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Abstract. We propose AeroSPEED, a solver based on the Spectral El-
ement Method (SEM) that solves the aeroacoustic Lighthill’s wave equa-
tion. First, the fluid solution is computed employing a cell centered Finite
Volume method. Then, AeroSPEED maps the sound source coming from
the flow solution onto the acoustic grid, where finally the Lighthill’s wave
equation is solved. An ad-hoc projection strategy is adopted to apply the
flow source term in the acoustic solver. A model problem with a man-
ufactured solution and the Noise Box test case are used as benchmark
for the acoustic problem. We studied the noise generated by the complex
flow field around tandem cylinders as a relevant aeroacoustic application.
AeroSPEED is an effective and accurate solver for both acoustics and
aeroacoustic problems.

Keywords: Acoustics; Aeroacoustics; Spectral Element Method; Finite
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1 Introduction

Aeroacoustic is the field of acoustics that studies the noise induced by flows.
Due to the different scales involved in the flow and acoustics, usually aeroa-
coustics problems are posed in a segregated manner [12]. First, a flow problem
is solved and, in this work, the open-source finite volume library OpenFOAM
[14] is adopted. Then, the flow solution is post-processed to generate the sound
source term of the Lighthill’s wave equation. With this purpose, we have devel-
oped AeroSPEED [1, 9], a spectral element based solver that maps the computed
sound source term onto the acoustic grid and solves the inhomogeneous Lighthill
wave equation. We validate the open-source acoustic solver AeroSPEED on a
model problem based on a manufactured solution, comparing it with COMSOL
[2], a commercial software based on Lagrangian Finite Element Method (FEM).
As an additional acoustic test case, we considered a geometry representing a
simplified cockpit of a car (Noise Box). Next, we apply our aeroacoustic solver
AeroSPEED to study the noise induced by the turbulent flow around two tandem
circular cylinders.
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Fig. 1: Domain of the aeroacoustic problem. ΩF is the fluid domain, while ΩA is
the acoustic domain.

2 The coupled aeroacoustic model problem

Given two open, bounded domains ΩF ⊆ ΩA ⊆ Rd, having sufficiently regular
boundaries ∂ΩF and ∂ΩA respectively (see Fig. 1), we consider the flow on a
rigid body at high Reynolds and low Mach numbers. We are interested in the
noise generated by an incompressible and acoustically compact flow, meaning
that the feedback between the acoustic pressure and the hydrodynamic pressure
can be neglected. Hence, the coupled aeroacoustic problem can be posed in a
segregated manner. The segregated approach considers the following sequence
of problems.

Flow problem. The fluid flow is governed by the incompressible Navier Stokes
equations: for t ∈ (0, T ], find the velocity field u(x, t) : ΩF × (0, T ] → R3 and
the pressure field p(x, t) : ΩF × (0, T ]→ R such that

∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) +∇

(
p

ρ0

)
= 0, in ΩF × (0, T ],

∇ · u = 0, in ΩF × (0, T ],

u = 0, on ΓB ,

u = g, on ΓIN ,

ν∇u · n− pn = 0, on ΓOUT ,

(1)

with initial condition u(x, 0) = 0, and where n is the outward unit normal vector
to ∂ΩF , ν is the kinematic viscosity, ρ0 is the fluid density and g is the inlet
Dirichlet datum. Moreover, we suppose the boundary of the fluid domain to
be decomposed in the inlet boundary ΓIN , the outlet boundary ΓOUT and the
boundary ΓB , such that ∂ΩF = ΓIN ∪ ΓOUT ∪ ΓB .

Aeroacoustic source. Based on the Lighthill analogy [12], from the fluid ve-
locity u we compute the Lighthill’s tensor as T = ρ0u⊗u. The Lighthill’s tensor
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has support only on the fluid domain ΩF ⊆ ΩA, and it depends only on the so-
lution u of problem (1). The Lighthill’s tensor represents the sound source term
and the coupling term between the flow problem (1) and the acoustic problem
(2).

Acoustic problem. We consider inΩA the following non-homogeneous acoustic
wave equation: for t ∈ (0, T ], find the density field ρ(x, t) : ΩA× (0, T ]→ R such
that

∂2ρ

∂t2
− c20∆ρ = f, in ΩA × (0, T ),

c20
∂ρ

∂n
= 0, on ΓB × (0, T ),

1

ρ0

∂ρ

∂n
= − 1

Z

∂ρ

∂t
, on ΓZ × (0, T ),

(2)

with initial conditions ρ(x, 0) = 0,
∂ρ

∂t
(x, 0) = 0, where c0 is the sound speed

and Z is the impedance of an external wall. The boundary ∂ΩA has been split
as ∂ΩA = ΓZ ∪ ΓB where ΓB is the body boundary where we set a sound
hard boundary condition, while ΓZ is the external boundary where we apply
an impedance boundary condition. We recall that if Z is the characteristic
impedance, i.e. Z = ρ0c0, we have a non-reflective boundary condition, which
is necessary for free-field wave propagation problems. When dealing with aeroa-
coustic problems the sound source is f = ∇ · ∇ · T, obtaining the so called
Lighthill’s wave equation.

3 Numerical scheme

We introduce the spectral element method for the spatial discretization of (2)
with a generic source term f , highlighting the aeroacoustic case where f =
∇ · ∇ ·T.

3.1 Spectral element dicretization

Given the acoustic domain ΩA, we introduce a conforming decomposition TA
made by hexaedral elements κA and we denote the characteristic mesh size as
hA = max

κA∈TA
hκA

, being hκA
the diameter of the element κA. Let κ̂ be the refer-

ence element κ̂ = [−1, 1]3, and assume that for any hexaedral element κA ∈ TA
there exists a suitable trilinear invertible map θκA

: κ̂→ κA, such that its Jaco-
bian JκA

is positive. We now introduce the following finite-dimensional space:

VA =
{
v ∈ C0(ΩA) ∩H1(ΩA) : v|κA

◦ θ−1κA
∈ Qr(κ̂),∀κA ∈ TA

}
, (3)

where Qr(κ̂) is the space of polynomials of degree less than or equal to r ≥ 1
in each coordinate direction. Next, for any u,w ∈ VA, we define the following
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bilinear form by means of the Gauss-Legendre-Lobatto (GLL) quadrature rule:

(u,w)NIκA
=

r∑

i,j,k=0

u(θκA
(ξGLLi,j,k ))w(θκA

(ξGLLi,j,k ))ωGLLi,j,k |det(JκA
)| ≈ (u,w)κA

, (4)

and we denote with

(u,w)NITA =
∑

κA∈TA

(u,w)NIκA
∀u,w ∈ VA,

where ξGLL are the GLL quadrature nodes, ωGLL the corresponding weights
defined on κ̂ and NI stands for numerical integration.

3.2 Discretization of the acoustic problem

Weak formulation. We derive the weak formulation of the inhomogeneous
wave equation in (2): for t ∈ (0;T ], find ρ(x, t) ∈ H1(ΩA) such that ∀w ∈
H1(ΩA):

(
∂2ρ

∂t2
, w

)

ΩA

+ c20(∇ρ,∇w)ΩA
+
ρ0c

2
0

Z

∫

ΓZ

∂ρ

∂t
w ds = L(w), (5)

with initial conditions ρ =
∂ρ

∂t
= 0 in ΩA × {0}, and L(w) is a suitable lin-

ear operator. When dealing with general inhomogeneous acoustic problems, the
operator is

L(w) = (f, w)ΩA
, (6)

while when dealing with Lighthill’s wave equation the term (∇ · ∇ ·T, w)ΩA
is

usually integrated by parts, and we have that

L(w) = −(∇ ·T,∇w)ΩA
, (7)

see for instance [1].

Semi-discrete spectral element formulation. For the sake of simplicity, we
assume that ∂ΩA = ΓN , and hence ΓZ = ∅. The semi-discrete spectral element
formulation of problem (5) with numerical integration (SEM-NI) reads: for any
time t ∈ (0;T ] find ρh ∈ VA such that:

(
∂2ρh
∂t2

, wh)NITA + c20(∇ρh,∇wh)NITA = Lh(wh) ∀wh ∈ VA, (8)

with ρh =
∂ρh
∂t

= 0 in ΩA×{0}, where Lh(w) = (f, w)NITA for the purely acoustic

case, while Lh(w) = −(∇ ·T,∇w)NITA for the aeroacoustic case.
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Computation of the aeroacoustic source term. Let TF be a polyhedral
decomposition of the fluid domain ΩF and let

VF =
{
vF ∈ L2(ΩF ) : vF |κF

∈ P0(κF ),∀κF ∈ TF
}

(9)

be the space of piecewise discontinuous functions. The sound source term ∇ ·
(ρ0u ⊗ u) is computed as a post-process of the numerical solution of problem
(1) on the fluid grid TF via a Gauss discretization with a linear reconstruction.
Namely, given the velocity ukh ∈ VF at time tk, we compute the cell value of the
sound source term on the cell κF ∈ TF as:

1

|κF |

∫

κF

ρ0∇ · (ukh ⊗ ukh)dx =
1

|κF |

∫

∂κF

ρ0u
k
h(ukh · nF )ds ≈

1

|κF |
∑

F∈∂κF

ρ0uF (uF · nF )|F|, (10)

where uF = u(xF ), nF is the unit normal to the face F ∈ ∂κF and where we
applied a mid-point quadrature rule using the mid-point xF of face F . The value
of the velocity at the face centre xF is computed with a linear interpolation.

Projection of the aeroacoustic source term. Let qF ∈ VF be a function

defined on the fluid grid TF such that qF =
∑NF

i=1 q̂F,iφF,i, where
{
φF,i

}NF

i
is

the set of NF basis functions associated to VF , and q̂F,i are the corresponding
expansion coefficients. We define the L2-projection of the field qF ∈ VF into VA
as: find qA ∈ VA s.t.

(qA, φA,i)TA = (qF , φA,i)TA ∀φA,i ∈ VA, (11)

where qA ∈ VA is a function defined on the discrete acoustic space such that

qA =
∑NA

i=1 q̂A,iφA,i, where
{
φA,i

}NA

i
is the set of NA basis functions, and q̂A,i

are the corresponding expansion coefficients. Since qF is a piecewise constant
over TF , namely qF ∈ VF , we recast problem (11) as follows:

∑

κA∈TA

(qA, φA,i)κA
=

∑

κA∈TA

(
NF∑

`=1

q̂F,`φF,`, φA,i

)

κA

=

∑

κA∈TA

NF∑

`=1

q̂F,`(1, φA,i)κA∩κF,`
, (12)

where we have used that κF,` = supp(φF,`). The discrete algebraic counterpart
of (12) becomes

MAAq̂A = MAF q̂F , (13)

where MAA ∈ RNA×NA with

MAA
i,j =

∑

κA∈TA

(φA,j , φA,i)κA
, i, j = 1, . . . , NA, (14)
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is the full mass matrix and MAF ∈ RNA×NF is defined as

MAF
i,` =

∑

κA∈TA

∫

κA∩κF,`

φA,i dx, i = 1, . . . , NA, ` = 1, . . . , NF . (15)

The vector q̂A in (13) collects the expansion coefficients of the projected acoustic
field qA, while q̂F collects the expansion coefficients of the donor fluid field qF .
Further details on the implementation of the projection method are given in [1].

Algebraic formulation of the semi-discrete problem. We introduce the
mass and stiffness matrix M,K ∈ RNA×NA :

Mi,j =
∑

κA∈TA

(φA,j , φA,i)
NI
κA
, Ki,j =

∑

κA∈TA

(∇φA,j ,∇φA,i)NIκA
, (16)

for i, j = 1, . . . , NA. We remark that the mass matrix M computed with the
quadrature formula in eq. (4) becomes diagonal and hence M 6= MAA. Since

ρh ∈ VA, we write ρh =

NA∑

i=1

ρ̂A,iφA,i, where
{
φA,i

}NA

i
is the set of NA basis

functions associated to VA. Collecting the expansion coefficients ρ̂A,i into the
vector ρh, we obtain the following algebraic semi-discrete formulation:

Mρ̈h + c20Kρh = f , (17)

supplemented with the initial conditions ρh = 0 and ρ̇h = 0.
For an inhomogeneous acoustic problem we define

fi = Lh(φA,i) =
∑

κA∈TA

(f, φA,i)
NI
κA
, i = 1, . . . , NA, (18)

while for the aeroacoustic problem we have that:

fi =
[ ∑

`=x,y,z

C`q̂A,`

]
i
, i = 1, . . . , NA. (19)

For the aeroacoustic case in fact, given q̂A,` solution of the projection problem
(12) with q̂F,` = [∇ · T]`, computed as described in Eq. (10), with l = x, y, z
representing each component, we have that:

Lh(φA,i) =
∑

`=x,y,z

( ∑

κA∈TA

−(qA,`, [∇φA,i]`)NIκA

)
=

∑

`=x,y,z


 ∑

κA∈TA

−
( NA∑

j=1

q̂A,`φA,j , [∇φA,i]`
)NI
κA


 =

[ ∑

`=x,y,z

C`q̂A,`

]
i
,

(20)

with i = 1, . . . , NA, and where C` is defined as

C`
i,j =

∑

κA∈TA

(φA,j , [∇φA,i]`)NIκA
, for i, j = 1, . . . , NA. (21)
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Time discretization. For the time discretization of problem (17) we divide
the temporal interval (0, T ] into N subintervals, such that T = N∆t, and we
set tk = k∆t, with k = 0, . . . , N − 1 and introduce the auxiliary variables
vkh = ρ̇h(tk), akh = ρ̈h(tk). Furthermore, since the mass matrix M is not singular,
we can represent Eq. (17) as:

ρ̈h = A(ρh, t), (22)

where A(ρh, t) = M−1(f − c20Kρh). We now employ the Newmark method to
discretize Eq. (22):

ρk+1
h = ρkh +∆tvkh +∆t2

(
βNAk+1 + (

1

2
− βN )Ak

)
,

vk+1
h = vkh +∆t

(
γNAk+1 + (1− γN )Ak

)
,

(23)

where 0 ≤ βN ≤
1

2
and 0 ≤ γN ≤ 1 are parameters of the Newmark scheme,

and where Ak = A(ρkh, t
k).

4 Curle Analogy

By following the derivation in [3], we recall the Curle aeroacoustic solution for
problem (2), that will be considered for comparison in the numerical results
presented in Section 6. Given an observer located at x at the time t, a volume
V and a body B ⊂ V , we have that:

p(x, t) =

∫ +∞

−∞

∫

V

∂2Tij(y, τ)

∂xi∂xj
G(x, t|y, τ)dydτ

+

∫ +∞

−∞

∫

∂B

(
p(y, τ)

∂G(x, t|y, τ)

∂n
−G(x, t|y, τ)

∂p(y, τ)

∂n

)
d∂Bdτ, (24)

where G is a suitable Green function, V is the control volume, n is the outward
unit normal to the boundary ∂B. We denote with r = x−y, being r its modulus.

We choose as Green function G(x, t|y, τ) =
1

4πr
δ(τ−t+ r

c0
) in eq. (24) to obtain:

p(x, t) =
1

4π

∫

V

1

r

[ ∂2Tij
∂xi∂xj

]
dy

+

∫

∂B

1

4πr

[(
1

c0

∂p

∂t
+
p

r

)
r

r
· n− ∂p

∂n

]
d∂B,

(25)

where [·] means that the function has to be evaluated at the retarded time t− r

c0
.

Next, we perform the following simplifications (see [4] for details). First, the vol-
ume term containing the Lighthill tensor T is neglected. Then the retarded times
are neglected. This assumption is reasonable if the considered sound sources are
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compact, that means if the characteristic length of the emitting object D is
smaller then the characteristic length λ of the acoustic wave, namely if D � λ.

Furthermore, since the object is considered acoustically rigid, i.e.
∂p

∂n

∣∣∣∣
∂B

= 0,

we have that:

p(x, t) =

∫

∂B

1

4πr

((
1

c0

∂p

∂t
+
p

r

)
r

r
· n
)
d∂B. (26)

By neglecting the viscous forces and considering F =

∫

∂B

pn, we have that:

p(x, t) =
1

4π

r

r2
·
(

F

r
+

1

c0

∂F

∂t

)
. (27)

5 Numerical results for acoustic problems

We consider the inhomogeneous wave equation described in (2) and we compare
our software AeroSPEED based on the spectral element approximation intro-
duced in Section 3.1 with the commercial software COMSOL [2] based on the
Lagrangian FEM.

5.1 Verification test case

As a first test case, we consider a simple model problem where we verify the
performance of both AeroSPEED and COMSOL, in terms of accuracy and com-
putational efficiency.

Acoustic Setup. Given the manufactured solution

uex = sin(πt) sin(4π(x− 1)(y − 1)(z − 1)) sin(4πxyz), (28)

we solve an inhomogeneous wave equation on the cube ΩA = (0, 1)3, with Neu-
mann boundary conditions on ΓB = ∂ΩA, with c0 = 1 m s−1. We employ a very
fine time step ∆t = 1× 10−6s and we use a second order Newmark scheme with
parameters γN = 0.5 and βN = 0.25. We solve the test case both in AeroSPEED
and in COMSOL, changing the refinement of the acoustic grid and the polyno-
mial degree of the underlying polynomial approximation and we compute the
error E2 = ||uex − uh||2 at the final time T = 0.5s.

Acoustic Results. We report in Fig. 2 the computed errors versus the num-
ber of degrees of freedom (left) and the CPU time (right) obtained with the
AeroSPEED and COMSOL solvers varying the polynomial approximation de-
gree r = 1, 2, 3, 4 of a sequence of meshes with comparable granularity. The
expected convergence rates are obtained for both the underlying SEM and FEM
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approximations, respectively. For a comparable number of degrees of freedom,
the SEM approximation is more accurate and less expensive. The results re-
ported in Fig. 2 (right) clearly indicate that AeroSPEED is able to achieve the
same error in a much shorter computational time. Moreover, as the underly-
ing polynomial approximation degree increases, AeroSPEED becomes more and
more efficient compared to COMSOL.

102 103 104 105

ndof

10−5

10−4

10−3

10−2

10−1

||u
ex
−
u
h
|| 2

hp-convergence

COMSOL, r = 1

COMSOL, r = 2

COMSOL, r = 3

COMSOL, r = 4

AeroSPEED, r = 1

AeroSPEED, r = 2

AeroSPEED, r = 3

AeroSPEED, r = 4

(a)

102 103 104

CPU time [s]

10−5

10−4

10−3

10−2

10−1

||u
ex
−
u
h
|| 2

Computational Cost

COMSOL, r = 1

COMSOL, r = 2

COMSOL, r = 3

COMSOL, r = 4

AeroSPEED, r = 1

AeroSPEED, r = 2

AeroSPEED, r = 3

AeroSPEED, r = 4

(b)

Fig. 2: Comparison between the SEM solver AeroSPEED and the Lagrangian
FEM solver COMSOL. (a) Computed errors vs number of degrees of freedom
(ndof). (b) Computed error versus CPU time. The computational tests were
performed on 4 cores Intel(R) Xeon(R) Gold 6226 CPU at 2.70GHz.

5.2 Noise Box test case

We consider a second test case to asses the capabilities of AeroSPEED in solving
acoustic problems in a confined geometry and we compare the obtained numer-
ical solution with the one provided by COMSOL.

Acoustic Setup. We consider a geometry that represents a simplified car cock-
pit, the so called Noise Box, see Fig. 3, introduced in [7]. Each wall is modeled
as a real wall (with both partially reflective and partially absorbing behaviour),
by setting a wall impedance of Z = 32 206 Pa s m−1. As forcing term we consider
a monopole sound source f(x, t) = δ(x− xS) sin(2πf0t), where δ(x− xS) is the
Dirac delta centered in xS = (1.15, 0.595, 0.065)m and f0 = 162 Hz. We set the
density of air to be ρ0 = 1.204 kg m−3 and the speed of sound c0 = 343 m s−1.
For the space discretization we set the polynomial degree r = 2 and we fix
∆x = 0.04 m. For the time discretization we set γN = 0.5 and βN = 0.25, with
∆t = 5× 10−6s, with a final time of T = 0.5 s. We solve for the same setup both
with COMSOL and AeroSPEED and we compare the two results.
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A
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xS

(a)

x

y

720

450

40
645

1018

420

1200

69

(b)

Fig. 3: (a) Three-dimensional view of the domain of the Noise Box. A and B are
the positions of the selected microphones, where A = (0.424, 0.595, 0.151) m and
B = (0.9, 0.224, 0.528) m. (b) Quoted computational domain of the Noise Box.
The spanwise length is 0.825 m. In the figure, units are expressed in millimeters.

Acoustic Results. From the results reported in Fig. 4a we note the initial
transient state, up to around t ≈ 0.05 s. The acoustic monopole is injecting
energy in the system, that is not fully dissipated, up until t ≈ 0.1 s. At that
time, the system has reached a stationary regime, where the amount of energy
dissipated by the system is balanced by the amount of energy injected. The
numerical solution obtained with AeroSPEED perfectly matches the numerical
solution obtained with COMSOL. In Fig. 5 we see the stationary pressure waves
inside the Noise Box from different snapshots of the solution.
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0
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10

p
[P
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Microphone A

AeroSPEED

COMSOL

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
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−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

p
[P

a]

Microphone B

AeroSPEED

COMSOL

Fig. 4: Computed acoustic pressure measured by microphone A and B with both
AeroSPEED and COMSOL.
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(a) t = 0.495 s (b) t = 0.496 s (c) t = 0.497 s

Fig. 5: Snapshots of the computed pressure fluctuations p′ = p−p, where p is the
average pressure, inside the Noise Box, for t = 0.495, 0.496, 0.497 s. The selected
contour levels are from −7.5 Pa to 7.5 Pa with a step of 1.5 Pa.

6 Numerical results for an aeroacoustic application

We consider an aeroacoustic application, namely the noise generated by two
tandem cylinders, a test case that have been subject of a dedicated workshop
[8]. The flow simulation has been performed with OpenFOAM [14], while the
aeroacoustic coupling has been implemented in AeroSPEED [1].

6.1 Turbulent flow around a tandem cylinder

Simulating the turbulent flow around two tandem cylinders at high Reynolds
number is a challenging problem due to the unsteadiness and complex flow struc-
tures to be captured. The separation point on the front cylinder moves on the
surface, generating a shear layer that rolls up forming a periodic vortex shed-
ding that impinges on the rear cylinder. As result, a tonal and broadband noise
are generated. Proper turbulence models are crucial to simulate at a reasonable
computational cost such a complex physics.

Fluid Setup. The two tandem cylinders problem configuration involves two
cylinders of equal diameter D = 0.057 m aligned along the streamwise direction
at a distance of 3.7D. A sketch of the computational domain is reported in
Fig. 6a. At the inlet a fixed velocity of U∞ = 44 m s−1 is set, corresponding
to a Reynolds number Re = 1.66 × 105. On ΓC1 and ΓC2, no slip conditions
are imposed. At the outlet, a zero gradient condition is set. On the remaining
boundaries, a symmetry condition is imposed. We choose a fixed time step of
∆t = 1.25 × 10−5 s, we set the final time to T = 0.35 s, and we employ a
second order backward difference formula. The height of the first cell near the
wall corresponds to y+ ≈ 30, and proper wall functions are prescribed, see [11].
Following [5], we employ a DDES k − ωSST model to simulate the turbulent
flow, see for instance [6] for more details.
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Fig. 6: Tandem cylinders computational domain. (a) Fluid computational do-
main. (b) Aeroacoustics computational domain. The center of the computational
domain is set at the center of the front cylinder. The points A, B are micro-
phone probes located at A = (-8.33D,27.82D), and B = (9.11D, 32.49D), with
D = 0.057 m. The front cylinder is denoted by ΓC1 and the rear cylinder with
ΓC2.

Acoustic Setup. Since the acoustic problem can be considered bi-dimensional,
we take as sound source only the average along the spanwise direction. A sketch
of the computational domain for the aeroacoustic case is depicted in Fig. 6b.
On the cylinders ΓC1 ∪ ΓC2 = ΓN rigid wall boundary conditions are imposed,
while at the far field ΓO absorbing boundary conditions are considered. The fluid
sound source is mapped each four time steps, namely the computational time
step for the Lighthill’s wave equation is ∆t = 5×10−5 s. The chosen polynomial
degree is r = 2 and the spacing at the far field is ∆x ≈ 0.04 m.

Flow Validation. The average flow field is characterized by a mostly symmetric
recirculation regions after the cylinders, see Fig. 7 (left). The first recirculation
length is about 2D, aligned with the results of [5]. A visualization of the vortex
structures in the flow field, see Fig. 7 (right), is made by employing the Q

criterion, where Q = 1
2

(
tr (∇u)

2
+ tr (∇u∇u)

)
. In Fig. 8, we compare the

prediction on the force coefficients with the results collected in [8]. The results
are quite heterogeneous due to the complexity of the problem and the numerous
different strategies among the research groups. We denote with CD and CL
the mean drag and lift coefficients, and their root mean squared rms values as
C̃L, C̃D, respectively. All the computed integral results are within the standard
deviation from the literature data. For further comparison, we consider Fig. 9,
where we plot the values of the pressure coefficient Cp along the cylinders and we
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compared it with the experiments [8], [10] and with the computations performed
in [5]. The main differences are located in the aft of both cylinders, and are due
to the prediction of a different pressure recovery, resulting in small shifts in the
separation point locations. Overall, our flow predictions are aligned with the
references.

(a) (b)

Fig. 7: (a) Average velocity magnitude |u| on the symmetry plane with stream-
lines. (b) Isosurfaces of Q=1000 at t = 0.35 s colored with velocity magnitude.
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Fig. 8: Comparison of the average drag forces and the rms for lift and drag of
the two cylinders. Data have been taken from [8]. The lift frequency is common
between the two cylinders. The bar is centred on the mean value of the available
literature data, and the length of the bar is one standard deviation.

Aeroacoustic Validation. In Fig. 10, a snapshot of the pressure fluctuations
induced by the tandem cylinder is shown. The acoustic pressure fluctuations
are dominated by a dipole pattern induced by the lift force acting on the rear
cylinder. As suggested by Fig. 8, the main contribution to the sound generation is
from the rear cylinder, being its C̃L much larger than the front cylinder one. Also,
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Fig. 9: Average CP distribution on the surface of the front and rear cylinders,

where CP =
p− pref
1
2ρ0U

2
∞

.

we can compare the different structures coming from the flow with the bigger
structures solved by the acoustics. In Fig. 11 we compare the sound spectra
obtained with different methodologies, such as the Curle method described in
Section 4, another Curle analogy with a spanwise corrections proposed in [13],
experimental data from QFF [8] and the results computed with AeroSPEED.
We observe that, although all the aeroacoustic solutions predict the peak coming
from the lift frequency of the rear cylinder, AeroSPEED better matches the PSD
values of the experimental data.

Fig. 10: Snapshot of the fluctuating pressure (from the acoustic computations),
and Q criterion colored with the velocity magnitude (from the flow computa-
tions).
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Fig. 11: Comparison of the sound spectra at microphone A=(-8.33D,27.82D) and
B=(9.11D, 32.49D).

7 Conclusion

We introduce AeroSPEED, a solver for aeroacoustic problems that couples a fi-
nite volume solution onto a spectral element space and solves the Lighthill’s wave
equation. The high-order spectral acoustic solver was compared with the com-
mercial software COMSOL on a model problem with a manufactured solution.
The accuracy of the numerical results agree with theoretical estimates and the
performance of the two solvers is compared in terms of accuracy versus computa-
tional time. The spectral element solution obtained with AeroSPEED is able to
guarantee higher accuracy with lower computational time. We then applied our
solver to simulate the acoustic propagation inside a simplified car cockpit (the
Noise Box). The solution obtained with the two different solvers for the pressure
signals in two different locations inside the domain perfectly match. Next, we
studied a more complex application where the noise is generated by the highly
unsteady flow around tandem cylinders. We compared the results obtained with
AeroSPEED with experimental and numerical tests performed by many research
groups on the tandem cylinder benchmark case, proving the prediction capabili-
ties of the proposed approach also for relevant and more challenging aeroacoustic
problems.
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