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Abstract

In this work we consider the numerical solution of a distributed optimal
control problem associated with an elliptic partial differential equation.
We approximate the optimality system by the spectral element method
and derive a posteriori error estimates with respect to the cost functional.
Then we use an hN adaptive refinement technique to reduce this error:
the error indicator is used to mark what elements must be refined. The
choice between an h or N refinement is based on the use of a predicted
error reduction algorithm. Numerical results show the way this algorithm
works.

Keywords: optimal control, spectral element method, a posteriori error esti-
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Introduction

We present an hIN adaptive algorithm for a linear optimal control problem dis-
cretized by spectral element method. The use of adaptive algorithms to reduce
the error on the cost functional is generally accepted in the context of finite
element methods, see eg. [1, 2]. Very few results exist on the use of spectral



elements discretization of optimal control problems. In [4, 7] error estimates are
obtained for the control, state and adjoint variables in the natural norms of the
corresponding spaces. However, these results do not guarantee an error bound
on the cost functional, a quantity of interest in many applications. The purpose
of this paper is to derive a posteriori error estimates for the error on the objec-
tive functional besides those on energy norm error estimates in the context of
spectral approximation, then to use them to guide an h/N adaptive design mesh.
Starting by an initial conforming spectral element mesh we solve the optimal
control problem and estimate the error on the cost functional. When necessary
we adapt the mesh to improve the discretization error and we solve again the
optimal control problem on the new mesh until convergence within error toler-
ance.

The paper is organized as follows. In Section 1 we introduce the model linear
optimal control problem. In Section 2 we introduce the spectral element approx-
imation space and the discrete problem formulation. In Section 3, the error on
the cost functional is estimated by the sum of two contributions: the iteration
and discretization errors. In Section 4, some numerical results are presented to
show how the algorithm works.

1 Linear Optimal Control Problem

Let © C R? be a bounded open set with a Lipschitz boundary 092 and V, U be
the Hilbert spaces of state and control functions respectively. On the product
space V x U we introduce a functional J that represents the quantity of physical
interest, the objective of the control problem. The state problem describes, for
each given control variable v € U, the way the system evolves. The model
problem considered features a distributed observation and a distributed control
problem, in which:

e the functional J is quadratic:

1 1
J(y,u) =5 Cy - zdll 720 + 70 llu— w720

where for a given Hilbert space of observations Z, zg € Z is an assigned
desired function, C': V' — Z a bounded operator, a > 0 is a penalization
factor, ug € U a given desired control (possibly zero);

e the state problem is an elliptic partial differential equation:

Aly(u),u; f) =0

where A is the linear differential operator defined on the domain 2 and
f is a given source term. If we introduce the bilinear form a : V x V —
R, a(u,v) =< Au,v >y y, with < -,- >y the duality pairing between
V and V’, then the variational formulation of the problem is

findyeV: a(y,v)=<f,v>yy+<Buv>yy Yvev,



where B : U — V' is a bounded linear functional. We assume a to be a
bilinear continuous coercive form to ensure the well posedness of the state
problem for each control.

Our optimal control problem reads as follows: look for (y,u) € V' x U such that

min J(y(u), v)
(y,u)

sbj to A(y(u),u; f) = 0.

Under the assumptions on the bilinear form a and on the functional, it is well-
know that this problem is well-posed, see eg. [8].

Our approach to solve the problem is to introduce a Lagrangian functional £
and to transform the optimal control problem as the search for the saddle-point
of L. Wedefine L:V xV xU —R

L(y,p,u) = J(y,u)+ < p, A(y,u) >vixv,

where p is the Lagrange multiplier, also called the adjoint variable.

If = (y,p, u) is the optimal solution then VL(z)[¢, i, ] = 0 where the deriva-
tive is of Fréchet type. Upon taking the derivatives with respect to each variable,
this yields the KKT (Karush-Kuhn-Tucker) optimality system:

VoL(x*)[¢] =0 Vo€V +—— state problem
VyL(z*)p) =0 VYpeV +—— adjoint problem
VuL(z*)[y] =0 V¢ € U +— optimality conditions.

For the specific model problem at hand the KKT system is: find (y,p,u) €
V xV xU s.t.

a(y,v) = < f4+Bu,v>yy YveV
a*(p,v) = <C'Az(Cy—zq),v >y Yo eV
< B'p+ aAyu, v >y = 0 YVoeU

where a*(-,-) is the adjoint bilinear form of a, whereas Az : Z — Z' and Ay :
U — U’ are the Riesz inclusion operators, see [11]. To solve this problem we
use an iterative method: given u?, we solve the state and the adjoint problem
according to the optimality conditions, then we update the derivative functional
Vud. If ||V, J| < tol (for an assigned tolerance) we stop else we update the
control variable u by a steepest-descent method w/*! = w/ — 7V, J(u?), whit 7
being a relaxation parameter.

2 SEM discretization

At each step of the iterative method used for the solution of the KKT system
we solve the state and the dual problem by a spectral element method.
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Figure 1: Decomposition of €2, Figure 2: Decomposition of €2,
K =2 K =3.

Let us decompose € into K spectral elements: § = Uleﬁk, such that V2 there
exists a bijective transformation ¢y, : 0 — Q, Q= (—1,1)2. We denote with
3 = {6, HE | the vector of discretization parameters, 8y = (hx, Ni), hy being
the diameter of 2, and Ny the degree of the polynomial in Q. For each couple
of neighboring elements, say €, €2,,, three different situations may occur:

1. either geometric and polynomial conformity, that is v = Q N Q,, is a
common (full) side of Q and €,,, and Ny = N,,. In this case we enforce
C° continuity across 7;

2. geometrical conformity but polynomial non-conformity, that is Ny # Np,.
Then, we enforce continuity only at N + 1 LGL nodes on v, where N =
min(Ng, Np,);

3. full non-conformity, both geometrical and polynomial. In this case one
chooses the longest edge and we call it 7. Then on v we choose the smallest
value N of the polynomial degree among those of all the spectral elements
sharing the edge ~. Finally, we enforce continuity at N 4+ 1 LGL nodes on
7, see [5].

For the sake of illustration, two examples are shown in Figure 1 and 2, where
we denote with F’; the ¢ — th side (according to the local side numbering) of the
element (2. With reference to Figure 1 we have K =2, Ny # Ny, v = T3 =T4%,
N = min(Ny, No). With reference to Figure 2 we have K = 3, Ny # Ny #
N3s. in Figure 2 we have two different interfaces on which we enforce pointwise
continuity. The former is 7 = I'3 = I'} for which we set N = min(Na, N3), the
latter is v = I'} on which we set N = min(Ny, N2, N3).

The general situation can be regarded as the union of the two previous cases.
On a general interface 7 shared by (at least) two spectral elements, € and $2,,,,
after defining N as before, the pointwise matching condition read

vék)lv(ﬁq) = v((;m)]«,(fq) with ¢, being a LGL nodeon v, ¢=1,...,.N+1 (1)
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We introduce the spectral element space Xj:

Xy :=A{vs: ’U(;OgokEQNk(ﬁ) and v5, =0 on I'pNoQy,Vk=1,..., K}

where Qn(2) is the set of polynomials of two variables with degree < Ny with
respect to each variable and I'p is the Dirichlet boundary. Then the SEM space
is:

Vs := {vs € X : for every selected interface v (1) is satisfied}.

With this formulation we could have nonconformity for both mesh and func-
tional space, this is a natural situation that may arise after every step of an
adaptive algorithm, when only some elements are refined. To ensure compara-
ble mesh diameters between neighboring elements only one hanging node for side
is allowed. So in addition to the elements marked by the a posteriori indicator,
some further refinements could be made.

Now given Vs, Uz two suitable finite discretization of the state and control space
V', U respectively, we search (ys, ps,uz) € Vs x Vs x Us :

a(ys, vs) =< f + Bus,vs >y v Vs € Vs
a*(ps,vs) =< C'Az(Cys — za),vs >vr v Yos € Vs (2)
< B'ps + alAyus, s >y =0 Yog € Ug

3 Iteration and discretization error estimates

After the discrete KKT system (2), we analyze the accuracy on the functional
that we have achieved. By proceeding as done in [6], we split the functional
error into two parts:

I(ysu) = Iy ud)| < [Iyw) = I )| + |70 ) = T,

()
€iter

(1)
€dis
where (y,u) is the exact optimal control solution, (yj ,‘uj ) are the hypothetical
continuous solutions at the iterative step j and (yg,ug) is the discrete optimal
control solution. The first part represents the iteration error and the second the

discretization error. We will estimate each term as follows.

Theorem 3.1 For linear control problems, the iteration error at the j-th itera-
tion has the following expression:

iter —

. 1 S :
o = 17" ") = T )| = S(Vad (0 of) " — o).

Corollary 3.2 If a steepest-descent iterative method with constant relazation
: > . . 2
(7) G) | %THVUJ(p’,u])H .

parameter T is used, €., iter

can be estimated as: ‘e



See [6] for the proofs. Then the first part of the error is minimized during the
iterative solution of the KKT system, accordingly with the stopping criterium,
IV ]| < toljter. For the egig we use a dual weighted estimation.

Theorem 3.3 Assume the mesh to be vy shape reqular, that is 3y > 0: v~ 1h <
hy < yhy if k and K are such that Q. N Qk’ # 0, with polynomial degrees of
neighboring elements comparable v~ 1(Nj, + 1) < Ny + 1 < (N +1).
Then for the spectml element discretization we have:

u hi

M = ka||vp5\|szk>+p£ Iyl + o I
where

o b1
ol = 1R, u)) oy, + (R) 2l (y)) oo

l . .
wi =y = Ly lla, + (%)ZH@/] = Iy’ [log,

ok = R} vl + (32 r () llocy

wy, = |Ip - Iapjllszk (R)2 PP = 5P| oy,

ol = () r(ud)lom, » wff == (2% [ — Lo g,

and R(-, ) are the residuals of the state or dual equations, (-, ) are the jumps for
state, dual and control variables, Isy?  Isp’  Isu? are some suitable approzimations
of !, p?, ul, respectively. Here w,i 1s the union of the patches associated at each
vertex of the element Q.

-

Proof.  According to [2] for the Galerkin element discretization we have efﬂz =

U, U

J(y7,u?) — J(yg,ug) < 77[(115 : Z nk... where n% = {plwl + pw? + plwi}. Now
using hp-Clement interpolant estlmates see eg. [9], each term in the weighs wy, wy,
wi can be estimated by the norms of the gradients in the w} domain associated to
Q. O The choice between h or N refinement strategy
is made according to a predictable error estimates. For both the state and the
adjoint equations we construct a posteriori residual estimates and a predictable
estimates. Then we define the total residual and total predictable estimates as
the sum of the two contributions by the state and adjoint problems. Comparing
this total estimates following the algorithm proposed in [10] we choose between
a spatial h or functional N refinement.

4 Numerical results

We present some numerical results to show how the algorithm works. Let =
(0,1)? and consider an initial conform mesh. More particularly €2 is subdivided
in K = 4 spectral elements and on each element we use a uniform degree N = 2.
The state equation is:
—Ay=u in
{ y=20 on Of).



ititer | 1tdis Eiter €dis #{ref h} #{ref N}
1 0 |1.4725e — 008 | 1.2677e — 005 0 0
1 1 | 1.3425e — 005 | 1.9999e — 006 1 0
1 2 1 5.5197e — 006 | 3.5798e — 007 1 0
2 0 | 1.8497e — 008 | 8.0828e — 007 0 0
2 1 ]1.0809e — 007 | 7.6918e — 007 1 0
2 2 ] 6.3807e — 007 | 3.0858e — 007 2 6
3 0 3.072e — 008 | 3.4665e — 007 0 0
3 1 ]4.3163e — 007 | 1.3016e — 006 3 1
3 2 | 4.1335e — 007 | 5.3046e — 008 5 0
4 0 |1.7597e — 008 | 7.0768e — 008 0 0

Table 1: The error estimates at each optimization and adaptive step and the
number of elements refined in A, N at each adaptive step
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Figure 3: After 3 steps of the Figure 4: Final mesh and de-
algorithm grees for every element

For the quadratic functional J we fix o = 0.1 and z4 = exp(—(z2+y?)/0.04). We
solve both the optimization and the adaptive process in an iterative way, the two
tolerances are tolj;e = tolg;s = le — 7, an we start with an initial control ug = 1.
In the adaptive process we admit at maximum ¢t/;%* = 2 iterations because
changing the approximation of the functional J the optimal control calculated
on the old mesh could be very different from the one on the new mesh. In Table
1 we report the results obtained during the process.

In the figures below we report an intermediate mesh in Figure 3 and the final
mesh in Figure 4. For each element we plot the degrees of freedom and the local
polynomial degree. In Figure 5 the final control function and in Figure 6 the
associated final state function.
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tion Figure 6: Final state function

Conclusions

In this note we have presented a spectral element method for the discretization
of an elliptic optimal control problem and the use of AN adaptivity to reduce
the error on the cost functional. The proposed estimate for the discretization
part has driven to an automatic design of either the mesh and the polynomial
degrees in a configuration strictly dependent on the problem considered. More
information are used near the corner where the desired functions and the control
variables change more rapidly.
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