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Abstract

In this paper we investigate the Mimetic Finite Difference method for

the approximation of a constraint optimal control problem governed by an

elliptic operator. A priori error estimates of the first order are derived in

suitable discrete norms for both the control and the state variables. The

theoretical results are confirmed by numerical experiments performed on

a set of test cases selected from the literature.

Keywords optimal control problems, mimetic finite difference method,

mixed formulation

1 Introduction

In recent years, there has been extensive research on the numerical approx-
imation of optimal control problems that often arise in practical and indus-
trial applications. Pioneering works on a priori error analysis of finite element
approximation of quadratic elliptic optimal control problems can be found in
[13, 14, 15]. Recently, this topic has seen an important renewal of interest (see
e.g. the papers [2, 10, 20, 16], the books [17, 21] and the references therein).
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More recently, a mixed finite element discretization for a general convex optimal
control problem governed by elliptic equations has been analyzed in [11].

In this paper we investigate the Mimetic Finite Difference (MFD) method
for the approximation of a constraint optimal control problem governed by an
elliptic operator. This discretization technique can naturally deal with very
general meshes which can be made of (possibly non convex) polyhedrals, and do
not have to fulfill matching conditions. The MFD method can be interpreted
as a generalization of the finite element method [8, 9] and, due to the great
flexibility allowed in the mesh design, it has been rapidly applied to a wide
range of problems (see [1, 3, 4, 5, 19], for example). However, its application to
optimal control problems has not already been developed. Our main goal in this
work is to perform such an investigation both theoretically and numerically.

The paper is organized as follows: in Section 2 we introduce the model prob-
lem, and we describe briefly its discretization by the Mimetic Finite Difference
method. In Section 3 we derive error estimates in suitable mesh-dependent
norms. Section 4 is devoted to present and discuss some numerical experi-
ments on polygonal meshes in order to confirm our theoretical results. Finally,
in Section 5 we draw some conclusion.

2 The optimal control problem and its mimetic

discretization

Throughout the paper we will use standard notation for Sobolev spaces, norms
and seminorms (see [12]).

Let Ω be an open, bounded, convex set of R
2, let K be a convex subset

of L2(Ω) and f a given function in L2(Ω). We are interested in solving the
following optimal control problem:

min
u∈K

1

2

∫

Ω

(y − ȳ)2 +
1

2

∫

Ω

(F − F̄ )2 +
α

2

∫

Ω

(u− ū)2,

−∆y = f + u in Ω ,

y = 0 on ∂Ω

(1)

where ȳ, ū ∈ L2(Ω) and F̄ ∈
[

L2(Ω)
]d

are given functions, α > 0 and F := −∇y.

Let X := H(div,Ω) = {G ∈ (L2(Ω))d, div (G) ∈ L2(Ω)}, endowed with the
norm of the graph given by

‖G‖div := ‖G‖H(div,Ω) =
(

‖G‖2L2(Ω) + ‖ divG‖2L2(Ω)

)1/2

,

and let Q := L2(Ω). We consider the mixed formulation of problem (1): Find
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(F, y, u) ∈ X ×Q×K such that

min
u∈K

1

2

∫

Ω

(y − ȳ)2+
1

2

∫

Ω

(F − F̄ )2 +
α

2

∫

Ω

(u− ū)2 ,

(F,G)− (y, divG) = 0 ∀G ∈ X,

(divF, q) = (f + u, q) ∀q ∈ Q ,

(2)

where, here and in the following, (·, ·) denotes the standard L2(Ω)-inner product.
It is well known [18] that problem (2) has a unique solution (F, y, u) ∈ X×Q×K
if and only if there exists (P, z) ∈ X×Q such that (F, y, P, z, u) ∈ X×Q×X×
Q×K satisfies the following optimality conditions:

(F,G)− (y, divG) = 0 ∀G ∈ X,

(divF, q) = (f + u, q) ∀q ∈ Q,

(P,G)− (z, divG) = −
(

F − F̄ , G
)

∀G ∈ X,

(divP, q) = (ȳ − y, q) ∀q ∈ Q,

(α (u− ū)− z, ũ− u) ≥ 0 ∀ũ ∈ K.

(3)

Next, we present a mimetic discretization of problem (3). Let Ωh ⊂ Ω be a
polygonal approximation of Ω, in such a way that all vertexes of Ωh which are
on the boundary of Ωh are also on the boundary of Ω. The polygonal domain
Ωh represents the computational domain.

With a little abuse of notation, we also denote by Ωh a partition of the
above introduced computational domain into polygons E. We assume that Ωh

is conformal, i.e., intersection of two different polygons E1 and E2 is either a
few mesh points, or a few mesh edges (two adjacent elements may share more
than one edge) or empty. Elements E ∈ Ωh are not required to be convex. For
each polygon E ∈ Ωh, |E| denotes its area, hE denotes its diameter and

h := max
E∈Ωh

hE .

We denote by Nh and Eh the sets of mesh vertexes and edges, by N 0
h and E0

h

the sets of internal vertexes and edges and by N ∂
h and E∂

h the sets of boundary
vertexes and edges, respectively. The sets of vertexes and edges of a particular
element E are denoted by NE

h and EE
h , respectively. Moreover, we refer to a

generic mesh vertex by v, a generic edge by e and denote its length |e|.
A fixed orientation is also set for the mesh Ωh, which is reflected by a unit

normal vector ne, e ∈ Eh, fixed once and for all. For every polygon E and edge
e ∈ EE

h , we define a unit normal vector ne

E that points outside of E.
The mesh is assumed to satisfy the following shape regularity properties,

which have already been used in [9]:

(M1) There exists a positive integer Ne such that every element E has at most
Ne edges.
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(M2) There exists a positive number τ such that every element E is star-
shaped with respect to every point of a ball centered at CE ∈ E and with
radius τhE .

(M3) There exists a positive constant γ such that for any element E and for
every edge e of E it holds |e| ≥ γhE .

To approximate the mixed problem (3) we introduce the linear spaces of discrete
fields, denoted by Qd and Xd, respectively representing the degrees of freedom
of the scalar variable and the flux. We associate the degrees of freedom of
the scalar variable to mesh cells so that for q ∈ Qd we have q = {qE}E∈Ωh

,
with qE ∈ R. Flux degrees of freedom are associated to mesh faces so that for
G ∈ Xd, we have G = {Ge

E}
e∈∂E
E∈Ωh

, with Ge

E ∈ R with the additional assumption
of normal flux continuity, i.e.,

Ge

E1
+Ge

E2
= 0 ,

when ē = Ē1 ∩ Ē2, E1, E2 ∈ Ωh. It is clear that the dimension of Qd equals the
number of mesh cells, and the dimension of Xd equals the number of mesh faces.
We also introduce two interpolation operators for q ∈ L1(Ω) and G ∈ H(div,Ω),
respectively. In particular, for every E ∈ Ωh and e ⊆ ∂E we set

(qI)E :=
1

|E|

∫

E

q dV , (GI)eE :=
1

|e|

∫

e

ne

E ·G dS .

We equip the spaces Qd and Xd with two suitable scalar products. We define
the scalar product in Qd as

[p, q]Qd :=
∑

E∈Ωh

|E|pEqE ∀p, q ∈ Qd, (4)

which corresponds to the L2(Ω) scalar product for piecewise constant functions.
The scalar product in Xd is defined by assembling the elementwise contributions
from each element

[F,G]Xd :=
∑

E∈Ωh

[F,G]E ∀F,G ∈ Xd. (5)

The local scalar product [·, ·]E on Xd|E is required to satisfy the following two
conditions:

(S1) Stability: there exists two positive constants C1 and C2 independent of h
such that

C1

∑

e∈∂E

|E|(Ge

E)
2 ≤ [G,G]E ≤ C2

∑

e∈∂E

|E|(Ge

E)
2

for all G ∈ Xd and for every element E ∈ Ωh;
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(S2) Local consistency: for every linear function q1 on E ∈ Ωh it holds

[(∇q1)I ,G]E +

∫

E

q1 DIVh G dV =
∑

e∈∂E

Ge

E

∫

e

q1 dS

for all G ∈ Xd.

Here the mimetic discrete divergence operator DIVd : Xd → Qd is defined
elementwise as:

(DIVd G)E :=
1

|E|

∑

e∈∂E

|e|Ge

E ,

for G ∈ Xd and E ∈ Ωh. This definition is consistent with the Gauss divergence
theorem. Moreover, it holds

(divG)I = DIVd(GI) ∀G ∈ X.

The mimetic divergence operator is naturally associated to the discrete flux
operator Gd : Qd → Xd defined by:

[G,Gd
q]Xd := −[DIVd G, q]Qd ∀q ∈ Qd, G ∈ Xd.

Finally, let Kd ⊆ Qd be a closed subset of Qd. So, the mimetic discretization of
(3) reads as follows: Find (Fd,yd,Pd, zd,ud) ∈ Xd ×Qd ×Xd ×Qd ×Kd such
that

[Fd,G]Xd − [yd,DIVd G]Qd = 0 ∀G ∈ Xd,

[DIVd Fd, q]Qd = [f + ud, q]Qd ∀q ∈ Qd,

[Pd,G]Xd − [zd,DIVd G]Qd = −
[

Fd − F̄,G
]

Xd
∀G ∈ Xd,

[DIVd Pd, q]Qd = [ȳ − yd, q]Qd ∀q ∈ Qd,

[α (ud − ū)− zd, ũ− ud]Qd ≥ 0 ∀ũ ∈ Kd ,

(6)

where f = f I , ȳ = ȳI , F̄ = F̄I and ū = ūI are the vectors of the mean
values of f , ȳ, F̄ and of ū, respectively. In the next section we derive a priori

error estimates in the discrete norms (4) and (5) for the pressure and the flux
variables.

3 Convergence analysis

In the following we assume Kd ⊆ K, and we use the symbol . to indicate an
upper bound that holds up to a positive multiplicative constant independent
of h. Furthermore, for the ease of presentation, we shall use bold letters to
denote both the generic element of Qd and the corresponding piecewise constant
function defined on Ωh. Accordingly, the scalar products will be identified, i.e.,
(u, q)L2(Ω) = [u, q]Qd for all u, q ∈ Qd.

Let us first introduce two intermediate problems, that will be useful in the
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forthcoming analysis. Let vd ∈ Qd, the first intermediate problem reads as
follows: Find (F (vd), y(vd)) ∈ X ×Q such that

(F (vd), G)− (y(vd), divG) = 0 ∀G ∈ X,

(divF (vd), q) = (f + vd, q) ∀q ∈ Q .
(7)

The second intermediate problem reads as follows: Find (P (vd), z(vd)) ∈ X×Q
such that

(P (vd), G)− (z(vd), divG) = −
(

F − F̄ , G
)

∀G ∈ X,

(divP (vd), q) = (ȳ − y(vd), q) ∀q ∈ Q,
(8)

where y(vd) is the solution of (7).
We are now ready to state the main result of this paper.

Theorem 3.1 Let (F, y, P, z, u) ∈ X × Q × X × Q × K be the exact optimal
solution to (3) and (Fd,yd,Pd, zd,ud) ∈ Xd×Qd×Xd×Qd×Kd be the discrete
optimal solution to (6). Then,

‖uI − ud‖Qd . h (9)

and

‖FI − Fd‖Xd + ‖yI − yd‖Qd . h , (10)

‖PI −Pd‖Xd + ‖zI − zd‖Qd . h . (11)

Proof. Let us first prove (9). By using the triangle inequality together with
standard interpolation error estimates (see [7] for more details), we get

‖uI − ud‖Qd ≤ ‖uI − u‖L2(Ω) + ‖u− ud‖L2(Ω) . h+ ‖u− ud‖L2(Ω) .

Hence, we reduce ourselves to estimate ‖u − ud‖L2(Ω). Taking ũ = ud in the
last inequality in (3), and ũ = uI in the last inequality in (6) yields

(α (u− ū)− z,ud − u) ≥ 0 , (12)

(α (ud − ū)− zd,u
I − ud) ≥ 0 . (13)

By using the simple fact that uI − ud = uI − u+ u− ud and adding (12)-(13),
we have

0 ≤ (α (ud − ū)− zd,u
I − u) + (α(ud − u) + α(ū− ū) + (z − zd), u− ud) .
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Hence, there follows

α‖u− ud‖
2
L2(Ω) ≤ (α (ud − ū)− zd,u

I − u) + (α(ū− ū) + (z − zd), u− ud)

= (α(u− ū)− z,uI − u) + α(ud − u,uI − u)

+α
(

ū− ū,uI − u
)

+ (z − zd,u
I − u) + α (ū− ū, u− ud)

+(z − z(ud), u− ud) + (z(ud)− zd, u− ud)

= (α(u− ū)− z,uI − u) + α(ud − u,uI − u)

+α
(

ū− ū,uI − u
)

+ (z − z(ud),u
I − u)

+(z(ud)− zd,u
I − u) + α (ū− ū, u− ud)

+ (z − z(ud), u− ud) + (z(ud)− zd, u− ud)

:= I + II + III + IV + V + V I + V II + V III . (14)

Let us analyze the terms I − V III separately.
The terms I, III and V I can be estimated by using regularity results for elliptic
equations and standard interpolation results, as follows

I = (α(u− ū)− z,uI − u) ≤ ‖α(u− ū)− z‖H1(Ω)‖u
I − u‖H−1(Ω) . h2,

III = α
(

ū− ū,uI − u
)

≤ α‖ū− ū‖L2(Ω)‖u
I − u‖L2(Ω) . h2,

V I = α (ū− ū, u− ud) ≤ α‖ū− ū‖L2(Ω)‖u− ud‖L2(Ω) . h‖u− ud‖L2(Ω).

Then the Young inequality yields, for ǫ > 0, to

II = α(ud − u,uI − u) ≤
α2

2ǫ
‖u− ud‖

2
L2(Ω) +

ǫ

2
‖uI − u‖2L2(Ω) .

In order to estimate the term IV in (14) we observe that thanks to the Cauchy-
Schwarz inequality and the regularity results for elliptic equations (7) and (8),
we have

IV = (z − z(ud),u
I − u) ≤ ‖z(u)− z(ud)‖H1(Ω)‖u

I − u‖L2(Ω)

. h ‖y(u)− y(ud)‖H1(Ω)

. h ‖u− ud‖L2(Ω) .

Proceeding as before and taking into account [8, Theorem 5.3], we get

V = (z(ud)− zd,u
I − u) ≤ ‖z(ud)− zd‖L2(Ω)‖u

I − u‖L2(Ω)

. h (‖z(ud)− z(ud)
I‖L2(Ω) + ‖z(ud)

I − zd‖L2(Ω))

. h2 .

Now, let us estimate the term V II. By using (7) and (8), it is easy to check
that the following relations hold

(f + u, z(u)) = (ȳ − y(u), y(u)) , (15)

(f + u, z(ud)) = (ȳ − y(ud), y(u)) , (16)

(f + ud, z(u)) = (ȳ − y(u), y(ud)) , (17)

(f + ud, z(ud)) = (ȳ − y(ud), y(ud)) . (18)
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By subtracting (16) from (15) and subtracting (18) from (17), we get

(f, z(u)− z(ud)) + (u, z(u)− z(ud)) = (y(ud)− y(u), y(u)) ,

(f, z(u)− z(ud)) + (ud, z(u)− z(ud)) = (y(ud)− y(u), y(ud)) .
(19)

By subtracting (19) from (19) we obtain

V II = (z(u)− z(ud), u− ud) = (y(ud)− y(u), y(u)− y(ud)) ≤ 0 . (20)

Finally, the Cauchy-Schwarz inequality together with [8, Theorem 5.3] and stan-
dard interpolation results yield to

V III = (z(ud)− zd, u− ud)

≤ (‖z(ud)− z(ud)
I‖L2(Ω) + ‖z(ud)

I − zd‖L2(Ω))‖u− ud‖L2(Ω)

. h‖u− ud‖L2(Ω) .

Then, (9) follows collecting all the previous estimates.

We next estimate ‖FI − Fd‖Xd . By using the triangle inequality we have

‖FI − Fd‖Xd ≤ ‖F(u)I − F(ud)
I‖Xd + ‖F(ud)

I − Fd‖Xd ,

where F(u) = F and F(ud) are the solutions of the intermediate problem (7).
By employing [8, Lemma 4.1], equations (3) and (7) together with classical
regularity results for elliptic equations we have

‖(F− F(ud))
I‖2Xd ≤ ‖F(u)− F(ud)‖

2
[L2(Ω)]d +

∑

E∈Ωh

h2
E‖ div(F(u)− F(ud))‖

2
L2(E)

≤ ‖y(u)− y(ud)‖
2
H1(Ω) +

∑

E∈Ωh

h2
E‖u− ud‖

2
L2(E)

≤ ‖u− ud‖
2
L2(Ω) +

∑

E∈Ωh

h2
E‖u− ud‖

2
L2(E)

≤ ‖u− uI‖2L2(Ω) + ‖uI − ud‖
2
L2(Ω) +

∑

E∈Ωh

h2
E‖u− ud‖

2
L2(E) .

Then, thanks to (9) and standard interpolation results, we get ‖(F−F(ud))
I‖Xd . h.

Moreover, [8, Theorem 5.2] yields to ‖F(ud)
I − Fd‖Xd . h. Hence, it follows

‖FI − Fd‖Xd . h.
Next we estimate ‖yI − yd‖Qd . By using the triangle inequality, we have

‖yI − yd‖Qd ≤ ‖(y(u)− y(ud))
I‖L2(Ω) + ‖y(ud)

I − yd‖L2(Ω) .

By employing the continuity of the interpolation operator, we get

‖yI − yd‖Qd ≤ ‖y(u)− y(ud)‖L2(Ω) + ‖y(ud)
I − yd‖L2(Ω) .
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Finally, using regularity results for elliptic equations together with [8, Theo-
rem 5.3] it follows

‖yI − yd‖Qd . ‖u− ud‖L2(Ω) + h

. ‖u− uI‖L2(Ω) + ‖uI − ud‖L2(Ω) + h

. h ,

where in the last step we employed a standard interpolation result together with
(9). This concludes the proof of (10). In the same way it is possible to prove
(11).

Remark 3.1 A similar a priori analysis holds also in the case of the lowest or-
der Raviart-Thomas elements as demonstrated in [11, Theorem 4.1]. However
this result cannot be directly applied to the MFD method because the two numer-
ical methods coincide only in the case of triangular meshes and for a particular
choice of the local scalar product involved in (5). See [9] for more details.

4 Numerical experiments

The numerical experiments presented in this section aim to confirm the a priori

analysis contained in Section 4. The optimization problem is solved numeri-
cally by using the Primal-Dual strategy (see [6] for more details). We test our
numerical algorithm on four examples: the first two test cases are taken from
[11]; two variants of them are performed in test cases 3 and 4, and have been
considered in order to investigate how the configuration of the interior boundary
of the active region influences the performance of the numerical method. We

Figure 1: Examples of the considered decompositions of Ω =]0, 1[2. From left to
right: hexagons-type 1, hexagons-type 2, non-matching quadrilaterals; triangles,
quadrilaterals and trapezes.

consider six different sequences of decomposition of the domain Ω =]0, 1[2, that
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we denote by hexagons-type 1, hexagons-type 2, non-matching quadrilaterals,
triangles, quadrilaterals and trapezes. An example of all the considered decom-
positions is shown in Figure 1. It is worth noting that also non conforming grids
are permitted.

4.1 Test Case 1

In the first test, we solve problem (3) setting

f = 2π2y − u, ū = 1− sin(πx1/2)− sin(πx2/2),

ȳ = (1− 2π2)y, F̄ =

(

−π cos(πx1) sin(πx2)
−π sin(πx1) cos(πx2)

)

,

where y, p, u are the exact solutions given by:

y = sin(πx1) sin(πx2), z = − sin(πx1) sin(πx2), u = max(ū+ z, 0).

Figure 2: Test Case 1. Computed optimal state (left) and optimal control
(right).
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(a) ‖yI − yd‖Qd .
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non−matching
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(b) ‖zI − zd‖Qd .
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(c) ‖uI − ud‖Qd .
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Figure 3: Test Case 1. Computed errors ‖yI −yd‖Qd , ‖zI −zd‖Qd , ‖uI −ud‖Qd

versus 1/h (loglog scale).
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An example of the computed optimal state and optimal control is shown
in Figure 2. In Figure 3 (loglog scale) we report the computed errors in the
discrete energy norm defined in (4): for all the mesh configuration we observe
a quadratic convergence rate for the primal variable y and for the dual variable
p, whereas the error in control variable u seems to go to zero at a rate of 3/2 as
the mesh-size h goes to zero. We observe that in all the test cases convergence
is achieved at a slighly better rate than predicted by our theoretical analysis.

4.2 Test Case 2

In the second test we choose as exact solutions

y = sin(πx1) sin(πx2), z = − sin(2πx1) sin(2πx2), u = max(ū+ z, 0),

and set in problem (3)

f = 2π2y − u, ū = 0.7, ȳ = y,

F̄ =

(

−π cos(πx1) sin(πx2)− 2π cos(2πx1) sin(2πx2)
−π sin(πx1) cos(πx2)− 2π sin(2πx1) cos(2πx2)

)

.

Figure 4 shows the computed optimal state and control on a hexagons-type 2

decomposition. In Figure 5 (loglog scale) we report the computed errors in the

Figure 4: Test Case 2. Computed optimal state (left) and optimal control
(right).

discrete energy norm defined in (4). We observe a quadratic convergence rate
for the primal variable y, for the dual variable p and for the control. Note that
in this case the control variable converges slightly better than in test case 1.
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(a) ‖yI − yd‖Qd .
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(b) ‖zI − zd‖Qd .
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(c) ‖uI − ud‖Qd .
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Figure 5: Test Case 2. Computed errors ‖yI −yd‖Qd , ‖zI −zd‖Qd , ‖uI −ud‖Qd

versus 1/h (loglog scale).

4.3 Test Case 3

The third example is a variant of the test case 1. Our aim is to analyze how
the interior boundary of the active region influences the behaviour of the error.
For this reason, we choose as exact solutions of problem (3)

y = 5π2 sin(πx1) sin(2πx2), z = − sin(πx1) sin(2πx2), u = max(ū+ z, 0),

and set

f = 25π4y − u, ū = 0, ȳ = 0,

F̄ =

(

−5π3 cos(πx1) sin(2πx2)
−10π3 sin(πx1) cos(2πx2)

)

.

A sample of the computed optimal state and optimal control is shown in Figure
6. Observe that the interior boundary of the active region is a straight line; so
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Figure 6: Test Case 3. Computed optimal state (left) and optimal control
(right).
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(b) ‖zI − zd‖Qd .
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(c) ‖uI − ud‖Qd .
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Figure 7: Test Case 3. Computed errors ‖yI −yd‖Qd , ‖zI −zd‖Qd , ‖uI −ud‖Qd

versus 1/h (loglog scale).
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it is aligned with most of the decompositions shown in Figure 1. In Figure 7
we report the computed errors for both the primal, the dual and the control
variables. In all the cases, the errors go to zero quadratically as the mesh is
refined.

4.4 Test Case 4

In the last example we solve (3) setting

f = 2π2y − u, ū = exp(x2
1 + x2

2) sin(5πx1) + sin(5πx2),

ȳ = (1− 2π2)y, F̄ =

(

−π cos(πx1) sin(πx2)
−π sin(πx1) cos(πx2)

)

,

where y, p, u are the exact solutions given by:

y = sin(πx1) sin(πx2), z = − sin(πx1) sin(πx2), u = max(ū+ z, 0).

In this case the configuration of the interior boundary separating the active
region and the inactive one is more complicated. We can see this fact in Figure
8 (right), where an example of the discrete optimal state and of the optimal
control is shown. In Figure 9 (loglog scale) we report the computed errors in

Figure 8: Test Case 4. Computed optimal state (left) and optimal control
(right).

the discrete energy norm (4). We observe a quadratic convergence rate for the
primal variable y and for the dual variable p, while the error of the control
variable converges to zero at a rate of 3/2, as the mesh-size goes to zero.

Remark 4.1 We can observe that our a priori analysis is confirmed by all the
numerical examples. However, the computed errors seem to converge better than
expected. Such a behaviour is referred as superconvergence effect and has already

15



(a) ‖yI − yd‖Qd .

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1/h

 

 

2

trapezes
quadrilaterals
triangles
non−matching
exagons type2
exagons type1

(b) ‖zI − zd‖Qd .
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(c) ‖uI − ud‖Qd .
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Figure 9: Test Case 4. Computed errors ‖yI −yd‖Qd , ‖zI −zd‖Qd , ‖uI −ud‖Qd

versus 1/h (loglog scale).

been observed in [11] for a similar problem. In [11, Lemma 5.1,Theorem 5.1] a
proof of this behaviour for the case of the lowest order Raviart-Thomas elements
is presented. With regard to the MFD method a theoretical justification is still
under investigation and will be object of future research.

5 Conclusions.

We proposed a Mimetic Finite Difference discretization of a quadratic control
problem governed by an elliptic equation. The method is presented on polygonal
decompositiones made by general-shaped elements. A priori error estimates for
both the control and the state variables are shown. Our error analysis has been
confirmed by the numerical examples where a superconvergence behaviour has
also been observed.
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