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Abstract

In this work, we propose a formulation based on the Polygonal Discontinuous Galerkin
(PolyDG) method for contact mechanics that arises in fluid-structure interaction prob-
lems. In particular, we introduce a consistent penalization approach to treat the fric-
tionless contact between immersed structures that undergo large displacements. The
key feature of the method is that the contact condition can be naturally embedded
in the PolyDG formulation, allowing to easily support polygonal/polyhedral meshes.
The proposed approach introduced a fixed background mesh for the fluid problem
overlapped by the structure grid that is able to move independently of the fluid one.
To assess the validity of the proposed approach, we report the results of several numer-
ical experiments obtained in the case of contact between flexible structures immersed
in a fluid.
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1 Introduction

The numerical modeling of the contact process in mechanical problems requires to intro-
duce inequalities in the mathematical formulation, see e.g. [51, 73]. In particular, the
contact could be modeled by means of two inequalities, one prescribing a kinematic non-
penetration condition on the displacements, the other one prescribing a dynamic condition
on the tractions; an additional equality ensuring the compatibility between these two con-
ditions is added to the model, see e.g. [51, 73]. Moreover, depending on the application
of interest, a friction law may be prescribed to model the tangential behaviour of the
contact tractions [51]. From the numerical viewpoint, these conditions can be imposed
via different approaches. In [34], a penalty method is employed to impose the kinematic
non-penetration condition. In [33, 32, 58, 35, 36] and [64, 24, 22, 23], the authors used
a Nitsche-DG and augmented Lagrangian formulations, respectively, that guarantee the
consistency of the numerical formulation. In [52, 72, 50, 49, 40, 71, 63, 37], a Lagrange
multipliers technique is presented for prescribing both the kinematic and the dynamic
non-penetration conditions.

The inclusion of the contact model in a fluid-structure interaction (FSI) framework
features additional challenges from the mathematical and numerical point of view, due
to the need of modeling fluid slip at the fluid-structure interface, a condition that allows
contact to take place. There are several applications that require the numerical approxi-
mation of FSI problems involving contact mechanics. For example, in the context of the
modeling of the cardiovascular system, we mention the dynamics of the heart valves, see
e.g. [62, 55, 69, 19, 45, 68, 12].

The physical process that takes place during the contact between two bodies immersed
in a fluid has not been completely understood yet, though several recent works addressed
the physical behaviour through experiments, see e.g. [60, 17, 53]. For this reason, the
derivation of a suitable mathematical model that describes the contact in FSI with proper
coupling conditions is not fully understood. From the theoretical viewpoint, several works
show that the contact may happen only under specific conditions on the fluid and structure,
or on the topology, see e.g. [31, 13, 43, 44, 48]. In particular, an important result [31, 13]
shows that in the case of an incompressible fluid, for a smooth structure geometry, the
standard no-slip kinematic coupling condition at the fluid-structure interface does not
allow the contact between approaching bodies, since a thin fluid layer remains trapped
between them. Thus, it is required to consider a slip condition to allow the contact.

For the numerical treatment of the contact, several approaches have been proposed in
the literature. In [65], the authors proposed a fully-Eulerian approach to discretize the FSI
problem by using no-slip conditions at the fluid-structure interface. This choice avoids the
penetration between the structures, though it never allows their actual contact. In [42],
the fully-Eulerian approach has been extended to the contact case with a penalization
approach to prevent the penetration of the structures. In [66], the authors proposed a
penalty approach to treat the contact problem in the framework of the Space-Time Finite
Element method developed in [67]; in [18], a Fictitious Domain approach for the FSI
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problem with immersed thin structures is proposed and a penalty approach is employed
to incorporate the non-penetration condition into the formulation. Lagrange multiplier
approaches have been used as well to handle the contact conditions in FSI, see e.g. [68,
41, 12, 57].

Recently, a wide range of literature has been focused of the development of consistent
penalization methods, such as the Discontinuous Galerkin (DG) scheme. In [21], a fully-
Eulerian approach is used to formulate the discrete FSI problem and the DG approach is
employed at the interface to prescribe a frictionless contact condition with both no-slip
and slip couplings at the fluid-structure interface. The authors prove a stability result
and show some two-dimensional numerical examples obtained with conforming meshes.
In [2], the Cut Finite Element Method (Cut-FEM) is employed to discretize the FSI
problem and frictionless contact conditions are included via a consistent penalty method.
In addition, it is proposed a transition from no-slip to slip coupling condition close to the
contact limit, based on the general Navier condition, see e.g. [60, 53]. The authors present
two-dimensional numerical examples with unfitted meshes in the case of contact between
flexible structures immersed in a fluid. Finally, in [1], the authors extended the previous
contact model by coupling it with a poroelastic model to represent the surface roughness
in a layer surrounding the structures.

Despite the great advances made, owing to the above-mentioned works, for the FSI
contact numerical modeling, some points need in our opinion to be still developed and
improved: i) the standard Finite Element method and its extensions, such as the Cut-FEM
or the eXtended Finite Element Method (XFEM), use the Lagrangian basis functions that
do not allow to easily implement a high-order space discretization. This could be of great
interest in some applications, such as to reduce dissipation and dispersion in numerical
schemes for elastodynamics problems; ii) since the Cut-FEM and the XFEM use standard
mesh element shapes, such as triangles and quadrilaterals, from the implementation point
of view in general they require a specific treatment of the fluid polygonal elements resulting
from the intersection with the structure and of the corresponding degrees of freedom (for
example their doubling).

The aim of this work is to design a method that could give some concrete answers
to the previous open issues. In particular, we propose a DG formulation for the contact
problem in presence of the interaction with a surrounding fluid, valid for meshes with
arbitrary polygonal elements. This allows us to develop a consistent, high-order accurate
and geometrically flexible numerical method. In particular, the idea is to use discontinuous
Finite Elements modal basis functions which are built directly on the polygons generated
by the intersections between fluid and structure. This allows us to i) easily implement any
order of discretization and ii) manage the degrees of freedom of the cut elements directly
on the physical polygons, simplifying their treatment.

Here, we consider the Discontinuous Galerkin method on polygonal grids (PolyDG)
[5, 14, 70, 29, 54, 27, 25, 28, 7, 9, 8, 61, 10, 26, 6] and, in particular, the FSI formu-
lation presented in [11]. Starting from this work, we propose a new consistent contact
formulation for the FSI contact problem, where the contact conditions are written in the
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framework of the PolyDG approach. This allows us to naturally incorporate these condi-
tions in the formulation. As a consequence, we are able to present a scheme that naturally
features high-order space accuracy for the contact FSI problem and can easily handle non-
conforming arbitrarily shaped fluid and structure meshes. This provides us with a gain in
geometric flexibility. Notice also that the proposed formulation is valid both for the two
and three-dimensional cases.

The paper is organized as follows. In Section 2, we introduce the FSI problem and
the contact model; in Section 3, we present the PolyDG contact FSI formulation; finally,
in Section 4, we show several 2D numerical experiments to assess the performance of the
proposed formulation.

2 Fluid-structure interaction and contact model

In this section, we introduce the governing equations for the FSI problem and for the
contact model.

Referring to Figure 1, for any time t ∈ [0, T ], being T > 0 the final observation time,
we consider a fluid domain Ωf (t) ⊂ R2 and a structure domain Ωs (t) ⊂ R2 such that
Ω = Ωf (t) ∪ Ωs (t), Ωf (t) ∩ Ωs (t) = ∅. We assume that both the fluid and structure
domains are polygonal.

We also assume that the structure domain is completely immersed in the fluid one,
so that ∂Ωs (t) represents the fluid-structure interface. We denote by ni(t) and τi(t) the
outward unit normal and the unit tangential vectors to ∂Ωi (t), respectively, for i = f, s.
We also set n = nf = −ns and τ = τf = −τs on ∂Ωs (t). To ease the notation, when it is
not necessary, we drop the dependence on time. For the sake of exposition, we also assume
that the bottom boundary of Ωf (t) is a straight line defined as Γw = {(x, y) : y = 0} that
represents a rigid wall with outward vector normal nw and unit tangential vector τw.
We indicate with Γf the fixed external boundary of the fluid domain. In fact, we are
considering the case of one immersed structure entering in contact with a rigid wall. The
case of two flexible immersed structures will be numerically addressed in Section 3.3.

Our mathematical model is based on the following two assumptions, which accordingly
introduce a splitting of ∂Ωs in three subregions ΓC , Σslip, Σno-slip, where different coupling
conditions will be applied:

i) A thin layer of fluid is assumed to be always present between structures, also at
the contact region. The latter is denoted by ΓC , see Figure 1. Thus, the bodies
may directly exchange forces even though their geometries do not get in touch. In
particular, we assume that the contact happens whenever the distance between the
two bodies is lower than ε > 0, for a suitable ε. This choice is introduced to simplify
the resulting numerical approximation, see also Remark 1. Owing to this, the fluid
structure interface is still ∂Ωs also during the contact;
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Figure 1: Sketch of the fluid and structure domains Ωf and Ωs with the contact conditions.
Γw is the rigid wall. ∂Ωs is partitioned in Σno-slip (solid line), Σslip (dash line) and ΓC (bold
line). The function gC (x) indicates the distance between x and its projection Πs→w (x) on
Γw. The threshold distance gslip separates the Σno-slip and Σslip regions, while ε separates
the Σslip and ΓC regions.

ii) To allow the contact between the bodies, we need to prescribe slip conditions between
fluid and structure at the contact region. We extend to Σslip the region where slip
conditions are prescribed, even if no contact occurs here, see Figure 1. This is done
in order to allow the fluid between the flexible and rigid structures to slip away, so
that they could move closer each other.

On the remaining part of the interface, Σno-slip, standard FSI coupling conditions
are prescribed, see Figure 1.

The structure problem is written in a Lagrangian framework; accordingly, the quanti-
ties in the reference configuration are denoted with ·̂ . The fluid and contact problems are
instead written in an Eulerian framework.

We consider an incompressible Newtonian fluid with Tf (u, p) = −pI + 2µfD(u),
where D(v) = 1

2(∇v + ∇vT ), u and p are the fluid velocity and pressure and µf is
the fluid dynamic viscosity. For the structure, we consider a linear elastic material with
Ts(d) = λs(∇ · d)I + 2µsD(d), where d is the structure displacement, λs, µs > 0 are
the Lamé parameters. We also introduce the fourth order elastic tensor Cs such that
Ts(d) = CsD(d), see e.g. [56]. To pass from the Cauchy stress tensor Ts(d) to the
Piola-Kirchhoff stress tensor T̂s(d̂), we use as usual the following formula:

T̂s = JTsF
−T ,

with J = det(F ) and where F = ∇x is the deformation tensor, with the gradient evaluated
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in the reference space coordinates and x the coordinates of the points in the current
configuration.

To prevent the penetration of the solid domain Ωs into the rigid wall Γw, we impose
that their distance gC is greater than a specific threshold ε ∈ R+, where gC : ∂Ωs → R is
the gap function defined as

gC (x) = (Πs→w (x)− x) · nw,

and where we have introduced the map Πs→w : ∂Ωs → Γw defined as Πs→w (x) = (x, 0)
that projects a point from the boundary of the solid domain to the wall. Notice that

gC (x) = gC

(
X + d̂

)
, where X are the point coordinates in the reference configuration.

For the sake of notation, in what follows we will write gC (d) instead of gC

(
X + d̂

)
to

highlight the dependence of gC on the structure displacement.
The contact region ΓC is identified as the subregion of ∂Ωs such that gC = ε. Here, a

repulsive “force” (contact traction) λC : ∂Ωs → R2 is prescribed to the solid:

λC = λCnw + ϕCτw,

where λC is the normal component aligned with nw and ϕC the tangential one, which is
assumed to be zero. This leads to a contact model which is friction-less and is prescribed
via a master-slave approach [51, 73], i.e. the contact conditions are prescribed only on the
slave body. In our framework, the slave body is the solid domain Ωs, while we consider
the wall Γw as the rigid and fixed master body. Then, given ε > 0, the conditions that
account for the contact between the structure Ωs and the wall Γw read as follows [21]:

gC ≥ ε, λC ≤ 0, (ε− gC)λC = 0 on ∂Ωs, (1a)

ϕC = 0 on ∂Ωs. (1b)

Notice that, to impose conditions (1), the (constant) normal nw appearing in the definition
of gC has to be translated and applied to ∂Ωs.

Remark 1. In condition (1a), the relaxation parameter ε ≥ 0 has been introduced so that
the contact arises when the gap function gC is equal to the threshold distance ε. This choice
is motivated to avoid changes of topology in the discrete setting. Indeed, the non-linear
nature of the contact conditions requires an iterative procedure for solving the resulting
non-linear problem, and its solution fulfils the constraints only at convergence. The first
inequality in equation (1a) prescribes that the distance between the solid domain and the
wall has to be greater than or equal to ε, i.e. no-penetration of the structure in the region
far at most ε from the wall Γw is allowed. The second inequality prescribes that the normal
contact traction on the solid domain acts as a compression, i.e. a repulsive force. The last
condition in (1a) ensures that at least one of the two previous inequalities is zero. Finally,
condition (1b) prescribes no friction.
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The standard fluid-structure interface Σno-slip is the portion “far away” from the con-
tact region, defined as:

Σno-slip = {x ∈ ∂Ωs : gC (x) > gslip},

where gslip > ε is a suitable threshold distance and where we assume standard FSI condi-
tions.

Instead, Σslip is the portion “close” to the contact region, defined as

Σslip = {x ∈ ∂Ωs : ε < gC (x) ≤ gslip}.

On such a portion of the interface, slip conditions are prescribed. These prescribe the
standard continuity of velocities and tractions in the normal direction, whereas in the
tangential direction homogeneous Neumann conditions for both fluid and structure are
imposed, i.e.

u · n = ∂td · n, Tf (u, p)n · n = Ts(d)n · n on Σslip,

Tf (u, p)n · τ = 0, Ts(d)n · τ = 0 on Σslip.
(2)

As observed, close to the contact region ΓC , a thin fluid layer of size ε is still present.
Thus, here we apply the slip fluid-structure interface conditions in presence of contact
that, due to the additional contact “force” λC , become:

u · n = ∂td · n, Tf (u, p)n · n = Ts(d)n · n− λC on ΓC ,

Tf (u, p)n · τ = 0, Ts(d)n · τ − ϕC = 0 on ΓC .

Remark 2. We point out that the definitions of Σno-slip, Σslip and ΓC are valid also in the
case of a non-convex solid domain Ωs, where each of these regions may be non-connected.

The resulting contact problem in presence of FSI reads as follows: for any t ∈ (0, T ],
find the fluid velocity u, the fluid pressure p, the solid displacement d, and the contact
force λC , such that
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Fluid equations

Structure equation

No-slip conditions at

FSI interface Σno-slip

Slip conditions at

FSI interface Σslip

Slip conditions in

presence of contact

on ΓC

Contact conditions

ρf∂tu+ ρfu · ∇u−∇ · Tf (u, p) = ff in Ωf , (3a)

∇ · u = 0 in Ωf , (3b)

u = 0 on Γf ∪ Γw, (3c)

ρs∂ttd̂−∇ · T̂s(d̂) = f̂s in Ω̂s, (3d)

u = ∂td on Σno-slip, (3e)

Tf (u, p)n = Ts(d)n on Σno-slip, (3f)

u · n = ∂td · n on Σslip, (3g)

Tf (u, p)n · n = Ts(d)n · n on Σslip, (3h)

Tf (u, p)n · τ = 0 on Σslip, (3i)

Ts(d)n · τ = 0 on Σslip, (3j)

u · n = ∂td · n on ΓC , (3k)

Tf (u, p)n · n = Ts(d)n · n− λC on ΓC , (3l)

Tf (u, p)n · τ = 0 on ΓC , (3m)

Ts(d)n · τ − ϕC = 0 on ΓC , (3n)

gC ≥ ε, λC ≤ 0, (ε− gC)λC = 0 on ∂Ωs, (3o)

ϕC = 0 on ∂Ωs, (3p)

where ρf and ρs are the fluid ans structure densities and ff and fs the forcing terms. Prob-
lem (3) is supplemented with (regular enough) initial conditions u(x, 0) = u0(x) in Ωf (0),

d̂(x, 0) = d̂0(x) in Ω̂s, and ∂td̂(x, 0) = v̂0(x) in Ω̂s.

3 Numerical discretization

In this section, we present the semi-discrete PolyDG formulation associated to the weak
form of problem (3) (Section 3.1), then we discuss the time discretization and the treatment
of the non-linearities and report the corresponding fully discrete formulation (Section
3.2) and finally we describe how to extend the numerical formulation in the case of two
deformable structures (Section 3.3).

3.1 Polygonal Discontinuous Galerkin approximation

We introduce the background mesh Th and solid mesh Ts,h that cover the entire fixed
domain Ω and the structure domain Ωs, respectively, see Figure 2 (top-left). Notice that,
while Th is fixed in time, Ts,h depends on time. We point out that the elements belonging
to Th and Ts,h may be polygonal elements of arbitrary shape. The intersection of the
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background and structure meshes induces a set of background elements that are crossed
by the boundary of Ts,h, see Figure 2 (bottom-left), defined as:

Gh = {K ∈ Th : ∅ 6= K ∩ Ωs ( K}. (4)

Each element K ∈ Gh can be partitioned into elements of arbitrary shape {P jK}j resulting
from the intersection with the boundary of the structure mesh, see Figure 2 (bottom-
right). The computational grid Tf,h associated with the fluid domain Ωf is obtained as
the union of the elements of Th that are not intersected by the structure domain, plus the
cut elements that are partially covered by the structure domain, i.e.,

Tf,h = {K ∈ Th : K ∩Ks = ∅ ∀Ks ∈ Ts,h} ∪ {P jK ⊂ K ∈ Gh : P jK ∩ Ωf 6= ∅}, (5)

see Figure 2 (top-right).

In what follows, we assume that µf and Cs are piecewise constant over the mesh.

Th

Ts,h

Tf,h

Gh P 1
K

P 2
K

Figure 2: Top-left: background mesh Th (gray) and structure mesh Ts,h (black). Top right:
fluid mesh Tf,h. Bottom-left: elements belonging to the set Gh defined as in (4) (blue).
Bottom-right: detail of an element K ∈ Gh that is cut into P 1

K and P 2
K (blue).

We denote by Fi,h, i = {f, s,no-slip, slip, C}, the set of one-dimensional edges com-
posing Tf,h, Ts,h, Σno-slip, Σslip and ΓC , respectively, and FΣ,h = Fno-slip,h ∪ Fslip,h ∪ FC,h.
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In what follows, we introduce the DG Finite Elements spaces of order `, defined as

V `
f,h(t) = {v(t) ∈ [L2(Ωf (t))]2 : v|K ∈ [P`(K)]2 ∀K ∈ Tf,h(t)},

Q`h(t) = {q(t) ∈ L2(Ωf (t)) : q|K ∈ P`(K) ∀K ∈ Tf,h(t)},
V `
s,h = {w ∈ [L2(Ω̂s)]

2 : w|K ∈ [P`(K)]2 ∀K ∈ T̂s,h},
(6)

where P`(K) denotes the space of polynomials obtained over the polygon K of total degree
at most ` ≥ 1. Notice that the polynomial space P`(K) is based on a modal expansion
that allows to easily build high-order DG spaces. Moreover, the shape functions and the
degrees of freedom are directly generated on the (polygonal) physical element K with the
“bounding box” technique, as described in [29]. This simplifies the implementation with
respect to the Finite Elements methods. Indeed, for the Cut-FEM and XFEM the shape
functions and the degrees of freedom are defined on the original triangular/quadrilateral
element K, yielding the assembling of the local matrices corresponding to {P jK}j more
tricky.

Remark 3. Notice that the total degree ` for the polynomials in the space P` can be in
general chosen differently for the fluid velocity, fluid pressure and solid displacement. To
ease the exposition, in what follows and in the numerical experiments we consider the same
order for all the three spaces.

On any interior edge F ∈ Fi,h, i = {f, s,no-slip, slip, C}, and for regular enough vector-
valued and symmetric tensor-valued functions v and T , respectively, we define the average
and jump operators as

{T } =
1

2

(
T+ + T−

)
, JvK = v+ � n+ + v− � n−,

where v± and T± denote the traces of v and T on any edge F between elements K± and
where v � n = (vnT + nvT )/2. Notice that JvK is a symmetric tensor-valued function.
On a boundary edge F ∈ Ff,h where an homogeneous Dirichlet condition is prescribed,
we set analogously

{T } = T , JvK = v � n.
We also introduce the L2-inner products over the domain Z and edges Fi,h with the short-
hand notation (·, ·)Z and (·, ·)Fi,h

, respectively.

The semi-discrete PolyDG approximation reads as follows: given δ ∈ [0, 1], σf ∈
L∞(Ff,h), σ̂s ∈ L∞(F̂s,h), σΣ ∈ L∞(FΣ,h), σC ∈ L∞(FC,h), ff ∈ [L2(Ωf )]2 and f̂s ∈
[L2(Ω̂s)]

2, for any t ∈ (0, T ], find (uh(t), ph(t), d̂h(t)) ∈ V `
f,h(t)×Q`h(t)× V `

s,h, such that

Af,h (uh,uh, ph;vh, qh) +As,h

(
d̂h, ŵh

)
+Ano-slip,h(uh, ph,dh;vh, qh,wh)

+Aslip,h(uh, ph,dh;vh, qh,wh)

+AC,h (uh, ph,dh;vh, qh,wh) = Fh(vh,wh),

(7)
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for all (vh, qh, ŵh) ∈ V `
f,h(t)×Q`h(t)× V `

s,h. Here, we have set

Af,h (uh,uh, ph;vh, qh) = ρf (∂tuh,vh)Ωf
+ af (uh,vh) + b (ph,vh)− b (qh,uh) + c (uh,uh,vh)

− ({Tf (uh, ph)} , JvhK)Ff,h
− (JuhK , {Tf (vh,−qh)})Ff,h

+ (σf JuhK , JvhK)Ff,h
+ sh (ph, qh) ;

(8)

As,h

(
d̂h, ŵh

)
= ρs

(
∂ttd̂h, ŵh

)
Ω̂s

+ as

(
d̂h, ŵh

)
−
({
T̂s(d̂h)

}
, JŵhK

)
F̂s,h

−
(r
d̂h

z
,
{
T̂s(ŵh)

})
F̂s,h

+
(
σ̂s

r
d̂h

z
, JŵhK

)
F̂s,h

;

(9)

Ano-slip,h(uh, ph,dh;vh, qh,wh) =− (δTf (uh, ph)n+ (1− δ)Ts(dh)n,vh −wh)Fno-slip,h

− (uh − ∂tdh, δTf (vh,−qh)n+ (1− δ)Ts(wh)n)Fno-slip,h

+ (σΣ(uh − ∂tdh),vh −wh)Fno-slip,h
;

(10)

Aslip,h(uh, ph,dh;vh, qh,wh) =− (δTf (uh, ph)n · n+ (1− δ)Ts(dh)n · n,vh · n−wh · n)Fslip,h

− (uh · n− ∂tdh · n, δTf (vh,−qh)n · n+ (1− δ)Ts(wh)n · n)Fslip,h

+ (σΣ(uh · n− ∂tdh · n),vh · n−wh · n)Fslip,h
;

(11)

AC,h (uh, ph,dh;vh, qh,wh) =− (δTf (uh, ph)n · n+ (1− δ)Ts(dh)n · n,vh · n−wh · n)FC,h

− (uh · n− ∂tdh · n, δTf (vh,−qh)n · n+ (1− δ)Ts(wh)n · n)FC,h

+ (σΣ(uh · n− ∂tdh · n),vh · n−wh · n)FC,h

− (σC gC (dh) ,wh · n)FC,h

− (δ (Tf (uh, ph)n− Ts(dh)n) · n,wh · n)FC,h

− ((1− δ) (Tf (uh, ph)n− Ts(dh)n) · n,vh · n)FC,h
;

(12)

Fh(vh,wh) = (ff ,vh)Ωf
+
(
f̂s, ŵh

)
Ω̂s

− (σC ε,wh · n)FC,h
.
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In (8)-(9) the bilinear forms af : V `
f,h×V `

f,h → R, b : Q`h×V `
f,h → R and as : V `

s,h×V `
s,h → R

are defined as

af (u,v) = 2µf (D(u),D(v))Ωf
, b(p,u) = − (p,∇ · u)Ωf

,

as

(
d̂, ŵ

)
=
(
T̂s(d̂),∇ŵ

)
Ω̂s

= λs

(
∇ · d̂,∇ · ŵ

)
Ω̂s

+ 2µs

(
D(d̂),D(ŵ)

)
Ω̂s

,

whereas the trilinear form c : V `
f,h × V `

f,h × V `
f,h → R is defined as in [38] and is given by

c(w,u,v) = ρf (w · ∇u,v)Ωf
+
ρf
2

(∇ ·w,u · v)Ωf

− ρf ({{w}} · n, JuK · {{v}})Ff,h
−
ρf
2

(JwK · n, {{u · v}})Ff,h
.

In (8), sh : Q`h ×Q`h → R is the Interior Penalty term for pressure stabilization [38] with
parameter γp, that allows us to use equal order elements for velocity and pressure. A
theoretical study on possible pairs of spaces that satisfy the inf − sup condition for the
proposed method on arbitrary polygonal/polyhedral meshes is under investigation. See
[3, 39, 20] and [4, 30, 15, 16] for a study of the Stokes problem on general meshes with the
Hybrid High-Order and the Virtual Element methods, respectively.

In (8)-(12), σf , σ̂s, σΣ, σC are the four positive penalty functions which are piecewise
constant over the edges F belonging to Fi,h, i = {f, s,Σ, C}. Their definition over F is as
follows:

σf |F = γf max
K+,K−

{
2`2µf
hK

}
F = ∂K

+⋂
∂K
− ∈ Ff,h,

σ̂s|F = γs max
K+,K−

{
`2Cs,K
hK

}
F = ∂K

+⋂
∂K
− ∈ F̂s,h,

σΣ|F = γΣ max
K+,K−

{
`2

hK

(
2δµf + (1− δ)Cs,K

)}
F = ∂K

+⋂
∂K
− ∈ FΣ,h,

σC |F = γC
`2

hK
F ∈ FC,h.

Here, hK is the diameter of the element K and Cs,K = ‖Cs|K‖`2 . Moreover, γf , γs, γΣ and
γC are positive constants that will be chosen later on.

Remark 4. Notice that the last two terms in (12) arise as a consequence of consistency.
Indeed, after the integration by parts in the fluid and solid bilinear forms, a term depending
on λC appears on ΓC which can be replaced by exploiting equations (3l) and (3p). Thus, in
fact the contact force λC does not appear as an explicit unknown of the discrete problem.

Remark 5. We point out that in the PolyDG formulation (7) the inequalities appearing
in equation (3o) are “hidden” in the definition of ΓC . Indeed, if gC (x) > ε for all x, then
ΓC = ∅ and the term AC,h is zero and does not introduce any force to the system, i.e.
λC = 0; otherwise, if gC (x) = ε for some points x ∈ ∂Ωs, we have ΓC = {x : gC (x) = ε}
and the term AC,h prescribes a repulsive force λC < 0 on ΓC .
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3.2 Time discretization

Let ∆t be the constant time discretization parameter, let tn = n∆t, n ≥ 0, be the n−th
time step, and, given the unknown z(t), let zn be the approximation of z(tn). The same
notation is used for domains and spaces.

Given r ∈ N+, to discretize in time the semi-discrete problem (7), we apply a Back-
ward Difference Formula (BDF) scheme [46] of order r both for the fluid and the solid
subproblems. We introduce the BDF scheme for approximating the time derivatives, i.e.

∂tz(t
n) ≈

β0

∆t
zn − z̃n, z̃n =

r∑
i=1

βi

∆t
zn−i,

∂ttz(t
n) ≈

ζ0

∆t2
zn − ˜̃zn, ˜̃zn =

r∑
i=1

ζi

∆t2
zn−i,

where βi and ζi, for i = 0, . . . , r, are the coefficients of the BDF scheme for the discretiza-
tion of the first and second time derivatives, respectively, see e.g. [46].

The fully-discrete PolyDG approximation reads as follows: given δ ∈ [0, 1], σf ∈
L∞(Fnf,h), σ̂s ∈ L∞(F̂s,h), σΣ ∈ L∞(FnΣ,h), σC ∈ L∞(FnC,h), ff ∈ [L2(Ωn

f )]2 and f̂s ∈
[L2(Ω̂s)]

2, for n > 0, find (unh, p
n
h, d̂

n
h) ∈ V `,n

f,h ×Q
`,n
h × V

`
s,h, such that

Anf,h (unh,u
n
h, p

n
h;vh, qh) +Ans,h

(
d̂nh, ŵh

)
+Anno-slip,h(unh, p

n
h,d

n
h;vh, qh,wh)

+Anslip,h(unh, p
n
h,d

n
h;vh, qh,wh)

+AnC,h (unh, p
n
h,d

n
h;vh, qh,wh) = Fnh (vh,wh),

(13)

for all (vh, qh, ŵh) ∈ V `,n
f,h ×Q

`,n
h × V

`
s,h. Here, we have defined

Anf,h (unh,u
n
h, p

n
h;vh, qh) = ρf

(
β0

∆t
unh,vh

)
Ωn

f

+ anf (unh,vh)

+ bn (pnh,vh)− bn (qh,u
n
h) + cn (unh,u

n
h,vh)

− ({Tf (unh, p
n
h)} , JvhK)Fn

f,h
− (JunhK , {Tf (vh,−qh)})Fn

f,h

+ (σf JunhK , JvhK)Fn
f,h

+ snh (pnh, qh) ;

(14)

Ans,h

(
d̂nh, ŵh

)
= ρs

(
ζ0

∆t2
d̂nh, ŵh

)
Ω̂s

+ as

(
d̂nh, ŵh

)
−
({
T̂s(d̂

n
h)
}
, JŵhK

)
F̂s,h

−
(r
d̂nh

z
,
{
T̂s(ŵh)

})
F̂s,h

+
(
σ̂s

r
d̂nh

z
, JŵhK

)
F̂s,h

;
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Anno-slip,h(unh, p
n
h,d

n
h;vh, qh,wh) =− (δTf (unh, p

n
h)n+ (1− δ)Ts(dnh)n,vh −wh)Fn

no-slip,h

−

(
unh −

β0

∆t
dnh, δTf (vh,−qh)n+ (1− δ)Ts(wh)n

)
Fn

no-slip,h

+

(
σΣ(unh −

β0

∆t
dnh),vh −wh

)
Fn

no-slip,h

;

(15)

Anslip,h(unh, p
n
h,d

n
h;vh, qh,wh) =− (δTf (unh, p

n
h)n · n+ (1− δ)Ts(dnh)n · n,vh · n−wh · n)Fn

slip,h

−

(
unh · n−

β0

∆t
dnh · n, δTf (vh,−qh)n · n+ (1− δ)Ts(wh)n · n

)
Fn

slip,h

+

(
σΣ(unh · n−

β0

∆t
dnh · n),vh · n−wh · n

)
Fn

slip,h

;

(16)

AnC,h (unh, p
n
h,d

n
h;vh, qh,wh) =− (δTf (unh, p

n
h)n · n+ (1− δ)Ts(dnh)n · n,vh · n−wh · n)Fn

C,h

−

(
unh · n−

β0

∆t
dnh · n, δTf (vh,−qh)n · n+ (1− δ)Ts(wh)n · n

)
Fn

C,h

+

(
σΣ(unh · n−

β0

∆t
dnh · n),vh · n−wh · n

)
Fn

C,h

− (σC gC (dnh) ,wh · n)Fn
C,h

− (δ (Tf (unh, p
n
h)n− Ts(dnh)n) · n,wh · n)Fn

C,h

− ((1− δ) (Tf (unh, p
n
h)n− Ts(dnh)n) · n,vh · n)Fn

C,h
;

(17)
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Fnh (vh,wh) = ρf (ũnh,vh)Ωn
f

+ ρs

( ˜̃̂
dh
n, ŵh

)
Ω̂s

+
(
d̃h
n, δTf (vh,−qh)n+ (1− δ)Ts(wh)n

)
Fn

no-slip,h

−
(
σΣd̃h

n,vh −wh

)
Fn

no-slip,h

+
(
d̃h
n · n, δTf (vh,−qh)n · n+ (1− δ)Ts(wh)n · n

)
Fn

slip,h∪F
n
C,h

−
(
σΣd̃h

n · n,vh · n−wh · n
)
Fn

slip,h∪F
n
C,h

+ (ff ,vh)Ωn
f

+
(
f̂s, ŵh

)
Ω̂s

− (σC ε,wh · n)Fn
C,h

.

(18)

In (14) the bilinear forms anf : V `,n
f,h × V

`,n
f,h → R, bn : Q`,nh × V

`,n
f,h → R, the trilinear

form cn : V `,n
f,h ×V

`,n
f,h ×V

`,n
f,h → R and the Interior Penalty term for pressure stabilization

snh : Q`,nh ×Q
`,n
h → R are the ones given in Section 3.1 evaluated on the approximation of

the fluid domain at time tn, Ωn
f .

Remark 6. The domain Ωn
f is computed as the set difference between the domain Ω and

Ωn
s , i.e. Ωn

f = Ω \ Ωn
s , where Ωn

s is the solid domain in the current configuration obtained

by applying the displacement d̂nh to Ω̂s via the discrete Lagrangian map Ln
h : Ω̂s → Ωn

s

defined as Ln
h = I

Ω̂s
+ d̂nh. The sets Σn

no-slip, Σn
slip and ΓnC are then obtained by restricting

Ωn
f to the corresponding interfaces.

We point out that in the fully discrete problem two sources of non-linearities are
present: the convective term in the Navier-Stokes equations and the fact that the fluid
domain Ωn

f and the interfaces Σn
no-slip, Σn

slip, ΓnC are unknown.
To deal with all these non-linearities, we use a fixed point scheme. We denote by

k = 0, . . . ,Kmax, with Kmax ≥ 0 chosen a priori, the index for the fixed point loop. At
time tn and iteration k > 0:

a) the convection term in (14) is approximated by cn(u
n,(k−1)
h ,u

n,(k)
h ,vh);

b) the fluid domain and the interfaces in (14), (15), (16), (17), (18) are approximated by

Ω
n,(k−1)
f , Σ

n,(k−1)
no-slip , Σ

n,(k−1)
slip and Γ

n,(k−1)
C , respectively.

The fixed point scheme stops when two consecutive structure displacements differ up

to a prescribed tolerance, i.e.
∥∥∥dn,(k)

h − dn,(k−1)
h

∥∥∥
L2
< tol, with tol chosen a priori, or the

maximum number of iterations is reached, i.e. k = Kmax. In Algorithm 1, we detail the
fixed point scheme. The choice of an exact (up to the tolerance) treatment of the non-
linearities has been mainly driven by the contact non-linearity, since an inexact treatment
would provoke inaccuracies and possibly numerical instabilities.
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Algorithm 1 . Fixed point scheme at time tn.

Given u
n,(0)
h , p

n,(0)
h , d̂

n,(0)
h , Kmax ∈ N+, tol ∈ R+ and set k = 1:

while k ≤ Kmax and
∥∥∥dn,(k)

h − dn,(k−1)
h

∥∥∥
L2
< tol do

1. Solve problem given by equation (13) for u
n,(k)
h , p

n,(k)
h and d̂

n,(k)
h with

a) cn(u
n,(k−1)
h ,u

n,(k)
h ,vh);

b) Ω
n,(k−1)
f , Σ

n,(k−1)
no-slip , Σ

n,(k−1)
slip , Γ

n,(k−1)
C ;

2. Update the solid domain Ω
n,(k)
s by applying d̂

n,(k)
h to Ω̂s via Ln,(k)

h ;

3. Update the fluid domain Ω
n,(k)
f = Ω\Ωn,(k)

s and its interfaces Σ
n,(k)
no-slip, Σ

n,(k)
slip , Γ

n,(k)
C ;

4. Update k −→ k + 1.

end while

The resulting linear system corresponding to the linearized FSI problem with contact
arising at each fixed point iteration is solved by means of a direct method.

As initial guess (k = 0) of the fixed point scheme, we use extrapolations of order r for

u
n,(0)
h and d

n,(0)
h obtained by solutions at previous time steps.

3.3 Extension to two deformable immersed structures

In this section, we describe the main changes needed when extending the numerical for-
mulation presented in Section 3.1 to the case of two immersed and deformable structures
that may come into contact. In particular, Ωs is the slave body while Ωm is the master
one. In what follows, index m refers to quantities in the master body. We denote by nα
the normal unit vectors to Ωα, for α = s,m.

Referring to Figure 3, the boundary of the solid domain ∂Ωα is partitioned into
Σno-slip,α, Σslip,α and ΓC,α, α = s,m, as done in Section 2. While for the slave body
these regions are defined as in Section 2, for the master one they are defined as the pro-
jection of the slave regions onto the master boundary, i.e.

ΓC,m = {x ∈ ∂Ωm : x = Πs→m (y) ∀y ∈ ΓC,s},
Σslip,m = {x ∈ ∂Ωm : x = Πs→m (y) ∀y ∈ Σslip,s},

Σno-slip,m = ∂Ωm \ (Σslip,m ∪ ΓC,m) ,

where Πs→m : ∂Ωs → ∂Ωm is the projection from the slave domain to the master one
defined as

Πs→m (x) = argmin
y∈∂Ωm

|(x− y) · nm (y)| ∀x ∈ ∂Ωs.

The gap function gC is now defined as follows

gC (x) = (Πs→m (x)− x) · nw (x) ,
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Ωf

Ωs

Ωm

ΓC,s

ΓC,m

Σno-slip,s

Σno-slip,m

Σslip,s

Σslip,m

x

Πs→m (x)

nw

gC

x

y

Figure 3: Contact between two deformable structures: sketch of the domains. ∂Ωα is
partitioned in Σno-slip,α (solid line), Σslip,α (dash line) and ΓC,α (bold line), α = s,m.

where nw (x) = −nm ◦Πs→m (x).
The main difference with respect to the formulation presented in Section 2 is the

presence of the master body Ωm that requires to introduce:

1. an elastodynamics equation for the body Ωm;

2. interface conditions on Σno-slip,α and Σslip,α, α = s,m, for both the structures, i.e.
standard FSI conditions and (2), respectively;

3. a “contact force” on ΓC,m to balance the one acting on ΓC,s. Accordingly, the balance
of stresses on the contact regions ΓC,s and ΓC,m reads:

Tf (u, p)n · n = Ts(ds)n · n− λC on ΓC,s,

Ts(ds)n · τ − ϕC = 0 on ΓC,s,

Tf (u, p)n · n = Tm(dm)n · n+ λC on ΓC,m,

Tm(dm)n · τ + ϕC = 0 on ΓC,m.

The corresponding PolyDG formulations are derived as done in Section 3.1 and 3.2,
where all the terms involving Ωs and its interfaces are duplicated for Ωm. We point out
that, according to a master-slave approach, the contact conditions (3o)-(3p) are applied
only on the slave body Ωs. Accordingly, in the form AC,h corresponding to the contact
regions, the contact penalty term reads

− (σC gC (ds,h,dm,h) ,ws,h · n−wm,h · n)FC,s,h
,
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Fluid parameters Test I Test II

ρf
(
g/cm2

)
density 1.2 · 10−3 1.0

µf (g/s) viscosity 0.2 · 10−3 0.035

Structure parameters

ρs
(
g/cm2

)
density 0.1 1.2

E (dyne/cm) Young’s module 103 4 · 106

ν Poisson’s ratio 0.45 0.45

Table 1: Physical parameters for the fluid and the structure for the two test cases.

where FC,s,h is the set of edges of ΓC,s and again we have highlighted the dependence of
gC on the structure displacements.

4 Numerical examples

We present here two numerical experiments in two-dimensions: in the first one (test I),
cf. Section 4.1, we study the dynamics of a falling elastic ball immersed in a fluid and
bouncing on the ground. With this test case, we aim at investigating the sensitivity on the
contact parameters introduced in the numerical formulation and at showing the reliability
of the method for a high order discretization. In the second example (test II), cf. Section
4.2, we consider a more complex geometry and at high Reynolds regime. In particular, we
consider the case of two immersed structures that come into contact, see Section 3.3.

For all the numerical tests, we set r = `, δ = 1 and γf = γs = γΣ = 10. The tolerance
for the stopping criterion in the fixed point scheme is set to tol = 10−6.

4.1 Ball falling to the ground

In this example we consider an elastic ball Ωs of radius 0.05 cm, initially centered at
(0.25, 0.175), falling in the air towards the rigid ground Γw = {(x, y) : y = 0} due to the
acceleration g = (0,−980.655) cm/s2. The size of the fluid domain Ωf is 0.5 cm×0.325 cm
with the bottom-left corner placed in the origin O = (0, 0). The bottom boundary of
the fluid domain corresponds to the rigid ground Γw, see Figure 4 (left). The physical
parameters for the fluid and solid are summarized in Table 1.

The air and the ball are initially at rest. On the upper boundary of the fluid domain we
impose a homogeneous Neumann condition, while on the left, right and lower boundaries
we set u = 0. We consider a final time T = 0.03 s.

For the first numerical experiments, we set ` = 1 and we consider a time step ∆t =
10−4 s. The fluid and structure meshes are composed of about 1.6 · 103 and 80 el-
ements, respectively, with a characteristic mesh size h = 1.6 · 10−2 cm, see Figure 4
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(right). The contact parameters are set to γC = 6 · 10−2 g/s2, ε = 0.1h = 1.6 · 10−3 cm,
gslip = 1.5h = 2.4 ·10−2 cm. Regarding the fixed point scheme, we set a maximum number
of iterations Kmax = 20. Next, we present a series of tests to demonstrate the robustness
of our scheme with respect to the contact parameters γC , ε and gslip, and to the discretiza-
tion parameter ∆t, by comparing the y-position of the ball at the point A.

Ωf

Ωs

g

ε gslip

Γw

A

x

y

O

Tf,h

Ts,h�
��

��
��

���

Figure 4: Left: sketch of the domains for the falling ball test case (test I). Right: the fluid
and structure meshes Tf,h and Ts,h, respectively.

In Figure 5 (top-left), we report the results obtained by considering γC = {1, 4, 6, 8} ·
10−2 g/s2. We notice that by increasing the penalty parameter the bouncing of the ball
is reduced, yielding the ball to remain in contact with the ground for a longer time. In
Figure 5 (top-right), we show the results obtained by changing the threshold distance
gslip = {1.5, 2, 2.5, 3}h. As the value of gslip increases, we notice as expected that the first
contact and the release with the ground happen earlier and the height reached by the ball
after bouncing increases as well as the time of the second contact. In Figure 5 (bottom-
left), we show the dependence of the dynamics of the ball on the time discretization,
taking ∆t = {4, 2, 1, 0.5} · 10−4 s. We notice that if the time step is not small enough, e.g.
∆t > 4·10−4 s, the numerical method is not able to properly detect the contact, leading to a
wrong dynamics. As soon as the time step is reduced the bouncing of the ball becomes more
evident and the method is able to capture the high frequency oscillations of the ball. In
Figure 5 (bottom-right), we plot the results for different values of ε = {0.075, 0.1, 0.125}h.
During the contact phase, we notice that, for increasing values of ε, as expected the
position of the ball at point A increases, though it may go below the prescribed threshold
distance ε.

In Figure 6, we plot the velocity field and the position of the ball at time t = 0.0179 s
where it exhibits the maximum compression on the ground (left), and at time t = 0.0190 s
where the ball starts to move away from the ground (right).

In Figure 7, we show a comparison of the y-displacement of the ball in the point A for
two different choices of the polynomial degree, i.e. ` = 1, 2. We notice that the falling and
the contact phases of the ball are very similar. However, the bouncing phase of the ball is
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Figure 5: y-position of the ball in the point A as a function of time t by varying γC (top-
left), gslip (top-right), ∆t (bottom-left) and ε (bottom-right). For the γC (top-left), gslip

(top-right) and ∆t (bottom-left) plots, the continuous horizontal line denotes the distance
ε = 0.1h to the ground. For the case of varying ε (bottom-right), the horizontal lines
denote the different distances ε to the ground according to the legend (test I).
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Figure 6: Velocity field and position of the ball at time t = 0.0179 s (left) and t = 0.0190 s
(right) (test I).

very different: compared to the case ` = 1, for ` = 2 the ball reaches an higher height and
the method is able to better describe the oscillations of the ball. These phenomena are not
reproduced in the case ` = 1 due to the dissipative error and the stiffness characterizing a
low accuracy in space and time.

Finally, we set the polynomial degree ` = 4 and we carry out a numerical test to show
the capability of the method to perform simulations at high-order degree. We consider
the same physical and numerical parameters as in the previous experiment but a smaller
fluid domain to limit the computational cost. In Figure 8, we plot the numerical velocity
and the position of the ball at time t = 0.0071 s (left) and the evolution in time of the
y-position of the ball at the point A (right).

This test showed that the proposed method is able to simulate the contact between an
immersed structure with a rigid boundary in a fluid-structure interaction context, possibly
also with a high order method. However, we notice the importance to properly choose
the values of the numerical parameters. In particular, as expected the time step ∆t has
to be small enough to capture the physics of the problem. Moreover, as expected the
contact parameters γC , gslip and ε may significantly affect the dynamics of the system.
We notice that a good choice for these parameters seems to be γC ' 10−2g/s2, gslip ' 2h
and ε ' 0.1h.

4.2 Valve dynamics in an idealized immersed valve

Referring to the formulation and notation described in Section 3.3, we consider the ide-
alized axisymmetric 2D valve shown in Figure 9 (left) with two immersed leaflets. The
geometry of the fluid domain Ωf and the solid ones, Ωs and Ωm, are defined according to
[47].
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Figure 7: y-position of the ball in the point A as a function of time t for ` = 1 (continuous
line) and ` = 2 (dotted line). The continuous horizontal line denotes the distance ε = 0.1h
to the ground (test I).
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Figure 8: Case ` = 4. Left: Velocity field and position of the ball at time t = 0.0071 s.
Right: y-position of the ball in the point A as a function of time t. The continuous
horizontal line denotes the distance ε = 0.1h to the ground (test I).
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The material properties in this case are taken from the hemodynamic regime, see
Table 1. The system is initially at rest, and the dynamics is driven by an idealized time-
dependent pressure profile at the inlet Γin, see Figure 10 (left). At the outlet Γout we
impose Tfn = 0, while on the remaining fluid boundary we impose u = 0. On the
structures boundaries Γs and Γm, we impose ds = dm = 0, see Figure 9 (right). We
consider T = 0.8 s.

Ωf

Ωs Ωm

Γout

Γin

A

VΓs Γm�� HH

Figure 9: Left: sketch of the domain for the valve test case. Right: detail of the domain
close to the two immersed structures. The points A and V are the probes location for
measuring the pressure (test II).

For the numerical simulation, we consider ` = 2, ∆t = 0.0025 s, Kmax = 5, the
fluid mesh size hf = 0.13 cm that corresponds to 2.1 · 103 elements, the solid mesh size
hs = hm = 0.02 cm that corresponds to 3 · 102 elements, ε = 0.1h, γC = 2 · 10−3 g/s2 and
gslip = 1.5h. To prevent instabilities at the outlet due to the backflow, we prescribe a
backflow stabilization term, see e.g. [59], at Γout.

In Figure 10, left, we plot the evolution of the pressure in time in the points V and
A reported in Figure 9, right, while in Figure 10, right, we report the distance between
the leaflets, representing the aperture of the valve, computed as the minimum value over
x ∈ ∂Ωs of the gap function gC(x). In Figure 11, we report the velocity and pressure
fields of the fluid at time t = 0.375 s (top) and t = 0.675 s (bottom). We see the complex
fluid-dynamics developed in the valve and the configuration of the valve during the closing
phase.

In Figure 10, left, we notice that during systole, i.e. for 0 ≤ t ≤ 0.2, the ventricular
pressure is higher than the aortic one and hence the leaflets open. For time 0.2 ≤ t ≤ 0.4,
the pressure at the inlet drops to zero and the blood flow starts to decelerate. As time
tends to 0.4 s, the difference between the ventricular and aortic pressure decreases. Notice
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Figure 10: Left: plot of the pressure profile over time prescribed at the inlet Γin and
computed at points V (ventricle) and A (aorta). Right: plot of the minimum distance
between the leaflets (test II).

that, downstream of the leaflets, two vortices appear and propagate towards the outlet
Γout, see Figure 11, top, causing an oscillation of the tips of the leaflets.

In Figure 10, left, during diastole, i.e. for 0.4 ≤ t ≤ 0.6, the pressure difference becomes
zero for t ' 0.5 s, and then the aortic pressure becomes higher than the ventricular one. As
a consequence, the leaflets start to move closer. Finally, in the time interval 0.6 ≤ t ≤ 0.8,
the leaflets come into contact, see Figure 11, bottom, and as time approaches 0.8 s the
ventricular and aortic pressures return to zero, allowing the leaflets to return to the initial
configuration. The maximum velocity reached by the fluid is about 41 cm/s corresponding
to a Reynolds number Re = 1600. Notice that, though we have employed an idealized
inlet profile and a simple linear elastic model for the leaflets, the behaviour is qualitatively
similar to the physiological one [47, 69].

This test demonstrates that the proposed method can be successfully employed to
simulate complex dynamics as in the case of cardiac valves, where the immersed structures
undergo large displacements and may come into contact. Moreover, we notice that the
proposed PolyDG method seems to be robust with respect to high Reynolds numbers.
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Figure 11: Plot of the velocity (left) and pressure (right) fields at time t = 0.375 s (top)
and t = 0.675 s (bottom) (test II).
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5 Conclusions

We have proposed a new method that is able to simulate fluid-structure interaction prob-
lems in the case of immersed structures that exhibit large displacements and come into
contact. In particular, we have introduced a consistent Discontinuous Galerkin method on
polygonal/polyhedral grids that incorporates naturally the contact conditions in the for-
mulation via the DG paradigm and that can handle naturally polygonal/polyhedral grids
in any space dimension and for any approximation order. The results showed the effective-
ness of the method to deal with the FSI contact problem also in complex configurations
such as valve dynamics and for high-order discretizations.

We observe that we have employed a DG paradigm also far from the fluid-solid interface
in order to be able in the future to locally tune the discretization parameters, namely the
mesh size and the polynomial approximation degree, in an elementwise manner. This
allows to save the total number of degrees of freedom and thus improve efficiency, which
is mandatory in view of three-dimensional applications. Regarding the contact in a FSI
framework, this could be a limit of the method compared to others, such as the Cut-FEM in
[2] and the fully-Eulerian approach in [21], which allow the possibility to use the continuous
Finite Element method far from the interfaces and thus reducing the computational cost.

Further research on the development and the analysis of algorithms for the self-contact
and the extension to the 3D case are under investigation. Another issue in the context of
polygonal elements methods is the analysis of inf -sup stable discrete spaces for the velocity
and pressure in the fluid saddle-point problem that guarantee the inf -sup stability under
mild geometric requirements. Also this point is under investigation.
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