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Abstract

Time-varying covariates are of great interest in clinical research since they represent
dynamic patterns which reflect disease progression. In cancer studies biomarkers values
change as functions of time and chemotherapy treatment is modified by delaying a course or
reducing the dose intensity, according to patient’s toxicity levels. Models for time-to-event
to deal with the dynamic nature of time-varying covariates during follow-up are necessary,
still not well developed. In this work, innovative methods to represent time-dependent
covariates by means of Functional Data Analysis (FDA) and how to include them into sur-
vival models are discussed. This new approach was applied to osteosarcoma data from
the MRC BO06/EORTC 80931 randomized clinical trial, new insights into the clinical re-
search. Time-varying covariates related to alkaline phosphatase (ALP) and chemotherapy
dose during treatment were considered. Processes dynamics over time were investigated
and additional information that may be related to the survival were included into the time-
to-event models. High ALP levels reflected poor overall survival. Although dose-intense
profiles were not associated with a better survival, the strength of our method is the ability
to detect differences between patients with different biomarker evolution and treatment re-
sponse, even when randomised to the same regimen. This aspect is seldom addressed in the
literature.

Key-words: Time-varying covariates; Survival analysis; Functional data analysis; Joint models; Os-
teosarcoma
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1 Introduction
Osteosarcoma is a malignant bone tumour mainly affecting children and young adults. Although
osteosarcoma is the most common primary malignant bone cancer, it is a rare disease and has an
annual incidence of 3-4 patients per million1. Multidisciplinary management including neoadju-
vant and adjuvant chemotherapy with aggressive surgical resection2 or intensified chemotherapy3
has improved clinical outcomes although the overall 5-year survival has remained unchanged in
the last 40 years at 60–70%. Therefore, it is extremely important to provide an effective tool to
evaluate the prognosis for osteosarcoma and to guide the diagnosis.

Time-varying (or time-dependent) covariates are often of interest in clinical and epidemio-
logical research: patients are followed during the study and subject-specific measurements are
recorded at each visit. Well-known examples include biomarkers which change during follow-up
or cumulative exposure to medications,4 such as chemotherapy. Depending on patients’ treat-
ment history or development of toxicity, biomarker values change and chemotherapy treatment
is modified by delaying a course or reducing the dose intensity. Hence to study the association
between time-varying responses with a time-to-event outcome (e.g. death) is a challenging task
which could offer new insights into the direction of personalised treatment.

For osteosarcoma, alkaline phosphatase (ALP) has been identified as prognostic marker.5
High ALP levels usually indicate a bad liver or bone condition.6 The role of ALP as tumour
marker for osteosarcoma has not been established, although several studies suggested that high
ALP level is associated with poor overall or event-free survival and presence of metastasis.7,8 In
previous studies, ALP levels have always been incorporated in survival models as baseline time-
fixed covariate. Chemotherapy is modelled by different allocated regimens, without considering
changes in drug assumptions, i.e. delays or dose reduction, over time.9 It had been shown
that there is mismatch between target and achieved dose of chemotherapy10 and the impact on
patients’ survival is still unclear. Therefore, the most appropriate way to look at both received
chemotherapy dose and biomarkers is to model them as time-varying variables. In this way it
is possible to investigate the dynamics over time and to use additional information that may
be related to survival. This approach represents a novelty for osteosarcoma treatment and the
application is of great interest for statistical modelling.

Models for time-to-event able to deal with the dynamic nature of time-varying responses dur-
ing follow-up are not well developed and effects on survival are still unclear. During the past two
decades research into joint modelling for longitudinal and time-to-event data has received a lot
of attention.11–19 This approach allows to jointly represent longitudinal sub-models for internal
time-varying processes generated by the subject under study and an event sub-model for the
time-to-event outcome of interest. When the outcome processes are correlated, joint modelling
reduce biases in the effect size estimates, improve efficiency and prediction and can be applicable
to outcome surrogacy.18 Functional Data Analysis (FDA) has been increasingly used to analyse,
model and predict dynamic processes.20–27 The idea behind FDA and functional models is to
express discrete observations arising from time series, i.e. longitudinal time-varying observations,
in the form of functions.21,22 The key point of a functional representation is that it is able to
incorporate trends and variations in the evolution of the process over time.24 Additional infor-
mation implied by changes in values and smoothness of functions during follow up can therefore
be investigated. Since functional data are infinite-dimensional covariates, some dimension reduc-
tion methods to summarize and select a finite dimensional set of elements representing the most
important features of each covariate have to be used. This information can then be included into
time-to-event models. To model the relationship between survival outcomes and a set of finite
and infinite dimensional predictors Functional Linear Cox Regression Models (FLCRM) have
been recently proposed.28–31 Kong et al.31 characterized the joint effects of both functional and
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scalar predictors on time-to-event outcome employing Functional Principal Component Analysis
(FPCA). FPCA is one of the most popular dimension reduction method in FDA and it is used to
summarise each function to a finite set of covariates through FPCs scores, while loosing a mini-
mum part of the information. FDA provides a novel modelling and prediction approach, with the
potential for many applications across a range of public health and biomedical applications.24

Motivated by a clinical question concerning the effect of actually received chemotherapy
doses on survival for osteosarcoma patients, innovative methods to represent time-varying ALP
biomarker and chemotherapy dose during treatment are proposed. In joint models, a longitudinal
sub-model for the time-varying process can be specified only if the covariate is internal (or
endogenous),32 i.e. if the covariate is the output of a stochastic process that is generated by
the individual under study. ALP biomarker is an example of internal time-dependent covariate,
since it changes according to patient’s health status, whereas chemotherapy dose is external
(or exogenous), since its value is fixed at the beginning or changes according to the guidelines
provided in the protocol. First, joint modelling to investigate how patients’ survival are affected
by endogenous ALP longitudinal values is applied. Then, FDA techniques are used to represent
both internal time-varying biomarker and external chemotherapy dose in terms of functions, in
order to study their effects on survival. Additional information contained into the evolution of
the functions over time can be included into a survival model, extending FLCRM to the case
of multiple functional predictors. Within this work three important novelties are proposed: (i)
application of advanced statistical techniques able to deal with time-varying covariates in the
field of osteosarcoma treatment; (ii) reconstruction of the functional representations for ALP
biomarker and chemotherapy dose, able to incorporate trends and variations in the evolution
of the processes over time, starting from clinical database; (iii) extension of FLCRM to the
multivariate case. This approach can provide more information about the effect of individualize
treatment adaption on survival for osteosarcoma patients.

The remaining part of the paper is organized as follows. In Section 2 the statistical method-
ologies are introduced. MRC BO06/EORTC 80931 data related to a randomized controlled trial
for patients with osteosarcoma,3 with data inclusion criteria, trial protocol and longitudinal rep-
resentations of time-varying covariates, are described in Section 3. Results for MRC BO06 data
are presented in Section 4. Section 5 ends with a discussion of strengths and limitations of the
current approaches, identifying some developments for future research in the field.

2 Statistical methods
In this section two approaches for modelling time-to-event data, Overall Survival OS, in pres-
ence of time-varying covariates are introduced. In Section 2.2 the joint model proposed by
Rizopoulos16,33 for dealing with time-to-event and endogenous longitudinal covariates is briefly
recalled. In Section 2.3 the FLCRM31 is extended to multiple functional predictors. Statistical
analysis is performed in the R-software environment.34 R code was developed by the first author
and is available on request.

2.1 Time-varying covariates and survival frameworks
A time-varying (or time-dependent) covariate, X(t), is a covariate whose value can change over
the duration of follow-up (e.g., time-varying biomarkers, current use of medication, and cumula-
tive dose of drugs). Kalbfieish and Prentice32 defined different types of time-varying covariates:
external (exogenous) or internal (endogenous) covariates. External covariates are unaffected by
the process and their values over time are defined or established from the beginning, prior to
the commencement of the study. An example is the cumulative dose of chemotherapy in clinical
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Figure 1: Time-varying representation and Overall Survival (OS) for different models.

trials, where the dose is changed by clinicians according to a previously defined mechanism. In
contrast, internal covariates are "the output of a stochastic process generated by the individual
under study", i.e. they are related to the behaviour of the individuals over time and their time
paths are jointly determined with the responses of interest. According to these definitions, ALP
biomarker is an example of internal time-dependent covariate since it changes according to the
patient’s health status, whereas chemotherapy dose is an external covariate since its value is fixed
at the beginning or changes according to the guidelines provided in the protocol.

In time-to-event analysis, for each patient i ∈ {1, ..., N} the observed data is (Ti, δi), where
Ti = min(T ∗

i , Ci) denotes the observed event time, T ∗
i is the true event time, Ci is the censoring

time and δi = I(T ∗
i ≥ Ci) is the event indicator, with I(·) being the indicator function that takes

the value 1 when T ∗
i ≥ Ci, and 0 otherwise. In this study, the event of interest is death for any

cause.
To model time-varying covariates into a time-to-event framework the internal or external

nature of the covariates has to be considered. Using the joint modelling approach, only internal
time-varying covariates can be jointly modelled with the time-to-event outcome, since a longitu-
dinal sub-model can be used only if the dynamic covariate is the output of a stochastic process
generated by the individual under study. In this case, the Overall Survival (OS) is measured
from the date of randomization (T0 in Figure 1) to the date of death or last follow-up date.
The multivariate FLCRM is able to manage both internal and external covariates. A pre-defined
period starting from the date of randomization (T0) is used to reconstruct and summarize the
functional representations of time-varying covariates (internal or external). Then, survival anal-
ysis is performed over the follow-up period and Overall Survival (OS) is measured from the end
of the pre-defined period (T ∗

0 in Figure 1) to the date of death or last follow-up date. For this
approach only patients still alive at T ∗

0 are incorporated in the survival analysis. This choice
could imply a loss of information in case of exclusion of too many early dying patients.

In this application only one patient died before T ∗
0 . First joint model to simultaneously

study internal ALP biomarker and time-to-death is applied (Section 4.1). Then, both internal
ALP biomarker and external chemotherapy dose as functional predictors are considered and a
multivariate FLCRM in order to assess how both time-varying covariates affect patients’ survival
is estimated (Section 4.2).

2.2 Joint model for time-to-event and internal longitudinal data
Let DN = {Ti, δi,yi; i = 1, ..., N} denote a sample from the target population, where yi is the
ni × 1 longitudinal response vector for the i-th subject. The term yil denotes the value of the
longitudinal process taken at time til (l = 1, ..., ni). The general form of joint models is as

4



follows:

g[E{yi(t)|bi}] = ηi(t) = xTi (t)β + zTi (t)bi (1)

hi(t|Hi(t),ωi) = h0(t) exp
{
γTωi + f(Hi(t),bi,α)

}
, t > 0. (2)

The longitudinal process (1) is a generalized linear mixed effects model where g(·) denotes a
known one-to-one monotonic link function, yi(t) denotes the value of the longitudinal process
for the i-th subject at time point t, β is the vector of the unknown fixed effects parameters,
bi is the vector of subject-specific random effects, xi(t) and zi(t) denote the time-dependent
vectors for the fixed and random effect, respectively. The event process (2) assumes that the
risk hi(·) for an event depends on a function f(·) of the subject-specific linear predictor ηi(t);
Hi(t) = {ηi(s), 0 ≤ s < t} represents the history of the underlying longitudinal process up to
time point t, h0(·) denotes the baseline hazard function, ωi is a vector of baseline covariates
with corresponding regression coefficient γ. The parameter α is the vector that quantifies the
association between the marker process up to time t and the hazard of an event at the same time
point. The baseline hazard function h0(·) is modelled using a B-splines approach. In JMbayes
package,33 the estimation of the model parameters is based on a Bayesian approach, using MCMC
algorithms. Details regarding Bayesian estimation of joint models can be found in Ibrahim et
al.35 and papers by Brown et al.36 and Rizopoulos.33 In Section 4.1, this framework will be used
to jointly model internal ALP biomarker and time-to-death.

2.3 Functional linear Cox regression model with multiple functional
predictors

The model introduced in Kong et al.31 is extended to multiple functional predictors, in order to
provide a suitable framework for the application of interest.

Let X̃(1)
i , ..., X̃

(M)
i be a set of M functional predictors for individual i. The functional covari-

ates are included in the Cox model37 as:

hi

(
t|ωi, x̃(1)i , ..., x̃

(M)
i

)
= h0(t) exp

{
γTωi +

M∑
m=1

∫
Sm

x̃
(m)
i (s)α(m)(s)ds

}
(3)

where h0(t) is the baseline hazard function, ωi is the vector of scalar (non functional) covariates
with regression parameters γ. The vector

(
x̃
(1)
i , ..., x̃

(M)
i

)
is the realization of the M -variate

functional data for the i-th individual; Sm and α(m)(s) are compact sets of R and the functional
regression parameters respectively.

By applying FPCA, each functional trajectory x̃(m)
i (s) can be approximated with a finite sum

of Km orthonormal basis
{
ξ
(m)
1 , ..., ξ

(m)
Km

}
:

x̃
(m)
i (s) ≈ µ(m)(s) +

Km∑
k=1

f
(m)
ik ξ

(m)
k (s) (4)

where µ(m)(s) is the functional mean and f
(m)
ik is the FPC score of individual i related to the

k-th orthonormal base ξ(m)
k . In the analyses Km is chosen in such a way that the percentage of
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explained variance is ≥ 95%. From (4) the integrals in (3) can be approximated considering:∫
Sm

[
x̃
(m)
i (s)− µ(m)(s)

]
α(m)(s)ds ≈

∫
Sm

Km∑
k=1

f
(m)
ik ξ

(m)
k (s)α(m)(s)ds

=

Km∑
k=1

f
(m)
ik

∫
Sm

ξ
(m)
k (s)α(m)(s)ds

=

Km∑
k=1

f
(m)
ik α

(m)
k

(5)

where α(m)
k is the scalar representing the quantity

∫
Sm

ξ
(m)
k (s)α(m)(s)ds. Introducing approxi-

mation (5) in Equation (3), the hazard function becomes:

hi

(
t|ωi, x̃(1)i , ..., x̃

(M)
i

)
= h0(t) exp

{
γTωi +

M∑
m=1

[∫
Sm

µ(m)(s)α(m)(s)ds+

Km∑
k=1

f
(m)
ik α

(m)
k

]}

= h∗0(t) exp

{
γTωi +

M∑
m=1

Km∑
k=1

f
(m)
ik α

(m)
k

}
(6)

where α(m)
k =

∫
Sm

ξ
(m)
k (s)α(m)(s)ds and h∗0(t) = h0(t) exp

{∑M
m=1

∫
Sm

µ(m)(s)α(m)(s)ds
}
. There-

fore, defining the following quantities:

θ =
[
γT ,

(
α
(1)
1 , ..., α

(1)
K1

)
, ... ,

(
α
(M)
1 , ..., α

(M)
KM

)]T
wi =

[
ωTi ,

(
f
(1)
i,1 , ..., f

(1)
i,K1

)
, ... ,

(
f
(M)
i,1 , ..., f

(M)
i,KM

)]T
and substituting them in Equation (6), through FPCA the multivariate FLCRM can be expressed
as Cox model:

hi(t) = h0(t) exp
{
θTwi

}
. (7)

All the properties of the Cox model still hold in this framework and the vector of coefficients θ
can be estimated by maximising the partial likelihood function.37

In Section 4.2, this framework will be used to assess how both time-varying internal ALP
biomarker and external chemotherapy dose affect patients’ survival.

3 MRC BO06 randomized clinical trial data
In Section 3.1 the selected cohort of patients is illustrated. Patient characteristics are presented
as numbers and percentages for categorical variables, and as medians with interquartile ranges
(IQRs) for continuous variables (Table 1). In Section 3.2 the time-varying characteristics related
to ALP biomarker and chemotherapy dose are introduced using a longitudinal representation.

3.1 Sample selection and baseline characteristics
Data from the MRC BO06/EORTC 80931 Randomized Clinical Trial (RCT) for patients with
non-metastatic high-grade osteosarcoma recruited between 1993 and 20023 were analysed. Pa-
tients were randomized between conventional (Reg-C ) and dose-intense (Reg-DI ) regimens. Both
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Figure 2: Flowchart of cohort selection.

arms have six cycles of the same course of chemotherapy, 75 mg/m2 of doxorubicin (DOX) plus
100 mg/m2 of cisplatin (CDDP), with different time schedule: in Reg-DI cycles are every two
weeks, whereas in Reg-C they are every three weeks. Additional details concerning the protocol
can be found in Appendix A.

The dataset included 497 eligible patients; 19 patients who did not start chemotherapy (13)
or reported an abnormal dosage of one or both agents (6) were excluded. Motivated by the
clinical research question concerning the effect of doses intensity on survival, only patients who
completed all six cycles within 180 days were included in the analysis, while 93 patients who
did not complete the therapy and 8 who did not terminated the last cycle within 180 days were
excluded. The final cohort of 377 patients included in the analyses (75.9% of the initial sample)
is shown in Figure 2.

Follow-up starts from date of randomization. Among 377 patients, 229 (60.7%) were males.
At baseline (Table 1), median age was 15 years (51.2% were older than 15). The median value
of baseline White Blood Count (WBC) was 7.65 (IQR = [6.30; 9.10]) [× 109/L] and regimen
Dose-Intense was allocate in 52.3% of the patients (197). Median follow-up time, computed using
the reverse Kaplan-Meier method,38 was 51.98 months (IQR = [28.65; 82.79]) and 297 patients
(78.8%) was alive at the last follow-up visit.

3.2 Time-varying characteristics
In MRC BO06 RCT, the values of ALP biomarkers were measured through laboratory tests,
usually performed before each cycle of chemotherapy. For each patient i the vector of longitudinal
values of ALP measurements is given as yi = {yi(til), l = 1, ..., ni}, where til is the time of the
l-th ALP test, yi(til) is the value of ALP measurement at time til and ni is the number of
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Baseline characteristic
Patients 377
Age [years]

< 15 184 (48.8%)
≥ 15 193 (51.2%)
Median (IQR) 15 (11; 18)
Minimum/maximum 3/40

Gender
Female 148 (39.3%)
Male 229 (60.7%)

Allocated treatment
Regimen-C 180 (47.7%)
Regimen-DI 197 (52.3%)

White Blood Count [× 109/L]
Median (IQR) 7.65 (6.30; 9.10)
Minimum/maximum 3.60/16.20

Table 1: Patients’ characteristics at baseline.

different laboratory tests. The left panel of Figure 3 shows the longitudinal trajectories of yi
over time. Each line represents the time-varying ALP biomarker for a specific patient coloured
by event status (black: Censored, red: Dead).

The time-varying standardized cumulative dose of chemotherapy is now introduced. Let
j ∈ {1, ..., 6} be the cycle index and tij the time of the j-th cycle for the i-th patient. The
standardized cumulative dose of chemotherapy (DOX+CDDP) for the i-th patient at time tij is
defined as:

δi(tij) =
Cumulative dose of DOX+CDDP until cycle j [mg/m2]

Total target dose at the end of six cycles [mg/m2]

=
1

175 [mg/m2] · 6
·
j∑

k=1

DOXik + CDDPik
surface areaik

[mg
m2

]
.

(8)

This can be interpreted as the regulated Received Dose Intensity (rRDI) introduced by Lancia
et al.9 evaluated over real time and not over cumulative time on treatment. For each patient
i, the vector of longitudinal values of standardized cumulative dose of chemotherapy over time
is defined as δi = {δi(tij), j = 1, ..., 6}. The right panel of Figure 3 shows the longitudinal tra-
jectories δi over time. Each line represents the individual time-varying standardized cumulative
chemotherapy dose coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ) to show the
different time schedule of the two arms. Patients - also within the same regimen - reported
different values of standardized cumulative dose during time, depending on the delays and dose
reductions required during chemotherapy due to toxicity. In particular, the lines form a tight
bundle in the early phase of the treatment, but later they open up in a hand-fan shape because
treatment adjustments are generally more frequent towards the end of the protocol.

The association between the longitudinal trajectories of time-varying covariates and the time-
to-event outcome is discussed in the next section.
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Figure 3: Time-varying covariates for each patient. Left panel: longitudinal values of ALP biomarker
over time coloured by event status (black: Censored, red: Dead). Right panel: longitudinal values of
standardized cumulative dose of chemotherapy coloured by allocated regimen (pink: Reg-DI, purple:
Reg-C )

4 Results
In this section the methodology proposed in Section 2 is applied to the MRC BO06 osteosarcoma
trial. First a joint modelling analysis for the internal longitudinal ALP biomarker and time-
to-death is performed (Section 4.1). Then, both time-varying ALP biomarker and time-varying
standardized cumulative dose of chemotherapy are modelled into a multivariate FLCRM (Section
4.2). Based on clinical information, each model is adjusted for three baseline covariates: age (< 15
or ≥ 15), gender and White Blood Count [×109/L] at randomization.

4.1 Joint modelling of longitudinal ALP biomarker and time-to-death
In the joint modelling analysis the choice of the longitudinal sub-process (1) for endogenous
alkaline phosphatase was driven by the nature of the time-varying process. Since the longitudinal
trajectories of the biomarker are skewed and non-linear, the logarithm of ALP was incorporated
in the model and natural cubic splines for the fixed and random effects parts of the process were
used. For patient i the longitudinal process was defined as:

log [yi(t)] = ηi(t) + εi(t) = (β0 + bi0) +

2∑
k=1

(βk + bik)Bn(t, λk) + εi(t) (9)

where {Bn(t, λk) : k = 1, 2} denotes the B-spline basis matrix for a natural cubic spline of time t
with an internal knot placed at 50th percentile of the follow-up times, εi(t) ∼ N(0, σ2

εIni
) is the

unknown vector of random errors and bi ∼ N(0,D) is the vector of the patient-specific random
effects, with D unstructured variance-covariance matrix.

For the event sub-process (2), the hazard was assumed to be dependent on the current value of
the subject-specific linear predictor ηi(t) at time t adjusted for age, gender and WBC at baseline
as follows:

hi(t|Hi(t),ωi) = h0(t) exp {γ1WBCi + γ2 genderi + γ3 agei + α1ηi(t)} . (10)
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HR 2.5% CI 97.5% CI
WBCi 1.1288 1.0300 1.2337
Gender (male) 1.8999 1.1376 3.2376
Age (≥ 15) 0.7197 0.4245 1.1538
ηi(t) 1.0807 1.0094 1.2235

Table 2: Hazard Ratios (HR) along with their 95% credibility intervals (CI) for the event process
estimated with the joint modelling.

Hazard Ratios (HR) and 95% credibility intervals (CI) for the event process, under the joint
modelling analysis (9)–(10), are shown in Table 2. Being a male corresponded to 1.9-times faster
experience of the event and a unit increase in the value of WBC corresponded to a 12.9% increase
in the risk of death. No age-related effect was observed. HR related to the subject-specific linear
predictor ηi(t) at time t was 1.0807 > 1, indicating that a unit increase of ηi(t) corresponds to a
8.1% increase in the risk of death. Therefore, having a higher current value of the subject-specific
linear predictor at time t is associated to a lower survival probability.

Through joint models it was also possible to perform a dynamic monitoring of the patients
according to their longitudinal values at different time points. Figure 4 panel [A] shows the
longitudinal values log[yi(t)] and log[yj(t)] and the relative subject-specific linear predictors ηi(t)
and ηj(t) over time, estimated through the longitudinal sub-model (9), for two specific patients
i and j with the same risk factors (male patients aged ≥ 15, with WBC at randomization equal
to 7.65 × 109/L) but with different longitudinal trajectories over time. Patient i presented lower
values of the estimated subject-specific linear predictor ηi(t) compared to the values ηj(t) of
patient j at the same time points, and levels for both patients decreased over time. Figure 4
panel [B] shows the survival estimated at different time points t = (t1, t2, t3) = (21, 77, 119) days.
The survival of each patient changes according to the evolution of the biomarker during follow
up. Patient i with lower values of ηi(t) shows good estimated survival with smaller confidence
intervals over time compared to patient j with high value of the linear predictor. The survival
of patient j improves as long as the internal ALP biomarker level decreases, suggesting that
incorporate in the model the evolution of the marker provide more information than consider
only the baseline value.

In the next section the association among internal time-varying ALP biomarker, external
standardized cumulative dose of chemotherapy and survival by using FDA is investigated.

4.2 Multivariate functional linear Cox regression model
In this section the multivariate FLCRM, with time-varying ALP biomarker and time-varying
standardized cumulative dose of chemotherapy as risk factors, is estimated. First, the longi-
tudinal processes introduced in Section 3.2 are represented in the form of functions (Section
4.2.1). Then, through Functional Principal Component Analyses (FPCA) (Section 4.2.2) they
are incorporated into a multivariate FLCRM (Section 4.2.3).

4.2.1 From longitudinal to functional representation

To convert the longitudinal ALP values yi into the functions x̃(ALP )
i (t), FDA techniques, as

discussed by Ramsay and Silverman,21,22 were exploited. Measurements by cycles and not by
days were used. In this way all the time-varying values were on the same temporal domain, i.e.
SALP = [1, 6] cycles. Then, B-spline basis functions Φ (2 or 3 basis of order 2 or 3, according
to each patient i) were chosen as basis function system and the functional data objects were
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Figure 4: Panel [A]: Longitudinal values of log[yi(t)] and log[yj(t)] (dashed lines) and relative subject-
specific linear predictors ηi(t) and ηj(t) (solid lines) for two different patients i (pink) and j (light-blue).
Panel [B]: Survival probability plots at different time points for patient i (top panels) and j (bottom
panels). Time t0 = 0 corresponds to the time of randomization. Left panels: longitudinal process is
considered from t0 to t1 = 21 days and survival is estimated starting from t1. Central panels: longitudinal
process is considered from t0 to t2 = 77 days and survival is estimated starting from t2. Right panels:
longitudinal process is considered from t0 to t3 = 119 days and survival is estimated starting from t3.
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expressed as linear combination of the basis functions. Finally, data were smoothed by regression
analysis using the transformation g̃(x) = log x−L

U−x in order to constrain functions between a lower
L = 0 IU/L and an upper U = 4000 IU/L bound. For each patient i the following functional
ALP predictor was provided:

x̃
(ALP )
i (t) =

4000 · exp
[
φi(t)

T ĉi
]

1 + exp [φi(t)
T ĉi]

(11)

where φi(t) and ĉi are the vectors of B-spline basis functions at time t and estimated coefficients,
respectively. A graphical representation of functional ALP biomarker curves x̃(ALP )

i (t) is reported
in left panel of Figure 5. Each curve represents the functional ALP predictor of a patient coloured
according to the event status.

To convert the longitudinal values of standardized cumulative chemotherapy dose δi into the
functional form x̃

(δ)
i (t), measurements in days were considered since different duration in treat-

ment is a key-point of the chemotherapy protocol. In particular, the interval Sδ = [0, 180] days
was selected, since all the patients completed the therapy within 180 days from randomization.
Then, B-spline basis functions Φ (5 basis of order 5) were chosen as our basis function system,
while functional data objects was defined by a monotone form, as discussed in Ramsay and
Silverman.21,22 Finally, data were smoothed by penalized regression analysis using the transfor-
mation g̃(x) in order to constrain functions between a lower L = 0 and an upper U = 1.1 bound.
For each patient i a functional predictor of standardized cumulative dose of chemotherapy was
obtained:

x̃
(δ)
i (t) =

1.1 · exp
(
β̂0i + β̂1i

∫ t
0

exp
[
φ(u)T ĉi

]
du
)

1 + exp
(
β̂0i + β̂1i

∫ t
0

exp [φ(u)T ĉi] du
) (12)

where φ(t) and (β̂0i, β̂1i, ĉi) are the vectors of B-spline basis functions at time t and estimated
coefficients respectively. A graphical representation of functional standardized cumulative dose
curves x̃(δ)i (t) is shown on the right panel of Figure 5. Each line represents the functional predictor
of standardized cumulative dose for patient i coloured according to the allocated regimen.

Figure 5 shows that a functional representation of the time-varying processes highlights trends
and variations in the shape of processes over time.

4.2.2 Functional principal component analysis for time-varying ALP biomarker and
chemotherapy dose

The functional predictors x̃(ALP )
i (t) and x̃(δ)i (t) for patient i provided in (11) and (12) respectively,

were summarised into a finite set of covariates by applying Functional Principal Component
Analyses (FPCAs). In both cases, two principal components were enough to consider at least
95% of the explained variance.

Results of FPCA on functional ALP predictors are provided in Figure 6. Panel [A] shows the

first two Principal Components ξ(ALP )
k and the average ALP curve µ(ALP )(t) ±

√
λ
(ALP )
k ·ξ(ALP )

k .

Panel [B] reports the FPC scores plot (f
(ALP )
i1 , f

(ALP )
i2 ) with relative boxplots. Each point

represents a patient coloured by status. The first component ξ(ALP )
1 explained 84.7% of the

variability and a positive score reflected higher values of ALP during time compared to the mean
(top panels in [A]). In particular, the higher the score, the higher the ALP levels during the first
period of the treatment. The second component ξ(ALP )

2 explained 13% of the variability and
positive scores reflected "flat" curves, whereas negative score reflected curves with high slope,
especially in the first period (bottom panels in [A]).
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Figure 5: Left panel: functional representations of ALP biomarker over cycles coloured by status
(black: Censored, red: Dead). Right panel: functional representations of standardized cumulative dose
of chemotherapy over time coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ). Each line is
the graphical representation of the functional predictor of a patient.

Results of FPCA on functional standardized cumulative dose x̃(δ)i (t) are shown in Figure
7. Panel [A] shows the first two Principal Components ξ(δ)k and the average ALP curve µ(δ)(t)

±3

√
λ
(δ)
k · ξ

(δ)
k . Panel [B] reports the FPC scores plot (f

(δ)
i1 , f

(δ)
i2 ) with relative boxplots. Each

point corresponds to a patient. Different colours represent the two regimens. The first compo-
nent ξ(δ)1 explained 87.1% of the variability and a positive score reflected a shorter duration of
the treatment (top panels in [A]). The second component ξ(δ)2 explained 9.9% of the variability
and a positive score indicated a faster growth in the chemotherapy assumption in the first period
compared to the second one, with respect to the mean (bottom panels in [A]). Every two patients
reported different values of FPC scores, reflecting delays or dose reductions during chemother-
apy. This representation is able to represent different treatment dynamics, also among patients
allocated the same regimen.

Boxplots in Figures 6 and 7 shows that scores related to FPCA on ALP biomarker had larger
ranges of values respect to the ones related to functional chemotherapy dose, reflecting differences
in ranges of the functional predictors. FPC scores (f

(ALP )
i1 , f

(ALP )
i2 , f

(δ)
i1 , f

(δ)
i2 ) are used in Section

4.2.3 for the multivariate FLCRM analysis.

4.2.3 Multivariate functional linear Cox regression model

For functional representations and FPCA the pre-defined period [T0;T ∗
0 ] composed by the first

180 days after randomization was considered. To study the effect of risk factors on survival from
T ∗
0 in Figure 1, the following model was estimated:

hi

(
t|ωi, x̃(δ)i (t), x̃

(ALP )
i (t)

)
= h0(t) exp

{
γ1WBCi + γ2 genderi + γ3 agei+

α
(δ)
1 f

(δ)
i1 + α

(δ)
2 f

(δ)
i2 +

α
(ALP )
1 f

(ALP )
i1 + α

(ALP )
2 f

(ALP )
i2

} (13)
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[A] [B]

Figure 6: FPCA for functional Alkaline Phosphatase x̃(ALP )
i (t). [A] Left panel: Principal Components

ξ
(ALP )
k (k = 1, 2). Right panel: average ALP curve µ(ALP )(t) ±

√
λ
(ALP )
k · ξ(ALP )

k .

[B] Functional PC scores plot
(
f
(ALP )
i1 , f

(ALP )
i2

)
with boxplots (black: Censored, red: Dead).

[A] [B]

Figure 7: FPCA for functional standardized cumulative dose x̃(δ)i (t). [A] Left panel: Principal Com-

ponents ξ(δ)k (k = 1, 2). Right panel: average standardized cumulative dose µ(δ)(t) ± 3
√
λ
(δ)
k · ξ(δ)k .

[B] Functional PC scores plot
(
f
(δ)
i1 , f

(δ)
i2

)
with boxplots (pink: Reg-DI, purple: Reg-C ).
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HR 95% CI
WBC 1.1135 [1.0248; 1.2099]
Gender (male) 1.6900 [1.0258; 2.7842]
Age (≥ 15) 0.7669 [0.4673; 1.2588]
f
(δ)
1 0.9335 [0.7586; 1.1486]
f
(δ)
2 0.7894 [0.4358; 1.4299]
f
(ALP )
1 1.0011 [1.0006; 1.0015]
f
(ALP )
2 0.9998 [0.9986; 1.0011]

Table 3: Estimated hazard ratios (HR) along with 95% confidence intervals (CI) from a multivariate
functional linear Cox regression model.

where ωi = (WBCi, genderi, agei) is the vector of baseline covariates, x̃
(ALP )
i (t) and x̃(δ)i (t) are

the functional predictors of ALP and standardized cumulative dose respectively, with relative
FPC scores f (m)

ik (k = 1, 2; m ∈ {ALP, δ}).
In Table 3 hazard ratios along with their 95% confidence interval are shown. Gender, level

of WBC at randomization and the score related to the first PC of alkaline phosphatase f (ALP )
i1

were associate to survival. Being a male corresponded to 1.7-times faster experience of the
event. A 1-unit increase in the value of WBC was associated to a 11.35% increase in the risk of
death. Patients with high ALP levels had poor survival, as also resulted from the joint modelling
analysis. FPC scores related to functional chemotherapy dose showed no effects on survival.
Although all longitudinal information concerning a patient are incorporated in the model, dose-
intense profiles did not show an improvement on survival.

Estimated survival probabilities based on the multivariate FLCRM are shown in Figure 8.
High values of WBC corresponded to poor survival (top-left panel). Male patients had a low
survival (top-right panel). The effect of functional ALP biomarker f (ALP )

i1 suggested that patient
i with high ALP levels over time had high risk of death (bottom-left panel). The score f (δ)i1 related
to the first PC of functional chemotherapy indicated that there was no improvement on survival
due to dose-intense profiles (bottom-right panel).

5 Discussion
To study the association between time-varying processes and time-to-event data is a challenging
problem in clinical research and the development of models and methods able to properly deal
with dynamic time-varying covariates is of statistical interest and of clinical relevance. Research
into joint modelling of longitudinal and time-to-event data or functional modelling have received
considerable attention in recent years. In this work, a new approach to investigate the dynamics
of time-varying processes over time and to include additional information that may be related
to the survival into the time-to-event model was presented. Data from the MRC BO06/EORTC
80931 randomized clinical trial for osteosarcoma treatment were analysed. Since the 5-year over-
all survival for osteosarcoma patients remained unchanged in the past 40 years, it is extremely
important to develop a new methodology to evaluate the prognosis and to define the manage-
ment approach. In cancer studies, biomarkers or chemotherapy regimens are usually included in
survival models as fixed baseline covariates. This approach does not take into account the evolu-
tion of the treatment process for each patient, discarding valuable information. Therefore, ALP
biomarker values and chemotherapy dose during treatment as time-varying covariates were incor-
porated into time-to-event models using two different methodologies. A joint modelling technique
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Figure 8: Estimated survival probability based on the multivariate functional linear Cox regression
model (13). Time t0 = 0 corresponds to T ∗

0 in Figure 1. Top-left panel: patients with different values
of WBC [× 109/L] at randomization (red: WBC = 4; green: WBC = 8; blue: WBC = 12). Top-right
panel: female (pink) vs male (blue) patients. Bottom-left panel: patients with different values of the
first PC score for functional ALP biomarker (sea-green: f (ALP )

1 = −240; red: f (ALP )
1 = 120). Bottom-

right panel: patients with different values of the first PC score for functional chemotherapy (purple:
f
(δ)
1 = −0.85; pink: f

(δ)
1 = 0.85). When not specified, the other risk factors are fixed to the most

frequent class for categorical covariates, i.e. males aged ≥ 15, and to the median value for continuous
ones, i.e. WBC = 7.65 × 109/L at randomization, f (δ)

1 = 0.09, f (δ)
2 = −0.08, f (ALP )

1 = −127 and
f
(ALP )
2 = −19.
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was first used to investigate how patients’ survival were influenced by internal ALP longitudinal
values. Then, FDA techniques were exploited to represent both internal time-varying biomarker
and external chemotherapy dose in terms of functions, able to reflect trends and variations in the
evolution of the processes over time. To study the effects of functional risk factors on survival,
FLCRM was extended to the case of multivariate functional predictors and finally estimated.

Both approaches led to similar results. Suggesting that osteosarcoma patients with high ALP
levels during time have poor overall survival, important information about the longitudinal and
functional behaviours of the generating processes that underpin the data were taken into account,
representing interpretative and forecasting tools in osteosarcoma research. On one hand, the joint
modelling approach allowed to directly monitoring the effects of ALP levels on patient’s survival.
This real-time monitoring and profiling of patients, crucial for subject-specific predictions and
personalized medicine, could allow to tailor therapeutic interventions in order to prevent dis-
ease progression. On the other hand, FDA methods allowed to extract additional information
contained in the functions, representing an effective exploratory and modelling technique for
highlighting trends and variations in the evolution of the processes over time. Exploiting the
individual progression of ALP levels allowed to investigate their effects on survival instead of
using an approach that consider only baseline information. Similarly, although dose-intense pro-
files were not associated with a better survival, functional chemotherapy representation was able
to capture individual realisations of the intended treatment, which depends on delays and dose
reductions reported throughout the course of treatment, detecting differences between patients
randomised to the same regimen.

Dose-intense profiles were not associated with survival, even if functional chemotherapy rep-
resentations were able to capture individual realisations of the intended treatment, suggest-
ing that considering only the assumed dose as treatment proxy is not enough. Chemotherapy
presents some particular aspects, such as latent accumulation of toxicity, which must be taken
into account.39 The use of FLCRMs could lead to a loss of information due to cohort selection.
Indeed, it is necessary that patients survived for a period at least equal to the length of the pre-
defined period used to compute the functional predictors. This could imply a loss of information
if many patients are excluded. This issue can be overcame using time-varying covariates into an
appropriate survival framework, like the joint modelling approach. However, a joint modelling
approach is not appropriate to study the evolution of exogenous time-varying covariates.

The strength of our method is the ability to detect differences between patients with different
biomarker evolution and treatment response, even when randomised to the same regimen. This
work opens doors to many further developments, both in the field of statistical methods and in
cancer research. From a clinical point of view, it will be necessary to simultaneously consider
chemotherapy treatment modifications and developments of toxicities or adverse events. This
aspect need to be taken into account into the representation of the dynamic evolution of these
processes. To model them simultaneously is not a trivial task. It could also be interesting to
analyse different biomarkers, in order to detect their prognostic role. These measurements could
be of clinical interest since they represent dynamic patterns that could reflect patient’s disease
progression. Studying factors that could be related to chemotherapy treatment might provide
interesting analyses and strong external validity.

The complexity of the phenomenon asks for the developments of new methodologies, able
deal with the complicated aspects of chemotherapy treatment. This study shows that working
in this direction is a difficult but profitable approach, which could lead to new improvements for
subject-specific predictions and personalised treatment.
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A MRC BO06/EORTC 80931 RCT protocol
Data from the MRC BO06/EORTC 80931 Randomized Controlled Trial (RCT) for patients with
non-metastatic high-grade osteosarcoma recruited between 1993 and 2002 were analysed.3 The
trial randomised patients between conventional treatment with doxorubicin (DOX) and cisplatin
(CDDP) given every 3 weeks (Reg-C ) versus a dose-intense regimen of the same two drugs given
every 2 weeks (Reg-DI ), supported by granulocyte colony-stimulating factor. Chemotherapy
was administered for six cycles (a cycle is a period of either 2 or 3 weeks depending on the
allocated regimen), before and after surgical removal of the primary osteosarcoma. In both
arms, DOX (75 mg/m2) plus CDDP (100 mg/m2) were given over six cycles. Surgery to remove
the primary tumour was scheduled at week 6 after starting treatment in both arms, that is,
after 2 cycles (2 × [DOX+CDDP]) in regimen-C and after 3 cycles (3 × [DOX+CDDP]) in
regimen-DI. Postoperative chemotherapy was intended to resume 3 weeks after surgery in both
arms. Figure 9 shows the trial design. Laboratory tests, such as ALP test, were performed
before each cycle in order to monitor patient’s health status and the development of toxicities or
adverse events. Delays or chemotherapy dose reductions during treatment were possible in case
of toxicity. Additional details can be found in the primary analysis of the trial.3

Figure 9: Patients are randomized at baseline to one of the two regimens, with the same anticipated
cumulative dose but different duration.
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