4−4n2)R2

0+λthz (4n2−4))U(0,1)
n +(k2impn2(1−n2)R2

0+λthz (3n2−3))Un
)

(n2−1)R0
if n 6= 1

πγkimp
√
λthz U1

(
λthz (4λthz −4k2impR

2
0)U

(0,1)
1 +(3λthz −k2impR2

0)U1

)
R0

if n = 1

(132)
The bulk and superficial contributions that multiply the term (A1 (τ)−A−1 (τ)) are given

by

ω1,b = −
2Iπ2

((
λthz
)3

+ 3λthz − 4
)
µ
(
R0U

(1,0)
1 +

√
λthz U1

)
kimp (λthz )

3/2
(133)

ω1,s =
4π2IγU (1,0)

1

kimp
(134)
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Coefficient B, in which the bulk and superficial contribution are condensed, is written as

B = α3
imp

(
3− 8

λthz

) (
πµR2

0

)
2kimpλthz

− 5πγR0

8kimpλthz
(135)
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The coefficients that multiply the term Am (τ)An−m (τ)A−n (τ) are

Q (m,n) =
2Iπµ√
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Qs (m,n) =
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