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Abstract

Multiphysics simulations frequently require transferring solution fields between subproblems with non-
matching spatial discretizations, typically using interpolation techniques. Standard methods are usually
based on measuring the closeness between points by means of the Euclidean distance, which does not ac-
count for curvature, cuts, cavities or other non-trivial geometrical or topological features of the domain.
This may lead to spurious oscillations in the interpolant in proximity to these features. To overcome this
issue, we propose a modification to rescaled localized radial basis function (RL-RBF) interpolation to ac-
count for the geometry of the interpolation domain, by yielding conformity and fidelity to geometrical and
topological fieatures. The proposed method, referred to as RL-RBF-G, relies on measuring the geodesic
distance between data points. RL-RBF-G removes all oscillations appearing in the RL-RBF interpolant,
resulting in increased accuracy in domains with complex geometries. We demonstrate the effectiveness of
RL-RBF-G interpolation through a convergence study in an idealized setting. Furthermore, we discuss the
algorithmic aspects and the implementation of RL-RBF-G interpolation in a distributed-memory parallel
framework, and present the results of a strong scalability test yielding nearly ideal results. Finally, we show
the effectiveness of RL-RBF-G interpolation in multiphysics simulations by considering an application to a
whole-heart cardiac electromecanics model.

Keywords: intergrid interpolation, radial basis functions, geodesic distance, multiphysics modeling,
cardiac electromechanics

1. Introduction

We consider the problem of transferring data between two different meshes of the same spatial domain.
This problem often arises in the context of finite elements multiphysics simulations [47, 52, 69, 70]. Indeed,
two or more coupled problems defined on the same domain may have different accuracy requirements, which
should be addressed with different, possibly non-matching discretizations, to balance computational cost and
accuracy [25], or to allow the coupling of independent solvers [15]. In all these cases, it is therefore crucial
to introduce suitable intergrid transfer operators to realize the coupling. Operators of this kind are relevant
also for remeshing techniques or geometric multigrid methods [17, 37].

To this purpose, we consider rescaled localized radial basis function (RL-RBF) interpolation, introduced
in [23] and previously employed for interface-coupled [22, 64] and volume-coupled [14, 55] problems. When
constructing the RL-RBF interpolant, the closeness between points is measured using the Euclidean norm.
This may prevent from capturing the correct geometry of the domain under consideration. Indeed, in realistic
applications, disconnected regions of the domain may be close in the Euclidean norm (see e.g. Figure 1a).
Therefore, an interpolant constructed by relying exclusively on the Euclidean distance will not account for
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(a) (b) (c)

Figure 1: (a) Examples of domains with complex geometrical features. The red dots mark points on the domains
that are close in the Euclidean metric, but that belong to topologically distant regions. The heart domain on the
right is the Zygote heart model [72]. (b) A schematic representation of the discrete geodesic distance. (c) An
example where, even if x ̸= y, gh(x,y) = 0.

the fact that those regions are disconnected. When considering data representing the solution of a physical
problem, the points in regions of the domain that are not connected may feature very different solution
values, which can lead to large artificial oscillations in the interpolant. These oscillations mostly appear
in proximity to non-trivial geometrical features such as holes or cuts in the domain, as showcased by the
examples of this paper.

We propose a modification to RL-RBF interpolation that relies on an approximation of the geodesic
distance within the domain of interest to take its geometry into account. The geodesic distance is used
to threshold the Euclidean distance, so that points that belong to disconnected regions of the domain are
regarded as infinitely distant. We discuss the computational aspects of the proposed method by describing in
detail the algorithms used to construct and evaluate the interpolant. We focus in particular on a distributed-
memory parallel implementation, in which the interpolation and evaluation points are distributed across
several processes.

Finally, we present numerical examples that illustrate the issues of RL-RBF interpolation in topologically
complex domains, and we show that our geodesic distance thresholding method can overcome those issues.
We consider both an idealized example and a realistic multiphysics application to three-dimensional whole-
heart electromechanics [7, 8, 26, 29, 30, 32, 35, 36, 40, 59, 63, 65]. The numerical examples are used to assess
the computational efficiency and parallel scalability of the proposed method.

This paper is structured as follows. In Section 2 we recall the RL-RBF intergrid transfer and describe
the proposed modification leading to the RL-RBF-G method. In Section 3 we discuss the computational
and algorithmic details of our implementation. Section 4 describes numerical experiments that showcase the
properties of the proposed method. Finally, we draw some conclusive remarks in Section 5.

2. RBF intergrid transfer with geodesic thresholding

We briefly recall the RL-RBF interpolation procedure, and present our novel geodesic-based distance
thresholding method to interpolate in complex domains accounting for their geometry.

2.1. Intergrid transfer using rescaled, localized RBF interpolation
Let Ω ⊂ Rn be an open, bounded domain, and let Msrc and Mdst be two meshes of Ω. The two meshes

are not necessarily conforming or nested, and may feature different resolutions and different element types
(tetrahedral or hexahedral). In other words, the two meshes represent two different approximations of the
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domain Ω, which we will denote by Ωsrc and Ωdst respectively. We remark that, in general, the boundaries
of Ωsrc and Ωdst do not necessarily coincide.

Let f : Ωsrc → R be a known function. Let {xsrc
i }N

src

i=1 , with xsrc
i ∈ Ωsrc, be a set of interpolation points,

and f src
i = f(xsrc

i ) for i = 1, . . . , N src. The radial basis function (RBF) interpolant of the function f at
points xsrc

i is a function Πf : Rn → R in the form

Πf (x) =

Nsrc∑
j=1

γj ϕ(d(x,x
src
j ), rj) , (1)

wherein γj ∈ R are unknown interpolation coefficients, d : Rn×Rn → [0,+∞) measures the distance between
two points, and ϕ : R× [0,+∞)→ [0, 1] is the compactly supported C2-continuous Wendland basis function
RBF [66] with support radius rj > 0, defined as

ϕ(t, r) = max

{
1− t

r
, 0

}4 (
1 + 4

t

r

)
for r ≥ 0 . (2)

The distance is typically measured in the Euclidean norm [15, 23, 28, 43, 64, 67], that is

d(x,y) = ∥x− y∥ . (3)

However, as discussed in the following, this may introduce artificial oscillations when the domain features a
complex geometry.

The coefficients γj in (1) are determined by imposing the interpolation constraints Πf (x
src
i ) = f src

i for
all i = 1, . . . , N src, which is equivalent to solving the following linear system:

Φintγ = f src , (4)

wherein γ = (γ1, γ2, . . . , γNsrc)T is the vector of interpolation coefficients, the vector f src = (f src
1 , f src

2 , . . . ,
f src
Nsrc)T collects the evaluations of f on the interpolation points, and Φint is an N src×N src matrix of entries

(Φint)ij = ϕ(d(xsrc
i ,xsrc

j ), rj) . (5)

The evaluation of the interpolant Πf onto a set of points {xdst
i }N

dst

i=1 , with xdst
i ∈ Ωdst, can be obtained

by computing the matrix-vector product fdst = Φevalγ, where fdst = (Πf (x
dst
1 ),Πf (x

dst
2 ), . . . ,Πf (x

dst
Ndst))

T

and Φeval is an Ndst ×N src matrix of entries

(Φeval)ij = ϕ(d(xdst
i ,xsrc

j ), rj) . (6)

The RBF interpolant may yield oscillations even if the interpolated data is constant [23]. To avoid
this, we adopt the RL-RBF interpolation introduced in [23]. The RBF support radius rj associated with
interpolation node xsrc

j is chosen as the distance between xsrc
j and the M -th nearest neighbor in the set

{xsrc
i }N

src

i=1 , magnified by a factor α [14, 64], where M ∈ N and α ∈ [1,∞) are user-defined parameters.
Furthermore, introducing the constant function g(x) = 1, we rescale Πf by the interpolant Πg of g, leading
to the following definition of the rescaled interpolant Πres

f :

Πres
f (x) =

Πf (x)

Πg(x)
, (7)

To keep the notation light, we shall drop the superscript “res” from here on, and denote the rescaled
interpolant simply by Πf .

The definition of the interpolant and its evaluation generalize to vectorial functions by interpolating every
component independently. We refer to [14, 23] for further details on RL-RBF interpolation, and to [20] for
a discussion of its convergence properties.
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2.2. Geodesic distance thresholding
The RBF interpolant is a linear combination of the interpolation coefficients γj , where the weights of

the combination are larger the closer the evaluation point x is to the interpolation point xsrc
j . In qualitative

terms, this means that the value of Πf (x) is influenced by the value of f at the interpolation points that are
close to x.

This may not be appropriate for complex domains that are characterized by disconnected regions, high
curvature or cavities, such as those represented in Figure 1a. In those cases, the Euclidean distance may
not be an adequate measure of the closeness between two points of Ω. This may lead to large artificial
oscillations in the interpolant.

To avoid this issue, we need to replace the Euclidean distance (3) with a notion of distance that better
accounts for the geometry of Ω. As a starting point, we consider the geodesic distance within Ω.

Definition 1 (Geodesic distance). Given two points x,y ∈ Ω, their geodesic distance g(x,y) is the length
of the shortest curve contained in Ω and featuring x and y as its endpoints.

Since we consider discrete approximations of the domain Ω, we replace the geodesic distance defined
above with a discrete counterpart. We begin by defining the distance between mesh vertices.

Definition 2 (Discrete geodesic distance). LetM be a mesh representing an approximation Ω̃ of Ω. Given
two points x,y ∈ Ω̃, vertices of M, we define their discrete geodesic distance gh(x,y) as the length of the
shortest path from x to y traveling along edges and element diagonals of M.

Applications of the interpolation procedure often require the interpolation or evaluation points to be
internal to mesh elements (such as Gauss-Legendre quadrature points [14]). Furthermore, the evaluation
of the interpolant requires us to compute the distance between interpolation points in Ωsrc and evaluation
points in Ωdst. Therefore, we extend the above definition to arbitrary points in Rn as follows.

Definition 3 (Discrete geodesic distance). Let M be a reference mesh approximating Ω. Given two points
x,y ∈ Rn, we set gh(x,y) = gh(x

′,y′), where x′ and y′ are the vertices ofM closest to x and y, respectively.

Figure 1b displays a schematic representation of the above notions. The computation of the discrete
geodesic distance gh is computationally efficient and easy to implement [24, 38] (see also Section 3.4).
However, gh may be a poor approximation of the exact geodesic distance g [38, 39]. Furthermore, as shown
in Figure 1c, it may happen that gh(x,y) = 0 even if x ̸= y, which may hinder the well-posedness of the
interpolation problem [64]. Instead of resorting to more accurate yet more complex (and computationally
demanding) discretization methods, we use gh to apply a threshold to the Euclidean distance, replacing (3)
with the following.

Definition 4 (Thresholded Euclidean distance). Let M be a reference mesh approximating Ω. Given two
points x,y ∈ Rn, we define

d(x,y;R) =


+∞ if gh(x,y) > R ,

gh(x,y) if βhmax + ∥x− y∥ < gh(x,y) ≤ R ,

∥x− y∥ if gh(x,y) ≤ βhmax + ∥x− y∥ ,
(8)

where the discrete geodesic distance gh(x,y) is evaluated withM as a reference mesh, hmax is the maximum
diameter of the elements of M, and β > 0 is a constant coefficient.

The coefficient β has the role of detecting regions of high curvature, where the discrete geodesic distance
between points is significantly larger than the Euclidean distance. In those regions it is preferrable to compute
d(x,y) through gh(x,y), instead of the Euclidean distance ∥x − y∥. Indeed, although gh is a potentially
inaccurate approximation of g, this approximation will generally be better than the Euclidean distance.
Conversely, in regions of low curvature, the Euclidean distance enjoys better smoothness properties than gh,
and is therefore a better choice for evaluating d(x,y).
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Finally, we replace the definition of the interpolant in (1) with

Πf (x) =

Nsrc∑
j=1

γj ϕ(d(x,x
src
j ; rj), rj) , (9)

where the threshold R of (8) is chosen equal to the RBF support radius. The entries of Φint and Φeval are
updated accordingly. To evaluate the discrete geodesic distance, we use the finest of the two meshes Msrc

andMdst, to obtain the best approximation. We refer to the resulting method as RL-RBF-G interpolation.

3. Algorithms and parallel implementation

We describe in this section the algorithms and data structures implemented to construct and evaluate
the RL-RBF-G interpolant, discussing computational cost and parallel scalability. Our implementation is
designed for a distributed-memory parallel architecture, based on the MPI standard.

All numerical methods presented here are available as open source within the core module of lifex [1, 41],
a library based on deal.II [5, 6, 21] for finite element simulations of the cardiac function [2–4].

The algorithm presented in this section significantly improves upon the one we previously discussed in
[14]. The major advancements are the use of R-trees to perform spatial queries and a significant reduction
in inter-process communication. We report in Algorithm 1 an overview of the proposed algorithm. The rest
of this section describes in more detail its individual steps.

3.1. Coarse representations of local points
Since we work in a distributed-memory parallel framework, each process r only stores a subset Xsrc

r of
the source points {xsrc

i }N
src

i=1 . However, when building the interpolation matrix Φint, each process needs to
evaluate the distance of each of the points it owns from all other points, including some that are owned by
other processes. Those points must therefore be retrieved through inter-process communication.

To do so, we build for every process r a coarse representation Br ⊂ Rn such that Xsrc
r ⊂ Br. We

define Br as the union of multiple axis-aligned bounding boxes, obtained by successively splitting in half
the axis-aligned box containing all the points. Then, the coarse representation is communicated to all other
processes. Finally, each process r uses the coarse representation of every other process p to determine which
of the points Xsrc

r must be communicated to p. This communication is obtained by means of a point-to-
point communication algorithm as implemented by deal.II’s Utilities::MPI::some_to_some. Then, each
process r merges all the points received from other processes into a single set Y src

r (Algorithm 1, line 13).
The evaluation points {xdst

i }N
dst

i=1 are treated in a similar way. The corresponding set of points owned by
process r is denoted by Xdst

r , and the set of points stored by process r after inter-process communication
is denoted by Y dst

r . We remark that this procedure does not assume that the meshes Msrc and Mdst are
partitioned in a consistent way.

This step corresponds to lines 1–14 of Algorithm 1.

3.2. Finding the M -th nearest neighbor to a point
In line 17 of Algorithm 1, we retrieve the M -th nearest neighbor to point xsrc

j within the set Y src
r . This

is achieved by iteratively building a binary max-heap [68] of M elements. The point z is the root node of
the heap. We remark that this task could be optimized by resorting to an M-tree data structure [16].

Furthermore, the process of finding the M -th nearest neighbor is made faster by assuming that it is no
further than a user-specified threshold rmax. While an optimal value for rmax depends on M and α, we
empirically selected it to be 10 times the average diameter hsrc

avg of elements of Msrc.
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Algorithm 1 Parallel assembly of the matrices Φint and Φeval. The index r denotes the rank of the current
process in the MPI parallel communicator.
Input: sets of locally owned points Xsrc

r and Xdst
r

Input: hsrc
max, maximum diameter of elements of Msrc

Output: matrices Φint and Φeval

1: construct a coarse representation Br of the local points Xsrc
r

2: send Br to every parallel process different than r
3:
4: Y src

rr ← Xsrc
r

5: Y dst
rr ← Xdst

r

6: for each parallel process p different than r do
7: Y src

rp ← Xsrc
r ∩Bp

8: send the points Y src
rp to process p

9:
10: Y dst

rp ← Xdst
r ∩Bp

11: send the points Y dst
rp to process p

12: end for
13: Y src

r ← ∪Nproc
p=1 Y src

pr

14: Y dst
r ← ∪Nproc

p=1 Y dst
pr

15:
16: for every point xsrc

j ∈ Xsrc
r do

17: find z, the M -th nearest neighbor (with respect to gh) to xsrc
j in Y src

r

18: rj ← max
{
αgh(x

src
j , z), rmax

}
19:
20: compute the axis-aligned bounding box Cj centered at xsrc

j and of dimension 2(rj + 2hsrc
max)

21:
22: Zsrc ← Y src

r ∩ Cj

23: for every point xsrc
i ∈ Zsrc do

24: if gh(x
src
j ,xsrc

i ) ≤ rj then
25: (Φint)ij ← ϕ(d(xsrc

j ,xsrc
i ; rj), rj)

26: end if
27: end for
28:
29: Zdst ← Y dst

r ∩ Cj

30: for every point xdst
i ∈ Zdst do

31: if gh(x
src
j ,xdst

i ) ≤ rj then
32: (Φeval)ij ← ϕ(d(xsrc

j ,xdst
i ; rj), rj)

33: end if
34: end for
35: end for

3.3. Finding points sufficiently close to xsrc
j

Lines 20–22 of Algorithm 1 have the purpose of quickly excluding the points of Y src
r that are sufficiently

far from xsrc
j . To do so, we observe that, with the same notation of Section 2.2, the following holds:

∥x− y∥ ≤ ∥x− x′∥+ ∥x′ − y′∥+ ∥y − y′∥ (10)
≤ hsrc

max + gh(x,y) + hsrc
max (11)

= gh(x,y) + 2hsrc
max , (12)
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where hsrc
max is the maximum diameter of the elements of Msrc. Now, let Cj be an axis-aligned bounding

box centered at xsrc
j of dimension 2(rj + 2hsrc

max) along all coordinate directions (line 20). If a point xsrc
i lies

outside the box, there holds

∥xsrc
j − xsrc

i ∥ ≥ rj + 2hsrc
max , (13)

gh(x
src
j ,xsrc

i ) ≥ ∥xsrc
j − xsrc

i ∥ − 2hsrc
max ≥ rj , (14)

so that the associated entry (Φint)ij in the interpolation matrix is zero. Consequently, we can discard all
points that lie outside of the bounding box, without explicitly computing their discrete geodesic distance
from xsrc

j .
This is especially convenient because the intersection operation of line 22 can be performed very efficiently

by storing the points Y src
r into an R-tree structure [33, 42]. We rely on the R-tree implementation offered

by the Boost library [12].

3.4. Evaluating the discrete geodesic distance
We use Dijkstra’s shortest path algorithm [24] to evaluate gh, as described in Algorithm 2. As usually

done, the set of visited points A is stored in a binary min-heap data structure [68], providing constant-time
retrieval of the element with minimum tentative distance (Algorithm 2, line 9).

Since we only use gh to threshold the Euclidean distance in (8), we stop the algorithm if it reaches nodes
that are further than the threshold R from the starting point (Algorithm 2, line 21). Similarly, if the two
endpoints are further than R in Euclidean distance, we do not compute their discrete geodesic distance
(Algorithm 2, lines 1–3). In both cases, we return an arbitrary value greater than or equal to R.

The loop of Algorithm 1, lines 16–35, requires to evaluate gh(x
src
j ,y) multiple times with xsrc

j as first
argument and varying the second argument y. To avoid unnecessary computations, the sets A and B and
the tentative distances sz are reused between calls. If the point y was already added to the set B during a
previous evaluation of the distance, we reuse the already computed distance sy.

When running in parallel, the mesh M is distributed over multiple processes, and each of the processes
stores only a subset of the mesh vertices. However, each process needs to evaluate the discrete geodesic
distance between arbitrary mesh vertices, regardless of whether they are owned by that process or not. A
naive solution would be to send all the vertices and their adjacency information to every process. This
however does not scale efficiently over large meshes or large number of processes.

To avoid this issue, we observe that, when evaluating gh, each process r always passes a locally owned
point xsrc

j ∈ Xsrc
r as first argument (see Algorithm 1, lines 18, 24 and 31). Furthermore, we are only interested

in destination points no further than the maximum RBF support radius rmax. Therefore, it is sufficient that
each process stores the points that are within rmax of any locally owned point, together with the associated
adjacency information.

3.5. Evaluating the interpolant
After constructing the matrices Φint and Φeval, given an input data vector f , the interpolation coefficients

are obtained by solving the linear system (4) with the preconditioned GMRES method [53]. For the numerical
experiments of this paper, we consider an incomplete LU (ILU) factorization preconditioner with 2 levels
of fill-in and 1 level of inter-process overlap, as implemented by Trilinos IFPACK [54] and wrapped by
deal.II. Alternatively, one can consider an ad-hoc preconditioner based on approximate cardinal basis
functions [10, 13, 14], although in our numerical experiments it performed less effectively than the ILU
preconditioner.

4. Numerical experiments

In the following sections, we examine the properties of the proposed interpolation method by means
of numerical experiments, and compare it with RL-RBF interpolation. Unless otherwise specified, we set
β = 0.5. The role of the high-curvature threshold is further discussed in Section 4.2.2.
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Algorithm 2 Dijkstra’s shortest path algorithm, adapted from [24].
Input: reference mesh M
Input: start and end mesh vertices x, y
Input: threshold R
Output: returns gh(x,y)

1: if ∥x− y∥ > R then
2: return R
3: end if
4:
5: add x to the set A of visited points
6: set the tentative distance for x: sx ← 0
7:
8: while A is not empty do
9: find the point z in A for which the tentative distance sz is minimum

10: remove z from A and add it to the set of closed points B
11:
12: for each neighbor w of z that is not in B do
13: if w ∈ A then
14: sw ← min{sz + ∥w − z∥, sw}
15: else
16: add w to A
17: sw ← sz + ∥w − z∥
18: end if
19: end for
20:
21: if z = y or sz > R then
22: return sz
23: end if
24: end while

4.1. Idealized benchmark
We consider an idealized benchmark on the domain depicted in Figure 2a. The domain represents a

toroid with square section, from which a thin slice has been removed, opening a slit. We interpolate the
following function:

f(x, y, z) = arctan2(z,−x) =



arctan
(
− z

x

)
if x < 0 ,

arctan
(
− z

x

)
+ π if x > 0 and z ≥ 0 ,

arctan
(
− z

x

)
− π if x > 0 and z < 0 ,

π

2
if x = 0 and z > 0 ,

−π

2
if x = 0 and z < 0 ,

undefined if x = z = 0 ,

(15)

which is discontinuous across the slit, as shown in Figure 2b. We interpolate the function f as described in
previous sections, both with and without geodesic distance thresholding. Table 1 lists the meshes considered
throughout this section.

Figure 2c shows an example of RL-RBF interpolant, using the mesh Mtet
ring,1 and setting M = 6, α = 2.

Close to the slit, the interpolant features large oscillations, significantly departing from the original function
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(a) (b) source data (c) RL-RBF (d) RL-RBF-G

Figure 2: Idealized benchmark (Section 4.1). (a) Interpolation domain Ω, overlaid with the meshes Msrc = Mtet
ring,1

(red) and Mdst = Mhex
ring,1 (black). (b) Source data f(x, y, z) = arctan2(z,−x). (c) Interpolant obtained without

geodesic thresholding. Notice the different colorbar scale and the spurious oscillations close to the slit. (d)
Interpolant obtained from mesh Mtet

ring,1 with geodesic thresholding.

f . In intuitive terms, this is due to f having very different values on the two sides of the slit. Without geodesic
thresholding, the interpolant does not take the slit into account, and the oscillations result from trying to
fit the values on both sides. On the contrary, constructing the interpolant with geodesic thresholding, with
the same mesh and parameters, leads to a much more accurate result, as shown in Figure 2d.

4.1.1. Convergence test
We assess the convergence of the proposed method by constructing the interpolant of f on meshesMtet

ring,i,
for i = 1, 2, . . . , 7, and evaluating it on Mhex

ring,1 (see Table 1), both with and without geodesic thresholding.
We measure the error between the interpolant and f with the following approximation of the relative L∞(Ω)
norm:

e∞ =
maxi=1,...,Ndst

∣∣fdst
i − f(xdst

i )
∣∣

maxi=1,...,Ndst
∣∣f(xdst

i )
∣∣ . (16)

Figure 3 reports the error obtained for M = 1 and M = 4 with different choices of α, both with and
without geodesic thresholding. For relatively large values of hsrc

max, RL-RBF-G interpolation reduces the
interpolation error approximately by one order of magnitude with respect to RL-RBF. Indeed, the latter is
largely affected by the oscillations appearing near the slit.

The coefficient α rescales the RBF support radius. For large values of hsrc
max,increasing α without geodesic

thresholding allows points on one side of the slit to interact more with points on the other, leading to larger
errors. Conversely, increasing α with geodesic thresholding reduces the error, since a larger RBF support
radius removes small spurious oscillations in the interpolant, improving its accuracy.

For a sufficiently small hsrc
max, RL-RBF and RL-RBF-G lead to approximately equal interpolation errors.

This happens because the interpolation radii rj are progressively reduced as the mesh is refined, so that for
a sufficiently fine mesh the interpolation radius is small enough that points on one side of the slit do not
interact with points on the other side. In that case, geodesic thresholding has no effect in practice, and the
two methods yield almost identical results.

Finally, our numerical results indicate that the RL-RBF-G interpolant converges to f with approxi-
mate order 1 with respect to hsrc

max. This is in agreement with the analysis presented in [20] for RL-RBF
interpolation.

4.1.2. Computational efficiency and scalability
In the same setting as previous section, we run a strong scalability test by computing the interpolant

from mesh Mtet
ring,8 onto mesh Mhex

ring varying the number of parallel processes. We measure the wall time
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Domain Mesh Element type # vertices hmin[mm] havg[mm] hmax[mm]
ring Mtet

ring,1 tet 608 25.00 40.02 55.88
ring Mtet

ring,2 tet 1166 19.48 31.28 41.79
ring Mtet

ring,3 tet 2453 13.41 23.30 31.12
ring Mtet

ring,4 tet 6403 9.20 16.28 22.66
ring Mtet

ring,5 tet 14 957 7.14 11.82 15.38
ring Mtet

ring,6 tet 42 327 4.87 8.14 11.04
ring Mtet

ring,7 tet 304 313 2.47 4.08 5.64
ring Mtet

ring,8 tet 4 411 070 0.99 1.64 2.36

ring Mhex
ring hex 418 569 3.73 4.33 5.17

heart Mfine
heart tet 1 260 388 0.36 0.87 3.11

heart Mcoarse
heart tet 67 553 0.82 2.51 4.81

Table 1: Meshes used in the numerical experiments. For each mesh, we report the type of elements (hexahedra or
tetrahedra), the number of nodes, and the minimum, average and maximum element diameter h.

needed for the different stages of the construction of the interpolant and its evaluation. The scalability test
was run on the GALILEO100 supercomputer1 from the CINECA supercomputing center (Italy).

The results are shown in Figure 4, where we report the computational time associated with the wall
time taken by the interpolant construction (which includes the initialization of the adjacency graph for
evaluating the discrete geodesic distance, the construction of the matrices Φint and Φeval, the initialization
of the preconditioner for the system (4), and the evaluation of Πg for rescaling) and the time needed for the
evaluation of the interpolant (i.e. for the solution of the linear system (4)). We also report separately the
time to assemble Φint, Φeval and the preconditioner (“matrix assembly” in the plot) and the time required
to initialize the adjacency graph for geodesic distance (“setup of geodesic distance” in the plot).

The time needed to assemble matrices scales ideally up to 3072 cores. The scalability of the overall
interpolant construction is ideal up to around 768 cores (corresponding to approximately 5500 interpolation
points per core), then starts to deteriorate due to parallel communication and load balancing issues.

The solution of the interpolation system (4) exhibits relatively poor scalability properties, mostly due
to the scalability of the preconditioner. Furthermore, the time needed for the initialization of the discrete
geodesic distance data structures is essentially independent of the number of cores. Nonetheless, both these
steps have a negligible impact on the overall computational cost.

4.2. Cardiac electromechanics test
With the aim of providing an example of application to a challenging multiphysics problem of practical

interest, we consider a numerical model of whole-heart cardiac electromechanics described in [26]. The term
cardiac electromechanics refers to the interplay of electrical excitation (known as cardiac electrophysiology,
[18, 31, 46, 60, 61]), active contraction and passive mechanical response of the cardiac muscle during the
heartbeat [8, 26, 29, 32, 47–50, 52, 58, 59]. Such models have the potential of supporting the understanding
and clinical decision making associated with cardiovascular pathologies [45, 56, 57].

Cardiac electromechanics is intrinsically multiphysics and multiscale. Indeed, electrophysiology is char-
acterized by much smaller spatial and temporal scales than muscular mechanics (both active and pas-
sive). For this reason, the electrophysiology model is typically solved on a finer discretization than me-
chanics, both in time and in space, by combining temporal staggering and intergrid transfer operators
[14, 26, 30, 47, 52, 55, 63].

The heart is composed of four different interconnected chambers, and it is connected to large blood
vessels (including the aorta, the pulmonary artery), resulting in a topologically complex domain (see e.g.

1Technical specifications: https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide.
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Figure 3: Idealized benchmark, convergence test (Section 4.1.1). Interpolation error, defined as in (16), against the
maximum element diameter hsrc

max of the source mesh Msrc. The interpolant was computed setting M = 1 (left)
and M = 4 (right), for different values of α. Different choices of α correspond to different colors, while circles and
crosses correspond to interpolants without and with geodesic thresholding, respectively.

Figure 1a). It is therefore crucial to use intergrid transfer operators that account for this complexity. To
this end, we apply the newly introduced RL-RBF-G method in the electromechanical framework.

The whole-heart electromechanical model features the following components (see also Figure 5) [26]:

• the monodomain model of cardiac electrophysiology, for the spatial propagation of electrical excitation
[18]. The model includes geometry-dependent mechano-electric feedback (MEF) effects: denoting by
d the muscular displacement, the monodomain model accounts for the effect of the deformation onto
the electrical conductivity, through F = I+∇d and J = detF [14, 29, 57];

• the ten Tusscher-Panfilov (TTP06) and Courtemanche-Ramirez-Nattel (CRN) ionic models, describing
the electrical activity at the cellular scale [18, 19, 62]. The ionic models regulate in particular the
evolution of the intracellular calcium concentration [Ca2+]i;

• the RDQ20-MF model of muscular contraction, that computes an active stress tensor Pact in response
to variations in [Ca2+]i [51];

• the elastodynamics equation for muscular deformation, including both passive and active stress con-
tributions [52];

• a lumped-parameter model of the circulatory system, describing pressures and flowrates through several
circulation compartments by means of a system of ordinary differential equations (ODEs) [11, 26, 35].

The model equations are reported in full in Appendix A. We refer to [26] for further details on the electrome-
chanical model and strategies for its numerical discretization, and to [71] for a discussion on its calibration.

Similarly to [14, 47, 52, 55], we solve the ionic and monodomain models on a fine mesh Mfine
heart, and the

force generation and mechanics models on a coarser meshMcoarse
heart (see Table 1). We interpolate the calcium

concentration [Ca2+]i, computed on the fine mesh by the ionic model, onto the coarse mesh, where it is
needed by the force generation model. Conversely, we interpolate the deformation gradient F computed by
solving the elastodynamics equation from the coarse to the fine mesh, using the method presented in [14],
wherein we replace the RL-RBF interpolation with the newly introduced RL-RBF-G method. For the sake
of post-processing, we also interpolate the displacement field d from the coarse to the fine mesh.

We run the simulation up to a final time of T = 4.8 s, corresponding to a total of six heartbeats, with each
heartbeat lasting tHB = 0.8 s. We report results for the last hearbeat only (from t = 4.0 s to t = 4.8 s). We
consider the segregated-staggered scheme previously discussed in [26, 47, 52]. We set a time discretization
step of ∆tEP = 5 · 10−5 s for the monodomain and ionic models, while force generation, muscular mechanics
and circulation are solved with a time discretization step of ∆tM = 20∆tEP = 10−3 s. The simulation is
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Figure 4: Idealized benchmark, scalability test (Section 4.1.2). Total wall-time (left) and parallel speedup for
different steps of the construction and evaluation of the RL-RBF-G interpolant.

run using 92 cores from the iHEART computing node2 available at MOX, Dipartimento di Matematica,
Politecnico di Milano.

The two meshes have a significantly different size, with the fine mesh having almost 20 times as many
nodes as the coarse one. Nonetheless, our numerical results indicate that the RL-RBF-G method allows to
reliably transfer information between the two meshes. No spurious oscillations are observed in the interpo-
lated data, and the overall results are in agreement with those of [26], as seen in Figures 6 to 8, reporting
the evolution of [Ca2+]i, d and the pressure-volume loops of the four cardiac chambers.

4.2.1. Computational cost of interpolation
Table 2 reports a breakdown of the computational cost associated with the simulation, using either RL-

RBF-G or RL-RBF interpolations. The assembly of interpolation matrices takes up approximately 17%
of the total cost of the initialization (which is mostly spent in computing the initial conditions for the
mechanics problem). Interpolating the deformation gradient tensor F from the coarse to the fine mesh
requires approximately 12% of the average time needed to solve one electromechanics time step (comprising
20 time steps of electrophysiology, one time step of force generation and one of mechanics, one fine-to-coarse
interpolation and one coarse-to-fine interpolation). We remark that, as described in [14], this entails the
interpolation of 11 scalar fields that define the tensor F. Finally, the interpolation of [Ca2+]i from the coarse
to the fine mesh has a very small impact on the cost of one electromechanics time step.

The cost of initializing RL-RBF interpolation is significantly lower than the one of RL-RBF-G. This is
largely due to the need to compute geodesic distances in constructing the interpolation matrices with RL-
RBF-G. Furthermore, evaluating the interpolant of F with RL-RBF-G is more costly than with RL-RBF,
due to a large number of linear solver iterations in solving (4). Nonetheless, the large oscillations appearing
in the RL-RBF interpolant prevent its use for this application.

Although not negligible, the overall cost of constructing and evaluating the RL-RBF-G interpolants does
not dominate the wall time of the simulations. We believe this overhead is justified by the discretization
flexibility and the reliability that the proposed interpolation method offers. Indeed, the RL-RBF-G inter-
polation allows to model cardiac electrophysiology to high accuracy without impacting the computational
cost associated with the mechanics submodel (contrarily to the strategy of [26]). Therefore, it can support
simulations where the electrophysiological accuracy is critical, e.g. including spatial heterogeneities and
electrical dysfunctions [34, 44, 56].

2The node runs eight processors Intel Xeon Platinum 8160 @2.1GHz.
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Figure 5: Schematic representation of the electromechanics model of Section 4.2, reporting the multiphysics inter-
actions.

Figure 6: Whole-heart electromechanics (Section 4.2). Intracellular calcium concentration [Ca2+]i over time on the
electrophysiology (top) and mechanics (bottom) meshes. The domain is warped according to the displacement d.
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Figure 7: Whole-heart electromechanics (Section 4.2). Muscular displacement d over time on the electrophysiology
(top) and mechanics (bottom) meshes. We remark that the displacement is interpolated for post-processing, while
the monodomain equation relies on interpolating the deformation gradient F. The domain is warped according to
d.
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Figure 8: Whole-heart electromechanics (Section 4.2). Pressure-volume loops of the four cardiac chambers.
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RL-RBF-G RL-RBF
wall time [s] relative [%] wall time [s] relative [%]

simulation setup 2940 100.0 2300 100.0
mechanics 2129 72.4 1994 86.7
fine-to-coarse interpolant 266 9.1 23 1.0
coarse-to-fine interpolant 226 7.7 50 2.2
electrophysiology 108 3.7 94 4.1
fibers 17 0.6 16 0.7
active stress 0.1 <0.01 0.1 <0.01

electromechanics time step 18.00 100.0 16.80 100.0
electrophysiology 6.24 34.7 6.22 37.0
mechanics 9.21 51.2 9.23 55.0
coarse-to-fine interpolation 2.18 12.1 0.98 5.9
fine-to-coarse interpolation 0.37 2.1 0.36 2.2

Table 2: Breakdown of the computational cost for the whole-heart electromechanics simulation (Section 4.2), using
either RL-RBF-G or RL-RBF interpolation. We report the wall time associated with the simulation setup and with
solving one time step of electromechanics (comprising of 20 steps of electrophysiology, one step of force generation,
one step of mechanics, and one each of fine-to-coarse and coarse-to-fine interpolation). For each, we also report
the time spent in substeps, with the “relative” column reporting the percentage of the substep time relative to the
parent step.

4.2.2. Role of the high-curvature threshold
To better understand the role of the high-curvature detection coefficient β, we perform a test using the

same setting of previous section, except that we set β = +∞ in (8). This is equivalent to disabling the
detection of high-curvature regions altogether, i.e. redefining

d(x,y;R) =

{
+∞ if gh(x,y) > R ,

∥x− y∥ otherwise.
(17)

Figure 9 highlights two critical regions for the interpolation procedure, close to the left atrial appendage
and to the fossa ovalis i.e. a region where the walls of the two atria are in contact. The figure displays
the result of interpolating, from the coarse to the fine mesh, a displacement field that maps the starting
configuration onto the stress-free reference configuration, computed during preprocessing as discussed in
[9, 26].

We observe that in both regions the RL-RBF interpolation yields significant oscillations. RL-RBF-
G without high-curvature detection (i.e. with β = +∞) eliminates the oscillations near the left atrial
appendage (top row of Figure 9), but not those near the fossa ovalis (bottom row of Figure 9). Conversely,
introducing high-curvature detection by setting β = 0.5 removes spurious oscillations in both regions.

An intuitive explanation for this behavior is that the condition βhmax + ∥x − y∥ < gh(x,y) in (8)
empirically distinguishes between cases in which the exact geodesic distance g is better approximated by the
Euclidean distance (if the condition is not met) or by discrete geodesic distance (if the condition is met). In
the latter case, it is preferable to evaluate d(x,y;R) through gh(x,y) (instead of ∥x− y∥), despite gh being
a potentially inaccurate approximation of g.

5. Conclusions

We proposed an interpolation method based on RL-RBF that uses a discrete approximation of the
geodesic distance to take into account the geometry of the interpolation domain. The interpolation method,
referred to as RL-RBF-G, allows to transfer variables between non-matching meshes, and prevents the onset
of spurious oscillations associated with holes, cuts and otherwise complex geometrical features. Our numerical
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Figure 9: Whole-heart electromechanics (Section 4.2). Effect of RL-RBF-G interpolation and of the high-curvature
detection in two regions close to the left atrial appendage and the fossa ovalis. Circles indicate spurious oscillations.

experiments demonstrate that the proposed method overcomes limitations of RL-RBF, while retaining good
convergence properties.

Furthermore, we focused on the distributed-memory parallel implementation of RL-RBF-G interpolation,
a non-trivial task due to the two meshes having independent parallel partitionings. The scalability tests
carried out in this work indicate that the proposed implementation, available as open source within lifex

[1], has nearly ideal scalability properties, and is therefore well suited to large scale applications.
Finally, we demonstrate the effectiveness of RL-RBF-G interpolation in a realistic application to a whole-

heart cardiac electromechanics model. This application is a particularly challenging setting for the proposed
method, given the geometrical complexity of the domain. This test shows that the RL-RBF-G method is ca-
pable of transferring data between arbitrarily refined and even non-nested meshes, with an acceptable impact
on the computational costs, thereby providing an effective tool in developing multiphysics computational
models in geometrically complex domains.

Appendix A. Whole-heart electromechanics model

We briefly report the equations of the electromechanical model used in the numerical experiments of
Section 4.2. The model used in this work was introduced in [26], and we refer to the original work for
additional details.

The domain Ω, representing a four-chamber realistic human heart [72], is decomposed into several subsets:
ΩLA (left atrium), ΩRA (right atrium), ΩV (ventricles), ΩAo (ascending aorta), ΩPT (pulmonary trunk) and
Ωcaps (solid caps on vein inlets and valves). We define the myocardial subdomain as Ωmyo = ΩLA∪ΩRA∪ΩV.

The domain boundary ∂Ω is also decomposed into several subsets: Γrings (the artificial boundaries where
the veins and arteries are cut), ΓPF

epi (the epicardial portion of the boundary in contact with the pericardial
fluid), ΓEAT

epi (the epicardial portion of the boundary in contact with the epicardial adipous tissue), Γart
epi (the

epithelial surface of the two arteries), the endocardial surfaces of the four chambers, denoted by ΓLA, ΓLV,
ΓRA, ΓRV, and the endothelial surfaces of the two arteries, ΓAo and ΓPT.

The domain Ω is obtained starting from a known configuration corresponding to medical imaging data.
We consider the Zygote Heart Model [72], preprocessed with VMTK using the algorithms described in [27].
The model represents a configuration in which the heart muscle is subject to the pressure of the blood it
contains and of the organs that surround it. To recover the stress-free configuration Ω, we use a reference
configuration recovery algorithm described in [9, 52].
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The model has the following unknowns:

v : Ωmyo × (0, T )→ R transmembrane potential ,
wTTP : ΩV × (0, T )→ RNTTP state variables of the TTP06 model ,
wCRN : (ΩLA ∪ ΩRA)× (0, T )→ RNCRN state variables of the CRN model ,

s : Ωmyo × (0, T )→ RNact activation variables ,
d : Ω× (0, T )→ R3 solid displacement ,
c : (0, T )→ RNcirc circulation state variables .

We reconstruct the orientation of cardiac muscle fibers through a Laplace-Dirichlet rule based method
(LDRBM) [26, 46], defining an orthonormal triplet {f0, s0,n0} at every point of Ω.

The evolution of the ionic variables is prescribed by the TTP06 and CRN ionic models.
In the myocardial subdomain Ωmyo we solve the monodomain equation with geometry-mediated mechano-

electric feedback effects [18, 57]:
JχCm

∂v

∂t
−∇ ·

(
JF−1DmF

−T∇v
)
+ JχIion(v,wTTP,wCRN) = JχIapp in Ωmyo × (0, T ) ,

JF−1DmF
−T∇v · n = 0 on ∂Ωmyo × (0, T ) ,

v = v0 in Ωmyo × {0} ,

(A.1)

wherein χ is the membrane area-to-surface ratio, Cm is the membrane capacitance, and Dm is the conduc-
tivity tensor, defined through

Dm = σf
Ff0 ⊗ Ff0
∥Ff0∥2

+ σs
Fs0 ⊗ Fs0
∥Fs0∥2

+ σn
Fn0 ⊗ Fn0

∥Fn0∥2
, (A.2)

with σf, σs and σn positive coefficient with different constant values in ΩV, ΩLA and ΩRA.
The ionic current term Iion(v,wTTP,wCRN) is defined according to a different ionic model, depending on

the subdomain:

Iion(v,wTTP,wCRN) =

{
ITTP

ion (v,wTTP) in ΩV ,

ICRN
ion (v,wCRN) in ΩLA ∪ ΩRA .

(A.3)

The evolution of the ionic variables wTTP and wCRN is prescribed by a system of ODEs at every point in
the corresponding subdomain:

∂wTTP
∂t

= FTTP
ion (v,wTTP) in ΩV × (0, T ) ,

wTTP = wTTP,0 in ΩV × {0} ,
(A.4)


∂wCRN

∂t
= FCRN

ion (v,wCRN) in (ΩLA ∪ ΩRA)× (0, T ) ,

wCRN = wCRN,0 in (ΩLA ∪ ΩRA)× {0} .
(A.5)

The definitions of ITTP
ion , ICRN

ion , FTTP
ion and FCRN

ion are given in the original works [19, 62]. The initial conditions
for v, wTTP and wCRN are determined as the limit cycle of a zero-dimensional simulation, as in [26, 47].

Both ionic models include a variable representing the intracellular calcium concentration, denoted by
wCa

TTP and wCa
CRN. For convenience, we define

[Ca2+]i =
{

wCa
TTP in ΩV ,

wCa
CRN in ΩLA ∪ ΩRA .

(A.6)

The generation of contractile force is modeled through the RDQ20-MF model [51], which can be expressed
as a system of ODEs: 

∂s

∂t
= Fact

(
s, [Ca2+]i, SL, ∂SL

∂t

)
in Ωmyo × (0, T ) ,

s = s0 in Ωmyo × {0} ,
(A.7)
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where SL denotes the sarcomere length, defined as SL = SL0∥Ff0∥. The force generation model also defines
the active stress tensor Pact = Pact(s,d). The initial condition for s is the steady state of a zero-dimensional
simulation [26, 47].

The deformation of the muscle is governed by the elastodynamics equation, endowed with suitable bound-
ary conditions [26]:

∂2d

∂t2
−∇ ·P(s,d) = 0 in Ω× (0, T ) ,

P(s,d)n+ (n⊗ n)

(
Kepid+Cepi

∂d

∂t

)
= 0 on

(
ΓPF

epi ∪ ΓEAT
epi ∪ Γart

epi
)
× (0, T ) ,

P(s,d)n = −pi(t)n on Γi × (0, T ) for i ∈ {LA,LV,RA,RV,Ao,PT} ,
d = 0 on Γrings × (0, T ) ,

d = d0 in Ω× {0} ,
∂d

∂t
= 0 in Ω× {0} .

(A.8)
The initial displacement is determined through the solution of a quasi-static problem imposing suitable initial
endocardial pressures [26, 52].

Finally, the evolution of the endocardial pressures pi is regulated by a lumped-parameter model of the
circulatory system [11, 26, 35, 47, 52], expressed by a system of ODEs:

dc

dt
= Fcirc(c, t) in (0, T ) ,

c(0) = c0 .
(A.9)

The circulation and mechanics models are further coupled by imposing the volume constraints

V 3D
i (t) = V 0D

i (t) for i ∈ {LA,LV,RA,RV} , (A.10)

where V 3D
i and V 0D

i are the volumes of chamber i computed through the 3D mechanics model and the
circulation model respectively [26].
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