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Abstract

We investigate a finite element approximation of an initial boundary
value problem associated with parabolic Partial Differential Equations
endowed with mixed time varying boundary conditions, switching from
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and in different portions of the boundary. For this problem, we apply
and extend the Nitsche’s method presented in [Juntunen and Stenberg,
Mathematics of Computation, 2009] to the case of mixed time varying
boundary conditions. After proving existence and numerical stability of
the full discrete numerical solution obtained by using the #-method for
time discretization, we present and discuss a numerical test that compares
our method to a standard approach based on remeshing and projection
procedures.
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1 Introduction and motivation

The study of initial boundary value problems associated with parabolic Partial Differential Equa-
tions (PDEs) and complemented with mixed time varying boundary conditions (BCs) represents
a challenging task both for the theoretical analysis and the numerical approximation. This kind
of model may be suitable to describe physical problems as, e.g. the distribution of the tempera-
ture in a body with temperature and heat flux prescribed on a portion of the boundary changing
in time, or flows in cavities (e.g. the heart ventricles and atria) with opening and closing valves.
Despite its applicative interest, to the best of our knowledge, neither numerical examples nor nu-
merical studies are available in literature. On the other hand, in the last decades, several works
have been devoted to the analysis of this class of problems, even if only from a theoretical point
of view [1, 5, 9, 10, 18, 21, 29]. In particular, the focus has been on the existence and regu-
larity properties of the solution; in this respect, since the 1970s, different techniques have been
developed. Starting from the standard theory of abstract evolution equations of Kato, Lions, and
Magens [18, 19], works as [9, 10] adapted these arguments to the case of time varying mixed BCs,
leading to solutions with properties connected to the geometrical structure of the boundaries. Then,
by developing a more general result on abstract evolution equations in variable domains, Baiocchi [5]
investigated the solution of these problems in spaces independent of the geometry under relatively
weak assumptions on the data and on the regularity of the boundary. This latter approach has
been further extended by Savaré in [29].

In [29], it is noted that the proposed abstract approach for the proof of the existence of the
solution of a parabolic PDE defined by a second order elliptic spatial operator and endowed with
mixed time varying BCs can be extended to a Finite Element (FE) formulation [25]. Starting from
the framework of [29], one can consider a numerical method based on the backward Euler (BE)
method [25] for the discretization in time and on the FE method for the spatial approximation.
Specifically, one can use the standard (strong) imposition of Dirichlet BCs in the discretization of
the parabolic PDE with mixed time varying BCs, thus building a family of closed time varying
FE function subspaces. This method, which we identify with the name time varying FE method,
exhibits some drawbacks which may considerably affect the computational performances of the
simulations. Indeed, at each time step, the number of degrees of freedom associated to the FE space
changes and, as well as, the size and the structure of the associated discrete problem. Moreover,
when implementing the time varying FE method by using commercial codes, it may be necessary
to re-mesh the domain and use extension and projection operators of the intermediate solutions for
all the time steps.

In order to overcome the drawbacks of the time varying FE method, in this work we pro-
pose and analyse a new numerical approach for mixed time varying BCs which yields a FE
semi-discretized spatial approximation with time independent function spaces and is based on
the Nitsche’s method [22]. Moreover, even if in this paper we focus on the #-method [25, 26] for
the time discretization, we highlight that any other scheme could similarly be used. We remark
that the Nitsche’s method for parabolic problems with mixed time varying BCs is formulated in
the framework of [17], but considering the more general case of space-time weighting functions
in place of constant coefficients, characterizing both the type of data and the degree of penal-
ization; in addition we consider a general advection-diffusion-reaction PDE. We remark that the
proposed approach introduces penalty and consistency terms in the variational formulation of the
problem. Specifically, the Dirichlet BCs are imposed weakly in the variational formulation rather
than strongly in the space of test functions by means of penalty terms; for the Neumann BCs,
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additional terms are introduced with respect to those of the classical formulation.

In our theoretical analysis we prove the well posedness of the semi-discrete problem; then, we
study the stability of the full discrete problem with stability conditions depending on both the data
and the penalty functions. We show results in accordance with the ones presented in literature
involving the weak imposition of essential BCs, which is commonly used in the context of the
Discontinuous Galerkin (DG) method [25, 27]. As a matter of fact, the weak imposition of essential
BCs (see e.g. [6]) represents a particular case of the more general scheme proposed in this paper.

This paper is organized as follows. In Section 2, we describe the continuous problem and we
recall the results on the existence and regularity properties of the solution already established
in [29]. Then, we present the standard numerical method based on the BE scheme for the time
discretization and the spatial approximation by means of the FE method with time varying spaces
in the framework of [29]. In Section 3, we introduce the proposed approach for mixed time varying
BCs based on the Nitsche’s method. We analyse the proposed semi-discrete formulation, then we
introduce the approximation in time by using the f-method, and we finally analyse the fully dis-
cretized problem; specifically, we provide results on the numerical stability of the method. Finally,
in Section 4, we report and discuss some numerical results to highlight the efficiency of the proposed
method. Conclusions follow.

2 The continuous problem

In this section we introduce, the parabolic problem with mixed time varying BCs. In Sec. 2.1 we
recall some notions and notations on Banach spaces by referring in particular to [2], we describe
the problem defined by a PDE with a second order elliptic spatial operator and we recall a result
on the existence and uniqueness of the solution of Savaré in [29]. Finally, in Sec. 2.2, we present
the FE method with time varying function spaces.

2.1 The continuous problem: preliminaries and well-posedness analysis

We assume that €2 C R", with n € N, is an open connected bounded set with regular boundary
I' = 09, satisfying a strong local Lipschitz condition. The independent spatial variable x will be
defined in €2, while the independent time variable ¢ will take values in an interval I := (0,7) C R
with 0 < T < oo. For any positive integer m > 0 and any real number 1 < p < co, we denote the
Sobolev space of order m as W™P(Q) := {v € LP(Q) : DWy e LP(Q) for all ¢ = (1,...,14) €
N with0 < [¢] =0+ ...+, < m}, with D® denoting the distributional partial differential
operator. The corresponding norm and semi-norm are indicated as ||-||Wm,,,(Q) and |-|Wm,p(m,
respectively. Moreover, for p = 2, we denote by H™ () the Hilbert space W"2(2) and by H" ()
the space of functions v € H™(2) vanishing on I'p C I' = 9 in the sense of the traces, i.e.
Hp" :=={ve H™ :v|pr, =0}

Let H be a Banach space endowed with norm ||-||,; defined over €2. Then, the space of measurable
functions with respect to the Lebesgue measure, defined on the interval I and having values in H

with finite Bochner integral on I, is denoted by L' (I; H) := {v: T — H : / [v(s)l4 ds < co}. More
I

generally, for any p such that 1 < p < oo, we have LP(I;H) :={v: I — H : /||v(s)||§{ ds < oo},
I
and L™(I;H) = {v : I — H: esssupllv(t)|l; < oo}. Analogously, for any positive integer
tel

m > 0, we consider the Hilbert spaces of measurable functions defined on I with values in H,
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say H™(I; 1) = {v € L*(I;H) : ng)v € L2(I;H) for all v = (11,...,19) € N with 0 < |¢] =
L.+ < m}, where Dt(b) is the distributional partial derivative with respect to the independent
variable ¢ € I. Finally, for any fractional numbers, r and s € Q, we denote by H"*(Q2) the space
defined as H™*(Q) = L*(I; H"(Q)) N H*(I; L*(Q)).

Now, let Q7 = Q x (0,T) be the space-time domain. We consider the linear parabolic equation
in the unknwn v : Q7 — R, which reads:

0
ait‘(x,t) + Lu(x,t) = f(x,t) in Qr, (2.1)
endowed with suitable initial and boundary conditions; f : @7 — R is the source term and £ is a
linear elliptic second order partial differential operator in the form:
Lu=—-V-(oeVu)+ B Vu+ ku. (2.2)
Specifically, the diffusivity tensor o, with o;; € Wl’OO(QT), is assumed to be symmetric and elliptic,
i.e. 045 = 0jj and:

n

Ja>0: Y oi(x, )88 > al¢f VEER", V(x,t) € Qr (2.3)
ij=1
moreover, we require a global Lipschitz condition on the coefficients o;; for any i,j = 1,...,n.

The vector B is supposed to be solenoidal (V - 3 = 0) with components 3; € L (Qr); finally,
k € L°°(Qr) represents the reaction term. We highlight that, under the hypothesis on 3, Lu can
be rewritten as Lu = =V - (eVu — uf3) + Ku.

In order to define the mixed time varying boundary value Cauchy problem associated with
Eq. (2.1), we introduce, analogously to [29], a family of C*! submanifolds with boundary F%) for
t € (0,7) on the lateral boundary ¥ = T" x (0,7). We denote by ¥p and Xy the subsets of 3

covered by these submanifolds and their complement defined as:

Yp = U I‘g) x {t} and Xy :=3X\Xp, (2.4)
te(0,7)

respectively; ¥p and Xy represent the lateral time varying parts of the boundary on which we
prescribe Dirichlet and Neumann BCs as:

u(x,t) = g(x,t) on Yp, (2.5a)
— ®up(u(x,t)) -n=G(x,t) on Xy, (2.5b)

respectively, where n indicates the outward directed unit vector normal to Xy, while ® 4 denotes
the diffusive flux tensor associated to £, which reads ® g;p(u) := —oVu. We suppose that the func-
tions g : ¥p — R and G : ¥y — R are defined in suitable trace spaces. Finally, the problem (2.1)
endowed with mixed time varying BCs and initial condition ug : 2 — R reads:

g:;(x,t) + Lu(x,t) = f(x,t) in Qx(0,7), (2.6a)
findu:Qr —>R: U(X,t) = g(X7 t) on Yp, (26b)
P gip(u(x,t)) -n=G(x,t) on Yy. (2.6¢)
u(x,0) = up(x), in Q. (2.6d)
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We recall a result on the existence and uniqueness of the solution of Eq. (2.6) provided by Savaré
in [29].* Specifically, by introducing the distance d(-, -) defining a metric space over X p, we focus on
the case in which a two-sided condition on the dilatation of the Dirichlet boundary F%) is defined
by the Hausdorff distance as:

dH(F%),F(DS)):maX{ sup inf d(x,y), sup inf d(x,y)}. (2.7)
yert) xer(y) xerlt) yeryy

Theorem 2.1. Let the source term f € L*(Qr), the initial condition ug € H'(SY), and the boundary

data g € H¥?34Sp) and G € HY?>Y4(Sy), with the initial compatibility condition ug(x) =

9(x,0) on Fg) satisfied. If the excess of dilatation dH(F%),FS)) of Eq. (2.7) is controlled by a

weighted measure of the interval of time, i.e.:
¢
Ipe L0, T) : duyTd T8 < / p(r)dr, 0<s<t<T, (2.8)

then, Eq. (2.6) possesses a unique solution u : Qr — R such that:

21;, Lu € L*(Qr), and u € C°(0,T; H(Q)). (2.9)

2.2 FE method with time varying function spaces

In order to introduce a spatial FE approximation of the PDE (2.6), firstly, we recast this problem
in weak formulation. For any ¢ € (0,7, we define the trial affine space Vg(t) = {v € H'(Q)
v(t, x)|po0 = g(t,x)} and we introduce a lifting function g(t,x) € H*(Q) satisfying the essential
D
BC (2.6b) in the sense of the traces, i.e. such that . g(t,x) = g(t,x). Moreover, g is such that
D

for all the functions u € Vg(t) there exists a unique w € Vo(t) = {U e HY(Q) : v(t,x)| 0 = O} for
D

which v = g+ w. We remark that, the Dirichlet BC (2.6b) is imposed strongly in the space of test
functions, while the Neumann BC (2.6¢) is weakly introduced in the variational formulation. The
weak formulation of Eq. (2.6) reads for a.e. t € (0,7):

find w(t) € V¥ - (%f(t» so) tagpaltiwlt),g) = Ftip) Vpe VS, (2.10)
with
o B,x(t;w, @) = / Ve - (eVw) dQ +/ ©B - Vw dS2 —|—/ prw dS2 (2.11)
Q Q Q
and
Fltig) = [ o) a0+ [ oGO dT = agpultia(t). o) (212)
N

At this point, we introduce a time discretization of Eq. (2.10), by using the BE scheme”, yielding
the semi-discrete problem. Let Ny € N be a given integer and consider an uniform partition of

#A more general result is provided in [29] considering a weaker condition on the dilatation of the Dirichlet boundary
and solutions in Besov spaces [2, 8, 20].

"We use the BE scheme in the framework of the proof of Theorem 2.1 in [29], for which the author shows that,
under suitable hypotheses, the continuous and piecewise linear (with respect to time) solution of the semi-discrete
problem converges to the solution u(t) of Eq. (2.6) when the time step tends to zero.
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the time interval (0,7") into subintervals {[t,,tn+1) 27:0_1 of size At := T/Np, with t, := nAt,
for n = 0,..., Np. By evaluating the data f,g, and G at the time ¢, as f", ¢", and G", for

n =1,...,Nr, and by setting v’ = ug in , we solve recursively the following family of elliptic
problems in the unknowns u" € V(tn), forn=1,..., N, reading:
find w" € V") = ((w™ - w™ ) ) +a (" w", ) = F(t" ) Vo e AR (2.13)
0 . Al 3 L2(Q) 0,0,k ) y ) o .

with " = w" + g".
Finally, in order to obtain the full discrete FE formulation, we consider a regular family of
quasi-uniform triangulations {7;"} of €2, denoting with A7 := diamT" the diameter of any mesh

element 7' € 7;" and by A" := Tax hr the mesh size at time ¢, ([26, 33]). Moreover, we assume
€7y

that for any mesh size h, the mesh 7" is conforming with the boundary I' = 02 and we denote by
&;! the corresponding triangulation on the interface, whose elements (edges or faces) are denoted
by I'y forb=1,... ,N,? with associated diameter hy := diam I'y, respectively. We remark that the
mesh 7, varies or changes with the time ¢", as well as &'. Therefore, for any n = 1,..., Nz, the
full discrete problem (2.6) is defined by looking for a FE approximated solution uj, of Eq. (2.13) in
the FE space of degree k > 1 defined as:

Vg = a0 v, (2.14)

where A} = {goh € Co(ﬁ) cpplr €Py VT € 771"} and P, denotes the space of polynomials of
degree less than or equal to k. We remark that the FE space X}’ depends on the mesh 7", which

may change at each time step in order to match F%n). Then, the full discrete problem reads, for

n:1,...,NT:

find uf € V) 0 (W, n) + At ap g (t W, 1) = At F(t"; on) + (wi ™t on)  Ven € Vons
N (2.15)
with uf? = w}? + g, given uy € V,, where F involves the approximate lifting function g" € Vo =
XN Vg(tn), e.g. obtained by a L? projection technique.

Remark 2.1. The FFE spaces of Eq. (2.14) are time varying function spaces. Specifically, depending

on the measure of F%”), the number of degrees of freedom associated to the FE space V((ﬁl) changes
accordingly, as well as the size and the structure of the associated discrete problem.

Remark 2.2. When solving problem (2.15) using available commercial software, the FE space can
only be defined after the Dirichlet boundary F%n) is prescribed at time t". Therefore, one needs to
re-mesh and re-define a new FFE space for any discrete time t", for alln =1,..., Ny. Moreover, for
any t", suitable injection and projection operators need to be introduced to account for the variation
of the mesh T;'. In practice, to account for this variation, we need to introduce a mapping T"

acting on the data u"' as T" : V;’;l <i> HY(Q) P—h> Vi ns where Iy denotes the injection operator
of the solution u"~' € V;;l into HY(Q), while P is the projection operator from H' () onto
the FE space V;L,h- Accounting for such operators in commercial software or FE codes is neither
straightforward nor computationally efficient.
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3 Nitsche’s method for mixed time varying BCs

In this section, we propose the Nitsche’s method for the treatment of the mixed time varying BCs
of Eq. (2.6). Following what done in [17] for elliptic PDEs, we consider Eq. (2.6a) endowed with a
generalized Robin BCs in the form:

— ®up(u(x,t) -n+y(x tu(x,t) = G(x,t) + y(x,t)g(x,t) on X, (3.1)

where v : £ — (0, +00) C R. Indeed, given f € L2(0,T; L*(Q)), up € H (), g € L*(0, T; H/>(T))),
and G € L*(0,T; LQ(F%))), we consider the problem:
find u: Q2 x (0,7) - R:

gt (x,t) + Lu(x,t) = f(x,1) in Qx(0,7), (3.2a)
_Qdiﬁ(ub(’ t)) ‘n+ 7(X7 t)U(X, t) - G(X7 t) + fY(Xv t)g(X, t) on 27 (32b)
u(0) = ug in Q, (3.2¢)

with up(x) = g(x,0) on Fg). We notice that in the limit v — 0, Eq. (3.2b) tends to the pure
Neumann BC of Eq. (2.6¢), while, in the limit v — oo, we recover the pure Dirichlet BC of
Eq. (2.6b). Problem (3.2) can therefore be regarded as more general than (2.6).

3.1 The Nitsche’s method: spatial discretization

For the spatial discretization of Eq. (3.2), we introduce a FE approximation based on the Nitsche’s
method [17, 22] to treat the time varying BCs by looking for a solution of the weak counterpart of
Eq. (3.2) in H'(Q) with function spaces independent of time. We introduce the FE space of degree
k > 1 defined as:

Vi, = X, N HY(Q), (3.3)

with X} being the FE space of Lagrangian basis functions defined over the mesh 7, which is now
fixed in € and in time; h := ;na7>_( hr represents the mesh size, hp := diam T the diameter of any
€/h

element T' € T, &, the triangulation on the boundary, whose elements (edges or faces) are denoted
by 'y forb=1,..., NZ‘ with associated diameter hy := diamI'y. Moreover, let Ty, for b=1, ... ,Ng‘
be the boundary triangle of 73 associated to 'y, i.e. I'y := T, N T.

3.1.1 The semi-discrete problem

We consider the following problem, for all ¢ € (0,7):

ou
find up,(t) € Vy < ath( )s <Ph> +ap(t;un(t), on) = Fr(t;on)  Von € Vi, (3.4)
where:
N} b
an(t;un(t), on) == aegr(t;un(t), on) + U ©n (—51 bh )UVuh -ndl
- LTy Yo

M&) (3.5)
+/rb < + hb>u . +/rb@h<€+7hb un

*/pb < o[ ( 5+vhb>>"v“h'“dﬂ
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and:

Fn(t;on) == F(t;on) + % [/Fb (@7n(en) - m) <_§ 1h7bhb> gdb+ /rb o (f|i|§zb> g4t (3.6)

b=1
+ ] (@) m) (TR o f e (e5m) @)

with a¢ g . (t;up, on) defined in Eq. (2.11), F(t; ¢p) == / onf dQ, xin and Yoy the characteristic
Q

functions of the subsets of the boundary corresponding to the inflow and outflow parts, respectively:

1 if B(x,t) - n <0,

, and =1—Xin, 3.7
0 otherwise, Xout Xin (37)

Xin * X — {07 1}7 Xin(xat) = {

and @7, is the adjoint of the inflow flux tensor:

7, (u(x,1)) == o(x,1)Vu(x, 1) + u(x, 1) B(x, 1) Xin(X, t); (3.8)
Ny
moreover, & : U 'y x (0,7) — (0,+00) is the penalty function.
b=1

Remark 3.1. The first boundary term of Eq. (3.5) is a consistency term, while the remaining terms
of Egs. (3.5) and (3.6) ensure a weak enforcement of the BCs. The case of pure Neumann BC, i.e.
when Y n = X, is recovered for y(x,t) — 01 a.e. (x,t) € ¥. Indeed, in that case, Eq. (3.4) becomes:

find s () € Vi s (G000 ) + i pntiun. +Z / on) ) (= 20 ) oV mar

Ny . h
:}-(t;@h)Jr/SOthFJrE/ (@5n(¢n) - m) ( o &)Gdl“ Veon € Vp.
r b=1"Tb

(3.9)
We notice that the last terms on either side of Eq. (3.9) represent additional terms with respect to
the standard formulation, which however do not affect the consistency of the method. The case of a
pure Dirichlet BC, i.e. when Xp = 3, is recovered for v(x,t) — 400 a.e. (x,t) € 3. In this case,
Eq. (3.4) reads:

ou
find up(t) € Vy - < (9th( ), 90h> + o gkt un, on) + Z/ —¢p (eVuy, - n) dI'

h
Nb

+Z/Fb( n(#h UhdF+Z/ ( >u dr (3.10)
= F(t:on) +Z/ ng+Z/ soh< |£> dr.
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Eq. (3.10) corresponds to the weak treatment of the Dirichlet BCs as considered e.g. in [6]. As a
matter of fact, the weak imposition of Dirichlet BCs of [6] represents a particular case of the more
general scheme proposed in this paper. Weak imposition of Dirichlet BCs is easily accommodated in
the context of the Discontinuous Galerkin (DG) method [25, 27], where the inter-element continuity
of the solution is weakly enforced. In particular, in view of the analysis of the penalty terms added
to the variational formulation, we refer the interested reader to [3] and [27].

Remark 3.2. Concerning the penalty function & = £(x,t), we attribute a different role to & on the
boundary of the space-time cylinder ¥ where we impose either Dirichlet or Neumann BCs. Indeed,
from definitions (3.5) and (3.6), we infer that, for the weak imposition of the Dirichlet BC on I, the
bigger the value of &, the more significant is the penalization on the Dirichlet data g. Conversely,
for the Neumann BC on I, the larger the value of £, the smaller is the contribution of the additional
consistency terms, see Eq. (3.9).

We remark that Eq. (3.4) considers a different treatment of the inflow boundary part with
respect to the outflow one, with the aim of controlling both the regimes of dominating advection
or diffusion. The scaling with respect to |o| of the boundary terms of Eqs. (3.5) and (3.6)
allows to consider the correct dimensions in the formulation. The weak treatment of the Dirichlet
BCs at the inflow and outflow boundaries, which is obtained for v(x,t) — 400, can be justified
analogously to e.g. [6]. For the analysis of the Nitsche’s method, we impose the following restrictions
Ny

on £ : U I'y x (0,T) — (0,+00); & is a measurable function for which there exists two positive
b=1

constants £, and & such that:

N}
0 <&y <E(x,t) <& <400, V(x,t) € JTyx (0,7). (3.11)
b=1

Then, let us define the following weighting functions for the Nitsche’s method:

5o
PTx (0,T) = R:(x,t) — k , 3.12
&-k ( ) ( ) E(Xa t) + 7(X7 t)hbXFb (X) ( )
for k=1,...,4, with:
8 = y(x, 1) hyxr, (%), 05 := E(x,1)y(x,1), 65 := hyxr,(x), and &4 :=&(x,t), (3.13)

forallb=1,... ,N,fL and with xr, the characteristic functions of the subset I'y, i.e. xp, : I' = {0,1} :

1 if xelY, C . .
X " ) " For the weighting functions (3.12), we have the following upper bounds:
0 otherwise

‘€I(X7t)‘ = 25 ‘52()(7 t)) = Qminb hb ~h ; (3 14)
maxy hb < ﬁ )

& T &

’{g(x,t)‘ < , ‘fﬁ(x, t)) <1, V(x,t) €T x (0,T),

where Eq. (3.14) for ES and fg follow from the quasi-uniformity of the family of triangulations 7y,.
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3.1.2 Some preliminary lemmas

We recall the following inverse inequalities for traces of finite element functions from [3, 33]. Let
I C 0L, then there exist positive constants Ciand Cy > 0 independent of h, but possibly dependent
on the FE degree k such that:

161725 < Cih ™ [@ll7e)  and Ve nllfom < Coh Hdling — VéEVa  (3.15)
Moreover, forb=1,... ,N,f‘ , there exist constants C'; and Cy > 0 dependent on k, but independent
of hy, such that:

l6l72w,) < Ciby tlolam,) Yo € Vi, (3.16a)
IV 172,y < Caly |17 (1) Vo € V. (3.16b)

Finally, thanks to the quasi-uniformity of 7, the following inverse inequality holds [33] for a positive
constant C' independent of h:

0171 @) < Ch 2 6lT2) Vo € Vi (3.17)

For our analysis, we introduce the following h-dependent norm:

1/2

Ny
lolly = { oli @) + D ICulTamy | (3.18)
b=1

where, for the sake of simplicity, we have introduced from Eq. (3.12), with & = 2, the function:

(X =R (x,t) = 4/E(x,1). (3.19)

We recall the following result, consequence of the Peetre-Tartar Lemma [15], from which we
deduce the successive lemmas.

Lemma 3.1. Let O be a general open bounded connected set with Lipschitz boundary and let F' be
a linear functional on H'(O) whose restriction on constant functions is not null; then, there exists
a positive constant Co > 0, dependent on the domain O, such that:

Co el o) < eluo) + 1F ()| Vo € HY(O). (3.20)

Lemma 3.2. Under the hypotheses of Lemma 3.1, for O =Ty, there exists a constant Cq, > 0,
related to the boundary elements of the mesh Ty, for b=1,... ,Nél, such that for the norm |||, of
Eq. (3.18):

Ny

> lenlltnen,) < Cas lenlly Yon € V. (3.21)

b=1

Proof. By applying Lemma 3.1 for O = T}, and F(¢) = (gp dI", we have:

hy

Fg)| = o

1
. /rb g% dF’ < 7 Mzey) 1€l 2y = IC@llizry) » (3.22)
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and, forany b=1,..., th, there exists Cr;, > 0, such that:

Cr, onll gy < 1enlm ) + 1F(on)l < lenlmg) + 1<onllL2r,) ; (3.23)

C2
therefore, % HQOh”%Tl(Tb) < ’@h’?ql(Tb) + H((th%Q(Fb). By summing the latter over b = 1,..., N/,

we have:

Ny 2 Ny

T 2 2 2 2
> - lenllm ) < lenlie) + D lI¢enlizary = llenli; (3.24)
b=1 b=1
2

by setting Cop := ———5-, Eq. (3.21) follows. O

miny, C’Tb

Lemma 3.3. Under the hypotheses of Lemma 3.1, for O = (), there exists a constant Cq > 0 such
that, for the norm |||, of Eq. (3.18):

2
lonllz ) < 2 lenll7 Von € Vi, (3.25a)
Q
2C}
linllzay < T lenlli Won € Vi (3.25D)
with Cy,. trace constant, such that:
lenllzory < Cor llenll g1 - (3.26)
1 a
Proof. By applying Lemma 3.1 for O = Q and F(p) := —— Z (e dI', we obtain:

2N£l maxy hb b=1 Ty

b=1

Ca llenll ) < lenlmqy + [F(en)| < lenl g \/ﬁz 1¢enll L2ry) - (3.27)
b

where the upper bound for |F(pp)| follows by the triangle inequality and Schwarz inequality
2
Ny

b
|F(p) F Z ||C%0||L2 . Furthermore, since Z ”(SOHLQ(FZ,) =< QNI? Z ||C%0||%2(Fb),
Ny b=1 = =
we obtain:
N}
Cé lenllin @y < 2lenlin) + 2D ICenlzam,) = 2 lenlls, (3.28)
yielding (3.25a); (3.25b) follows from (3.25a) and (3.26). O
Lemma 3.4. There exist positive constants Cfl) and C’ﬁz > 0 such that:
o < <c? Ven €V, 3.29
1 HSOhHHl(Q) < llenll, < 1,h”90hHH1(Q) Ph € Vh, (3.29)
2 2 ¢
where Cfl) is independent of h, while Cﬁ)L =q/1+ 2o scales as h™'/? for h = 0.

miny hy,
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C

Proof. By using Lemma 3.3, we obtain the left inequality of Eq. (3.29), with C’il) = 7% Using
the bound (3.14) for the function &3 and the trace inequality (3.26), we obtain:

i %€ 2€ 202E

2 2 2
S oley < Z Iolay < oo ela € 25 ol (330)
b=1
O

Lemma 3.5. For the norm ||-||,, there exists a constant Co > 0 independent of h such that:

lenlly < Coh™ llenll 2 Ve € Vi (3.31)

Proof. By considering the inverse inequalities (3.16a) and (3.17) together with the second upper
bound of the inequality (3.30), we have:

260

minb hb

2 2 2
el < TenlE @) lellZer) < Ch™2 lenllZa) + 2600Cih 2 lonllz2(q) - (3.32)

The latter inequality follows from the hypothesis of the quasi-uniformity of {7 }; indeed, there

exists a constant 7 > 0 such that min At > 7h for h := max hr for which we embed the constant
TeT) TETh

7 in Cy. The thesis follows with C2 := max {C,2¢__C\}. O
3.1.3 Analysis of the Nitsche’s method: consistency and well posedness

We start by verifying the consistency of the formulation (3.4) with respect to problem (2.6).

Lemma 3.6. Let up(t) € Vy be solution of (3.4) and u(t) : Q x (0,T) — R the solution of (3.2),
then, for all t € (0,T), it holds:

(57 ) = w0 on ) + an(t ()~ u(0) o) =0 Von Ve (339

where ap(t;-,-) is defined in Eq. (3.5).

Proof. By multiplying Eq. (3.2a) by @5 € V4, integrating over €2, and using the Green’s integration
formula, we have:

/ gtdQ—I—/Vg@h'aVudQ+/cph,8'VudQ+/g0hKudQ
Q Q

(3.34)
- [ontoumyar = [ g o
N Q

Next, we consider the BC of Eq. (3.2b) multiplied by the function &gy, where €% is defined in
Eq. (3.12), with k£ = 4. By integrating this equation over I'y, for allb =1, ... ,th, we obtain:

3 dld . 3
/rb@h<€+vhb>(avu'n)dr+/¢ <€+vh>UdF_/¢h<€+vh)(G+ﬂa|g)dD

(3.35)
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1

Similarly, by multiplying the BC of Eq. (3.2b) by the function (—Hfg ®; (on) - n), where fg is
o

defined in Eq. (3.12), with £ = 3, and ®7,(-) in Eq. (3.8), and by integrating the resulting equation

over I'y, forallb=1,.. .,lel, we have:

[ @nonn (L )(aw-n>dr+/rb<1>7n<soh>-n( e uar

r, ol &+ vh CEthy
1 hy )
=[| @, mn|—— G+lolg)dl.
/n, (o) ( e ) © ol

(3.36)

Ny
Therefore, by summing side by side Eqgs. (3.34), (3.35), and (3.36), by noticing that Z/ -dl' =
b=1"T

ot
r
an(t; un, on) = Fn(t;op) for all ¢p, € V. O

9
-dI', and by using the definitions of Eqgs. (3.5) and (3.6), the thesis follows since / ©n T g0+
Q

In the following two lemmas we show the continuity and coercivity of the bilinear form a(+; -, -)
in Eq. (3.5) and the continuity the functional F4(+;-) in Eq. (3.6) both in terms of the norm ||-|[,,.

Lemma 3.7. Let g := inf {o(x,t)}, ko:= inf {xk(x,t)} and
0 (x’t)EQT{ (x,8)}, Ko (x,t)eQT{ (x,1)}
oo+ ginfe, {B-n}CE — 3B 0l 1o, O
Q= . (3.37)
lollw:.oe(@r)
Moreover, let the data of problem (3.4) satisfy the following conditions:
A >0 and Lint c2 3 CZ >0 3.38
a>0 and o+ inf (B-n}CE 3 [18- nll gy Ci > 0. (3.38)
In addition, let the penalty function & satisfy the condition:
E(x,t) > hp xr, (%) V(x,t) €%, Vb=1,..., N}, (3.39)
and its lower bound &, satisfy the following one:
_ Oy (B n”Loo(QT) ||O-HW1a°°(QT)
=2 3.40
S0 > a ( 200 + 200 ’ (340)

with Co the constant associated to the trace inequality (3.16b). Then, there exist positive constants
M* >0 and a® > 0, both independent of h, such that:

i Jan(t; un, on)] < M lunll, llenll, Yup, on € Vi, and a.e. in (0,T);

it. ap(t; on, pn) > a nghHi Yop € Vy, and a.e. in (0,7).
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Proof. i.) For up, ¢, € Vi, and by applying the triangle inequality to |an(¢; up, @r)|, we have:

h
Nb

Yhp
ap(t;up, Pr)| < | o B,k(t; Un, ©B)| + / ©Ph (— ) oVuy -n dT‘
o )] < ool + 3 || [ on (=370 ) )

lo| &y > '
v + in dr| + dr
/rb(a enomton(Bon)xi ( £+7hb>u ‘ h<£+'7hb h

/ (oVeon - n+pp(B-n)xin) ( )(UVuh'n) dI“
Iy

+

+

o €+7hb

Moreover, by using the hypothesis (3.39), we have £}(x,t) < £5(x,t). Then, in combination with
the bounds (3.14), we have:

|an(t; un, on)| < llollwroe (@) 90l @) [unl ) + 1Bl oo (@ 1ol L2 [unlm1q)
16l oo (@ l10nl 200 Tnll 2

h
Nb

hb Yhe
+ Z o llwreo ) I6enI L2r,)

f+7%

2(Tp)
hy | vy
§+vhy

ICunll L2(r,)
L2(Ty)

+ llollywrer)

+ ||B ) n||LOO(QT) ”<90h||L2(Fb) ”Cuh||L2(Fb) + |0'| HCQOhHL2(Fb) HCU}ZHLQ(Fb)
||0.H%/V1'°°(QT) h
o g, IVen nla, 1Vl

1o llyp1.00 h
T(QT) 18-l oo (o) & lonll 2y IV -0l 2, | -

By using the Hoélder inequality, (3.16), (3.25b), and (3.21), we have:

2
|an(t; un, pn)| < HUHWLOO(QT) |<Ph|H1(Q) |Uh|H1(Q) + ||5HL0<>(QT) Co el |Uh|H1(Q)

2
+ 15l Lo (@) 2 lenllp llunlly,
Q

2C5Cq 2C5Cq
+llollwroe g lenlln (| == llunlly + o llwrioo@m | == lenlly lunll,
& &o
H ||W1°° @ Cg
188l gy lnlh Tl + 1o ol ol + = 2 22 o il ol
0
o llyr.00 () Ca, VC1Co
B — 18l L0y & lonllp llunlly, -
0



Nitsche’s Method for Parabolic PDEs with Mixed Time Varying BCs 15

Since || g1(qy < [|[|,, the continuity of ap(+;-,-) follows by setting:

o oo Nnj|7r
M = s d ey mas 1 QCQCQB o[l QT)CQCQB’IIB oo (@r) Cap vVCO1Co |
50 o o o] 50

V2 2
H/BHLOO(QT) Cq’ HHHLOO(QT) 075227 18- nHLoo(QT) el o

(3.41)
ii.) To show the coercivity of the bilinear form, we firstly focus on its boundary terms:

ton.on Z [ o (e ) v mars [ @i m (~g 1y )endr

b

o (Y prars [ @i w) (<) Ve .

(3.42)
We have:
Ny
(b 0 n) 2 D (D o lre(r) €8] ., Iz 1900 Bl
181l ooy b
~ o 6] g, Ierliay 1900 Pl
® (3.43)

oy op ICorl 2y — / (8- 0)xin €8 2 dT
b

-~

(c)

2
_ HUHWLOO(QT)

b 2
oo H§3HL°°(F1)) IVeen - nliar,) -

(d)
1
The term (a) is bounded using the Young’s inequalty (v < &2—1—5112 fort,v € R, for all § > 0, where
h 1/2 1/2
we set 1= 2 €0 (e 191502 m gy 1990 Bl a0 v = 20y B Nz

0
Then, by considering (3.16b), we have:

Nh
1 h?
(a) = *Z {552 ¢ T e (ry) o llwrtoe (@ VR - Bl (e + 1S 00 ry) 0 e gy lsoml17 rb)}
b=1 0
Nh

_Z{ = ||C||L°<> (T'p) H0'HW1°°(QT Cy ‘Sf’h‘Hl (Ty) +5||UHW100(QT ||C<Ph||L2 (T's) }
(3.44)
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The term (b) is bounded by applying the previous Young’s inequalty with ¢ = |onllz2(r,):
1
v =V nl2p,), and § = 3 together with (3.16b), as:

N |18
LOO
0> -3 Y | o

’53“ <||80h||i2(r,,) N IVeon - n||%2(r,,)>
Loo (1)

b—1 g 2 2
S8 |
) Lo (Qr €oo 1 Vel 2
D ( L P e |gah|H1(Tb)> .
(3.45)
As for term (c), we simply observe that:
Ny
©=-23 [ (Bt dr = -2 [ (8 n)xusd dr. (3.46)
o= /Ty r
Finally, the term (d) can be bounded similarly to term (b), for which we have:
& ol |2
o Cs ’@h‘Hl(Tb) . (3.47)
b= Loo(T) 0

On the other hand, the hypothesis V- 3 = 0 a.e. in Q yields the identity / B - Vo dQ =
Q

5 / ©2 B-ndl. Then, using the trace inequality (3.26), we can bound the sum of Ao B,1(t; Phs OR)
r

and term (c) as:

1
aaﬂﬁ(t; Phs ‘Ph) + (C) > 09 |30h|%11(§2) + Ko ||¢h||%2(Q) + 5 /1" (16 : n)[Xin + Xout]sp%z dr’
—2 /F (8 n)Xinpy, AT
2 2 L. 3 2
2 00| enlin) + ko llenlz2e) + {5 ngf {8 -n} =S80l ) lenllar
1. 3 2
> (vt it (8n) = 318 nlmiy) ) G lonline

1. 3 2 2
+ (ot giat (80} = 18- oy ) G onlEe
(3.48)
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By combining (3.48), (3.44), (3.45), and (3.46), under the hypothesis (3.38), we have:

an(t; on, 0n) = o Bk (t; Onsen) + ay(t; on, on)
1. 3 N
> (0'0 + B léle {B-n}C7 - 2 181l oo (o) Ct2r> lenl (@)

NP

1h - >

I 52 ||C||Loo (Tp) ||0'HW1 ©(Qr) Cs |90h|H1 -9 ”UHWLOO(QT) Z ||CS0h||L2(rb)
0 b=1

Bl H

20’0

~ N
€oo N
UHWLOO(QT) g Z HCSDhH%?(rb)
b=1

18- 0|l o (00 = 2
B P I Ca lenlm ()

0||W1’°°(QT) Loo(D)

‘§+’th

h
Nb

2
2 ol
+ ||0'HW1,oo(QT) Z ||C<Ph||L2(Fb) - —=9)
b=1

62 |@h’?’—[1(ﬂ) 5

(3.49)

H §+7h || Loy o0

Introducing the constant a > 0 of (3.37) into (3.49); we obtain:

_ 2
an(t; o, on) 2 |lollyree@p @ lenli o)

1h

1
s Il

= llollwre QT)€2

18-l or) | lollwrcr 2
L°°( ) ( 200 " 200 [enlin o)

18 1| 500
1o llyr.o0 (@) (1 —5- ﬂ Z IConlZer,)

% 2 el Cy 1 HB.HHL"O(QT) ”UHWI’OO(QT)
2> llollwroe (@ @Sz (r,) [(esﬁelrnfv) (1 S ag 200 200

h Gy 1€, 18 - 1l oo 500
+ ? (1 - ;52) ] |80h|12L11(Q) + HUHWLOO(QT) (1 —0- —QT Z ||C90h||L2 (Ty)

€o 7o
(3.50)
_ B-n e
By the hypothesis (3.40) on &, and selecting ¢ such that @fﬁ <d<1-— H;LW%O the
50 0 0

coercivity follows with constant:

. | Ca 1€, 1B -1l o) €

O]

Lemma 3.8. Under the hypotheses of Lemma 3.7, there exists a positive constant th, dependent
on h and on the data of the problem, such that:

\Fn(t;on)| < M |lonll,, Von € Vy, and a.e. in (0,7).
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Proof. The continuity of the functional Fj, follows by the triangle and Schwarz inequalities and by
Ny
| Fh(t; n)| < ‘/Q% fdQ’ +>

applying (3.14):
. Yhy lo| &y
&%,(on) -0 (— >ng+/ soh< gdr
pt /rb (®inlon) - m) §+7vhe T, §+vhe

+/rb (®},(on) - m) <—M>Gdl‘+/rb% <’f+£7hb>GdF

< llenll g2y 1l oo o.1;220)) + ’/F% G dF‘
Ny

2

b=1

2[00y 19112y 1V on - 1l 72,

2hy
3 18- n||L<x> (Qr) H9HL2 (Ty) H€80hHL2 (Ty)

@) o
+ |o| ||9||L2 (T'y) [Conll g2 (T'y) +TT ||GHL2 (T's) ||V<Ph n||L2(F)

18- n ||L°° (Qr) h
T&) ”GHL2 (T'p) ||90h||/:2 (Tp)

(3.52)
Moreover, by using (3.16), (3.21), (3.25a), and (3.25b), we obtain the thesis by defining the conti-
nuity constant M; as:

V2
o 1 Wl oo (0,7 22(02))

V2G| o) |CayCl N 18- 0l |Ca,Ch
Ca o] &o 4 13

1 — -
+ (V218 0l + 7= (2hollwsian V/0rsCa 4 o1 Ve ) ) oo zisniomy -

(3.53)
O

th =

Gl oo (0,7 12(50))

Remark 3.3. The constant M; of Eq. (3.53) depends on the mesh size h and actually tends
to infinity as h — 0. This result is expected, since analogous results are obtained for the weak
imposition of the Dirichlet BCs [27] and follows from the fact that we use a mesh dependent norm
|-l,- A continuity constant M7 independent of h for the functional Fn(t;-) can however be ensured
for boundary data g and G sufficiently reqular, i.e. such that their extensions to the domain ) are
well-defined, as well as their corresponding ||-||, norms; see [31].

The semi-discetized FE solution of problem (3.4) obtained by using the Nitsche’s method, can
be expressed, for each time ¢ € (0,7), by using the basis functions ¢ ; of the FE space V}, of
N)

Eq. (3.3) as up(x,t) Z d;i(t)pn,i(x), where N® .= dim V. By substituting the expression of
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up, in Eq. (3.4), we obtain a system of linear ordinary differential equations in the unknown vector
of functions d := (di,...,dym) : (0,T) — RN(h), which reads:

Md(0) — i, (3.54)

{Md(t) +A@t)d(t) = F(t) forte (0,T),
where M and A are the mass and stiffness matrices, defined as M; ; := (¢ j, oni) and A, ;(t) :=
an(t; nj,¢ni), foralli,j =1,... ,N(h), respectively. Moreover, F(t) is a vector whose components
are Fj(t) := Fp(t;pn,i) and the vector wg is such that wo; := (Uo, ¢pn,i), with 4y being the L?
projection of ug onto Vy. By definition, the matrix M is symmetric and positive definite; moreover,
by the coercivity of the bilinear form ay(¢; -, -) established in Lemma 3.7 (4i.), also the matrix A is
positive definite. From the continuity of both ay(¢;-,-) and F, shown in Lemmas 3.7 and 3.8, the
existence and uniqueness of the solution d of system (3.54), and consequently of the semi-discrete
solution wuy, follows from the theory of ordinary differential equations [12, 26, 27].

3.2 The full discrete problem: the Nitsche’s-f method

Let N7 € N be a given integer and let us uniformly partition the time interval (0,7") into a set of
subintervals {[t", ")} of size At := T/Np, with t" := nAt. By applying the 6-method [25]

n=0
to the semi-discrete problem (3.4), this yields, for n =1,..., Np:
1 _
find u € V) - Ar (up — ™" on) + an(ty;uy g, on) = Fu(tys en) Von € Vi, (3.55a)
Uy = Tp; (3.55b)

where, for 6 € [0,1], we have considered t§ := 6™ + (1 — )t" 1, up g = Oup + (1 — f)u) !, being
uf the approximation of uy(x,t"). Moreover, for iy € V,, the L? projection of ug onto V, we have
from [26]:

H’LLQ — ﬁ%HLQ(Q) +h Huo — ﬂ;lqu(Q) < Ch HUOHHl(Q) . (356)

In the following, we will show that Eq. (3.55) is unconditionally stable with respect to the L? norm
provided that 6 € [1/2,1], while is conditionally stable for 6 € [0,1/2).

Theorem 3.1. Let us consider problem (3.55) and a regular family of quasi-uniform triangulations
{Th}n of Q. Moreover, for 0 € [0,1/2), assume that the following restriction holds on the time step:

ap2
At < 20%h = (3.57)
(1—26)(M)’C3

where o and M, given in Egs. (3.41) and (3.51), are the coercivity and continuity constants of
the bilinear form ap(-;-,-) of Eq. (3.5), whereas Cy is given in (3.31). Then, under the hypotheses
of Lemmas 3.7 and 3.8, uy, satisfies the following estimate for any 6 € [0,1]:

n 1
i) < Coa o,r [ bl ooy + Mo e (”G”LM(o,T;LQ(F)) + ”f||L°°(07T;L2(m))
(3.58)

1 2
+ (MB + \/EMS-)ﬂ;{Q> 191l o (0,7 £2(ry)

9
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where C_, CouT is a positive constant depending on a“, 6’0, and T, but independent of N, At, and

h. Moreover, Mé)ﬁﬁg, Mg, and M2 235(2 are positive constants depending on the domain €2 and
the data of the problem, reading:

\/>\/>Cr CQ
M3 = {CQ e+ ) 22 (I hrian VO + 18- 8l o) V)

(3.59a)
Mg = 2|8 0 o) » (3.59b)
2 — —
M(,}JHQ =2|lollyreogp VCasCa +lol\/Ex. (3.59¢)
Proof. Let us take pp, = uZﬁ in Eq. (3.55), then, for any n > 1, we have:
L (a2 -1 e—f T At a (t3 At F (675 ul
9 HUhHL2 H Up, HL2 Huh HL2 + At ap( (%Uh 9> Un, ho) = n( Gvuhﬁ)‘

By the coercivity of the bilinear form ap(-;-,-) of Lemma 3.7 and by using the continuity constant
M of Eq. (3.53) for the functional F,(-;-), we get, for any n > 1:

2oy = i 7z + (26 = 1)t = ™[y + 288 0 flufplly < 288 MT [l o,

By using a Young’s type inequalty, we have for some € > 0

ni2 -1 -1 a n |2 (Ml{:)Z

If 6 € [1/2,1], by setting € = 2, the left hand side of (3.60) can be bounded as:

2 1
”uZHLQ(Q) Huh HLZ(Q) < At W- (361)
If 6 € [0,1/2), we start by considering in Eq. (3.55) ¢p, = uf — u}'~*; then, we have:
112 _
s = ™ [y = — A8 an (e g — ™)+ AL Fu(l 0, — ).

By using Lemmas 3.5, 3.7, and 3.8, we obtain:

o = gy < 80 00 ol o a5~ + 50 0F ot 36
n é n n— C un—
< At M* Huh,OHh %0 [ uh = up 1HL2(Q) + At M - H Un 1HLQ(Q)
Therefore, the left hand side of (3.60) can be bounded from below as:
n| 2 1 200 a\2 n |2 F\2
”uh||L2(Q) H“h HL2(Q) (20 — 1) At 12 ((M ) H“h,eHh+ (Mh)
(M)’

)

+2 MM |[ufg], ) + At (2= €)a® uilly < At

et
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for some € > 0. By rearranging terms, we finally obtain:

— n a a 52
H%”iam - HUZ 1Hi?(Q) + At H“hﬁHh <(2 —e)of —(1-20) At (M )th>

At 2 6'8 F\2 2 apnrF n 53
< (W—F(l —20) A 3 (Mj)” —2A8* M*Mj, Huh,thﬁ
< At max 1 (1—20)C2 1—|—Ati (M]:)2
- eas’ 0 h? hi-
Under the hypothesis of Eq. (3.57) and by choosing € > 2_0/1 > 0 we obtain:
n n—1[2 2
HuhHQLQ(Q) — || lHLz(Q) < C e, At (M), (3.64a)

1 ~ 1
with C_ . 5, = At max {wﬂ’ (1—26) 03} <1 + At hQ>

Therefore, for any 6 € [0, 1] and any fixed integer m such that 1 < m < Np, we obtain:

m—1 9
1 320y < u8[72y + Coo gy A D (MT)” < (Hu%HLQ(Q) + /Caa’éomAtM{) . (3.65)
n=0

1 ~
with Caaﬁo a constant depending on P and Cy. The thesis follows by the expression of th
of (3.53) by considering C_, 5 7 :=1/Cha. 5T O

We notice that the last term of the bound (3.58) tends to +oo as the mesh size h tends to
zero, due to the dependency of M, hf on h. Therefore, the result of Theorem 3.1 does not imply the
stability of the solution with respect to h. Indeed, the finer the mesh size, the larger is the growth of
the constant in the a priori estimate. This result is coherent with that of [27]; as a matter of fact the
weak imposition of the Dirichlet BCs represents a particular case of Eq. (3.55), as already observed
in Remark 3.1. However, as reported in Sec. 4 and [31], stable (i.e. h independent) numerical results
are obtained also in this case.

4 A numerical example

We solve, by the proposed method, the heat equation complemented with mixed time varying BCs.
Our example considers an elliptic operator involving only the diffusive term. We compare the
solutions obtained to the the standard time varying FE method’s solutions and we refer the reader
to [31] for a more exhaustive discussion on numerical results.

By referring to Eq. (2.6), we consider a problem defined for ¢ € (0,7"), with T' = 3, in the domain
Q = (0,1)2 given in Fig. 1 with boundary defined as in Eq. (2.4), where ') = T, UT,UTsUT ) UTy;
Fg\tf) = Fg) \F?D represents the Neumann boundary. Specifically, the subset of the boundary
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Ty Q T,

Iy

Figure 1: Computational domain: € = (0,1)?; the red line represents the part of the boundary,

r g), on which we set mixed time varying BCs, while Fg)D C I‘g), the blue one, its the subset where
we impose Dirichlet BCs at time ¢ € (0,7) .

Fg)D - Fg) is defined as:

1] fort<0.2and 1.5 <t <3,
2t +14,1)  for02<t<0.
= {(@y) eR? i e 10,y =1}, with 10 := (F2t+14,1)  for0.2<1 <06,
(0.2,1) for 0.6 <t < 1,
(1.6t —1.4,1)  for 1<t< 15,

(4.1)
As ¥ =T x (0,T) satisfies the hypotheses of Theorem 2.1, the continuous problem is well-posed.
On ¥p and X, we prescribe homogeneous Dirichlet and Neumann BCs as in Egs. (2.5) by setting
g=0on Xp and G =0 on Xy. The initial condition is ug = 0 in 2 and the source term is defined
as f =1 in Qp. Finally, as for the linear second order elliptic operator £ of Eq. (2.2), we consider
the diffusivity tensor to be isotropic, i.e. & = oI, with I the identity tensor and ¢ = 1; moreover,
B =0and k =0.

We use Lagrange P; finite elements for the discretization in space, i.e. we consider in Eqs. (2.14)
and (3.3), V;' and V}, defined for degree k = 1, respectively, and the BE method (0 = 1 in the general
f-scheme) for the time discretization, with time step At = 0.01. The problem approximated by
using the time varying FE method described in Sec. 2.2 has been implemented in FreeFem++ [16],
for which the considerations of Remark 2.2 apply.

In Fig. 2, we report the evolution of the computed solution at different time steps by considering
the mesh size h = 0.00625. By a qualitative comparison between the Nitsche’s method (case (a))
and the time varying FE method (case (b)) the solutions look qualitatively very similar. In Fig. 3,
we compare the solutions profile computed at different time steps through the upper bound of the
domain I'sUT’ g), by considering the mesh size h = 0.00625. We notice that the solutions obtained by
using the Nitsche’s method (-) result in a smoother curve, especially near the boundary between ¥p
and X, with respect to the profile of the approximate solution computed with the time varying
FE method (-). This is in agreement with the results obtained in [6] for the linear advection-
diffusion equation, where the authors observe that the weak imposition of the Dirichlet BCs is able
to reduce numerical oscillations, which may be caused by discontinuous boundary data. In Fig. 4,
we compare the solutions profile computed at ¢ = 1.3 through I's U Fg), by considering different
mesh sizes h = 0.025, 0.0125, 0.00625, and 0.003125. From the comparison between the Nitsche’s
method (-) and the time varying FE method (-), we can observe that the proposed method shows
qualitatively good solutions already with a coarse mesh, thus indirectly showing the effectiveness
of the Nitsche’s method.
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0 1

(a) t=30 (b)

Figure 2: Solutions at different time steps for h = 0.00625; comparison between the Nitsche’s
method (case (a)) and the time varying FE method (case (b)) for some ¢ € (0, 3).
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Figure 3: Solutions on I's U I‘g at different time steps by considering the mesh size h = 0.00625;

comparison between the Nitsche’s method (--) and the time varying FE method (-) solutions for

some t € (0,3).
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(d) h = 0.003125.

Figure 4: Solutions on I's U Fg) at t = 1.3 by considering different mesh sizes (h); comparison
between the Nitsche’s method (--) and the time varying FE method (—) solutions.

Table 1: Comparison of the results (CPU time, number of elements, and DoFs) obtained by using
the Nitsche’s method and the time varying FE method for different characteristic mesh sizes (h).

time varying FE method

Nitsche’s method
h N Npors CPU Time (s) minN,; maxN, minNpyrs max Npors CPU Time (s)
0.025 3,808 1,985 22 3,814 10,208 1,988 5,249 48
0.0125 15,176 7,749 95 15,094 40,740 7,708 20,659 208
0.00625 60,594 30,618 409 60,624 164,294 30,633 82,724 887
0.003125 243,178 122,230 2,200 242,642 657,158 121,962 329,732 4,443
10000
1000} :
= 100 :
-
10r E
1 i
10 100 1000
1/h

Figure 5: Mesh size (1/h) vs. CPU time in seconds; comparison between the Nitsche’s method (-)

and the time varying FE method (-) solutions.
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In Table 1, we report, for different values of the mesh size h = 0.025, 0.0125, 0.00625, and
0.003125, the number of elements (N,,) and the degrees of freedom (Np.r,) associated to the FE
spaces V, for the Nitsche’s method, and the minimum (min) and maximum (max) number of ele-
ments and degrees of freedom associated to the time varying FE spaces V}', respectively. Moreover,
we record the corresponding CPU times. The smaller the mesh size, the larger are the saving of the
computational costs allowed by the Nitsche’s method with respect to the time varying FE method,
as highlighted in Fig. 5; indeed, for h = 0.003125, the number of DoF's is about the half with the
proposed Nitsche’s method.

5 Conclusions

In this work, we considered a numerical approach developed within the FE method to solve initial
boundary value problems associated with parabolic second order PDEs endowed with mixed time
varying BCs. Specifically, we proposed a numerical scheme based on the Nitsche’s method in the
framework of [17], but by considering the more general case of time varying coefficients. We proved
the existence and the numerical stability of the solution based on the #-method for the discretization
in time; as expected, we obtained a stability condition of the full discrete scheme dependent on
the mesh size, according with the theory developed in the framework of the weak imposition of the
Dirichlet BCs [27]. Moreover, we presented some numerical results which highlight the performance
and, specifically, the computational efficiency of the proposed full discrete scheme compared to a
standard time varying FE method based on remeshing strategies, which represents the typical
approach for problems with mixed time varying BCs.
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