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Abstract

In this work we present a mathematical model of the evolution of ae-
olian sand dunes, in particular we consider the case of dunes formed by a
mixture of sands with different characteristics. We first recall a basic model
for the evolution of two dimensional sand dune that has been proposed in
the literature. Then, we propose a novel type of mathematical formulation
for the evolution of sand dunes formed by a mixture of two (or more) sands,
which expresses the temporal variation of sand surface elevation and con-
centration of each sand type in terms of the balance between entrainment
and deposition rates of sand. We provide some simple but physically based
constitutive relationship for the new variables and we present some numer-
ical simulations that clearly demonstrate that our model can be profitably
adopted for the study of interesting physical problems such as sand tracking
and dunes collision.

1 Introduction

The morphodynamics of sand dunes is due to two distinct physical mechanisms:
the effect of the wind blowing on the sand surface which produces a flux of
jumping sand grains called “in saltation”, and the spontaneous generation of
avalanches if the slope of the sand surface is steeper than the angle of repose
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of the sand. In the last decade the mathematical modelling and the numerical
simulation of sand dune evolution has become an attractive topic in the aeolian
literature. Starting from the fundamental works of H.Herrmann, K.Kroy and
G.Sauermann [1, 2] which provide a minimal model for the evolution of two
dimensional sand dunes, the successive developments have lead to realistic mod-
elling and simulations of three dimensional transverse [3], barchans [4, 5] and
linear [6] dunes, as well as the generation of complete dune fields [7]. In these
works the mathematical model is often based on a conservation equation for the
mass of sand formulated by balancing the temporal variation of sand surface
elevation with the divergence of the saltation and avalanches sand fluxes.
In this paper, we are interested in building a model for dune evolution when the
bulk sediment is a mixture of sands with different characteristics. In particular,
here we consider the simplest case of sediments with different colours (tracer sed-
iments), that has been studied e.g. in [8, 9] from an experimental point of view.
To this aim, inspired by current approaches adopted in the fluvial literature [10],
we assume that sediment exchange between sand surface and superficial trans-
port flow is limited in a layer of finite depth commonly called active layer, and
we build a complete model for differential sand dispersion coupled with sand
surface evolution.
We show that this approach leads to a formulation for the conservation equation
that links the temporal variation of sand surface elevation to the balance between
entrainment and deposition rates [11]. We provide some constitutive relation-
ship for the new variables introduced in the system: for the saltation flux, we
write the entrainment rate in function of the shear stress exerted by the wind on
the sand surface, while the deposition rate is linked to the upwind entrainment
rate by assuming that the step length of a saltating grain is probabilistic with a
given density function. For the avalanche flux, erosion occurs only if the slope
exceeds the angle of repose; even in this case, we can introduce a probabilistic
step length for avalanching grains which links the deposition rate to the up-slope
entrainment rate. Furthermore, we are able to show that, under some simple
but physically based hypothesis, the entrainment-deposition formulation for the
evolution of two dimensional dunes is mathematically equivalent to the formu-
lation based on the divergence of the sand flux to describe the evolution of an
undifferentiated sand mass. However, the new formulation offers the possibility
for a differential evolution of sand dunes made up of different sands.
The outline of the paper is the following: in Section 2 we recall the essential fea-
tures of the classical model, detailing the type of discretization that we adopted
for the numerical simulation. In Section 3, we formulate the model for marked
sand dispersion during dune evolution, then we introduce the entrainment-
deposition formulation, showing its consistency with the previous model. Fi-
nally, we present some numerical simulations which demonstrates that the model
provides physically sound results.
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2 Sand transport and desert surface evolution

The geometry of the system is represented in Figure 1, where the sand surface
elevation is described by a function z = h(x, t), z being the vertical coordinate.
For simplicity we consider the evolution of a two-dimensional dune only. The
evolution of the sand surface is due to the mass sand flux q(x, t) of sand grain
in saltation, that is the mass of sand that crosses the position x per unit time.

q(x+ ∆x
2 , t)q(x− ∆x

2 , t)

z

h(x, t)

x− ∆x
2

x x+ ∆x
2

Figure 1: Geometry of the system; the temporal variation of the elevation of the
sand surface ∂th is due to divergence of the sand flux ∂xq.

The continuity equation which ensures mass conservation is

ρdune
∂h

∂t
+
∂q

∂x
= 0, (1)

where ρdune is the density of the sand bed given by ρdune = (1− λ)ρsand, where
λ is the porosity of sand bed, here assumed constant. We need to express the
flux q(x, t) in terms of the height profile h(x, t) and the action of external wind.
Since the speed of evolution of the surface is very small compared to that of
sand transport, the topography can be assumed to be stationary with respect to
the wind and sand transport dynamics. This assumption allows us to calculate
the flux q(x) by the following steps:

1. calculate the stationary wind velocity above the given topography; more
precisely we need the shear velocity u∗ = u∗(x) or equivalently the shear
stress τ = ρairu

2
∗ exerted by the wind on the sand surface;

2. calculate the stationary sand flux q(x) for a given τ(x).

2.1 Shear stress calculation

The determination of the shear stress τ(x) is a rather complex problem due to
the complex fluid dynamics in the atmospheric boundary layer in presence of
saltating sand grains, and to the possible presence of a recirculation zone in the
downwind part of a dune profile. In the areas not interested by recirculation
we assume that the presence of the relief h(x) induces a perturbation of the
shear stress exherted by the wind with respect to that of a horizontal surface
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τ0 = ρairU∗. We introduce then τ̂(x) ≡ τ(x)/τ0 − 1, and we first consider the
case of a smooth sand bump without recirculating zone. The analytic theory of
boundary layer perturbation developed by P.S.Jackson and J.C.R.Hunt [12] and
simplified for the sand dune problem by K.Kroy et al. [1], gives the following
expression:

τ̂(x) = A

∫
R

1

πχ
∂xh(x− χ) dχ+B∂xh(x) = τ̂A + τ̂B. (2)

The shear stress perturbation τ̂ depends only on the slope of the hill ∂xh, reflect-
ing the consideration that a turbulent flux is scale-invariant. The convolution
integral is a non local term that depends on the whole shape of the dune. Its
contribution is positive on bumps (negative curvature) and negative on hollows
(positive curvature). The second term takes into account the slope effects, as
the shear stress increases on positive slopes because of streamline compression.
The combined effects of these two contributions leads to an asymmetric shear
stress even on a symmetric sand surface profile; in particular, the maximum of
τ(x) is always shifted upwind with respect to the maximum of h(x), see Figure
2(a). The value of the coefficients A and B is found in the cited literature [1].
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Figure 2: In (a), in black is represented the shear stress perturbation τ̂ on the
profile h; in red τ̂A, the non-local term expressed by the convolution integral, in
blue the slope term τ̂B. The values of the parameters are A = 4, B = 1. In (b),
in black is represented the dune profile h; from the brink point, the separating
streamline (dashed black line) is empirically built as a polynomial of 3rd degree.
Then the shear stress (dashed red line) is calculated using Equation (2) on the
profile which includes the separating streamline, and finally it is set to zero in
the recirculating zone (red line).

In the case of the atmospheric boundary layer, the scale invariance is broken
by the existence of the superficial roughness z0, and the coefficients A and B of
the model are not strictly constant but depend on log(D/z0), where D is the
dune size. Notwithstanding, taking the coefficients as effective constant will not
affect the overall behaviour of the model; further consideration in this direction
can be found in [13, 14].
When the sand surface presents a slip face the wind flow separates at the brink
of the dune and reattaches downwind. This phenomenon creates a recirculating
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zone in the lee side of the dune, which cannot be modelled by the analytical per-
turbation method. A simple way to model the effect of the recirculation bubble
on the overall flux is to empirically reconstruct the separating streamline and
to assume that the wind flow follows it as a solid surface. In the recirculation
zone the shear stress is then assumed to be negligible, see Figure 2(b). Following
[2, 14], the separation streamline is written as a polynomial of 3rd degree with
smooth C1 junction at brink and reattachment point. The length of the sepa-
ration bubble is determined by imposing the fixed maximum slope of tan 14◦ at
the inflexion point.
This extremely simplified method for shear stress calculation can reproduce the
overall behaviour of the wind flux over a sand dune, saving a lot of computa-
tional time with respect to other methods. Since computing the shear stress
by a CFD code is rather expensive, in the following we will use the proposed
analytical expression for the shear stress.

2.2 Sand flux calculation

Wind blowing over a surface covered by sand mobilizes sand grains laying on the
surface. Those grains accelerate extracting momentum from the wind flow and
entrain other grains when they impact on the sand bed. In this process, the wind
velocity in the surface layer is reduced. This feedback mechanism establishes a
relation between the shear velocity u∗ and the sand flux q at equilibrium. A
single empirical relation has been proposed by R.A.Bagnold [15]:

qsat = C
ρair
g
u3
∗, (3)

where the index sat in Equation (3) emphasizes that this relation is valid when
the flux is saturated, i.e. it is equal to its equilibrium transport capacity. Here
C is a constant parameter usually taken equal to 2 , ρair is the density of the
air and g is the gravity acceleration. Many other laws have been discussed in
the literature, mainly to include a threshold value for the shear velocity uth in
the formulation, indicating that below uth the wind cannot mobilize the sand
grains, but the scaling qsat ∝ u3

∗ is common to all models for u∗ sufficiently far
from the threshold value.
In field conditions not all the ground is covered by sand, moreover we have
the presence of sloped beds and reattachment points. Therefore qsat depends
on x because u∗ = u∗(x), and the sand flux q is not everywhere equal to its
saturated value given in Equation (3). In fact, the flux adapt to changes in
external conditions with a characteristic space lag, called saturation length Lsat.
This space lag can be described [14] by a charge equation of the form:

∂q

∂x
=
qsat − q
Lsat

. (4)

This equation is valid only if some grains are available on the unerodible bed,
i.e. if h(x) > 0. On the firm soil the flux cannot increase to become saturated
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and remains constant.
Among the possible physical mechanisms responsible for the saturation length
proposed in the literature, the most accredited is the distance required by the
wind to accelerate the grain expelled from the surface and the value of this dis-
tance is taken proportional to the diameter of the grain times the ratio between
the density of sand and air [13]: Lsat = ξ ρsandρair

d. The value of the constant of
proportionality ξ ' 2 was obtained recently [16] by adapting the charge equa-
tion (4) to experimental measurements conducted in a wind tunnel and appears
to be independent from the strength of the wind. Characteristic values are
ρsand = 2650kg/m3, ρair = 1.225kg/m3, d = 0.25mm, which lead to Lsat = 1m.
The spatial delay between shear stress and sand flux profiles due to the satura-
tion length introduce a length scale responsible for the existence of a minimal
size for the sand dune: a too small bump of sand is in fact always eroded, see
Figure 3.
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Figure 3: The effect of the saturation length; on two scale invariant surface
profile (in grey), the profile of the saturated sand flux (in red) is equivalent
(since the shear stress is scale invariant), but the saturation length add a spatial
delay which makes the evolution of a big dune (a) possible (q(x) and h(x) have
a maximum at the same position) but is responsible for the complete erosion of
the small sand dune (b) (q(x) has a maximum shifted in the downwind part of
the dune).

2.3 Numerical simulation

The basic mathematical model for sand dune evolution is finally formed by the
following equations:

ρdune
∂h

∂t
+
∂q

∂x
= 0 s.t. |∂xh| < tan γ

u2
∗(x)

U2
∗

=
τ(x)

τ0
= 1 +A

∫
1

πχ
∂xh(x− χ)dχ+B∂xh(x)

qsat(x) = CB
ρair
g
u3
∗(x)

∂q

∂x
=
qsat − q
Lsat

where h > 0,
∂q

∂x
= 0 otherwise,

(5)
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where in the first equation we impose that the slope of the sand surface cannot
exceed the angle of repose during evolution. A typical value of γ is 34◦. Con-
cerning the numerical solution of (5), an initial profile h(x, 0) is imposed and
the domain Ω = [0, L] is divided in N intervals of uniform length ∆x. The
algorithm for the evolution of the system reads:

1. if the sand surface presents a slip face, then reconstruct the separating
streamline using a 3rd order polynomial starting from the brink and reat-
taching downwind with a C1 junction. The reattachment point is deter-
mined by imposing a slope at the inflection point of the streamline equal
to tan 14◦, following [1, 14].

2. Solve the equation for τ(x), which has an equivalent formulation using
Fourier transform:

F(τ̂)(k) = (A|k|+Bik)F(h)(k),

τ(x) = τ0(1 + τ̂(x)).

We use a Fast Fourier Transform, where h is the profile which eventually
includes the separating streamlines. Then set τ = 0 in the recirculating
zones and deduce the profile of qsat(x) from the profile of τ(x).

3. The charge equation for q(x) is an ODE in space which is solved with the
Heun method (2nd order accurate explicit).

4. The time evolution of the surface is discretized with a forward Euler
method and a WENO [17] reconstruction for ∂xq, as we want to limit
oscillation induced by a numerical differentiation of the profile of q(x),
which is only C0 at the brink points. The profile obtained at this stage is
indicated as hn+1/2.

5. The suffix n + 1/2 is used to indicate that surface thus obtained is an
intermediate solution as we still have to impose the constraint on the norm
of the gradient. The solution that we adopted for this problem is detailed
in Section 2.4.

The model can be applied to the evolution of an initial symmetric profile of sand
to a moving dune with slip face as represented in Figure 4.

2.4 Algorithm for the constrained evolution

Following A.Caboussat & R.Glowinski [18], the problem of satisfying the con-
straint on the norm of the gradient is formulated as a variational inequality, and
solved with the following augmented Lagrangian method. Let V = H1(Ω) and,
to ease notation, let f = hn+1/2 be the intermediate solution. At each time
iteration we want to find:

hn+1 = arg min
v∈K

1

2

∫
Ω
|v − f |2 dx,
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Figure 4: Evolution of an initial symmetric sand bump to a dune with slip face.

where K = {v ∈ V : |∂xv| ≤ tan γ}. To this aim we use a penalization technique

hn+1 = arg min
v∈V

1

2

∫
Ω
|v|2 dx−

∫
Ω
fv dx+

1

3ε

∫
Ω

((
|∇v|2 − γ2

)+)3
dx,

where ε is a very small penalization parameter. Let us introduce q = ∇v ∈ L2(Ω)
and denote L2(Ω) by Q; the problem is therefore equivalent to find:

min
{v,q}∈K

1

2

∫
Ω
|v|2 dx−

∫
Ω
fv dx+

1

3ε

∫
Ω

((
|q|2 − γ2

)+)3
dx,

where
K = {(v, q) ∈ V ×Q : ∇v − q = 0}.

The relation ∇v− q = 0 is imposed by penalization and the use of a Lagrangian
multiplier µ ∈ Q, defining the augmented Lagrangian functional:

Lr(v, q, µ) =
1

2

∫
Ω
|v|2 dx+

r

2

∫
Ω
|∇v − q|2 dx+

∫
Ω
µ · (∇v − q) dx

−
∫

Ω
fv dx+

1

3ε

∫
Ω

((
|q|2 − γ2

)+)3
dx.

The corresponding saddle point problem is solved by using finite elements (piece-
wise linear for the approximation of V , piecewise constant for Q) and an Uzawa-
type algorithm.

3 Marked sand dispersion

We are now interested in building a mathematical model for the dispersion of a
mass of marked sand. The question we want to answer is: if we put a mass of
sand grains that we can distinguish from the others in a zone of the sedimentary
column interested in dune movement, how the concentration of marked grains
in the sedimentary column will evolve?
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3.1 The active layer setting

Due to the lack of literature on this specific topic in the aeolian framework, we
directed our attention to the fluvial literature. In this field it is often necessary
to formulate sediment transport models considering the variety of granulometric
classes which composes the river bed. We extended the active layer framework
(see e.g. G.Parker, [10]) to our problem. More precisely, we consider the mass
balance for marked sand in a vertical column of infinitesimal width as

ρdune
∂

∂t

[∫ h(t)

0
f̃ dz

]
+
∂q̃

∂x
= 0, (6)

where f̃(x, z, t) is the fraction of marked sand at point (x, z) of the sedimentary
column and q̃(x, t) is the mass flux of the marked sand. The following hypothesis
are added, see Fig. 5:

La

z

q̃(x+ ∆x
2 , t)q̃(x− ∆x

2 , t)

h(x, t)

fa(x, t)

fb(x, z)

x− ∆x
2

x x+ ∆x
2

Figure 5: The active layer framework: in the active layer, the marked sand con-
centration fa(x, t) does not depend on the vertical coordinate z; in the substrate,
the marked sand concentration fb(x, z) does not change in time.

1. sediments being transported exchange mass with bed sediment only in a
superficial layer of finite thickness La, named active layer ;

2. the active layer is well mixed by the exchange process so that it has no
vertical structure, therefore we can define:

f̃(x, z, t) = fa(x, t) if h− La < z < h;

3. the substrate can have a vertical structure, and thus a functional depen-
dence in z, but it does not change in time because it is below the zone that
is transported:

f̃(x, z, t) = fb(x, z) if z < h− La.
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These hypotheses allow us to write Equation (6) separately for the active layer
and the substrate:

ρdune
∂

∂t

[∫ h(t)

h(t)−La
fa(x, t) dz

]
+ Φ +

∂q̃

∂x
= 0 (7)

ρdune
∂

∂t

[∫ h(t)−La

0
fb(x, z) dz

]
− Φ = 0, (8)

where the new term Φ(x, t) is the mass rate of marked sand through the internal
surface z = h(x, t)−La separating the active layer and the substrate. If the sand
surface is locally in erosion (∂th < 0), the active layer incorporates sediments
from the substrate, and the interface mass rate will be Φ = ρdunefb

∣∣
z=h−La∂t(h−

La). Otherwise, if the sand surface is locally in deposition (∂th > 0), the active
layer passes sediments to the substrate, and the interface mass rate will be
Φ = ρdunefa∂t(h−La). These considerations can be incorporated in the definition
of the interface concentration:

fI =

{
fb
∣∣
z=h−La if ∂th < 0,

fa if ∂th > 0,
(9)

which allows us to write Equation (7) in the compact form:

ρdune

[
∂(Lafa)

∂t
+ fI

∂(h− La)
∂t

]
+
∂q̃

∂x
= 0. (10)

Equation(10) is the conservation equation for marked sand in the active layer,
and describes the evolution of the surface concentration of marked sand when
sand is transported.
To close the system, we still have to characterize the new variables. In fluvial
literature, La is assumed to be proportional to the diameter of bed sediments, yet
since we consider uniform sediments we can take La as an effective parameter,
which, by considering also Equation (1), leads to write Equation (10) as:

ρduneLa
∂fa
∂t
− fI

∂q

∂x
+
∂q̃

∂x
= 0. (11)

At this point, we need an expression for the divergence of the flux of marked sand
∂xq̃. This term is equal to the balance between the entrainment and deposition
rates of marked sand,

∂q̃

∂x
= Ẽ(x)− D̃(x), (12)

where Ẽ(x) is the mass of marked sand that leaves a unit surface in the unit time
to enter in the saltation flux and D̃(x) is, conversely, the mass of marked sand
that leaves the saltation flux and is deposited on the sand surface. In the next
section we will provide some possible constitutive relationship for these rates.
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3.2 Entrainment-deposition formulation

Let us come back to the total mass balance equation (1), which does not distin-
guish between marked and unmarked sand. It is however possible to replace the
divergence of the sand flux with the balance between the total entrainment and
deposition rates (respectively E = E(x, t) and D = D(x, t)),

∂q

∂x
= E −D, (13)

so that the mass balance equation (1) will take the form:

ρdune
∂h

∂t
= D − E. (14)

Because the time scale of transport dynamics is well separated from that of the
evolution of the sand surface, it is possible to adopt a quasi-static formulation
and assume that E and D adapt instantaneously to the changes of h(x, t). To de-
termine the relation linking the deposition to the entrainment we further assume
that [11, 19]:

1. once entrained from the sand surface, a sand grain performs a step (even-
tually rebounding) of length r before depositing again on the surface;

2. the step length is probabilistic, with probability density function (p.d.f)
s(r), with r ∈ (0,+∞).

With these hypotheses we may write that

D(x) =

∫ x

−∞
E(y)s(x− y) dy =

∫ +∞

0
E(x− y)s(y) dy. (15)

Now, the problem is switched to the characterization of the entrainment rate
and the p.d.f. for step length. We should first point out that, to the best of our
knowledge, this entrainment-deposition formulation has not jet been proposed
in the aeolian literature; consequently, the problem of the characterization of the
entrainment rate and the p.d.f. of step length have not been jet investigated,
either from the theoretical, or from the experimental point of view.
Since the focus of this communication is on the formulation of a mathematical
model of marked sand dispersion, we limit ourselves to propose an entrainment-
deposition formulation that is consistent with the minimal model for sand dune
evolution exposed in Section 2.
We first recall a useful relation that links the entrainment rate and the sand
flux:

Proposition 3.1 Let λ =
∫ +∞

0 rs(r) dr < ∞ be the mean step length. We
suppose that q(0) = 0 and consider a constant entrainment rate on the positive
axis. Then, the saturated entrainment rate Esat that leads to a saturated flux
qsat is

Esat =
qsat
λ
.
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Proof. We can define qsat = limx→+∞ q(x). Hence we can write

q(x) =

∫ x

0

∂q

∂y
dy =

∫ x

0

(E(y)−D(y)) dy =

=

∫ x

0

(
E(y)−

∫ y

0

E(y − z)s(z) dz

)
dy =

= Esat

∫ x

0

(
1−

∫ y

0

s(z) dz

)
dy =

= Esat

[(∫ +∞

x

s(z) dz

)
x+

∫ x

0

s(y)y dy

]
,

and when x→ +∞ the first term vanishes and the second one is equal to the mean step

length λ. �
We now use this relation to propose a constitutive model consistent with the
one based on the sand flux formulation (3)-(4):

Proposition 3.2 If we suppose that:

1. the entrainment rate is always equal to its saturated value:

E(x) =
qsat(x)

λ
(16)

2. the probability density function for the step length is exponential:

s(r) =
1

λ
e−

r
λ (17)

then the entrainment-deposition formulation is equivalent to the linear charge
equation for the sand flux (4) with Lsat = λ.

Proof. It suffices to note that the solution of the charge equation (4), for example
with the boundary condition q(−∞) = 0, is

q(x) =

∫ x

−∞
qsat(y)

1

Lsat
e−

x−y
Lsat dy.

Thus the convolution with an exponential is naturally embedded in the analytical so-
lution of the linear charge equation. The equivalence between the two formulation is
therefore assessed by recognizing that, using the given hypothesis,

∂q

∂x
= E(x)−D(x) =

qsat(x)

λ
−
∫ x

−∞

qsat(y)

λ

1

λ
e−

x−y
λ dy

=
qsat(x)− q(x)

λ
.

�
The proposed formulation reproduces the effect of saturation of the sand flux
thanks to the space lag existing between the phenomena of erosion and depo-
sition, predicting a saturation length equal to the mean step length for sand
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grains. In Section 2.2 we reported that in the aeolian literature the saturation
length is often assumed equal to 1m. This value seems to be compatible with the
mean step length of a sand grain (remember that the step may includes several
rebounds), hence this value will be assumed as effective parameter in our model.

3.3 Application to the marked sand dispersion problem

We can now go back to the problem of marked sand dispersion. In equation (12)
we decided to substitute the divergence of the sand flux of marked sediment
with the imbalance between entrainment Ẽ and deposition rates D̃ of marked
sand. Once the total entrainment rate is known, the active layer hypothesis
leads naturally to the following expressions for Ẽ and D̃:

Ẽ(x) = fa(x)E(x), D̃(x) =

∫ x

−∞
fa(y)E(y)s(x− y) dy. (18)

In the new setting, equation (11) is conveniently rewritten in the form:

ρduneLa
∂fa
∂t

= D̃ − Ẽ − fI(D − E), (19)

where the left hand side represents the temporal variation of mass of marked
sand in the active layer, which is due on the one hand to the imbalance between
entrainment and deposition superficial rates of marked sand (D̃ − Ẽ) and on
the other hand to the amount of mass of marked sand which leaves (enter) the
active layer at the interface with the substrate if net deposition (erosion) locally
occurs. In addition, the evolution of the substrate concentration is governed
by Equation (8) which we conveniently rewrite in equivalent form here below.
The complete system of equations which compose the model of marked sand
dispersion during sand surface evolution finally reads:

u2
∗(x)

U2
∗

=
τ(x)

τ0
= 1 +A

∫
1

πχ
∂xh(x− χ)dχ+B∂xh(x)

E(x) = CB
ρair
g

u3
∗(x)

λ
, D(x) =

∫ x

−∞
E(y)s(x− y)dy

ρdune
∂h

∂t
= D − E s.t. |∂xh| < tan γ,

Ẽ(x) = E(x)fa(x) D̃(x) =

∫ x

−∞
E(y)fa(y)s(x− y)dy

ρduneLa
∂fa
∂t

= D̃ − Ẽ − fI(D − E)

fb(x, h(x, t)− La) = fa(x, t) if z < h(x, t)− La.

(20)

In the zone characterized by net deposition of sediments, the substrate incor-
porates sediments from the active layer, so that we need a storage technique
for the marked sand concentration in the sedimentary column during evolution.
This will be discussed in section 3.5. First we need to provide a model for sand
avalanches able to describe the dispersion of marked sand.
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3.4 Description of avalanches

Besides the sand in saltation, the other transport mechanism is due to avalanches
that spontaneously arise if the local slope exceeds the angle of repose of sand. In
the first part of this paper we have treated sand avalanches as an instantaneous
event which acts as a constraint on the maximum slope of the sand surface.
This approach is profitable since we can avoid the accurate description of the
avalanche process. On the other hand with this approach it is not possible to
obtain a model for the transport of marked sand, so we need to derive an alter-
native formulation.
We propose to describe also the avalanche process using an entrainment-deposition
formulation; we write therefore the following balance equation for the avalanche
process (assuming that no saltation flux is present in the region affected by
avalanches):

ρdune
∂h

∂t
= Dav − Eav. (21)

In avalanches the sand begins to move when the local slope exceeds the angle of
repose; we then assume the entrainment rate to be proportional to the excess of
local slope with respect to the angle of repose:

Eav(x) = M max(|∂xh(x)| − tan γ, 0), (22)

where M is a parameter whose dimensions are Kg/m2s. Again, we can suppose
that the entrained sand is deposited along the slip face after rolling for a distance
r. As in the case of sand in saltation, we can assume that this distance is
probabilistic with p.d.f. sav(r), and link the deposit to what is entrained above
through an integral relation:

Dav(x) =

∫ x

xB

Eav(y)sav(x− y) dy, (23)

where xB is the position of the brink of the slip face. In practical application
both avalanches and saltation are present. The time scales of avalanches are
much smaller than the time scales of saltation, implying that the constant M
is large. So in practice we iterate Equation (21) until convergence is reached
before considering the evolution given by the saltation flux.

3.5 Numerical simulations

In this section we detail the discretization techniques that we adopted for the
numerical resolution of the mathematical models proposed in the previous sec-
tions. At the same time, we illustrate some numerical simulations, aiming at
showing the potential fields of application of our research.
In the following, we will always consider a domain x ∈ [0, L] subdivided in Nx

intervals of equal size ∆x = L/Nx. The midpoints xi = (i−0.5)∆x, i = 1, ..., Nx

are the point where the variables are approximated using the standard notation
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fi ' f(xi) and the vectors f : [f ]i = fi are the unknowns of the problem. All the
time derivatives are discretized with forward Euler method, and the deposition
rate is computed by integrating the second integral in (15) by a trapezoidal rule.
Concerning the numerical discretization in time of the marked sand dispersion
model, the evolutionary equations for the sand surface and for the active layer
concentration are discretized with forward Euler method with the same time
step: {

hn+1 = hn + ∆t
ρsand

(Dn −En)

fn+1
a = fna + ∆t

ρsandLa

[
D̃n − Ẽn − fnI (Dn −En)

]
.

(24)

Since the evolution of the marked sand concentration in the active layer depends,
through the interface concentration, also on the exchange of sediments with the
substrate, it is necessary to store the marked sand concentration in the substrate
fb(x, z) during the simulation. Assuming that at all times Hmin < h < Hmax, we
consider a subdivision of the vertical domain z ∈ [Hmin, Hmax] in Nz intervals
of equal size ∆z. The midpoints zi = Hmin + (i − 0.5)∆z, i = 1, ..., Nz are
the discretization points of the vertical domain. The whole domain [0, L] ×
[Hmin, Hmax] is therefore discretized in Nx ×Nz rectangular cells where (xi, zj)
are the coordinates of the center points. The substrate concentration is constant
in each cell and its values are stored in a matrix Fb such that [Fb]ij ' fb(xi, zj).
During evolution, in the zones characterized by net erosion of sediments the
interface concentration fI is the substrate concentration Fb in the cell crossed
by the interface. In the zones characterized by net deposition the interface
concentration fI is the concentration in the active layer fa, and the substrate
concentration in the cells crossed by the interface has to be updated according
to the scheme represented in Figure 6 because they incorporate new sediments
from the active layer.
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Figure 6: Numerical technique for the passage of sediment from the active layer
to the substrate in the case of net deposition.
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Sand avalanches First we analyse the entrainment-deposition model for the
sand avalanches (21)-(23). The absolute value of the slope in equation (22) is
approximated with the finite difference scheme:

|∂xh| '
1

∆x
max(hi − hi−1, hi − hi+1, 0),

which is valid for both positive and negative slopes. As convergence crite-
rion, we iterate the equation (21) until the maximum slope excess is below
tol = 10−3. Figure 7 shows the relaxation of a steep slope obtained by this algo-
rithm. Here we have considered a domain x ∈ [0, 2]m subdivided in 200 equally
spaced cells of width ∆x = 1 cm and an initial sand pile with surface profile:
h(x, 0) = max(cos(π2x), 0), which clearly exceeds the maximum admitted slope.
In Figure 7 we represent the relaxed surfaces obtained using three different ex-
ponential p.d.f. sav(r) with mean equal to 5, 10 and 20 cm; we see that the
proposed method effectively relaxes the sand pile. In the same plot we also show
the relaxed surface obtained by the algorithm described in Section 2.4; we can
note that augmenting the mean step length leads to a tail of the profile at the
foot of the relaxed sand pile.
We now couple the discretized active layer model for the evolution of marked
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Figure 7: The initial profile h0(x), (dashed black line) exceeds the maximum
admitted slope. The relaxed solution PK(h0) (black line) is approximated (left
image) using the entrainment-deposition model for sand avalanches with 3 ex-
ponential p.d.f. of rolling grain (λ = 5, 10 and 20 cm). Zooming at the foot of
the sandpile (right image), we see the tail effect which increases with λ.

sand concentration (24) with the model of sand avalanches (assuming that no
saltation flux is present). Starting with the discretized domain and the sur-
face profile of the previous example, we discretize the vertical domain z ∈
[−0.1, 1.2] m in 130 intervals of height ∆z = 1 cm. On this domain, we ini-
tialize the marked sand concentrations to the values fa(x) = fb(x, y) = 1−x, as
represented in Figure 8(a). We use an exponential p.d.f. sav(r) for rolling grains
with mean λ = 5 cm, and define the width of the active layer La = 2.5 mm,
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equal to 10 times the diameter of a sand grain. In Figure 8(b) we can note that
the model reproduces a reasonable final sedimentary structure of the collapsed
sandpile. In the final solution, the deeper layers of final sedimentary structure
are made with sand which comes from the lower part of the initial sanpile, and
this is noticeable by a lower concentration of marked sand. On the contrary, the
upper layers of the collapsed sandpile come from the upper part of the initial
sandpile.
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(a) Initial configuration
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(b) Final solution

Figure 8: Simulation of the active layer model coupled with the avalanche model.
In the upper part is reported the profile of the marked sand concentration in
the active layer fa, in the lower part the concentration of marked sand in the
substrate Fb.

Dune collision We now propose an application of the model of dune evolution
coupled with marked sand dispersion. We recall that, to simulate the complete
model, at each time step of the discretized version of system (20), which describes
the model for sand transport in saltation, we iterate the avalanche model (21)-
(23) until convergence is reached. We consider the domain [0, 200]× [−0.5, 5.5]
discretized with 500 × 120 cells of ∆x = 40 cm, ∆z = 5 cm. We consider an
input wind intensity U∗ = 0.5 m/s on an initial surface formed by two symmetric
bumps of sand, the first 20 m wide and 2 m high, the second 40 m wide and
4 m high. The volume ratio between the two initial bumps is chosen such that
the two dunes collide forming a single dune [20]. It is interesting to study how
the sand of the first dune redistributes during the collision. For this purpose,
we assume that initially the smallest dune is formed by marked sand.
Two consideration must be made regarding the numerical implementation of our
model in the case of a large domain: first, as the considered ∆x are > 10−1 m,
the p.d.f. for the step length of avalanching grain considered in the previous
examples are not able to reproduce the avalanche in a reasonable number of
iterations; the numerical experiments that we performed demonstrate that a
good choice is to take sav(r) = δ(∆x), that is all the sand that we entrain from
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one cell is deposited on the cell aside. Second, the choice of the parameter La
limit the choice of the ∆t to use in (24), for stability reasons. Since the time scales
required to observe dune movement are of the order of 101 − 103 days, we have
taken a (large) value for La to limit the overall computational cost. In particular,
we have chosen La = 25 mm (100 sand grain diameter)and ∆t = 6 min, which
is a quite reasonable value for the time scales considered. With these choices of
the parameters, the evolution of the model is represented in Figure 9, where we
can note the evolution of the marked sand concentration during the collision.
At the end, a big dune with marked sand concentration ' 0.2 (that is the initial
volume ratio of marked sand in the simulation) is formed.
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(b) t=20 days 
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(c) t=30 days

 

 

 

 

z
[m

]

x[m]

fa(x)

f a
[1
]

x[m]

0 20 40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

(d) t=40 days 
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(e) t=60 days
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(f) t=80 days

Figure 9: Dune collision: as initial condition, the first smaller dune is made of
marked sand; as it’s faster than the bigger, the two dune collides. At different
time step, we see the marked sand concentration during dune collision.

4 Conclusions

In this work we have first reviewed a simple model for two dimensional dune
evolution. We have detailed our original numerical discretization of the system
of equation, as we have noticed that this topic is often omitted in the works
proposed in the aeolian community. Then we have introduced a mathematical
model for marked sand dispersion, based on the active layer hypothesis and on
the entrainment-deposition formulation. These two models have already been
introduced in the fluvial literature. In this work we applied such theoretical
framework to the aeolian case by providing some coherent constitutive relation-
ship for the entrainment rate and for the p.d.f. for step length. Of course the
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proposed formulation needs to be supported by theoretical evidences and val-
idated through experimental campaign (in field and wind tunnel) for tracers
sediment dispersion; notwithstanding, we think that our work may constitute a
starting point for the study of some interesting problems such as dune collision
and sand tracking with a new modelling framework.
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