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Abstract

In this article we propose a phase-�eld approach to model a liquid-gas mixture that

might also provide a description of the expansion stage of a metal foam inside a hollow

mold. We conceive the mixture as a two-phase incompressible-compressible �uid gov-

erned by a Navier-Stokes-Cahn-Hilliard system of equations, and we adapt the Lowengrub-

Truskinowsky model to take into account the expansion of the gaseous phase. The result-

ing system of equations is characterized by a velocity �eld that fails to be divergence-free,

by a logarithmic term for the pressure that enters the Gibbs free-energy expression and

by the viscosity that degenerates in the gas phase. In the second part of the article we

propose an energy-based numerical scheme that, at the discrete level, preserves the mass

conservation property and the energy dissipation law of the original system. We use a Dis-

continuous Galerkin approximation for the spatial approximation and a modi�ed midpoint

based scheme for the time approximation.

Keywords: liquid-gas mixtures, metal foams, phase-�eld, Navier-Stokes-Cahn-Hilliard,

energy-based numerical methods, Discontinuous Galerkin, modi�ed midpoint.

1 Introduction.

Two-phase �ows have been studied in depth for their broad range of applications. They pose
several formidable problems both from the modelling point of view and from the numerical
implementation of schemes apt to capture their complex evolution. Two-phase �ows can be
classi�ed according to the nature of the phases involved, whether they are liquid, solid or
gaseous, each class of phases having its own peculiarities. Here we are concerned with liquid-
gas mixtures, that have a rich and complex history as attested, for instance, by the variety
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of treatments for the simplest problem for a gas-liquid mixture: the expansion of an isolated
gas bubble within a �uid governed by the Rayleigh-Plesset equation. There are two main
di�culties: the former, quite obvious, lies in the extreme variability of constitutive hypotheses
that one can adopt for either the gas or the �uid phase: the gas can be ideal, a van der
Waals gas, etc.; the �uid can be ideal, newtonian [21], polymeric [6], etc. More intricate
points concern the boundary conditions at the interface [25], the �nite amount of the �uid
phase [6,31], the shape of the gas bubble [12] and, in any case, the need to take in due account
the compressibility of the gas drop. These di�culties are ampli�ed when the evolution of
a family of bubbles is considered and several techniques have been put forward to tackle
the problem, ranging from kinetic [28] to phase-�eld models [27]. A particularly interesting
gas-�uid mixture is provided by metal foams during the foaming process. Metal foams are
special cases of cellular metals with closed cells that attracted the attention of researchers and
engineers for their high capability of energy absorption, high sti�ness and low weight, that
make them suitable for a wide range of applications, in particular in the automotive industry.
The complex process of foaming can be divided into three main steps; gas bubbles nucleate
within a liquid matrix; they grow to yield a complex morphology that �nally undergoes a
coarsening when small bubbles coalesce together to form larger ones. At the beginning of the
foaming process, the metal is a powder within which a blowing agent, e.g. titanium hydride
TiH2, is dispersed. When the compound is suddenly heated, not only the metal powder passes
into the liquid state, but the TiH2 particles release hydrogen that starts forming bubbles which
in turn deeply modify the morphology of the matrix. These bubbles can recombine, breakup
or even escape from the boundary of the �uid matrix. At a certain moment the process is
stopped by a fast cooling that freezes the foam morphology that can be then analyzed. This
avenue to arrive at a metal foam is known as precursor foaming and it is this method that
has been adopted in the experiments that two of us (E.R. and M.V.) followed in collaboration
with M.U.S.P. laboratory in Piacenza, Italy (www.musp.it) [23]. As an aside, we note that,
depending on whether the precursor is prepared through a metallurgical or a melt route, the
foaming process can be referred as the �Powder line� or �Formgrip line�: in the experiment
described in [23] only the powder line has been considered. The outcome of the foaming
process depends upon many factors like the content of the blowing agent, the heating rate, the
size of the precursor, etc. The expansion stage of a metal foam within a hollow mold served as
a motivation for the subsequent study that, admittedly, is still far from being apt to capture
the evolution of this process.

Up to a few years ago, it was generally believed that the large contrasts in the properties
pertaining to the gas and to the �uid phase were responsible for the properties of metal
foams. However, it was later realized that such contrasts alone were insu�cient to justify the
stability of a metal foam. Moreover, the presence of an oxide net within the foam, that can be
fragmented into small oxide particles during foaming, was proved experimentally. When these
particles are trapped between two bubbles, they exert a disjoining pressure that enhances
separation of gas bubbles, preventing the collapse of the foam [13,14]. The e�ects of disjoining
pressure on metal-foam stability have been incorporated into a phenomenological model [14]
then subsumed within a numerical scheme based upon a lattice Boltzmann model [15]: actually,
it was the impossibility of reproducing accurate foam morphologies numerically [16] that led
to search a new stabilizing mechanism. This feature, together with the well known versatility
of phase-�eld models to handle with topological changes, induced us to adapt the phase-�eld
model introduced almost two decades ago by Lowengrub and Truskinovsky [17] to a gas-�uid
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mixture. In particular, we were led into such an attempt by the remark, contained in [17]
itself, that in the mushy region modelling the di�use interface between two phases, the stress
tensor acquires an extra-pressure term. This term might be used, this is our point, to mimic
the disjoining pressure that appears as an essential ingredient for the stability of a metal foam.

Phase-�eld models belong to the vast family of di�use-interface models. They have been
used to describe a variety of physical problems in which phase transitions �like condensation,
evaporation, crystallization, etc. �play a role. The importance of phase-�eld techniques has
grown considerably as they can be implemented numerically in an e�ective way. In their
simplest version, they are characterized by a scalar parameter, called the order parameter,
that serves to dinstinguish one phase from the other. There are di�erent choices for the order
parameter: for example, the average volume fraction of a phase [26] or the mass concentration
of a phase [5,17�19]. In both cases, the order parameter has a clear physical meaning and its
evolution is described by a nonlinear di�usion equation. In Section 2 we propose a thermody-
namically consistent phase-�eld model for the description of a �uid-gas mixture, adopting the
mass concentration of the liquid phase as phase-�eld variable.

The resulting system of equations associated with the phase-�eld model is an incompressi-
ble-compressible version of a Navier-Stokes-Cahn-Hilliard (IC-NSCH) system. Several numer-
ical approximations of the classical Navier-Stokes-Cahn-Hilliard (NSCH) system have been
proposed in literature in the case of incompressible two-phase �uids (see, e.g., [7]) and very
recently (see [9] and [10]) numerical techniques have been developed for quasi-incompressible
�uids, i.e., �uids in which both phases are incompressible, but the mixing is compressible.
However, up to our knowledge, the numerical analysis in the incompressible-compressible case
is missing. The main di�culties in the numerical approximation of these systems are repre-
sented by the presence of the pressure in the chemical potential de�nition and by the velocity
�eld that is no longer divergence-free. In this paper we build a numerical scheme that, at
the discrete level, preserves mass conservation and the energy dissipation law associated to
the original system. In particular, mass conservation and energy dissipation properties for the
IC-NSCH system are proved in Section 3, while Section 4 describes an energy-based numeri-
cal method for the IC-NSCH system using a modi�ed-midpoint time-discretization (inspired
by the one adopted in [10] for the Lowengrub-Truskinowsky model), and using Discontinu-
ous Galerkin �nite elements for the spatial discretization (similarly to [8] and [9] where a
Navier-Stokes-Korteweg system and a quasi-incompressible two phase �ow model have been
considered).

2 A phase-�eld model for gas-liquid mixtures.

In this section we propose a thermodynamically consistent phase-�eld model for the description
of a gas-�uid mixture. Inspired by the expansion stage of the foam inside a hollow mould, we
shall suppose hereafter that the expansion of the gas phase occurs at a constant temperature,
and that the �uid phase is incompressible. We consider the concentration c of the liquid phase
as the phase-�eld function: if we �x a spatial domain Ω and a time interval [0, T ],

c = c(x, t) : Ω× [0, T ]→ [0, 1] (2.1)

is such that c = 1 if x belongs to the liquid phase, c = 0 if x belongs to the gas phase,
0 < c < 1 if x belongs to a transition layer between liquid and gas. Our model depends on
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mass, energy, and momentum balance-equations (Navier-Stokes equations) for the two-phase
incompressible-compressible system and a nonlinear evolution equation for the phase-�eld
function c (Cahn-Hilliard equation).

2.1 Thermodynamically consistent phase-�eld models.

As a general framework we shall consider models where the phase-�eld variable is governed by
an equation of the type

ρċ = −divj(ρ, c, θ,∇ρ,∇c,∇θ), (2.2)

where ρ is the �uid density, θ is the absolute temperature, j is a suitable current. We will
enforce the constraint θ = const. later on in our treatment. We have neglected, for simplicity,
dependence on higher order gradients in the scalar �elds. Together with (2.2), we shall also
suppose that the balance equations of mass, momentum and energy

ρ̇ = −ρdivu,
ρu̇ = divT + ρb,
ρė = T ·D− divq + ρr

(2.3)

hold in the mixture, in which u is the �uid velocity, T is the stess tensor, b represents the
body force, e is the internal energy, D is the symmetric part of the velocity gradient, q is the
energy �ux and r represents the energy supply. In addition to these averaged balance equa-
tions, we must ensure the validity of the second law of thermodynamics, through the following
Clausius-Duhem inequality:

Entropy principle. Let η be the entropy density. The Clausius-Duhem inequality

ρη̇ ≥ −div
(q
θ

+ k
)

+
ρr

θ
(2.4)

must hold and must be compatible with the balance equations (2.3). The extra-entropy �ux k
is another constitutive quantity that accounts for entropy �ux due to phase changes.

We �nd it expedient to introduce the Gibbs free-energy g that is related to the Helmholtz
free-energy ψ := e− θη by the Legendre transformation

ψ(p, θ, c) = g(p, θ, c)− p∂g
∂p
. (2.5)

By use of (2.3) and (2.5), we can rewrite (2.4) as

ρ

(
ġ + ηθ̇ +

1

ρ2
ρ̇p− 1

ρ
ṗ

)
−T ·D− θ divk +

1

θ
q · ∇θ ≤ 0. (2.6)

Hereafter, we suppose that g and also T, η, k, q and j could depend upon p, c, θ,∇θ, D,∇c.
The validity of (2.6) imposes restrictions on the constitutive functions T, ψ, η, k, q and j,
as stated by the next theorem (see [18] for a proof), where a subscript denotes di�erentiation
with respect to the indicated variable.
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Theorem 2.1 The functions T, g, η, k, q and j are compatible with the second law of ther-
modynamics in the form (2.6) if

gθ + η = 0, gD = 0, g∇θ = 0, (2.7)

q = −κ(c, p, θ)∇θ, (2.8)

divj = f̂(c, p, θ)

(
1

θ
gc −

1

ρ
div
(ρ
θ
g∇c

))
, (2.9)

T = −pI− sym(ρ∇c⊗ g∇c) + 2µD + λ(divv)I, (2.10)

where the functions κ and f̂ are positive; µ and λ can be, in principle, taken as functions of
p, θ, c, and they must obey the constraints µ > 0 and 2µ+ 3λ > 0.

Since L := ∇u might have a skew-symmetric part, we have the further restriction

skw(ρ∇c⊗ g∇c) = 0 (2.11)

that, however, is easily accounted for. In fact, since the scalar function g can depend on the
vector ∇c only through its scalar invariant |∇c|, we can set g∇c = g(|∇c|)∇c so that (2.11) is
automatically satis�ed and (2.10) can be recast as

T = T0 + Tv, (2.12)

where
T0 = −pI− νρ∇c⊗∇c, Tv = 2µD + λ(divv)I (2.13)

are the non-viscous part and the viscous part of the stress tensor, respectively. Since in our
problem the �uid component can be regarded as incompressible, while the gaseous phase is
clearly compressible, we shall assume

λ = λ(c) = λg(1− c)

where λg is characteristic of the gas dispersed in the mixture. As to the viscosity µ, we take
the simplest formula interpolating between the bulk values of the gas and the �uid phase:

µ = µ(c) := µfc+ µg(1− c) (2.14)

where µg and µf pertain to the gas and to the �uid phase, respectively. Following Lowengrub
and Truskinovsky [17], we decompose the capillary stress T0 into a pressure and into a shear
component. Actually, we limit our attention to a free-energy ψ such that ψ∇c = ν∇c, with
ν > 0 a constant. Then, we have

T0 = −(p+ νρ|∇c|2)I + νρ|∇c|2
(
I− ∇c
|∇c|

⊗ ∇c
|∇c|

)
. (2.15)

Since ∇c
|∇c| = n, the unit normal to the interface, following the analogy with the level-set

method described in [17], the last term in (2.15) can be viewed as a regularised extra-surface
term, from which the surface tension can be derived (see [17]). It is tempting to interpret
the phase-�eld dependent correction to the pressure νρ|∇c|2 as a disjoining pressure, but a
more re�ned microscopic treatment would be needed to corroborate this claim. Nevertheless,
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at variance with [13], we do not add an extra term to account for disjoining pressure but
we are content with the correction just found. The use of Gibbs free-energy is justi�ed by
the argument discussed in [17]: usually, Helmholtz free-energy ψ(ρ, θ, c,∇c) allows to obtain
pressure through the relation

p = ρ2∂ρψ.

However, this is possible only if the �uid is compressible and if the equation of state p = p(ρ, T )
can be inverted at a given temperature. For an incompressible �uid, however, the density is
constant at a given temperature and so ρ = ρ(θ), from which it is impossible to recover
information about pressure. The use of the Gibbs free-energy g makes it possible to overcome
this di�culty, as remarked in [17], since from g it is possible to recover ρ through

ρ−1 =
∂g

∂p
. (2.16)

For future reference, we also list here the expressions of the entropy density η and the (gener-
alised) chemical potential µ in terms of g

η = −∂g
∂θ

µ =
∂g

∂c
.

When g has been assigned, it is possible to turn back to the Helmholtz free-energy ψ, then
expressed in terms of p and θ. By virtue of (2.16), requiring ρ = const. is tantamount as
having

∂2g

∂p2
= 0. (2.17)

In our context, it seems reasonable to set [17]

ρ−1 =
c

ρ1
+ nRθ(1− c)1

p
, (2.18)

so that, when c ≡ 1, ρ = ρ1, the density of the �uid phase, whereas when c ≡ 0, ρ obeys the
law of ideal gases. By use of (2.16), we obtain

g(p, θ, c,∇c) =
c

ρ1
p+ nRθ(1− c) ln

p

p0
+ g0(c, θ) + g1(c) + g2(∇c),

where p0 is a reference pressure. The mixing energy g0 is taken as

g0(c, θ) := (1− c)

((
7

2
nR− S0

)
(θ − θ0) + nRθ ln

(
θ0

θ

) 7
2

)
so that, when c ≡ 0 the Gibbs free energy reduces to the standard expression for a perfect,
diatomic gas ( [22], p. 54): here S0 and θ0 are constants. As to g1, we propose the standard
double well potential

g1(c) = βc2(1− c)2.

Since, on passing from the gas phase where c = 0 to a level surface for c within the transition
layer, the mixing energy changes from 0 to βc2(1−c)2, following [20] we can interpret βc2(1−c)2

as an osmotic pressure
pg = βc2(1− c)2. (2.19)
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If we only consider the leading term in (2.19) when c� 1, we �nd that

c =

√
pg
β

(2.20)

at the interface between the gas and the liquid metal. Equation (2.20) shows the same relation
between c and pg as in Sievert's law. Sievert's law can be expressed by the relation

c(θ, pg) = Ks

√
pg
pa

(2.21)

where pa is the atmospheric pressure and Ks is a temperature-dependent parameter that, in
the case of hydrogen in liquid aluminium, is given by [27,29]

Ks = 8.9 · 10−5 · 10−
2760
T

+2.796.

Comparing (2.20) and (2.21), we �nd that

β =
pa
K2
s

and so, also the Sievert's law can be accounted for in this model. The term g2(∇c) is de�ned
by

g2(∇c) =
γ

2
|∇c|2.

Collecting together all the terms, the Gibbs free-energy is given by

g(p, θ, c,∇c) =
c

ρ1
p+ nRθ(1− c) ln

p

p0

+(1− c)

((
7

2
nR− S0

)
(θ − θ0) + nRθ ln

(
θ0

θ

) 7
2

)
+βc2(1− c)2 +

γ

2
|∇c|2. (2.22)

To summarize, since we limit ourselves to the case where the temperature θ is constant
(according to the hypotheses we discussed for the expansion of the foaming process) and
choosing f̂ = θ in (2.9), the set of Navier-Stokes-Cahn-Hilliard equations for incompressible-
compressible �uids can be written in the form:

ρ−1 =
c

ρ1
+

(1− c)nRθ
p

, (2.23)

ρ̇ = −ρdivu, (2.24)

ρu̇ = divT + ρb, (2.25)

ρċ = div
(
ζ ∇

(
ρ−1δcg

))
, (2.26)

where ζ is a positive constant,

T = −pI− νρ∇c⊗∇c+ 2µcD, (2.27)

δcg := ρgc − div (ρg∇c) , (2.28)
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g(p, c,∇c) =
c

ρ1
p+ nRθ(1− c) ln

p

p0

+(1− c)

((
7

2
nR− S0

)
(θ − θ0) + nRθ ln

(
θ0

θ

) 7
2

)
+βc2(1− c)2 +

γ

2
|∇c|2. (2.29)

2.2 Geometry and boundary-initial conditions.

For simplicity, we consider a 2D geometry so that, at the initial time, we have a gas-liquid
mixture within a rectangular box B (see Figure 1). The gas is present not only within bubbles
but can escape the �uid phase occupying the upper part of the box, too.

We have now to impose a suitable set of boundary conditions on the �elds u, p, and c char-
acterising our system. We �rst consider the rigid portions of the boundary, ∂Bl and ∂Bb for
the lateral part and the bottom part of the boundary, respectively. For the velocity �eld we

Figure 1: Test case for the metal-foam model.

enforce
u = 0 on ∂Bb, (2.30)

u · n = 0 on ∂Bl. (2.31)

Moreover we assume
Tn · τ = 0 on ∂Bl, (2.32)

where Tn · τ identi�es the tangential component of Tn and we also suppose that

Tn = 0 on ∂Bu (2.33)

on the upper part of the box.

For the concentration c, we have two types of boundary conditions. First, we suppose that

∇c · n = 0 on ∂B. (2.34)

Moreover, we recall that the evolution of c is ruled by

ρċ = −divj (2.35)
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where the current j is given by

j := ζ∇
(

1

ρ
δcg

)
.

By integrating on B and using both Reynolds' transport theorem and the divergence theorem,
we arrive at

d

dt

∫
B
ρcdV =

∫
∂B

j · ndA :

imposing
j · n = 0 on ∂B (2.36)

amounts at saying that there is no �ux across the boundaries of the box. As to initial condi-
tions, we have to assign an initial con�guration c0 of the bubbles and we can suppose that the
initial velocity is equal to zero.

2.3 Dimensionless equations.

To deal with the evolution equations (2.23), we need to recast them into a dimensionless form.
To this aim, we introduce as basic characteristic quantities the length L∗, the velocity V ∗, the
density ρ∗, the chemical potential µ∗, the temperature θ∗ [17], from which we can obtain a
characteristic time t∗ = L∗

V ∗ and a characteristic pressure p∗ = ρ∗µ∗. If M = µ∗

V ∗ is the Mach

number, C = ν
µ∗L∗2 is the Cahn number (or capillary number), Re = ρ∗V ∗L∗

µ is the Reynolds

number and Pe = ρ∗V ∗L∗

ζµ∗ is the Péclet number, then the incompressible-compressible version
of the Navier-Stokes-Cahn-Hilliard (IC-NSCH) system of equations in dimensionless form is
given by

ρ̇ = −ρdivu, (2.37)

ρu̇ = divT, (2.38)

ρċ = div

(
1

Pe
∇
(
ρ−1δcg

))
, (2.39)

where

ρ−1 =
c

ρ1
+

(1− c)N1θ

p
, (2.40)

T = − 1

M
(pI + Cρ∇c⊗∇c) +

2

Re
cD, (2.41)

δcg = ρgc − div (ρg∇c) , (2.42)

g(p, c,∇c) =
c

ρ1
p+N1θ(1− c) ln

p

p0

+(1− c)

((
7

2
N1 − σ0

)
(θ − 1) +N1θ ln

(
θ0

θ

) 7
2

)

+bc2(1− c)2 +
C
2
|∇c|2, (2.43)
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and N1 = Rθ0
Mwµ∗

, in which Mw is the molecular weight of the gas, σ0 = S0θ0
µ∗ , b = β

µ∗ , together
with the following boundary conditions:

u = 0 on ∂Bb, (2.44)

u · n = 0 on ∂Bl, (2.45)

Tn · τ = 0 on ∂Bl, (2.46)

Tn = 0 on ∂Bu, (2.47)

∇c · n = 0 on ∂B, (2.48)

j · n = 0 on ∂B. (2.49)

3 A continuous mixed formulation of IC-NSCH system of equa-

tions.

In this section we prove mass conservation and energy dissipation properties for the incompressible-
compressible Navier-Stokes-Cahn-Hilliard (IC-NSCH) system of equations (2.37)-(2.39). To
this aim it is instrumental to rewrite (2.37)-(2.39) by resorting to a mixed formulation as
follows:

0 = ρ(∂tc) + ρ(u · ∇)c− 1

Pe
∆µ, (3.1)

0 =
√
ρ ∂t(
√
ρu) + ρ(u · ∇)u +

1

2
div(ρu)u +

1

M
∇p

+
C
M

div(ρ∇c⊗∇c)− 2

Re
div(cD), (3.2)

0 = ∂tρ+ div(ρu), (3.3)

0 = µ− µ0(c)− p

ρ1
+N1θ ln p+

C
ρ

div(ρ∇c) +K (3.4)

where

ρ−1 =
c

ρ1
+

(1− c)N1θ

p
, (3.5)

K =

(
7

2
N1 − σ0

)
(θ − 1) +N1θ ln

(
θ0

θ

) 7
2

, (3.6)

µ0(c) =
dg1(c)

dc
= 2bc(1− c)(1− 2c), (3.7)

in which we have introduced the chemical potential µ as ρ−1δcg (cf. (2.42) and (2.43)) in
order to split the fourth-order Cahn-Hilliard equation (2.39) into two second order equations,
namely (3.1) and (3.4). Notice that, for ease of notation, we have supposed that the reference
pressure p0 is equal to 1. For the analysis, we will consider the following initial and boundary
conditions:

u(x, 0) = u0(x), c(x, 0) = c0(x), for all x ∈ Ω, (3.8)

u = 0, ∇c · n = ∇µ · n = 0, on ∂Ω× (0, T ). (3.9)
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Conditions (3.9) are simpli�ed boundary conditions with respect to the ones introduced in
Section 2. However, the analysis can be extended to the original boundary conditions.
Introducing a new variable q = ∇c and manipulating the momentum equation (3.2), the
system (3.1)-(3.4) can be written as follows:

0 = ρ ∂tc+ ρ(u · ∇)c− 1

Pe
∆µ, (3.10)

0 =
√
ρ ∂t(
√
ρu)+ρ(u · ∇)u+

1

2
div(ρu)u+

1

M
∇p− 1

M
ρµ∇c+ 1

M
1

ρ1
ρp∇c

− 1

M
N1θρ ln p∇c− 1

M
Kρ∇c+

C
2M

ρ∇(|q|2) +
1

M
ρµ0(c)∇c− 2

Re
div(cD),

(3.11)

0 = ∂tρ+ div(ρu), (3.12)

0 = ρµ− ρµ0(c)− p

ρ1
ρ+N1θρ ln p+ C div( ρq ) +Kρ, (3.13)

0 = q−∇c. (3.14)

with the following initial and boundary conditions:

u(x, 0) = u0(x), c(x, 0) = c0(x), for all x ∈ Ω, (3.15)

u = 0, q · n = ∇µ · n = 0, on ∂Ω× (0, T ). (3.16)

Indeed, using the following identity

div(ρ∇c⊗∇c) = div(ρ∇c)∇c+
1

2
ρ∇(|∇c|2), (3.17)

we can rewrite (3.2) as follows:

0 =
√
ρ ∂t(
√
ρu) + ρ(u · ∇)u +

1

2
div(ρu)u +

1

M
∇p

+
C
M

div(ρ∇c)∇c+
C

2M
ρ∇
(
|∇c|2

)
− 2

Re
div(cD). (3.18)

Using, from equation (3.4), the fact that

C
M

div(ρ∇c)∇c =
1

M
ρµ0(c)∇c− 1

M
ρµ∇c+

1

M
1

ρ1
ρp∇c− 1

M
N1θρ ln p∇c− 1

M
Kρ∇c,

we can rewrite equation (3.18) as (3.11).

Now, the mass conservation property of the IC-NSCH system (3.10)-(3.14) reads as follows.

Theorem 3.1 (Mass conservation) If (c,u, p, µ,q) is a strong solution of the system (3.10)-
(3.14) which satis�es the boundary conditions (3.16), then

d

dt

(∫
Ω
ρ dx

)
= 0. (3.19)
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Proof. Let us consider the local mass conservation equation (3.12) and integrate it over the
domain Ω: ∫

Ω
(∂tρ+ div(ρu)) dx = 0. (3.20)

Due to the boundary conditions (3.16),∫
Ω

div(ρu) dx =

∫
∂Ω
ρu · n ds = 0, (3.21)

so equation (3.20) can be rewritten as ∫
Ω
∂tρ dx = 0 (3.22)

that yields the global mass conservation relation (3.19).

We can also derive a continuous energy dissipation law for the IC-NSCH system. The deriva-
tion will be consistent with the mixed formulation (3.10)-(3.14) given above. The main tech-
nical di�culties are due to the presence of logarithmic pressure terms both in the momentum
equation (3.11) and in the chemical potential de�nition (3.13). Let us preliminary introduce
the total energy associated to the system (3.10)-(3.14):

E :=

∫
Ω

(
1

2
ρ |u|2 +

1

M
ρ g(p, c,q)− 1

M
p

)
dx, (3.23)

where

g(p, c,q) =
c

ρ1
p+N1θ(1− c) ln p+ g0(c) + g1(c) + g2(q), (3.24)

g0(c) = (1− c)K, (3.25)

g1(c) = bc2(1− c)2, (3.26)

g2(q) =
C
2
|q|2. (3.27)

Theorem 3.2 (Energy dissipation) Let (c,u, p, µ,q) be a su�ciently smooth solution of

the system (3.10)-(3.14). Then there holds

dE

dt
=

d

dt

∫
Ω

(
1

2
ρ|u|2+

1

M
ρg(p, c,q)− 1

M
p

)
dx

= − 1

PeM

∫
Ω
|∇µ|2dx− 2

Re

∫
Ω
c (D : D) dx. (3.28)

Proof. Let us test equation (3.10) with
µ

M
and equation (3.11) with u and sum them together.

If we use the following identity∫
Ω

(
ρ (u · ∇)u · u +

1

2
div(ρu)u · u

)
dx = 0 (3.29)
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and equation (3.13), integrating by parts the viscous term and the term containing ∆µ, we
obtain:

0 =

∫
Ω

(
√
ρ∂t(
√
ρu)·u+

1

M
∇p · u+

1

M
1

ρ1
ρp∇c · u− 1

M
N1θρ ln p∇c · u+

1

M
1

ρ1
ρp(∂tc)

− 1

M
N1θρ ln p(∂tc) +

1

M
ρµ0(c)∇c · u +

1

M
ρµ0(c)(∂tc) +

C
2M

ρ∇(|q|2) · u

− C
M

div(ρq)(∂tc)−
1

M
Kρ∇c · u− 1

M
Kρ(∂tc)+

1

PeM
|∇µ|2+

2

Re
cD :D

)
dx.

(3.30)

We get the following relations:

(I) the �rst term in (3.30) is∫
Ω

√
ρ ∂t(
√
ρu) · u dx =

∫
Ω
∂t

(ρ
2
|u|2

)
dx, (3.31)

(II) integrating by parts, using the boundary conditions (3.16) and the mass conservation
equation (3.12), the terms containing µ0(c) are equal to∫

Ω

(
1

M
ρµ0(c)∇c · u +

1

M
ρµ0(c)(∂tc)

)
dx =

∫
Ω
∂t

(
1

M
ρg1(c)

)
dx, (3.32)

(III) integrating by parts, using the boundary conditions (3.16) and the mass conservation
equation (3.12), the terms containing the variable q are equal to∫

Ω

(
C

2M
ρ∇(|q|2) · u− C

M
div(ρq)(∂tc)

)
dx =

∫
Ω
∂t

(
1

M
ρg2(q)

)
dx,

(3.33)

(IV) integrating by parts, using the boundary conditions (3.16) and the mass conservation
equation (3.12), the terms containing the constant K are equal to∫

Ω

(
− 1

M
Kρ∇c · u− 1

M
Kρ(∂tc)

)
dx =

∫
Ω
∂t

(
1

M
ρg0(c)

)
dx. (3.34)

Now, let us consider pressure terms:∫
Ω

(
1

M
∇p · u+

1

M
1

ρ1
ρp∇c · u− 1

M
N1θρ ln p∇c · u

+
1

M
1

ρ1
ρp(∂tc)−

1

M
N1θρ ln p(∂tc)

)
dx. (3.35)

Notice that, integrating by parts, using boundary conditions (3.16) and mass conservation
equation (3.12):

(a) ∫
Ω

1

M
1

ρ1
ρp∇c · u dx =

∫
Ω

(
1

M
1

ρ1
cp(∂tρ)− 1

M
1

ρ1
ρcu · ∇p

)
dx, (3.36)
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(b) ∫
Ω
− 1

M
N1θρ ln p∇c · u dx =

∫
Ω

(
1

M
N1θ(1− c) ln p(∂tρ)

− 1

M
N1θρ(1− c)∇p

p
· u
)
dx. (3.37)

Using (3.36) and (3.37) into (3.35) we obtain:∫
Ω

(
1

M
∇p · u− 1

M
1

ρ1
ρcu · ∇p− 1

M
N1θρ(1− c)∇p

p
· u +

1

M
1

ρ1
cp(∂tρ)

+
1

M
1

ρ1
ρp(∂tc) +

1

M
N1θ(1− c) ln p(∂tρ)− 1

M
N1θρ ln p(∂tc)

)
dx. (3.38)

If we notice the fact that, remembering the de�nition of ρ,∫
Ω

(
1

M
∇p · u− 1

M
1

ρ1
ρcu · ∇p− 1

M
N1θρ(1− c)∇p

p
· u
)
dx = 0, (3.39)

then (3.38) can be rewritten as∫
Ω

(
1

M
1

ρ1
cp(∂tρ) +

1

M
1

ρ1
pρ(∂tc)−

1

M
N1θρ(1− c)∂tp

p
+

1

M
N1θρ(1− c)∂tp

p

+
1

M
N1θ(1− c) ln p(∂tρ)− 1

M
N1θρ ln p(∂tc)

)
dx, (3.40)

in which we have added and subtracted the quantity
1

M
N1θρ(1− c)∂tp

p
. Using the fact that

p can be written, in terms of ρ and c, as

p =
N1θρ1ρ(1− c)

ρ1 − ρc
, (3.41)

we obtain: ∫
Ω

(
− 1

M
N1θρ(1− c)∂tp

p

)
dx =

∫
Ω

(
− 1

M
∂tp+

1

M
1

ρ1
ρc(∂tp)

)
dx. (3.42)

Using (3.42) into (3.40), we get:∫
Ω

(
1

M
1

ρ1
cp(∂tρ) +

1

M
1

ρ1
ρp(∂tc) +

1

M
1

ρ1
ρc(∂tp) +

1

M
N1θ(1− c) ln p(∂tρ)

+
1

M
N1θρ ln p ∂t(1− c) +

1

M
N1θρ(1− c)∂tp

p
− 1

M
∂tp

)
dx

=

∫
Ω

1

M
∂t

(
c

ρ1
pρ+N1θρ(1− c) ln p− p

)
dx. (3.43)

Using (3.31)-(3.34) and (3.35)-(3.43) into (3.30), we obtain:∫
Ω
∂t

(
ρ

2
|u|2+

1

M
ρg(p, c,q)− 1

M
p

)
dx =−

∫
Ω

1

PeM
|∇µ|2 dx−

∫
Ω

2

Re
cD : D dx, (3.44)

that is equivalent to the thesis (3.28).
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Remark 3.3 Notice that the phase-�eld variable c enters the viscous term in the right-hand
side of (3.2). Due to the choice of g1(c) as a double-well potential, it is not guaranteed that
the variable c belongs to the interval [0, 1]. In order to enforce this constraint, another choice
of g1(c) has to be done, e.g. a logarithmic potential (see [2], [3]). In order to reduce the
complexity of the problem, it is well accepted in the literature the use of double-well potentials.
The fact that c remains in the interval [0, 1] has in�uence on the dissipation of the energy (see
Theorem 3.2).

4 Numerical discretisation.

In this section we propose a numerical scheme that, at discrete level, preserves the mass con-
servation property and the energy dissipation law associated to the original system. Here we
use a Discontinuous Galerkin spatial approximation and a modi�ed-midpoint based scheme
for the time-approximation. We point out that the main technical di�culties in the design
of numerical methods for the IC-NSCH system of equations are due to the velocity �eld that
is not divergence free, to the presence of logarithmic pressure terms in the Gibbs free-energy
and to the degenerate viscosity in the gas phase.

Let Th be a conforming, shape-regular family of partitions of Ω into disjoint open trian-
gles T such that Ω̄ =

⋃
T∈Th

T̄ . Let us denote with hT the diameter of an element T of Th

and let h be the maximum element diameter. Let e denote an edge of the triangulation and
E the set of all interior edges of Th.

Let us recall the de�nition of some useful broken Sobolev spaces:

Hk(Th) :=
{
v ∈ L2(Ω) : v|T ∈ Hk(T ), ∀T ∈ Th

}
, (4.1)

H(div; Th) :=
{
w ∈ (L2(Ω))2 : div(w|T ) ∈ L2(T ), ∀T ∈ Th

}
, (4.2)

H1
0 (Th) :=

{
v ∈ H1(Th) : γ0v = 0

}
, (4.3)

H1
n(Th) :=

{
w ∈ (H1(Th))2 : γ∗w = 0

}
. (4.4)

If v is a scalar function in H1(Th), we can de�ne the piecewise gradient ∇hv to be the function
whose restriction to every element T ∈ Th is equal to ∇v. In the same way, we can de�ne
the piecewise divergence divhw of a vector function w ∈ H(div; Th) as the function whose
restriction to every element T ∈ Th is equal to divw. In the rest of the section, for ease of
writing, we will suppress the subscript h in the notation of both the piecewise gradient and
the piecewise divergence. The traces of functions in H1(Th) belong to the trace space

T(E ∪ ∂Ω) :=
∏
T∈Th

L2(∂T ). (4.5)

Let Pp(Th) denote the space of piecewise polynomials of degree p over Th. We can de�ne the
following �nite element spaces:

V := Pp(Th), V0 := V ∩H1
0 (Th), Vn := V2 ∩H1

n(Th). (4.6)
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For simplicity we assume that V is constant in time.

For ϕ ∈ T(E ∪ ∂Ω), we de�ne the jump [[ϕ]] ∈ (L2(E ∪ ∂Ω))2 and average {{ϕ}} ∈ L2(E ∪ ∂Ω)
of ϕ as follows. For every edge e ∈ E shared by the (open) triangles T+ and T−,

[[ϕ]]e := (ϕ+|e)n+ + (ϕ−|e)n−, {{ϕ}}e :=
1

2
(ϕ+|e + ϕ−|e), (4.7)

where, for i = +,−, vi = v|T̄ i and ni is the unit normal vector on e pointing outward of T i. If
e ∈ ∂Ω, then

[[ϕ]]e := ϕn, {{ϕ}}e := ϕ, (4.8)

where n is the outward unit normal.
In the same way, we can de�ne the jumps [[ϕ]] ∈ L2(E ∪ ∂Ω), [[ϕ]]⊗ ∈ (L2(E ∪ ∂Ω))2×2 and

average {{ϕ}} ∈ (L2(E ∪ ∂Ω))2 of the vector function ϕ ∈ (T(E ∪ ∂Ω))2 as follows. For every
e ∈ E shared by the (open) triangles T+ and T−,

[[ϕ]]e := (ϕ+|e) · n+ + (ϕ−|e) · n−, (4.9)

[[ϕ]]e⊗ := (ϕ+|e)⊗ n+ + (ϕ−|e)⊗ n−, (4.10)

{{ϕ}}e :=
1

2
(ϕ+|e +ϕ−|e). (4.11)

If e ∈ ∂Ω, then
[[ϕ]]e := ϕ · n, [[ϕ]]e⊗ := ϕ⊗ n, {{ϕ}}e := ϕ. (4.12)

In the next sections we will suppress the subscript e in the notations of jumps and averages.

4.1 Spatial DG discretisation.

In this section we propose a Discontinuous Galerkin spatial approximation of the IC-NSCH
system of equations (3.10)-(3.14), inspired by the one proposed in [9] for a quasi-incompressible
system. This DG discrete formulation will be consistent with the mass conservation and en-
ergy dissipation properties of the original system.

We �rst give the elementwise variational formulation of the problem (3.10)-(3.14) in mixed
form. We have to �nd

(c,u, p, µ,q) ∈ L2(0, T ;H1(Th))× L2(0, T ; (H1
0 (Th))2)× L2(0, T ;H1(Th))×

L2(0, T ;H1(Th))× L2(0, T ;H1
n(Th))
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such that

0 =
∑
T∈Th

∫
T

(ρ (∂tc)X + ρ(u · ∇)cX) dx− 1

Pe
A(µ,X) +

∫
E
F1(c,u, p, µ,q, X) ds,

(4.13)

0 =
∑
T∈Th

∫
T

(
√
ρ ∂t (

√
ρu) · ξ + ρ(u · ∇)u · ξ +

1

2
div(ρu)u · ξ +

1

M
∇p · ξ

− 1

M
ρµ∇c · ξ +

1

M
1

ρ1
ρp∇c · ξ − 1

M
N1θρ ln p∇c · ξ − 1

M
Kρ∇c · ξ

+
C

2M
ρ∇(|q|2) · ξ +

1

M
ρµ0(c)∇c · ξ

)
dx− 2

Re
B(c,u, ξ)

+

∫
E
F2(c,u, p, µ,q, ξ) ds, (4.14)

0 =
∑
T∈Th

∫
T

((∂tρ)Z + div(ρu)Z) dx+

∫
E
F3(c,u, p, µ,q, Z) ds, (4.15)

0 =
∑
T∈Th

∫
T

(
ρµψ − ρµ0(c)ψ − p

ρ1
ρψ +N1θρ ln pψ + C div( ρq )ψ +Kρψ

)
dx

+

∫
E
F4(c,u, p, µ,q, ψ) ds, (4.16)

0 =
∑
T∈Th

∫
T

(q ·T−∇c ·T) dx+

∫
E
F5(c,u, p, µ,q,T) ds, (4.17)

∀ (X, ξ, Z, ψ,T) ∈ H1(Th)× (H1
0 (Th))2 ×H1(Th)×H1(Th)×H1

n(Th),

in which

A(µ,X) := −
∑
T∈Th

∫
T
∇µ · ∇X dx+

∫
E
{{∇X}} · [[µ]] ds

+

∫
E

[[X ]] · {{∇µ}} ds−
∫
E

σ

h
[[µ]] · [[X ]] ds, (4.18)

B(c,u, ξ) := −
∑
T∈Th

∫
T

(c ε(u) : ε(ξ)) dx+

∫
E∪∂Ω

(
{{c ε(ξ)}} : [[u]]⊗

)
ds

+

∫
E∪∂Ω

(
{{c ε(u)}} : [[ξ]]⊗

)
ds−

∫
E∪∂Ω

γ

h

(
[[u]]⊗ : [[ξ]]⊗

)
ds (4.19)

are the symmetric interior penalty discretisation of the laplacian of the chemical potential µ
(see [1], [24]) and the DG formulation of the viscous terms (see [11] and [32]), where σ and γ
are su�ciently large parameters and ε(u) := 1/2(∇u + (∇u)T ).

The elementwise numerical �uxes Fi, for i = 1, ..., 5, will be chosen later (see (4.52)-(4.56))
according to the properties that our discrete formulation will have to obey. We suppose that
the numerical �uxes only depend on the traces of their arguments and are linear in the test
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functions.

Now, let us give a spatially discrete DG mixed formulation of (4.13)-(4.17): �nd

(ch,uh, ph, µh,qh) ∈ L2(0, T ;V)× L2(0, T ;V2
0)× L2(0, T ;V)×

L2(0, T ;V)× L2(0, T ;Vn)

such that

0 =
∑
T∈Th

∫
T

(ρh (∂tch)X + ρh(uh · ∇)chX) dx− 1

Pe
A(µh, X)

+

∫
E
F1(ch,uh, ph, µh,qh, X) ds, (4.20)

0 =
∑
T∈Th

∫
T

(
√
ρh ∂t (

√
ρhuh) · ξ + ρh(uh · ∇)uh · ξ +

1

2
div(ρhuh)uh · ξ

+
1

M
∇ph · ξ −

1

M
ρhµh∇ch · ξ +

1

M
1

ρ1
ρhph∇ch · ξ −

1

M
N1θρh ln ph∇ch · ξ

− 1

M
Kρh∇ch · ξ +

C
2M

ρh∇(|qh|2) · ξ +
1

M
ρhµ0(ch)∇ch · ξ

)
dx

− 2

Re
B(ch,uh, ξ) +

∫
E
F2(ch,uh, ph, µh,qh, ξ) ds, (4.21)

0 =
∑
T∈Th

∫
T

((∂tρh)Z + div(ρhuh)Z) dx+

∫
E
F3(ch,uh, ph, µh,qh, Z) ds, (4.22)

0 =
∑
T∈Th

∫
T

(
ρhµhψ − ρhµ0(ch)ψ − ph

ρ1
ρhψ +N1θρh ln phψ

+ C div( ρh qh )ψ +Kρhψ) dx+

∫
E
F4(ch,uh, ph, µh,qh, ψ) ds, (4.23)

0 =
∑
T∈Th

∫
T

(qh ·T−∇ch ·T) dx+

∫
E
F5(ch,uh, ph, µh,qh,T) ds, (4.24)

∀ (X, ξ, Z, ψ,T) ∈ V× V2
0 × V× V× Vn.

In the DG formulation (4.20)-(4.24) we have used, for simplicity, ρh := ρ(ch, ph). Now we
recall a proposition that will be useful to prove the discrete mass conservation property and
the discrete version of the energy law for the spatially discrete DG formulation (4.20)-(4.24)
(see [1], [8] for the proof).

Proposition 4.1 If w ∈ H(div; Th) and v ∈ H1(Th), then∑
T∈Th

∫
T

div(w)v dx =
∑
T∈Th

(
−
∫
T
w · ∇v dx+

∫
∂T
vw · nT ds

)
. (4.25)

In particular, w ∈ (T(E ∪ ∂Ω))2, v ∈ T(E ∪ ∂Ω) and∑
T∈Th

∫
∂T
vw · n ds =

∫
E

[[w]] {{v}} ds+

∫
E∪∂Ω

[[v ]] · {{w}} ds =

∫
E∪∂Ω

[[vw]] ds. (4.26)
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In the sequel, the elementwise numerical �uxes Fi, for i = 1, ..., 5, will be chosen by imposing:

� spatially discrete mass conservation,

� spatially discrete energy dissipation law,

� consistency of the discrete DG formulation (4.20)-(4.24), i.e.

Fi(c,u, p, µ,q, ·) = 0 (4.27)

for i = 1, ... , 5 and for all smooth functions c,u, p, µ,q.

In particular, the conditions to be imposed on the numerical �uxes Fi, i = 1, ..., 5, in order to
ensure that a mass conservation relation holds for the spatial discretisation (4.20)-(4.24) will
be de�ned by the following result.

Theorem 4.2 (Spatially discrete conservation of mass) If (ch,uh, ph, µh,qh) is a solu-
tion of the spatially discrete system (4.20)-(4.24) then

d

dt

∑
T∈Th

∫
T
ρh dx

 = 0 (4.28)

if and only if ∫
E
F3(ch,uh, ph, µh,qh, 1) ds = −

∫
E

[[ρhuh ]] ds. (4.29)

Proof. Let Z = 1 be the scalar function equal to 1 everywhere on the spatial domain Ω. Using
Z = 1 in (4.22), we obtain

0 =
∑
T∈Th

∫
T

(∂tρh + div(ρhuh)) dx+

∫
E
F3(ch,uh, p̄h, µh,qh, 1) ds. (4.30)

Integration by parts of the second term leads to

0 =
∑
T∈Th

∫
T
∂tρh dx+

∫
E

[[ρhuh ]] ds+

∫
E
F3(ch,uh, p̄h, µh,qh, 1) ds (4.31)

which implies the thesis.

Now, if we de�ne the spatially discrete total energy associated to the system (4.20)-(4.24) as

Eh :=
∑
T∈Th

∫
T

(
ρh
2
|uh|2 +

1

M
ρhg(ph, ch,qh)− 1

M
ph

)
dx, (4.32)

that is the spatially discrete version of the continuous total energy (3.23), we can set conditions
on the numerical �uxes Fi, i = 1, ... , 5, under which the spatially discrete system (4.20)-(4.24)
preserves a spatially discrete version of the energy dissipation law (3.28). The proof of the
following theorem shares the same structure of the continuous case and has been inspired by
the proof given in [9] for a volume-fraction based quasi-incompressible phase-�eld model. For
simplicity of notation, we set

Fi(·) := Fi(ch,uh, ph, µh,qh, ·), for all i = 1, ... , 5.
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Theorem 4.3 (Spatially discrete energy dissipation law) If (ch,uh, ph, µh,qh) is a so-
lution of the spatially discrete system (4.20)-(4.24) then

dEh
dt

=
d

dt

∑
T∈Th

∫
T

(
ρh
2
|uh|2 +

1

M
ρhg(ph, ch,qh)− 1

M
ph

)
dx


=

1

PeM
A(µh, µh) +

2

Re
B(ch,uh,uh) (4.33)

if and only if the following conditions on the numerical �uxes Fi, for i = 1, ... , 5, are satis�ed:
a.

0 =

∫
E

(
F1

(µh
M

)
+ F2 (uh) + F3

(
1

M
g1(ch) +

C
2M
|qh|2 +

1

M
K(1− ch)

+
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
+

1

2
[[ρh(uh · uh)uh ]] +

1

M
[[ρhg1(ch)uh ]]

+
C

2M
[[ρh|qh|2uh ]] +

1

M
[[Kρh(1− ch)uh ]]

+
1

M
1

ρ1
[[ρhphchuh ]] +

N1θ

M
[[ρh(1− ch) ln phuh ]]

)
ds, (4.34)

b.

0 =

∫
E

(
∂tF5

(
C
M
ρhqh

)
− C

M
[[ρhqh(∂tch)]]− F4

(
1

M
∂tch

))
ds. (4.35)

Remark 4.4 Notice that A and B, by de�nition, are negative de�nite. Hence, it holds

dEh
dt

< 0.

Proof. Let us test equation (4.20) with
µh
M

and equation (4.21) with uh and sum them together.

If we use the fact that∑
T∈Th

∫
T

(
ρh (uh · ∇)uh · uh +

1

2
div(ρhuh)uh · uh

)
dx =

=

∫
E

1

2
[[ρh(uh · uh)uh ]] ds,
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and equation (4.23), we obtain:

0 =
∑
T∈Th

∫
T

(
√
ρh ∂t (

√
ρhuh) · uh +

1

M
∇ph · uh +

1

M
1

ρ1
ρhph∇ch · uh

− 1

M
N1θρh ln ph∇ch · uh +

1

M
1

ρ1
ρhph(∂tch)− 1

M
N1θρh ln ph(∂tch)

+
1

M
ρhµ0(ch)∇ch · uh +

1

M
ρhµ0(ch)(∂tch) +

C
2M

ρh∇(|qh|2) · uh

− C
M

div(ρhqh)(∂tch)− 1

M
Kρh∇ch · uh −

1

M
Kρh(∂tch)

)
dx

+

∫
E

(
F1

(µh
M

)
+ F2(uh) + F4

(
1

M
∂tch

)
+

1

2
[[ρh(uh · uh)uh ]]

)
ds

− 1

PeM
A(µh, µh)− 2

Re
B(ch,uh,uh). (4.36)

We get the following relations:

(I) the �rst term in (4.36) is∑
T∈Th

∫
T

√
ρh ∂t(

√
ρhuh) · uh dx =

∑
T∈Th

∫
T
∂t

(ρh
2
|uh|2

)
dx, (4.37)

(II) integrating by parts and using mass conservation equation (4.22), the terms containing
µ0(ch) are equal to∑

T∈Th

∫
T

(
1

M
ρhµ0(ch)∇ch · uh +

1

M
ρhµ0(ch)(∂tch)

)
dx

=
∑
T∈Th

∫
T
∂t

(
1

M
ρhg1(ch)

)
dx+

∫
E

(
F3

(
1

M
g1(ch)

)
+

1

M
[[ρhg1(ch)uh ]]

)
ds,

(4.38)

(III) integrating by parts and using the mass conservation equation (4.22), the terms contain-
ing the variable qh are equal to∑

T∈Th

∫
T

(
C

2M
ρh∇(|qh|2) · uh −

C
M

div(ρhqh)(∂tch)

)
dx

=
∑
T∈Th

∫
T
∂t

(
1

M
ρhg2(qh)

)
dx+

∫
E

(
F3

(
C

2M
|qh|2

)
+ ∂tF5

(
C
M
ρhqh

))
ds

+

∫
E

(
C

2M
[[ρh|qh|2uh ]]− C

M
[[ρhqh(∂tch)]]

)
ds, (4.39)

(IV) integrating by parts and using the mass conservation equation (4.22), the terms contain-
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ing the constant K are equal to∑
T∈Th

∫
T

(
− 1

M
Kρh∇ch · uh −

1

M
Kρh(∂tch)

)
dx

=
∑
T∈Th

∫
T
∂t

(
1

M
ρhg0(ch)

)
dx

+

∫
E

(
F3

(
1

M
K(1− ch)

)
+

1

M
[[Kρh(1− ch)uh ]]

)
ds. (4.40)

Now, as in the continuous case, let us consider the pressure terms:∑
T∈Th

∫
T

(
1

M
∇ph · uh +

1

M
1

ρ1
ρhph∇ch · uh −

1

M
N1θρh ln ph∇ch · uh

+
1

M
1

ρ1
ρhph(∂tch)− 1

M
N1θρh ln ph(∂tch)

)
dx. (4.41)

Notice that, integrating by parts and using mass conservation equation (4.22):

(a) ∑
T∈Th

∫
T

(
1

M
1

ρ1
ρhph∇ch · uh

)
dx

=
∑
T∈Th

∫
T

(
1

M
1

ρ1
chph(∂tρh)− 1

M
1

ρ1
ρhchuh · ∇ph

)
dx

+

∫
E

(
F3

(
1

M
1

ρ1
chph

)
+

1

M
1

ρ1
[[ρhphchuh ]]

)
ds, (4.42)

(b) ∑
T∈Th

∫
T

(
− 1

M
N1θρh ln ph∇ch · uh

)
dx

=
∑
T∈Th

∫
T

(
1

M
N1θ(1− ch) ln ph(∂tρh)− 1

M
N1θρh(1− ch)

∇ph
ph
· uh

)
dx

+

∫
E

(
F3

(
1

M
N1θ ln ph(1− ch)

)
+

1

M
[[N1θρh(1− ch) ln phuh ]]

)
ds.

(4.43)
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Using (4.42) and (4.43) into (4.41) we obtain:∑
T∈Th

∫
T

(
1

M
∇ph · uh −

1

M
1

ρ1
ρhchuh · ∇ph −

1

M
N1θρh(1− ch)

∇ph
ph
· uh

+
1

M
1

ρ1
chph(∂tρh) +

1

M
1

ρ1
ρhph(∂tch) +

1

M
N1θ(1− ch) ln ph(∂tρh)

− 1

M
N1θρh ln ph(∂tch)

)
dx+

∫
E
F3

(
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
ds

+

∫
E

(
1

M
1

ρ1
[[ρhphchuh ]] +

1

M
[[N1θρh(1− ch) ln phuh ]]

)
ds. (4.44)

If we notice the fact that, remembering the de�nition of ρh,∑
T∈Th

∫
T

(
1

M
∇ph · uh−

1

M
1

ρ1
ρhchuh · ∇ph−

1

M
N1θρh(1− ch)

∇ph
ph
· uh

)
dx=0,

(4.45)

then we can rewrite (4.44) as∑
T∈Th

∫
T

(
1

M
1

ρ1
chph(∂tρh) +

1

M
1

ρ1
phρh(∂tch)− 1

M
N1θρh(1− ch)

∂tph
ph

+
1

M
N1θρh(1− ch)

∂tph
ph

+
1

M
N1θ(1− ch) ln ph(∂tρh)− 1

M
N1θρh ln ph(∂tch)

)
dx

+

∫
E
F3

(
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
ds

+

∫
E

(
1

M
1

ρ1
[[ρhphchuh ]] +

1

M
[[N1θρh(1− ch) ln phuh ]]

)
ds (4.46)

in which we have added and subtracted the quantity
1

M
N1θρh(1− ch)

∂tph
ph

. Using the fact

that ph can be written, in terms of ρh and ch, as

ph =
N1θρ1ρh(1− ch)

ρ1 − ρhch
, (4.47)

we obtain: ∑
T∈Th

∫
T

(
− 1

M
N1θρh(1− ch)

∂tph
ph

)
dx =

=
∑
T∈Th

∫
T

(
− 1

M
∂tph +

1

M
1

ρ1
ρhch(∂tph)

)
dx. (4.48)
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Using (4.48) into (4.46), we get:∑
T∈Th

∫
T

1

M
∂t

(
ch
ρ1
phρh +N1θρh(1− ch) ln ph − ph

)
dx

+

∫
E
F3

(
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
ds

+

∫
E

(
1

M
1

ρ1
[[ρhphchuh ]] +

1

M
[[N1θρh(1− ch) ln phuh ]]

)
ds. (4.49)

Then, using (4.37)-(4.40) and (4.41)-(4.49) into (4.36), we obtain:

0 =
∑
T∈Th

∫
T
∂t

(
ρh
2
|uh|2 +

1

M
ρhg(ph, ch,qh)− 1

M
ph

)
dx

+

∫
E

(
F1

(µh
M

)
+ F2 (uh) + F3

(
1

M
g1(ch) +

C
2M
|qh|2 +

1

M
K(1− ch)

+
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
− F4

(
1

M
∂tch

)
+ ∂tF5

(
C
M
ρhqh

)
+

1

2
[[ρh(uh · uh)uh ]] +

1

M
[[ρhg1(ch)uh ]]

+
C

2M
[[ρh|qh|2uh ]]− C

M
[[ρhqh(∂tch)]]

+
1

M
[[Kρh(1− ch)uh ]] +

1

M
1

ρ1
[[ρhphchuh ]] +

N1θ

M
[[ρh(1− ch) ln phuh ]]

)
ds

− 1

PeM
A(µh, µh)− 2

Re
B(ch,uh,uh). (4.50)

So, the scheme (4.20)-(4.24) preserves the energy law at the spatially discrete level i�

0 =

∫
E

(
F1

(µh
M

)
+ F2 (uh) + F3

(
1

M
g1(ch) +

C
2M
|qh|2 +

1

M
K(1− ch)

+
1

M
1

ρ1
chph +

1

M
N1θ(1− ch) ln ph

)
+

1

2
[[ρh(uh · uh)uh ]] +

1

M
[[ρhg1(ch)uh ]]

+
C

2M
[[ρh|qh|2uh ]] +

1

M
[[Kρh(1− ch)uh ]]

+
1

M
1

ρ1
[[ρhphchuh ]] +

N1θ

M
[[ρh(1− ch) ln phuh ]]

)
ds

+

∫
E

(
∂tF5

(
C
M
ρhqh

)
− C

M
[[ρhqh(∂tch)]]− F4

(
1

M
∂tch

))
ds. (4.51)

It is clear from (4.20)-(4.24) that ∂tch does not depend from the other variables; so conditions
(a) and (b) of the thesis are satis�ed.

Summarising, from the spatially discrete mass conservation theorem (Theorem 4.2) and the
spatially discrete energy dissipation law theorem (Theorem 4.3), it follows that a possible
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choice for the numerical �uxes is:

F1(X) = 0, (4.52)

F2(ξ) = −1

2
[[ρhuh ]] {{uh · ξ}} − ({{ξ}} ⊗ {{ρhuh}}) : [[uh ]]⊗ −

1

M
[[g1(ch)]] · {{ρhξ}}

− C
2M

[[|qh|2 ]] · {{ρhξ}} −
1

M
[[K(1− ch)]] · {{ρhξ}} −

1

M
1

ρ1
[[chph ]] · {{ρhξ}}

−N1θ

M
[[(1− ch) ln ph ]] · {{ρhξ}} , (4.53)

F3(Z) = − [[ρhuh]] {{Z}} , (4.54)

F4(ψ) = −C [[ρhqh ]] {{ψ}} , (4.55)

F5(T) = [[ch]] · {{T}} . (4.56)

4.2 Time-discretisation.

In this section we propose a semi-discretisation in time of the continuous system (3.10)-(3.14)
based on a modi�ed midpoint type scheme (see also [4], [30]) used in [10].

Let us subdivide the time interval [0, T ] into N equally spaced subintervals whose end-
points are t0 = 0 < t1 < ... < tN = T and denote with ∆t the timestep size, such that
tn+1 = tn + ∆t for all n = 0, 1, ..., N − 1; let hn(·) denote h(·, tn) for a generic time-dependent
function h. The temporally discrete scheme for (3.10)-(3.14) is written as follows. Given initial
conditions (c0,u0, p0, µ0,q0), for all n = 0, 1, ..., N − 1, �nd (cn+1,un+1, pn+1, µn+1,qn+1) ∈
H1(Ω)× (H2(Ω) ∩H1

0 (Ω))2 ×H1(Ω)×H2(Ω) ×H1
n(Ω) such that

0 = ρn+ 1
2 cn+1

t̄
+ ρn+ 1

2 (
√
ρu)n+1 · ∇cn+ 1

2 − 1

Pe
∆µn+ 1

2 , (4.57)

0 =
√
ρ n+ 1

2 (
√
ρu)n+1

t̄
+ ρn+ 1

2
(
(
√
ρu)n+1 · ∇

)
(
√
ρu)n+1

+
1

2
div(ρn+ 1

2 (
√
ρu)n+1)(

√
ρu)n+1 +

1

M
∇pn+ 1

2

− 1

M
ρn+ 1

2µn+ 1
2 ∇cn+ 1

2 +
1

M
1

ρ1
ρn+ 1

2
,∗pn+ 1

2∇cn+ 1
2

− 1

M
N1θρ

n+ 1
2
,∗ (ln p)n+ 1

2 ∇cn+ 1
2

− 1

M
Kρn+ 1

2
,∗∇cn+ 1

2 +
C

4M
ρn+ 1

2
,∗∇

(
qn+1 · qn+1 + qn · qn

)
+

1

2M
ρn+ 1

2
,∗∇

(
g1(cn+1) + g1(cn)

)
− 2

Re
div
(
cn+ 1

2Dn+1
)
, (4.58)

0 = ρn+1
t̄

+ div
(
ρn+ 1

2
,∗(
√
ρu)n+1

)
, (4.59)

0 = ρn+ 1
2µn+ 1

2 − ρn+ 1
2
g1(cn+1)− g1(cn)

cn+1 − cn
− pn+ 1

2

ρ1
ρn+ 1

2 +N1θρ
n+ 1

2 (ln p)n+ 1
2

+C div
(
ρn+ 1

2 qn+ 1
2

)
+Kρn+ 1

2 , (4.60)

0 = qn+ 1
2 −∇cn+ 1

2 . (4.61)
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Here we have used the following notation:

cn+1
t̄

:=
cn+1 − cn

∆t
, ρn+1

t̄
:=

ρn+1 − ρn

∆t
,

(
√
ρu)n+1

t̄
:=

√
ρn+1un+1 −

√
ρnun

∆t
, (

√
ρu)n+1 :=

√
ρn+1un+1 +

√
ρnun√

ρn+1 +
√
ρn

.

We have used, for simplicity,

hn+ 1
2 :=

hn + hn+1

2

for a generic function h. In the time-scheme, the modi�ed midpoint approximation G(cn+1, cn)
of the potential term has been used:

G(cn+1, cn) :=
g1

(
cn+1

)
− g1 (cn)

cn+1 − cn
(4.62)

=
1

4

(
cn+1

(
cn+1 − 1

)
+ cn (cn − 1)

) (
cn+1 + cn − 1

)
. (4.63)

The density and the logarithmic terms are approximated as follows:

ρn+ 1
2 :=

ρn+1 + ρn

2
, ρn+ 1

2
,∗ := ρ(cn+ 1

2 , pn+ 1
2 ), (4.64)

(ln p)n+ 1
2 := ln pn+ 1

2 , (4.65)

(ln p)n+1 := ln pn+ 1
2 +

pn+1 − pn

2pn+1
, (ln p)n := ln pn+ 1

2 − pn+1 − pn

2pn
. (4.66)

In addition, we set

Dn+1 :=
∇(
√
ρu)n+1 + (∇(

√
ρu)n+1)T

2
. (4.67)

Remark 4.5 The choice of the time-approximation related to (ln p)n+1 can be justi�ed in the
following way. Let us consider the quantity

ln
pn+ 1

2

pn+1
= ln pn+ 1

2 − ln pn+1. (4.68)

From the Taylor expansion of the left-hand side of (4.68), we obtain

pn − pn+1

2pn+1
. (4.69)

In a similar way it is possible to justify the choice of the time-approximation related to (ln p)n.

Now, we will prove that the temporally discrete scheme (4.57)-(4.61) satis�es the mass con-
servation property as stated by the following result.

Theorem 4.6 (Temporally discrete conservation of mass) The temporally discrete scheme
(4.57)-(4.61) is mass-conservative, i.e.∫

Ω
ρn+1 dx =

∫
Ω
ρn dx, for all n = 0, 1, ..., N − 1. (4.70)
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Proof. Let us integrate equation (4.59) over the spatial domain Ω:∫
Ω

(
ρn+1
t̄

+ div
(
ρn+ 1

2 (
√
ρu)n+1

))
dx = 0. (4.71)

Using the fact that∫
Ω

div
(
ρn+ 1

2 (
√
ρu)n+1

)
dx =

∫
∂Ω
ρn+ 1

2 (
√
ρu)n+1 · n ds = 0, (4.72)

equation (4.71) can be rewritten as∫
Ω

ρ(cn+1)− ρ(cn)

∆t
dx = 0, (4.73)

which implies the thesis.

If we de�ne

En :=

∫
Ω

(
1

2
ρn |un|2 +

1

M
ρng(pn, cn,qn)− 1

M
pn
)
dx (4.74)

as the temporally discrete version of the total energy (3.23), for n = 0, 1, ..., N , we can also
prove that our scheme (4.57)-(4.61) preserves a temporally discrete formulation of the contin-
uous energy dissipation law (3.28).

Theorem 4.7 (Temporally discrete energy dissipation law) If (cn+1,un+1, pn+1, µn+1,
qn+1) is a solution of the temporally discrete system (4.57)-(4.61). Then

En+1
t̄

= − 1

PeM

∫
Ω

(
∇µn+ 1

2

)2
dx− 2

Re

∫
Ω
cn+ 1

2
(
Dn+1 : Dn+1

)
dx, (4.75)

for all n = 0, 1, ..., N − 1, where

En+1
t̄

:=
En+1 − En

∆t
.

Proof. Let us test equation (4.57) with
µn+ 1

2

M
and equation (4.58) with (

√
ρu)n+1 and sum

them together. If we use the following identity∫
Ω

(
ρn+ 1

2
(
(
√
ρu)n+1 · ∇

)
(
√
ρu)n+1 · (√ρu)n+1

+
1

2
div(ρn+ 1

2 (
√
ρu)n+1)(

√
ρu)n+1 · (√ρu)n+1

)
dx = 0, (4.76)
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equation (4.60) and integrate by parts the viscous term and term containing ∆µn+ 1
2 , we obtain:

0 =

∫
Ω

(
√
ρ n+ 1

2 (
√
ρu)n+1

t̄
· (√ρu)n+1 +

1

M
∇pn+ 1

2 · (√ρu)n+1

+
1

M
1

ρ1
ρ n+ 1

2
,∗pn+ 1

2∇cn+ 1
2 · (√ρu)n+1

− 1

M
N1θρ

n+ 1
2
,∗(ln p)n+ 1

2∇cn+ 1
2 · (√ρu)n+1

+
1

M
1

ρ1
ρn+ 1

2 pn+ 1
2
cn+1 − cn

∆t
− 1

M
N1θρ

n+ 1
2 (ln p)n+ 1

2
cn+1 − cn

∆t

+
1

M
ρ n+ 1

2
,∗∇(g1(cn+1) + g1(cn))

2
· (√ρu)n+1

+
1

M
ρn+ 1

2
g1(cn+1)− g1(cn)

cn+1 − cn
cn+1 − cn

∆t

+
C

4M
ρ n+ 1

2
,∗∇(qn+1 · qn+1 + qn · qn) · (√ρu)n+1

− C
M

div(ρn+ 1
2qn+ 1

2 )
cn+1 − cn

∆t

− 1

M
Kρ n+ 1

2
,∗∇cn+ 1

2 · (√ρu)n+1 − 1

M
Kρn+ 1

2
cn+1 − cn

∆t

+
1

PeM
|∇µn+ 1

2 |2 +
2

Re
cn+ 1

2 (Dn+1 : Dn+1)

)
dx. (4.77)

We get the following relations:

(I) the �rst term in (4.77) is∫
Ω

√
ρ n+ 1

2 (
√
ρu)n+1

t̄
· (√ρu)n+1 dx =

∫
Ω

1

2∆t

(
ρn+1(un+1)2 − ρn(un)2

)
dx, (4.78)

(II) integrating by parts, and using the mass conservation equation (4.59), the terms con-
taining g1 are equal to∫

Ω

(
1

2M
ρ n+ 1

2
,∗∇(g1(cn+1) + g1(cn)) · (√ρu)n+1

+
1

M∆t
ρn+ 1

2 (g1(cn+1)− g1(cn))

)
dx

=

∫
Ω

1

M∆t

(
ρn+1g1(cn+1)− ρng1(cn)

)
dx, (4.79)

(III) integrating by parts and using mass conservation equation (4.59), the terms containing
the variable q are equal to∫

Ω

(
C

4M
ρ n+ 1

2
,∗∇(qn+1 · qn+1+qn · qn) · (√ρu)n+1

− C
M

div(ρn+ 1
2qn+ 1

2 )
cn+1 − cn

∆t

)
dx

=

∫
Ω

1

M∆t

(
ρn+1g2(qn+1)− ρng2(qn)

)
dx, (4.80)

28



(IV) integrating by parts and using mass conservation equation (4.59), the terms containing
the constant K are equal to∫

Ω

(
− 1

M
Kρ n+ 1

2
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)
dx. (4.81)

Now, let us consider the pressure terms:∫
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(4.82)

Notice that, integrating by parts and using mass conservation equation (4.59):

(a) ∫
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(4.83)

(b) ∫
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Using (4.83) and (4.84) into (4.82) we obtain:∫
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If we notice the fact that, remembering the de�nition of ρ n+ 1
2
,∗,

0 =

∫
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then (4.85) can be rewritten as∫
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in which we have added and subtracted the quantity

N1θ

M
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1
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Using the fact that
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we obtain: ∫
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Using (4.89) into (4.87), we get∫
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If we notice that ∫
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and ∫
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we can rewrite (4.90) as∫
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Using (4.78)-(4.81) and (4.82)-(4.93) into (4.77), we obtain∫
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that is equivalent to the thesis (4.75).

4.3 Fully discrete energy consistent DG numerical method.

In this section we propose a fully discretisation of (3.10)-(3.14) based on the results of the
previous sections for the semi-discretisations in space and time.

The fully discrete mixed formulation of (3.10)-(3.14) can be written as follows: given initial
conditions (c0
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0
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∀ (X, ξ, Z, ψ,T) ∈ V× V2
0 × V× V× Vn,

and
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h ]] {{ψ}} , (4.103)

F5(T) =

[[
c
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2
h
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· {{T}} . (4.104)

Now, we can state mass conservation property and energy dissipation law for the fully dis-
crete scheme for MF system. The proofs of these results follow from the combination of the
corresponding propositions in the spatial (Theorems 4.2, 4.3) and time (Theorems 4.6, 4.7)
approximation.

Theorem 4.8 (Fully discrete conservation of mass) The fully discrete scheme (4.95)-
(4.99) is mass-conservative, i.e.∑

T∈Th

∫
T
ρn+1
h dx =

∑
T∈Th

∫
T
ρnh dx, for all n = 0, 1, ..., N − 1. (4.105)

Proof. The proof follows from the results proposed by Theorems 4.2 and 4.6 which provide a
spatial and a time-semidiscrete mass conservation result, respectively.
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Theorem 4.9 (Fully discrete energy dissipation law) Let
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be the fully discrete version of the total energy (3.23), for n = 0, 1, ..., N . If (cn+1
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h ,
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(4.107)

for all n = 0, 1, ..., N − 1, where

(Eh)n+1
t̄

:=
En+1
h − Enh

∆t

and A,B are negative de�nite, by de�nition.

Proof. The proof consists in the application of the results proposed by Theorems 4.3 and 4.7
which provide a spatial and a time-semidiscrete energy dissipation law, respectively.

5 Conclusions and Perspectives.

In this paper we proposed a thermodynamically consistent phase-�eld model for a liquid-gas
mixture that might also provide a description of the expansion stage of a metal foam inside
a hollow mold within the so-called �Powder Line�. The mixture was studied as a two-phase
incompressible-compressible �uid governed by a Navier-Stokes-Cahn-Hilliard system of equa-
tions (IC-NSCH). In particular, to take into account the expansion of the gaseous phase, we
adapted the so-called Lowengrub-Truskinowsky model. Moreover, we introduced a Discontin-
uous Galerkin based numerical approximation of the resulting system of equations. We proved
that our numerical scheme, at the discrete level, preserves the mass conservation property and
the energy dissipation law characterizing the original system. A numerical assessment of the
presented method will be the object of a future pubblication.
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