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Abstract

In this work, we present a PDE-aware deep learning (DL) model, named Space-Time
Reduced Basis Deep Neural Network (ST-RB-DNN), for the numerical solution to the
Inverse Problem of Electrocardiography. The main feature of the proposed neural network
(NN) is that it both leverages data availability and exploits the knowledge of a physically-
based mathematical model, expressed by means of partial differential equations (PDEs),
to carry out the task at hand. The goal is to estimate the epicardial potential field from
measurements of the electric potential at a discrete set of points on the body surface. Such
a problem has become central in biomedical research, providing the theoretical basis for
Electrocardiographic Imaging (ECGI), but it is extremely hard to solve because of its
ill-posedness. The employment of deep learning techniques in this context is made difficult
by the low amount of clinical data at disposal (small data regime), as measuring cardiac
potentials requires invasive procedures. Suitably exploiting the underlying physically-
based mathematical model allowed to circumvent the data availability issue and led to the
development of fast-training and low-complexity PDE-aware DL models. In particular,
physical-awareness has been pursued by means of two elements: the projection of the
epicardial potential onto a Space-Time Reduced subspace, spanned by the numerical
solutions of the governing PDEs, and the inclusion of a tensorial Reduced Basis (RB)
solver of the Forward Problem in the network architecture. Numerical tests have been
conducted only on synthetic data, obtained via a Full Order Model (FOM) approximation
of the problem at hand, and two variants of the model have been addressed. Both proved
to be accurate, up to an average `1-norm relative error on epicardial activation maps
of ≈ 3.5%, and both could be trained in ≈ 10 min. Nevertheless, some improvements,
mostly concerning data generation, are necessary in order to bridge the gap with clinical
applications.

Keywords: Cardiac Electrophysiology, Deep Learning, ECGI, Inverse Problem of Electro-
cardiography, Partial Differential Equations, PDE-aware Deep Learning
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1 Introduction

Over the last 30 years, especially in the last decade, computational biomedical research
has witnessed the development of ECG-Imaging (ECGI) [9–11,26,33,35,40], a novel imaging
modality for non-invasive mapping of cardiac electrical activity, which makes use of body-
surface ECG signals and of thoracic CT-scans. The success of ECGI can be recognized in
its ability of providing relevant diagnostic information on the electrical activity of the heart,
visualizing it directly at the heart level and easing in turn the readability and interpretability
of the results. Additionally, ECGI has proved to achieve an accuracy that plain body surface
signals (as ECG or BSPM) do not offer and that could be instead obtained only by means of
invasive measurement techniques [26]. Despite being a recent field of research, the stunning
advances made over the last decade have already allowed to validate its performances in a
number of clinical practices [9, 11] and to effectively employ it in the clinical setting [34].

From a mathematical standpoint, the theoretical basis of ECGI is the so-called Inverse
Problem of Electrocardiography; it consists in finding the epicardial potential field which
gives rise to body surface signals as close as possible to some target ones, in the least-squares
sense. Let us consider a geometry made by the torso domain ΩT , with the body surface
ΓB representing an external boundary and the epicardial one ΓH representing an internal
boundary. Additionally, let Σ ⊂ ΓB be the portion of the body surface where electric
potentials are recorded and call z such recordings. Now, let v ∈ H

1
2 (ΓH) be the epicardial

potential and define y(v) as the unique solution in H1(ΩT ) of the following stationary
elliptic problem 

−∇ · (DT∇y(v)) = 0 in ΩT

y(v) = v on ΓH

∇y(v) · nB = 0 on ΓB

(1)

being DT the tensor expressing the electrical conductivity in the torso and nB the outward
unit normal vector to ΓB. Also, we define the operator A : H

1
2 (ΓH) −→ H

1
2 (Σ) such that

Av = y(v)|Σ (2)

and the cost functional

J(v) =
1

2

∫
Σ
|y(v)− z|2 dσ =

1

2
||Av − z||2L2(Σ) (3)

for z ∈ L2(Σ). Then, the Inverse Problem of Electrocardiography can be written as:

find uH ∈ H
1
2 (ΓH) : J(uH) = min

v∈H1/2(ΓH)
(J(v) +R(v)) . (4)

being R(v) a suitable regularization term. Without stabilization (i.e. setting R(v) = 0)
problem (4) is ill-posed in usual Sobolev spaces, which means that A admits an unbounded
inverse operator in the spaces Hs, ∀s ∈ R (see [36, 46, 49]). This implies that small
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perturbations (for instance due to measurement errors) in the observed surface potentials
z may lead to much larger variations on the reconstructed epicardial potential uH . To
retrieve well-posedness, problem (4) must be therefore approximated with a family of stable
problems. The regularization term R(·) can be computed as

R(v) =
α

2
||v||2

H1/2(ΓH)
or R(v) =

α

2
||y(v)||2H1(ΩT ) (5)

being y(v) the solution of system (1) with v as Dirichlet boundary datum on ΓH and α
a hyperparameter to be tuned. Two other well-established techniques are also Tikhonov
Regularization [47], which consists in computing R(·) as the L2(ΓH)-norm either of the
epicardial potential or of its derivatives, and Total Variation Regularization, which instead
defines R(·) as the L1(ΓH)-norm of the normal derivative of the epicardial potential. Notice
that all these strategies are subject to the choice of at least one hyperparameter; various
techniques have been proposed to (sub-)optimize such a choice [29].

In the current work we have followed a different path, bypassing classical approaches
thanks to two strategies. The first one is the exploitation of Machine Learning (ML) and,
more specifically, of Deep Learning (DL), which has established itself as a pillar of a new
generation of scientific development, thanks to the abundance of available data and to the
progresses in terms of computational power and resources. In particular, we wish to overcome
the ill-posedness of the Inverse Problem of Electrocardiography leveraging data availability,
yet still somehow retaining knowledge of the physical laws underlying the problem at
hand. Incidentally, if until few years ago ECGI could be regarded as almost free of ML-DL
influence, recently few works pursuing an integration between the fields did start to appear.
Other than neural network (NN) models yielding heartbeats classification from body surface
signals [28,55], we ought to mention the works by Giffard et al. [20], Wang et al. [50], Bacoy-
annis et al. [2] and Bujnarowski et al. [5]. In particular, [20] employs kernel ridge regression
and a 2-term exponential regression to perform a patient-specific estimation of the main
parameters of the chosen cardiac model. [50] builds a NN that provides (sub-)optimal values
for the regularization parameters involved in the Alternating Direction Method of Multipli-
ers iterative optimization algorithm. [2] proposes a novel method based on Conditional β
Variational Autoencoders (β-CVA) using Deep Convolutional Generative Neural Networks
for data-driven integration of spatio-temporal correlations and imaging information in the
ECGI problem. [5] proposes a Convolutional Deep Autoencoder which yields an imaging-free
approximation of the mapping between recorded body surface potentials and epicardial ones.

The second key element is based on the observation that all classical methods to solve
the Inverse Problem of Electrocardiography involve the computation of the transfer matrix
A. Such matrix depends on the geometry of the torso and of the heart and on their
electrical conductivities and it can thus be inferred only through thoracic CT-scans and
subsequent imaging post-processing routines. Anyway, CT-scans imply a certain level of
radiation and they are not even an available option for all the patients. Developing, then, a
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CT-scan-free model, able to map body surface potentials to epicardial ones in a reliable
and physically-consistent way, could be of great help and “could serve as a preliminary
study of the patient’s condition, before a more thorough examination is performed” [5].
This work was developed in a fixed geometrical setting ; with this expression, we mean
that we employed the same geometry in all the numerical simulations and we kept it
fixed over time, discarding variations in the shape, dimension, position and rotation of
the heart or in the dimension and shape of the torso. Furthermore, we approximated the
latter as a homogeneous and isotropic volume conductor, neglecting the presence of other
organs than the heart, characterized by different electric conductivities. Despite being quite
strong assumptions [12,41,54], they can be all justified considering this work as an initial
proof-of-concept on the integration between DL and ECGI. Our ultimate goal, indeed, is to
work in a dynamic and parametrized geometrical setting, designing a model which does not
just reconstruct the epicardial potential field, but that also provides estimates of suitable
parameters characterizing the geometry and the electric conductivity.

Despite [5] appears to have many points in common with this work, here a further key
element is present: physical awareness. Indeed the model we propose has been designed so
that, albeit in the framework of a classical Encoder-Decoder structure, some elements allow
to drive the predicted solutions to be consistent with the problem physics, approximated by
means of PDEs (from which the expression ”PDE-aware Deep Learning”). Broadening the
scope, the proposed model is an instance of a physically-informed deep learning model, i.e.
a DL model which exploits the knowledge of some physical laws underlying the phenomenon
of interest to ease its training and/or to ameliorate its predictive power. Recent years have
witnessed a flourishing of works in this direction [7, 15, 24, 31, 39, 51]; among those a special
mention is deserved by Raissi et al. [39], where the authors introduce Physically-Informed
Neural Networks (PINNs), i.e. neural networks able to approximate solutions to a variety of
PDEs by minimizing, in the loss function, the Mean Squared Error (MSE) on the residuals.
Another work we ought to refer to is [15] by Dal Santo et al.; there the authors present
DL models (called RB-DNNs) that, receiving in input samples of solutions to parametrized
PDEs and embedding a Reduced Basis (RB) solver [38] as a deterministic layer inside the
NN architecture, manage to reconstruct such solutions in the whole computational domain
and further provide estimates of the characteristic parameters.

According to [39], physics-informed DL can perform well in the so-called small-data
regime, i.e. in frameworks where the amount of data at disposal is either limited or partial
or subject to a high degree of inaccuracy, because of the high cost and/or complexity
of data acquisition procedures. Indeed, in such a context, classical DL methods feature
severe problems in terms of robustness, generalization and convergence, due to the lack
of data. However, if the phenomenon generating such data happens to be characterized
by the presence of some underlying physical laws, expressible by means of PDEs/ODEs,
then classical numerical methods can be integrated with DL-based ones. In particular
the knowledge of the physics of the problem at hand can be made somehow available to
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the DL model, acting as a physically-aware regularization agent, that (hopefully) eases
model training and improves its performances. ECGI is clearly a context of such kind;
indeed on the one side recordings of the epicardial potential are nowadays possible only via
intrusive techniques and assembling a dataset made of a number of observations adequate
for DL applications is unfeasible. On the other side, instead, a good understanding of the
most important physical laws underlying cardiac electrophysiology is present [19, 45], so
that exploiting it in the framework of physically-informed DL appears both doable and
challenging.

Outline

Section Materials and Methods presents a physics-aware deep learning model, called
Space-Time Reduced Basis Deep Neural Network (ST-RB-DNN), that provides reliable
and physically-consistent solutions to the Inverse Problem of Electrocardiography and
that furthermore is CT-scans-free. In particular: in Subsection General model description
an overview on the ST-RB-DNN model is given, in order to highlight its structure and
its main features. Subsection Data generation and model order reduction reports a brief
description of the numerical modelling of cardiac electrophysiology and of the Forward
Problem of Electrocardiography and an overview on the model order reduction techniques
exploited in the ST-RB-DNN model; additional details on these topics can be found in S1
Appendix. In Subsection Additional details and information a more extensive and technical
characterization of the proposed model is reported and two different versions of it are
sketched. Section Results reports the numerical tests conducted with two different versions
of the ST-RB-DNN model on the same test case; a brief description of the computational
setting used to generate the dataset (geometries, meshes, training-test splitting, sources of
randomness, etc.) is also given. Section Discussion evaluates the overall performances of
the model and investigates the differences (in terms of accuracy and complexity) between
the proposed versions of it; additionally, Subsection Limitations lists the main limitations
and proposes some possible further developments. Section Conclusion provides a final
summary.

2 Materials and methods

2.1 General model description

The proposed PDE-aware DL model for the Inverse Problem of Electrocardiography
is named Space-Time Reduced Basis Deep Neural Network (ST-RB-DNN); its general
structure is reported in the scheme of Fig 1.
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Fig 1. Basic structure of the ST-RB-DNN model

Three main components can be identified:

• Input: the input is constructed from body surface signals, recorded by electrodes
placed on the patient’s skin. The raw signals could possibly undergo a suitable
pre-processing (lowpass/bandpass filtering, magnitude normalization, Discrete Fourier
Transform (DFT), etc.). Also, all datapoints must contain the same number of
signals, but it is possible to construct different datasets and to train different models,
considering a different number of signals.

• Model: the model can be identified as an autoencoder, similar to the one presented
in [5]. However, while the encoder consists of a neural network trained with the classical
backpropagation algorithm [42], the decoder is deterministic, being an embedded
tensorial Reduced Basis solver for Problem (1). In particular:

– Encoder: the encoder is a deep neural network, which takes as input the
body surface signals (or some quantities derived from them after some pre-
processing routine) and learns a latent dimensionality-reduced representation of
the epicardial potential field, responsible for the generation of the same signals
given in input. To some extent, it can be stated that the encoder provides a data-
driven approximation of A−1 : L2(Σ)→ L2(ΓH), i.e. the inverse of the transfer
operator A defined in Eq (2). Two aspects are worth considering: the first one is
that the architecture of the NN depends on the nature of the quantities that are
provided in input and, furthermore, it can be optimized via a grid-search process,
aimed at finding a (sub-)optimal balance between accuracy and complexity. The
second is that the latent representation of the epicardial potential field is not
uninterpretable and inexplicable, as the one proposed in [5]. Indeed, what the
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Encoder learns are the coefficients arising from the projection of the epicardial
potential field onto a spatio-temporal dimensionality-reduced subspace, generated
from the same physical solutions included as output in the training dataset. The
way such a subspace is generated will be sketched in Subsection Data generation
and model order reduction and it is better detailed in S1 Appendix. A crucial
remark is that body surface signals can be deterministically reconstructed from
the estimated latent representation of the epicardial potential field. Moreover,
such a representation features optimality properties that seamlessly depend on
the method employed to generate the aforementioned dimensionality-reduced
subspace. This entails that the epicardial potential field is encoded in the lowest
possible number of coefficients, that guarantee a certain accuracy level in a
suitable norm.

– Decoder: the decoder is responsible for the deterministic reconstruction of
the body surface potentials, given the latent representation of the epicardial
potential field estimated by the encoder. As such latent representation is actually
a projection onto an optimal spatio-temporal dimensionality-reduced subspace,
the decoder can be constructed as a tensorial (to be compliant with the backprop-
agation training algorithm) Reduced Order Model (ROM) solver of the Forward
Problem of Electrocardiography (FPE) [3]. In particular, our model features a
decoder that employs the Reduced Basis method to solve the FPE independently
at all the discrete time instants. Additionally, the obtained solutions are suitably
post-processed in the full order spatial domain, so that signals matching the ones
provided in input can be computed. Such a choice presents a clear advantage
with respect to the usage of a trainable decoder as in [5]; indeed no additional
trainable parameters are added to the ones of the encoder and the overall model
complexity is potentially halved. As a cons, anyway, designing the decoder as a
ROM solver of the FPE makes it more difficult to achieve independence from
imaging and CT-scans. In this paper, we have adopted a fixed geometrical setting,
as described in Section Introduction; a natural future development would be to
parametrize such setting and, consequently, to adapt and update the embedded
RB solver.

• Output: the model output is made of two parts: the latent dimensionality-reduced
representation of the epicardial potential field and the body surface signals recon-
structed by the embedded RB solver of the FPE and matching the ones given in
input. Consequently, the loss functional is constructed as a weighted sum between
the estimation error on the dimensionality-reduced epicardial potential fields LBC

and the reconstruction error on the body surface signals Lsig, so that:

L(Θ) = LBC(Θ) + Lsig(Θ) + Lreg(Θ) (6)

Here Θ is the vector of the neural network trainable parameters and the additional
term Lreg represents a regularization term, which helps in preventing data overfitting.
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The precise expressions of the three terms will be given in Subsection Additional
details and information. We underline that, in principle, the ST-RB-DNN model can
be trained as a pure autoencoder, by suppressing the loss term LBC related to the
latent representation of the epicardial potential fields. Doing so, the non-invasive
collection of body surface potentials would be sufficient for model training and all the
invasively recorded cardiac potentials could be employed just for the sake of clinical
validation. Anyway, preliminary numerical tests, conducted employing a numerically
generated dataset, have shown that including a penalization of the epicardial potential
fields in the loss dramatically improves model performance. As we employed only
400 datapoints (despite being them augmented on-the-fly via the superimposition
of correlated white Gaussian noise - see Section Results), we expect to get better
results by training the ST-RB-DNN model as an autoencoder on a bigger dataset and
further investigations in this direction are planned. The implementation of additional
regularization terms - as the ones reported in Eq (5) - to mitigate the ill-posedness
of the underlying problem is also going to be analysed. For the moment, anyway,
we decided to include a penalization of the epicardial potential fields in the loss
and, consequently, to employ a numerically generated dataset both for training and
testing. In view of this, the RB solver of the FPE should be interpreted, more than
as a decoder, as a physically-aware regularization agent, which drives the predicted
epicardial potential fields to belong to a lower dimensional and physically-consistent
manifold.

Ultimately, two elements contribute to that physical awareness that makes the ST-RB-
DNN model a PDE-aware DL model for ECGI:

1. The estimation of the epicardial potential field as projected onto a spatio-temporal
dimensionality-reduced subspace, generated from the same solutions to the cardiac
electrophysiology problem that represent the output part of the training dataset. In
this way, indeed, the estimated epicardial potential field is forced to belong to a lower-
dimensional manifold of physically-consistent solutions. To meet this requirement the
training dataset should be made of realistic (if not real) data, suitable to capture the
majority of the dynamics of the problem of interest.

2. The reconstruction and penalization of body surface signals equivalent to the ones
provided in input, which are computed via an embedded RB solver of the FPE that
acts as a deterministic decoder. Indeed, if the contribution of such reconstruction
error in the loss is sufficiently high to be non-negligible, it drives the model to estimate
epicardial potential fields which, at least in the considered fixed geometrical setting,
determine the onset of body surface signals close to the observed ones. So, the space
of admissible solutions for the Inverse Problem is further shrinked, as additional
physical constraints have been added, and it ultimately reduces to a low-dimensional
and physically-consistent manifold.
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2.2 Data generation and model order reduction

Due to the paucity of clinical data relative to measurements of the electric potential at
the epicardium, the datasets we employed for both training and testing the ST-RB-DNN
model have been generated in silico. This involved the modelization and the numerical
approximation of both cardiac electrophysiology and the FPE. All simulations have been
carried out in a fixed geometrical setting (see Section Results) and the different datapoints
have been generated by randomly changing the values of the main parameters characterizing
the chosen cardiac model.

Cardiac electrophysiology has been modelled via the bidomain equations [48], coupled
with the Aliev-Panfilov (AP) ionic model [1]. The latter is a phenomenological model that
allows to approximate the current induced by the movement of electrically charged ions
through the cell membrane. The former, instead, are characterized by a partitioning of the
heart domain in an intracellular domain and an extracellular one, which however coexist
on the same space upon a homogenization process [21]. The anisotropy of the cardiac
tissue, dictated by the presence of conducting fibers, has been taken into account by setting
different electric conductivities longitudinally and transversally to the fibers sheet [37].

In modelling the FPE, we have approximated the human torso as an isotropic and
inhomogeneous volume conductor. The inhomogeneity derives from the presence of different
organs (bones, lungs, blood vessels, etc.), characterized by different electric conductivities.
To reduce the computational cost of the FOM simulations, we have decided to work under
the isolated heart assumption (see [4]); in this way, solving the FPE amounts at computing
the solution to a generalized Laplace equation, with homogeneous Neumann boundary
conditions on the body surface and inhomogeneous Dirichlet ones at the epicardium.

In the ST-RB-DNN model, Reduced Order Model (ROM) techniques have been used
both to estimate physically meaningful and dimensionality-reduced latent representations of
the epicardial potential fields and to efficiently solve the FPE, in order to reconstruct signals
matching the ones given in input. Considering that the FPE is a stationary problem, the
latter task can be carried out by resorting to the classical RB method [38], i.e. by deriving a
basis for a dimensionality-reduced subspace in space (via Proper Orthogonal Decomposition
(POD) of the snapshots’ tensor), performing a projection along the spatial dimension and
solving the resulting reduced problem independently at all the discrete time instants. The
former task, instead, can be much better accomplished by resorting to spatio-temporal ROM
techniques, as they allow to encode the information coming from time-dependent fields into
a very low number of coefficients, (almost) independent of the level of refinement of the grid
along both the spatial and the temporal dimension. In particular, the space-time-reduced
subspace where the epicardial potential fields have been projected has been generated using
the Tailored Temporal Subspaces via ST-HOSVD approach proposed in [8]. This strategy is
based on the computation of a tailored temporal basis for each element of the spatial one,
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allowing for a dramatic reduction of the dimensionality of the resulting spatio-temporal
subspace. We notice that estimating a FOM approximation of the epicardial potential field
is not a viable option in the framework of the ST-RB-DNN model as that would significantly
increase the overall complexity, severely hindering the training process. Reference [30]
features a theoretical analysis on this aspect, that can be also adapted to our case.

2.3 Additional details and information

This subsection is devoted to a more detailed presentation of the ST-RB-DNN model
architecture. In particular, the first part provides a description of the generic model
structure (i.e. the general structure of the ST-RB-DNN model, independently of the nature
of the signals given in input). The second and the third part, instead, focus on the two
models that have been actually implemented and tested in this work, analysing their specific
features with respect to the general case.

The generic ST-RB-DNN model

The architecture of the generic ST-RB-DNN model is reported in Fig 2. The model
takes as input body surface signals or quantities directly derived from those (in red). The
initial processing is done by a trainable NN (in blue) whose actual architecture depends
on the nature of the quantities given in input and which acts as an encoder. Such NN is
responsible for the estimation of two type of quantities:

1. A latent representation of the epicardial potential field (in orange): the main
element which is estimated by the encoder is a latent representation of the epicardial
potential field, which is obtained by means of a projection onto a space-time reduced
subspace generated from physical solutions to the heart electrophysiology problem (see
S1 Appendix). Notice that the latent representation estimated by the encoder, called
ūe

a,µ, is not the actual projection to be lately provided in input to the embedded
RB solver of the FPE (in cyan), called ûe

a,µ. Indeed, the former is processed by a
deterministic rescaler layer (in yellow) to obtain the latter; the rescaling is affine and
it has the following form:

ûe
a,µ = ûe

shift + ûe
scale ūe

a,µ (7)

with ûe
shift and ûe

scale representing the additive and the multiplicative terms of the
affine transformation. In simpler terms, the NN estimates how far is (in terms of
the epicardial potential) the current datapoint from a target value, referred to as the
”shift”, with a scaling factor given by what is referred to as the ”scale”. Several choices
can be made for the values of these two quantities; we decided to set ûe

shift to 0 (so,
corresponding to a totally inactivated heart) and to compute ûe

scale as the standard
deviation of the epicardial potentials in the training dataset, assuming them to have
0 mean. The rescaling is motivated by the fact that the values of the coefficients
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arising from the projection onto the space-time-reduced subspace happen to span over
a broad range of orders of magnitude and this severely hinders the training process.
Exploiting Eq (7) significantly improves the performances.

2. Torso conductivities (in green): other than the epicardial potential field, the
encoder may also learn the values of the electric conductivities of the different organs
considered in the torso geometry, in case an inhomogeneous approximation of the
latter is performed. To be precise, following the suggestions given in [15], such
parameters are estimated as normalized in the interval [0; 1] by employing a sigmoid
as activation function. Additionally, working under the isolated heart assumption,
what matters are the relative values of the conductivities and not their absolute
ones; thus, one conductivity must be always normalized to 1 by default and so no
parameters’ estimation is needed if a homogeneous torso approximation is employed.

Finally, the quantities estimated by the encoder are fed to an embedded tensorial RB
solver of the FPE (in cyan), which acts as an efficient and deterministic decoder. In
particular:

• Given the estimated torso conductivities, it rescales them in the proper ranges via
a Min-Max rescaler and it assembles the torso stiffness matrix exploiting affine
parametrization (see S1 Appendix for additional details).

• It expands the estimated space-time-reduced epicardial potential along the temporal
dimension only.

• It solves the FPE, reduced along the spatial dimension, at all time instants.

• It reconstructs the FOM approximation of the torso potential at the electrodes
locations and it computes signals equivalent to the ones provided in input to the
model. Those are then returned in output (in purple).

As reported in Eq (6), the loss functional is constructed as the sum of three contribu-
tions: the error on the dimensionality-reduced epicardial potential field, the error on the
reconstruction of body surface signals and a Ridge Regularization term, which helps in
preventing overfitting. More in detail, the loss functional is defined as follows:

L(Θ) = LBC(Θ) + Lsig(Θ) + Lreg(Θ) (8)

= wBC MAEσ
(
ûe

r, ûe
a(Θ)

)
+ wsig

nsig∑
i=1

MSE
(
Sr

#i,S
a
#i(Θ)

)
+ λr||Θ||22 .

The quantities with apex r denote target values, the quantities with apex a denote ap-
proximated values, S#i encodes the ith input signal, from a total of nsig signals, and wsig,
wBC ∈ R represent the weights of the body surface signals and of the space-time-reduced
epicardial potential field respectively. Incidentally, since what matters is the ratio between
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wBC and wsig, the latter has been always set equal to 1. The choice of using the Mean
Absolute Error (MAE) instead of the Mean Squared Error (MSE) for the loss term LBC

aims at forcing to 0 the least relevant coefficients, as characteristic of `1-norm penalization.
Additionally, the MAE appearing in LBC is not only weighted by the non-negative scalar
wBC , but also by the singular values that, during the POD-construction of the two Reduced
Bases, have been associated to the different coefficients. So,

MAEσ (ûe
r, ûe

a (Θ)) =:
1

bsnst

bs∑
i=1

nes∑
j=1

njt∑
k=1

√√√√σe,sj σe,t,jk

σe,s1 σe,t,11

∣∣∣(ûer − ûea (Θ))F(j,k)

∣∣∣ (9)

where {σe,sj }
nes
j=1 are the singular values arising from the (spatial) POD applied to the mode-1

unfolding of the epicardial potentials tensor, {σe,t,jk }n
j
t

k=1 are the singular values deriving from
the (temporal) POD applied to the projection of the epicardial potentials tensor onto the
1-dimensional subspace spanned by the j-th spatial basis element, bs is the training batch
size and F(·, ·) is the mapping from the Space and Time bases indexes to the Space-Time
basis index. A more detailed and rigorous definition of all such quantities can be found
in S1 Appendix. In this way, the weight of the error on a space-time-reduced epicardial
potential coefficient in the loss gets lower and lower as its relevance decreases; this allows
to obtain better estimates of the most relevant coefficients, easing the training process and
improving model performances. Two remarks are worth to follow. Firstly, by resorting
to ROM techniques, we managed to mitigate the effects of the ill-posedness of the inverse
problem, as the dimensionality of the space where we seek for a solution is dramatically
reduced. However, the risk of facing instability issues grows with the number of considered
spatio-temporal basis functions (i.e. it increases as the POD tolerances decrease). Due
to the small dimension of our dataset, we did not experience any problem in this sense;
nevertheless, adding supplementary regularization terms - as the ones of Eq (5) - to the
loss functional certainly allows to retain well-posedness. Secondly, the estimation error on
the torso conductivities is not involved in the expression of the loss functional; as in [15],
such values are obtained as a by-product.
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Fig 2. Scheme of the generic architecture of the ST-RB-DNN model

The time-series-based ST-RB-DNN model

The architecture of the time-series-based ST-RB-DNN model is shown in Fig 3. Its main
feature, with respect to the generic model, is that it takes as input body surface signals
organized in the form of time-series. The following aspects deserve to be discussed:

• As suggested in [28,55], at pre-processing stage it is useful to remove noise components
from body surface signals, since it eases the training process and it increases the
representative power of the models. Many works regarding the denoising of real body
surface potentials are available, as [43,44]. Anyway in this project we considered only
numerically generated signals with superimposed correlated white Gaussian noise
at an average SNR of 26 dB; thus, we employed a standard low-pass Butterworth
filter of order n = 3 [6]. Additionally, all signals have been normalized in the interval
[−1; 1] to ensure they are all within the same scale, as in [5].

• Since the input signals are provided as time-series, we chose to employ a Convolutional
Neural Network (CNN) design for the encoder. In particular, the structure of the
CNN can be divided in three parts:

– Pre-Convolutional Fully-Connected Layers: as first step, the input signals are
processed by some fully-connected layers; their aim is to extract features on top
of which convolutional operations may exhibit better performances. It is relevant
to notice that these layers only combine quantities related to the same time
instant, using the same set of weights at all time instants. In other terms, the
original input signals are non-linearly combined together, so that other signals,
featuring a better information encoding, can be derived. The activation function
is ReLU for all neurons.

– 1D Convolutional + Max-Pooling Layers : after the initial ”pre-processing” stage,
the resulting data are passed by to 1D convolutional layers, that convolve them
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along the temporal dimension. The number of layers, the dimensionality of
the convolutional kernel and the number of convolutional filters are three key
hyperparameters of the model. Also, each 1D-convolutional layer is followed by
a Max-Pooling layer, with pooling window of dimension 2 × 3 and with 2 × 2
stride. As a result, with proper padding choices, the dimensionality of the input
is halved along both dimensions at each step, reducing in turn the number of
trainable parameters of the model.

– Post-Convolutional Fully-Connected Layers: after 1D convolutions, the data
are finally processed by a second set of fully-connected layers. Their aim is
to extract relevant features to ultimately perform a good estimation of both
the torso conductivities and the space-time-reduced epicardial potential. All
neurons of all layers are ReLU -activated, except from the ones of the last layer,
i.e. the one providing the final estimates. These ones indeed feature two different
activation functions: sigmoid for the neurons storing the normalized values
of the torso conductivities and SELU (i.e. an optimally scaled version of the
Exponential Linear Unit (ELU)) for the ones storing the space-time-reduced
epicardial potential. This last choice allows to circumvent the so-called ”dying
ReLU ” problem [32], which has been experienced in some preliminary tests
employing ReLU as activation function.

Additionally, the model is equipped with dropout layers with p = 0.20 to reduce the
risk of overfitting.

Fig 3. Scheme of the architecture of the Time-series-based ST-RB-DNN model. Notice that, as the input
body surface signals are in the form of time series, the Trainable NN acting as decoder is a CNN, with 1D
convolutional layers acting along the temporal dimension only.

The DFT-based ST-RB-DNN model

The architecture of the DFT-based ST-RB-DNN model can be visualized in Fig 4. The
name stems from the usage of low-frequency Discrete Fourier Transform (DFT) coefficients
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of the body surface signals to assemble the model input. The 1D DFT is the discrete
counterpart of the uni-variate Fourier Transform and it turns a sequence of N complex
numbers {xn}N−1

n=0 , which is said to belong to the temporal domain, into another sequence
of N complex numbers {Xk}N−1

k=0 , which belongs instead to the frequency domain. In
particular:

Xk =

N−1∑
n=0

xn e
− 2πi

N
kn =

N−1∑
n=0

xn

[
cos

(
2π

N
kn

)
− i sin

(
2π

N
kn

)]
(10)

As Eq (10) is hermitian on real inputs, the dimensionality of the DFT applied to body
surface signals is M̄ =: bNt/2c+ 1, being Nt the signals’ length. The dimensionality of the
model inputs is then M ≤ M̄ , upon having excluded a certain portion of coefficients, related
to the highest-frequency modes; the choice of M is a model hyperparameter. The DFT
of body surface signals have been efficiently computed using the Fast Fourier Transform
(FFT) algorithm [14]. The following aspects deserve to be underlined:

• A drawback of the time-series-based ST-RB-DNN model is that it can work only
at a fixed acquisition frequency; in our test cases, for instance, we sampled body
surface signals at 500 Hz. Thus, if the signals to be processed have been sampled at
a lower frequency, they have to be interpolated in time before being provided to the
model. Conversely, the lowest-frequency DFT coefficients feature a low sensitivity
with respect to the acquisition frequency; thus, using them as input allows to avoid
any interpolation at pre-processing stage. Notice, as a caveat, that the low sensitivity
occurs only with respect to the lowest-frequency DFT coefficients; however highest-
frequency ones are typically not much informative, so that model accuracy should not
be too much affected by their removal.

• Since the application of a DFT at pre-processing stage already allows to capture
temporal dynamics, a convolution inside the encoder is no longer needed. Thus,
the latter simply consists of a Multiple Layer Perceptron (MLP), with several fully-
connected layers flanked one after the other. Also, the encoder is equipped with
Dropout layers with p = 0.20 to reduce the risk of overfitting and all its layers are
ReLU -activated, except from the last one. Its neurons, indeed, feature either sigmoid
or SELU as activation function, depending on the nature of the quantity they are
estimating.
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Fig 4. Scheme of the architecture of the DFT-based ST-RB-DNN model. Notice that, as the body surface
signals are given in input by means of their lowest-frequency DFT coefficients, the Trainable NN acting as
decoder is a MLP, since temporal dynamics have already been handled by the DFT itself at pre-processing
stage.

3 Results

In this section, we present the numerical results got with the ST-RB-DNN model on
a benchmark test case. The data used to train and test the developed models have been
generated numerically. In particular, heart electrophysiology has been approximated by
solving the bidomain equations coupled with the phenomenological AP ionic model, on a
reference bi-ventricular geometry (taken from [25] - see Fig 5). The FPE required instead
to solve a generalized Laplace equation in the human torso. Again, we considered a fixed
geometry (taken from [18] - see Fig 6); moreover we modelled the torso as a homogeneous
and isotropic volume conductor, discarding the presence of different organs (as bones, lungs
or blood vessels) with different electric conductivities. Working under the isolated heart
assumption, the two problems could be fully decoupled and solved sequentially, one after
the other. All numerical simulations have been carried out employing the classical FE
method, with elements of degree p = 1. Simulation duration has been set to 160 ms, so
that only ventricular depolarization was captured. The computational mesh built on top of
the bi-ventricular geometry was made of 221′088 tetrahedral elements, resulting in 49′674
vertices; the mesh constructed on top of the torso geometry, instead, was made of 498′992
tetrahedral cells, which resulted in 94′976 vertices. Three snapshots of a FOM solution to
the problem are shown in Fig 7.
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Fig 5. Geometry of the bi-ventricle employed in the FOM simulations, taken from [25]. The coloured
spheres denote the sites of potential occurrence of epicardial breakthroughs in a healthy patient, according
to [52]; the colours of the spheres are associated to the probability of EBT occurrence (refer to the colormap
on the left side). (Left): anterior view. (Center-left): posterior view. (Center-right): left lateral view.
(Right): inferior view.

Fig 6. Geometry of the human torso employed in the FOM simulations, taken from [18]. The black spheres
denote the positions of the 3 peripheral electrodes used in the standard 12-lead ECG system. The coloured
spheres denote the positions of the 6 precordial electrodes; their colours have been set accordingly to the
American Heart Association (AHA) colour-coding system. The lilac squares, together with the coloured
spheres, denote the positions of the electrodes on the ”simulated” vest. (Left): anterior view. (Right):
posterior view
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Fig 7. Snapshots of one FOM solution to the FPE at t = 20, 40, 60 ms. (Left): V3 ECG precordial lead.
(Center): epicardial extracellular potential field - anterior view. (Right): body surface potential field -
anterior view.

A crucial step in order to generate a dataset suitable to train DL models is to add
sufficient variability. Indeed, on the one side the training datapoints must differ one from
the other, so that the model can learn from them the widest possible amount of dynamics
and conditions; on the other side, also the testing datapoints should show differences both
within each other and with respect to the training ones, so that a proper assessment of
model performances can be made. We are aware of the fact that the simplifying modelling
assumptions we adopted prevent us from employing our model with success on real data.
However, we tried to enrich the data generation process with several sources of randomness,
in order to construct a sufficiently variable dataset, able to challenge the capabilities of the
ST-RB-DNN model.

Since the FPE consists only of a generalized Laplace equation to be solved in a ho-
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mogeneous and isotropic volume conductor, no variability has been inserted explicitly at
such stage. Regarding heart electrophysiology, instead, variability has been added in two
ways. First, all cardiac conductivities (longitudinal and transversal to the fibers direction,
intracellular and extracellular) have been sampled from a uniform distribution (see Tab 1);
indeed they have been proved to severely influence the depolarization process and, in turn,
the shape of body surface potentials [4].

σli [S cm−1] σti [S cm−1] σle [S cm−1] σte [S cm−1]

U(1.77, 2.92) · 10−4 U(0.66, 1.08) · 10−4 U(1.65, 2.73) · 10−3 U(0.96, 1.32) · 10−3

Tab 1. Values of the cardiac electric conductivities employed to numerically approximate heart
electrophysiology via the bidomain equations. U(a, b) denotes a uniform distribution over the interval [a; b].

Second, different initial activation patterns have been considered; all such patterns are
consistent with the findings of Wyndham et al. on EBTs localization in both healthy [52]
and LBBB-affected [53] patients. In particular, a thin endocardial and sub-endocardial layer
is activated, for a duration of 5 ms, in 10 possible different regions; this implies that EBTs
could occur in 10 possible different locations, that mimic the effect of Purkinje fibers (see
Fig 5). For healthy patients, all these regions could possibly activate, with the constraint
that no more than 5 EBTs should appear. Instead, for patients affected by LBBB (RBBB),
only the regions located on the right (left) ventricle can be involved in the stimulation
protocol and no more than 3 EBTs should be observed. 50% of the patients in the dataset
is healthy, 25% is LBBB-affected and 25% is RBBB-affected. Furthermore, the position of
the point around which the initial stimulation is applied can vary within a sphere of 2 mm
radius, obeying to a 3D uniform distribution, and the initial activation times are sampled
from a uniform distribution, with ranges having been defined according to [52,53].

Ultimately, the dataset we employed is made of Nµ = 400 datapoints. Train and test
datasets have been obtained from a 90% − 10% splitting of such dataset; the validation
dataset has been assembled by picking the 10% of the training datapoints. Furthermore,
training and validation datasets have been subject to data augmentation on-the-fly, by
superimposing correlated white Gaussian noise so that an average Signal-to-Noise Ratio
(SNR) of 26 dB is achieved. Additionally, starting from the same FOM solutions, two
different datasets have been assembled: the first one contains 12-lead ECG signals as body
surface signals, while the second one features 158 signals computed from measurements of
the body surface potential in 155 different locations (see Fig 6). Both datasets have been
suitably modified when the DFT-based model has been considered.

In order to reduce the computational burden of the offline stage of the method, the
training and validation datasets have been used also to generate all the Reduced Bases. All
POD have been performed with respect to the standard `2-norm and the Randomized SVD
algorithm [23] has been employed. In particular:

• The Reduced Basis in space for the torso potential has been computed by means of
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a POD applied to the mode-1 unfolding of the corresponding tensor. A tolerance
εt,sPOD = 10−3 has been chosen and 314 basis functions have been derived.

• The Reduced Basis in space for the epicardial potential has been computed by means
of a POD applied to the mode-1 unfolding of the corresponding tensor. A tolerance
εe,sPOD = 10−1 has been chosen and 101 basis functions have been derived.

• The dimensionality reduction along the temporal dimension for the epicardial potential
has been realized according to the Tailored Temporal Subspaces via ST-HOSVD
approach proposed in [8], thus computing for each element of the spatial Reduced
Basis a tailored temporal one. The tolerances for the POD ε̃e,tPOD have been set to
drop from 5 · 10−2 to 5 · 10−1, depending on the singular values associated to the
corresponding spatial Reduced Basis element. Ultimately, the computed Space-Time
Reduced Basis was made of 766 elements.

A grid search has been conducted both on the time-series-based ST-RB-DNN model
and on the DFT-based one, in order to identify optimal values for those hyperparameters
having the largest impact on model performance. In particular, all hyperparameters related
to the architecture of the trainable encoder have been involved in the grid search and the
dataset featuring 12-lead ECG signals was employed. The `1-norm relative error on the
reconstructed epicardial activation maps has been chosen as evaluation metric. Such maps
have been computed by assigning to each vertex of the computational mesh the time instant
at which the time derivative of the epicardial extracellular potential was maximal. Results
of the grid searches are shown in Tab 2 for the time-series-based model and in Tab 3 for
the DFT-based one. Additionally, Tab 4 reports the complexities and the training/testing
times for some of the trained models. Concerning other relevant hyperparameters: the
learning rate has been set to ν = 10−3 (with a reduction of factor 4 if no improvement of
the validation loss could be observed for 20 consecutive epochs); Nadam optimizer (i.e. an
improved version of Adam optimizer incorporating Nesterov momentum) [16] was chosen;
Ridge Regularization has been employed, with parameters λFC

r = 10−7 in fully-connected
layers and λConv

r = 10−4 in convolutional ones. Also, we set wBC = 103 for the time-series-
based model and wBC = 102 for the DFT-based one; this allowed to get a loss split of
approximately 95%− 5% between the error on epicardial potentials and the one on body
surface signals. Fig 8 and Fig 9 show the results of the two best models on test datapoint
#1 in terms of epicardial activation maps and 12-lead ECG signals, respectively. Fig 10
and Fig 11 show the results of the two best models on test datapoint #3 in terms of
epicardial activation maps and 12-lead ECG signals, respectively; these results are relevant,
as this datapoint identifies the worst case scenario for the majority of the trained models.
Additionally, Fig 12 and Fig 13 report the results of the two best models on test datapoint
#3 in case they are trained on the dataset featuring 158 body surface signals. Finally,
Tab 5 provides a summary of the errors made by the two best models, comparing the
performances in case either 12 or 158 body surface signals are provided in input.

20



All models training and testing as well as all post-processing routines have been carried
out on a Lenovo ThinkPad T490s mounting Ubuntu 20.04.1 LTS, with 16 GB RAM and
an Intel i7-8565U processor with 4 cores at 1.80 GHz. The numerical simulations needed
to construct the dataset were instead performed on the IHeart cluster (Lenovo SR950
8x24-Core Intel Xeon Platinum 8160, 2.10 GHz and 1.7 TB RAM) at MOX, Dipartimento
di Matematica, Politecnico di Milano.

Dense
1D Conv

(5) - 15 (5) - 25 (10) - 15 (10) - 25 (15) - 15 (15) - 25

(32) - (128,64,32,16,8,4) 6.43e-2 6.02e-2 6.52e-2 6.34e-2 6.71e-2 6.06e-2
(64) - (128,64,32,16,8,4) 5.78e-2 6.44e-2 6.95e-2 5.91e-2 8.28e-2 6.15e-2
(32) - (128,64,32,16,8) 5.15e-2 5.44e-2 4.94e-2 5.56e-2 5.40e-2 4.81e-2
(64) - (128,64,32,16,8) 4.51e-2 4.88e-2 5.10e-2 3.96e-2 4.65e-2 5.28e-2
(32) - (128,64,32,16) 5.20e-2 4.09e-2 4.76e-2 4.65e-2 4.32e-2 4.37e-2
(64) - (128,64,32,16) 4.57e-2 4.32e-2 4.23e-2 4.33e-2 4.35e-2 4.43e-2

Tab 2. Average relative errors in `1-norm on the epicardial activation maps of the test dataset with the
time-series-based ST-RB-DNN model. The green cell displays the best model; the red cell displays the worst
model. Rows labels are in the form ”Pre-Layers - Post-Layers”, where the first entry defines the layers of
the pre-convolutional fully-connected block and the second one the layers of the post-convolutional
fully-connected block. Columns labels are of the form ”NF - Kdim”, being NF the number of convolutional
filters and Kdim the dimension of the 1D convolutional kernel.
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Dense
DFT modes

9 17 25 33

(64,64) - (256,256,128,64) 5.64e-2 5.57e-2 5.29e-2 5.46e-2
(128,128) - (256,256,128,64) 5.46e-2 5.58e-2 5.40e-2 4.06e-2
(256,256) - (256,256,128,64) 5.07e-2 5.08e-2 5.20e-2 4.61e-2
(64,64) - (256,256,128) 4.78e-2 4.54e-2 4.14e-2 5.08e-2
(128,128) - (256,256,128) 4.37e-2 4.28e-2 4.26e-2 4.05e-2
(256,256) - (256,256,128) 3.78e-2 3.81e-2 3.67e-2 3.79e-2
(64,64) - (256,256) 4.19e-2 3.91e-2 3.83e-2 4.85e-2
(128,128) - (256,256) 3.90e-2 3.83e-2 4.12e-2 3.90e-2
(256,256) - (256,256) 3.90e-2 3.70e-2 3.77e-2 3.86e-2
(64,64) - (256,512) 3.77e-2 3.79e-2 3.65e-2 5.07e-2
(128,128) - (256,512) 3.60e-2 3.49e-2 3.69e-2 3.75e-2
(256,256) - (256,512) 3.50e-2 3.51e-2 3.55e-2 3.70e-2

Tab 3. Average relative errors in `1-norm on the epicardial activation maps of the test dataset with the
DFT-based ST-RB-DNN model. The green cell displays the best model; the red cell displays the worst model;
the yellow cells identify two DFT-based models that will be considered in Tab 4. Rows labels are of the form
”Pre-Layers - Post-Layers”, where the entries identify the number of neurons in the layers preceding and
following a Flatten layer. Columns labels represent the number of DFT coefficients given as input to the
model.

AM error # Params Ttrain Tepoch Tpredict Ttest

Best T-series 3.96e-2 213′264 603.52 s 11.3871 s 0.0288 s 4.3385 s
Best DFT 3.49e-2 622′590 586.93 s 10.2970 s 0.0329 s 4.6384 s

DFT Model 1 4.78e-2 239′998 446.73 s 9.1180 s 0.0253 s 4.5188 s
DFT Model 2 3.90e-2 358′654 451.92 s 9.2228 s 0.0306 s 4.5453 s

Tab 4. Average activation maps `1-norm relative error, number of trainable parameters and training and
testing times (in s) for four different ST-RB-DNN models. ”Best T-series” and ”Best DFT” identify the
best time-series-based and DFT-based model respectively; ”DFT Model 1” is a DFT-based model whose
complexity is the closest to the one of ”Best T-series” among the tested models; ”DFT Model 2” is a
DFT-based model whose average `1-norm relative error on activation maps is the closest to the one of ”Best
T-series” model among the tested models. The architectures of the models can be derived from Tab 2 and
Tab 3, following the colour-coded notation and the reported activation maps errors. Ttrain is the full training
time; Tepoch is the average time per epoch; Tpredict is the time required by a single forward pass in the model;
Ttest is the full testing time on a single datapoint, including all post-processing routines.
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Fig 8. Epicardial activation maps for the test datapoint #1 (healthy), computed from three different
potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one estimated by
the best time-series-based ST-RB-DNN model (center) and the one estimated by the best DFT-based
ST-RB-DNN model (bottom). The errors (relative, `1-norm) are 1.60% and 1.78% respectively. Both models
get 12-lead ECG signals in input. The activation maps are shown in four different views.

Fig 9. 12-lead ECG signals for test datapoint #1 (healthy) computed by solving the Forward Problem with
the RB method. Three epicardial potential fields have been employed as Dirichlet boundary datum: the one
reconstructed from the exact ST-ROM approximation, the one estimated by the best time-series-based
ST-RB-DNN model and the one estimated by the best DFT-based ST-RB-DNN model. The errors (absolute,
`1-norm, in mV ) are 5.63 · 10−2 and 7.89 · 10−2 respectively. Both models get 12-lead ECG in input.
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Fig 10. Epicardial activation maps for the test datapoint #3 (RBBB-affected), computed from three
different potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one
estimated by the best time-series-based ST-RB-DNN model (center) and the one estimated by the best
DFT-based ST-RB-DNN model (bottom). The errors (relative, `1-norm) are 6.36% and 9.14% respectively.
Both models get 12-lead ECG signals in input. The activation maps are shown in four different views.

Fig 11. 12-lead ECG signals for test datapoint #3 (RBBB-affected) computed by solving the Forward
Problem with the RB method. Three epicardial potential fields have been set as Dirichlet boundary datum:
the one reconstructed from the exact ST-ROM approximation, the one estimated by the best time-series based
ST-RB-DNN model and the one estimated by the best DFT-based ST-RB-DNN model. The errors (absolute,
`1-norm, in mV ) are 11.51 · 10−2 and 8.23 · 10−2 respectively. Both models get 12-lead ECG in input.
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Fig 12. Epicardial activation maps for the test datapoint #3 (RBBB-affected), computed from three
different potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one
estimated by the best time-series-based ST-RB-DNN model (center) and the one estimated by the best
DFT-based ST-RB-DNN model (bottom). The errors (relative, `1-norm) are 9.26% and 4.65% respectively.
Both models get 158 body surface signals in input. The activation maps are shown in four different views.

Fig 13. 12-lead ECG signals for test datapoint #3 (RBBB-affected) computed by solving the Forward
Problem with the RB method. Three epicardial potential fields have been set as Dirichlet boundary datum:
the one reconstructed from the exact ST-ROM approximation, the one estimated by the best time-series based
ST-RB-DNN model and the one estimated by the best DFT-based ST-RB-DNN model. The errors (absolute,
`1-norm, in mV ) are 11.71 · 10−2 and 8.19 · 10−2 respectively. Both models get 158 signals in input.
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Size
Type

T-series DFT

12 3.96e-2 3.49e-2
158 3.98e-2 3.29e-2

Size
Type

T-series DFT

12 6.52e-2 mV 6.82e-2 mV
158 7.55e-2 mV 6.82e-2 mV

Tab 5. Reconstruction errors on the epicardial activation maps (left) and on 12-lead ECG signals (right)
made by the best model, depending on the nature and on the dimensionality of the input. Activation maps
errors are computed as relative `1-norm errors; ECG signals errors are computed as absolute (in mV)
`1-norm errors.

4 Discussion

Our study focused on the development of a DL model (called ST-RB-DNN) that allows
to estimate physically-consistent solutions to the Inverse Problem of Electrophysiology not
only leveraging data availability, but also exploiting the awareness of the physical laws
underlying the phenomenon of interest, expressed by means of suitable PDEs. In light of
the obtained numerical results, the main findings are the listed in the following.

1. The model provides reliable estimations of epicardial activation maps: the
time-series-based ST-RB-DNN model trained with 12-lead ECG signals in input presents
good performances in terms of accuracy. Tab 2 shows the results of the grid search process
on architecture-related hyperparameters (in terms of the average `1-norm relative error on
the test set); the table is organized so that model complexity increases both row-wise (top
to bottom) and column-wise (left to right). Remarkably, none of the considered models
features an error higher than 10% and the best one, with an error of 3.96%, presents an
intermediate level of complexity (213′264 trainable parameters, see Tab 4), proving that no
overfitting did occur. Again referring to Tab 4, we can notice that the training time equals
≈ 604 s (11.4 s per epoch on average); testing on one fresh data sample, instead, takes
4.34 s, of which just 0.029 s are due to the forward pass in the model, while the others are
related to the post-processing routines that allow to reconstruct the FOM solution and to
compute the epicardial activation map. Activation maps are qualitatively well reconstructed
by the ”best model”, with a good identification of both epicardial breakthrough (EBT)
and latest epicardial activation (LEA) areas (see Fig 8, 10 - second row). The level of
accuracy we attain allows then to capture a vast part of the variability of the phenomenon
at hand, comprising both physiological and pathological (in our case, limited to LBBB
and RBBB conduction defects) conditions. Additionally, body surface signals are well
approximated in the autoencoding portion of the output (see Fig 9, 11 - red solid line), with
an average `1-norm absolute error on the test dataset of just 6.52 · 10−2 mV ; the presence
of an embedded RB solver of the FPE as deterministic decoder happens to play a key role
on this aspect.

2. Signals pre-processing via DFT improves model performances: if the ST-RB-
DNN model is adapted so that it can take as input the lowest-frequency coefficients arising
from the application of a DFT to 12-lead ECG signals, its performances improve. Tab 3
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reports the results of the grid search process on architecture-related hyperparameters
and on the number of DFT coefficients; the table is organized so that model complexity
increases both row-wise and column-wise. Also in this case, all average `1-norm relative
errors are below the threshold of 10%; moreover, almost all models feature an error that
is lower than 5% and that equals 3.49% for the best model (−0.47% with respect to the
best time-series-based model). In this case, the time required by testing on a fresh data
sample equals 4.64 s, of which only 0.033 s are related to the forward pass in the model
(see Tab 4). About computational complexity, on the one side lower errors are achieved
if a limited number of DFT coefficients is given in input. Indeed providing information
on high-frequency modes happens to be not only useless, but even counterindicative, as
ultimately a spatio-temporal reduced representation of the epicardial potential is estimated.
On the other side, the best model has 622′590 trainable parameters and, fixing the input
dimensionality, it is the second most complex among the considered ones. Anyway, by
proceeding row-wise along each column of Tab 3, it can be noticed that errors seem to reach
a plateau, so that no significant improvements should be expected by further increasing the
number of hyperparameters; no additional tests have been made on this point. Noticeably,
despite featuring a much higher complexity with respect to the best time-series-based model,
the best DFT-based one could be trained in a slightly lower amount of time (see Tab 4);
this is due to the fact that the trainable encoder of such model is no longer a 1D-CNN, but
a simple MLP, hence the backpropagation algorithm can be performed much faster. Also,
from Tab 4 it can be noticed that a DFT-based model as complex as the best time-series-
based one features a much higher error (4.78% vs 3.96%), while a DFT-based model whose
performances are comparable with the ones of the best time-series-based model exhibits a
higher complexity (358′654 parameters vs 213′264 parameters), but it could be trained in a
much lower amount of time (≈ 452 s vs ≈ 604 s). As expected, the epicardial activation
maps estimated by the best DFT-based model are qualitatively close to the target ones
(see Fig 8, 10 - third row), showing a good identification of both EBT and LEA locations.
Actually, in the worst case scenario presented in Fig 10, the DFT-based model happens to
estimate a non-physical EBT in the infero-lateral basal portion of the left ventricle; such
misidentifications have been encountered only in a minority of the 40 testing datapoints
(for both models) and they were always referred to low-occurrence EBTs. For this reason,
we expect the problem to be avoided by either just increasing the dimensionality of the
training dataset or upsampling the critical EBTs at the data generation stage. Finally, body
surface signals have been well reconstructed at all leads in both reported test datapoints
(see Fig 9, 11 - green solid line), with an average `1-norm absolute error on the test dataset
equalling 6.82 ·10−2 mV (+0.30 ·10−2 mV with respect to the best time-series-based model).

3. Considering more body surface signals does not severely impact on model
performances: the best model architectures, either trained with 158 body surface signals
or with ”standard” 12-lead ECG ones, exhibited comparable performances. In particular,
the time-series-based model featured an average `1-norm relative error of 3.98% (+0.02%),
while that drops to 3.29% for the DFT-based one (−0.20%). The reduced dimensionality
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and heterogeneity of the training dataset is thought to exert a big impact on this aspect,
as 12 body surface signals may be enough to encode the variability of the considered data.
Thus, the effective usefulness of providing more body surface signals - which is common in
ECGI clinical applications - should be assessed when dealing with bigger datasets. This
consideration is enhanced by looking at Fig 12, which reports the epicardial activation
maps estimated by the best models taking 158 body surface signals in input; indeed it
can be noticed that the DFT-based model no longer estimates the non-physical EBT on
the infero-lateral basal portion of the left ventricle, which was instead detected by the
corresponding model taking 12-lead ECG signals in input (see Fig 10).

4. Exploiting physical-awareness allows to construct low-complexity and fast-
training models in a small data regime : as reported in Tab 4, all the implemented
ST-RB-DNN models, despite the small amount of synthetic data at our disposal, managed
to provide good estimations of the epicardial potential field during ventricular depolarization
and could be trained on a simple laptop in approximately 10 min. The two elements that
allowed us to get physical-awareness play a key role in this, indeed:

• The projection of the epicardial potential onto a space-time reduced subspace, gener-
ated from the same physical FOM solutions that have been employed to construct
the training dataset, dramatically reduces the number of coefficients to be estimated
by the trainable encoder, other than allowing to achieve independence from the
space-time mesh refinement and to constrain the solution to a lower-dimensional and
physically-consistent manifold. In this way, the training process of the model, via
backpropagation algorithm, becomes feasible, while it would have been extremely
difficult, as well as severely expensive, if FOM approximations of the epicardial
potential field had had to be predicted (see [30] for additional details). In addition,
the reduced dimensionality of the dataset allowed us to train the models on a simple
laptop. If much more data were at our disposal (as it would be necessary for effective
clinical validation), we would need for more computational resources and for a more
optimized training pipeline. However, the trainability of the models is not expected
to change in any way.

• The insertion of an embedded RB solver for the FPE as deterministic decoder and its
employment as a physically-aware regularization agent in the expression of the loss
functional (see Eq (8)) allowed us to design a physics-aware NN, similar to the ones
presented in [15]. As stated in [39], building ML models able to exploit knowledge of
the most relevant physical laws underlying the phenomenon of interest proved to be
effective in the small data regime, i.e. when the amount of data at disposal is limited
due to the high cost/complexity of the acquisition procedures. In fact, just starting
from a small dataset generated in silico, we managed to train low-complexity models,
showing a remarkable representation power.
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4.1 Limitations

The current work represents a first methodological attempt of tackling the Inverse Prob-
lem of Electrocardiography by combining knowledge of the main physical laws underlying
the problem at hand, expressed via of suitable PDEs/ODEs, with deep learning techniques
for the exploitation of data availability. Configuring as a preliminary analysis, we have
decided to work under several simplifying assumptions that should be addressed in order to
bridge the gap with clinical applications. In particular, the most relevant limitations are
listed in the following:

1. Simplified Dataset: the ST-RB-DNN model training necessitates of many epicardial
activation maps. Unfortunately, acquiring such maps from clinical measurements requires in-
vasive procedures. To circumvent this shortcoming, we trained and tested our models with in
silico data, obtained by numerically approximating the solutions to heart electrophysiology
and to the FPE. Due to the high computational costs required by accurate FOM simulations,
we made several simplifying assumptions as the usage of a cardiac geometry without atria,
the employment of not too refined computational meshes and the neglect of conductivity
inhomogeneities in the torso. Furthermore, we imposed a one-way coupling between the
two aforementioned problems via the isolated heart assumption, discarding the continuity of
the currents at the epicardial surface. Despite appearing relevant from the physical point of
view, this last assumption is not expected to severely impact on our results. Indeed exposing
the heart to insulating air has been proven, both numerically [4] and experimentally [22], to
determine an increase in the epicardial potential magnitudes, but without affecting in most
cases the activation pattern, that we wish to reconstruct. Even if we have made some efforts
in reproducing body surface signals exhibiting the expected polarities and amplitudes, the
results we got still show some differences with respect to data collected in vivo. As a con-
sequence, the models we implemented cannot be directly employed with success on the latter.

2. Reference Geometry: all the training and testing datapoints have been generated on
the same, reference, geometry. On the one side this allowed us to develop an imaging-free
model, but on the other side it clearly represents a limitation. In general, it could be possible
to derive a parametrization of the Forward Problem with respect to the heart and torso
geometries; however, all geometric parameters would have to be estimated by the model,
significantly increasing the complexity of the task to be performed. Even considering fixed
geometries for both the heart and the torso, it is broadly known that the position and the
rotation of the former inside the latter can vary considerably, both from patient to patient
and, for the same patient, from heartbeat to heartbeat, exerting a non-negligible impact
on body surface signals. These effects could be taken into account by using methods that
allow to track the position of the heart from body surface potentials, as the one presented
in [12]. In terms of the ST-RB-DNN model, just few modifications would be necessary as
the adaptation of the architecture to a new input structure and the implementation of an
embedded RB solver for the Forward Problem that suitably handles novel geometry-related
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parameter values. Conversely, many problems could arise at data generation stage, as smart
ways of both computing solutions to the FOM problem in continuously varying geometrical
settings and deriving spatio-temporal Reduced Bases for the quantities of interest should
be figured out.

3. White Noise: another key aspect that differentiates clinically measured body surface
potentials from numerically approximated ones is the presence of noise. We tried to take this
element into consideration by superimposing to artificial signals correlated white Gaussian
noise at an average SNR of ≈ 26 dB. However, this is a very simplistic approach, as real
body surface potentials feature the presence of different sources of noise, which are due to
various aspects (muscular contraction/relaxation, breathing, measurement instruments and
procedures etc.) and whose distribution is not necessarily Gaussian (see [43, 44]). Thus,
an interesting development towards clinical application would be to superimpose to the
numerically generated signals more realistic noise components, as for instance done in [17]
by means of a tailored synthetic noise generator.

4. Limited Design Research: an additional limitation concerns the NN design, as only
a limited amount of architectures has been tested for the encoder. In particular, we chose
to employ a 1D-CNN in the time-series-based model and a MLP in the DFT-based one.
Actually, during the first stages of development, we also considered other architectures as
Residual Networks (ResNet) [28] or Convolutional Recurrent Neural Networks (CRNN) [55];
however, as no significant improvements were observed, no further efforts have been made
in this direction. In general, the field offers plenty of possibilities in terms of architectural
design and of optimization algorithms and additional efforts in this sense are very likely to
bring to better models.

5 Conclusion

The present study concerned the development of a physics-aware deep learning model
(called ST-RB-DNN), able to provide physically-consistent and data-driven solutions to
the Inverse Problem of Electrocardiography. In the numerical test cases that have been
conducted, all variants of the ST-RB-DNN model (distinguished based on the dimensionality
and nature of the provided body surface signals) proved to be accurate, up to an average
error of ≈ 3.5% in relative `1-norm, considering the epicardial activation maps of the test
dataset. Additionally, despite working under several simplifying assumptions and employing
just a small amount of numerically generated data for both training and testing, our models
also proved to be highly efficient; their trainings could be all performed in ≈ 10 min on a
simple laptop and a single forward pass only required ≈ 0.03 s. Finally, the obtained results
indicate that our method has potential to be used in clinical practice, notwithstanding some
necessary improvements, mostly concerning the data generation stage.
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Supporting information

S1 Appendix. Physical modelling and model order reduction. This appendix
contains further details on the physical modelling and numerical approximation of cardiac
electrophysiology and of the Forward Problem of Electrocardiography; additionally the
model order reduction techniques exploited in the ST-RB-DNN model are presented.
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S1 Appendix.
Physical modelling and model order reduction

Physical modelling

Due to the paucity of clinical data relative to measurements of the electric potential at
the epicardium, the datasets we employed for both training and testing the ST-RB-DNN
model have been generated in silico. In particular, this involved the modelization and
the numerical approximation of both cardiac electrophysiology and the propagation of the
electric signal from the epicardium to the body surface through the torso (known as the
Forward Problem of Electrocardiography [3]). As anticipated, all simulations have been
carried out in a fixed geometrical setting (see Section Results) and the different datapoints
have been generated by randomly changing the values of the main parameters characterizing
the selected cardiac model.

Cardiac electrophysiology

Cardiac electrophysiology has been modelled via the bidomain equations [48], coupled
with the Aliev-Panfilov (AP) ionic model [1]. The former are characterized by a partitioning
of the heart domain ΩH in an intracellular domain Ωi

H and an extracellular one Ωe
H , which

however coexist on the same space upon a homogenization process [21]. This reflects in
the definition of an intracellular potential ui and of an extracellular potential ue; also the
trans-membrane potential can be defined as v := ui − ue. Ultimately, the bidomain model
is expressed via the following system of time-dependent PDEs:

Am

(
Cm

∂v

∂t
+Iion(v, w;µ)

)
−∇·(Di(µ)∇v)−∇·

(Di(µ)∇ue) = AmIapp(µ)
in ΩH × [t0, T ]

−∇ · (Di(µ)∇v)−∇ · ((Di(µ) +De(µ))∇ue) = 0 in ΩH × [t0, T ]

(11)

Here Am represents the area of cell membrane per unit volume, Cm the membrane
capacitance per unit area, Di and De the conductivity tensors in the intracellular and
extracellular domains respectively (which may take into account the anisotropy of the
cardiac tissue), Iapp an externally applied current, typically responsible for the initial
activation of the heart tissue, and Iion the ionic current across the cell membrane. The
simulations are conducted over the time interval [t0;T ]. Finally, µ represents a vector which
stores all the scalar parameters that characterize the problem; notice that the expressions
of Iapp, Iion and Di,e depend on µ, while the domain ΩH is assumed to be fixed. System
(11) must be coupled with proper initial (on v only) and boundary conditions. Concerning
the latter, in particular, we have chosen to work under the isolated heart assumption, thus
keeping the cardiac potentials independent of the one in the torso. This is achieved by
imposing homogeneous Neumann boundary conditions at the epicardial surface ΓH for
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both ue and v; the impact of this simplifying assumption has been extensively analysed
and discussed, for instance, in [4]. The anisotropy of the cardiac tissue, dictated by the
presence of conducting fibers, has been taken into account; specifically, different electrical
conductivities have been set longitudinally and transversally to the fibers orientation, both
in the intracellular and in the extracellular domain [37]. For simplicity, we have supposed
all cardiac conductivities to be constant in ΩH (homogeneous anisotropy assumption) and
the two transversal conductivities, coplanar and orthogonal to the fibers sheet, to be equal
(axially isotropic case) [13]. Ultimately, the conductivity tensors could be written as:

Di,e(x) = σti,eI +
(
σli,e − σti,e

)
al(x)aTl (x) x ∈ ΩH (12)

being al(x) a unit vector parallel to the fibers orientation at a point x ∈ ΩH .

The AP model, instead, is a phenomenological ionic model that allows to approximate the
current Iion induced by the movement of electrically charged ions through the cell membrane.
It configures as an extension of the FitzHugh-Nagumo (FHN) model [27] and it proved
to exceed its performances on cardiomyocites, leading to a much better approximation of
the action potential shape and duration and of the cardiac tissue restitution curve. Iion
takes the form of a cubic non-linear function of v and a single (dimensionless) gating
variable w plays the role of a recovery function, allowing to model the refractoriness of cells
disregarding any sub-cellular process. From a mathematical standpoint, the AP model is
expressed by the following equations:Iion(v, w;µ) = Kv(v − a)(v − 1) + v in ΩH × [t0, T ]

∂w

∂t
= g(v, w;µ) = C(w)(−w −Kv(v − b− 1)) in ΩH × [t0, T ]

(13)

where the parameters K, a, b, ε0, µ1, µ2 are all related to the cell. In particular, a acts an an
oscillation threshold, above which an action potential is fired, and the weighting term

C(w) = ε0 +
µ1w

v + µ2
(14)

has been specifically added (compared to the FHN model) to account for a finer tuning
of the myocardial restitution curve. Additionally, a suitable initial condition has to be
imposed on w (typically w(t = t0) = 0) and, in order to get the desired scaling properties,
it is necessary to scale the time variable as t[ms] = 12.9 t[t.u.].

Upon a Galerkin Finite Element (FE) approximation, the discrete-in-space continuous-
in-time formulation of the bidomain equations coupled with any phenomenological ionic
model reads as follows.

33



Problem 1. Given µ ∈ P ⊂ Rp, find ueh = ueh(t;µ), vh = vh(t;µ) and wh = wh(t;µ)
such that: 

AmCmM
∂vh
∂t

+ Ain(µ)vh + Ain(µ)ueh +

AmIion(vh,wh;µ) = AmIapp(t;µ)
t ∈ [t0, T ]

Ain(µ)vh +
(
Ain(µ) +Aex(µ)

)
ueh = 0 t ∈ [t0, T ]

∂wh

∂t
= g(vh,wh;µ) t ∈ [t0, T ]

vh(t0;µ) = v0(µ); wh(t0;µ) = w0(µ)

(15)

where M is the mass matrix and Ain, Aex are the intracellular and extracellular stiffness
matrices, respectively.

The Forward Problem of Electrocardiography

In modelling the Forward Problem of Electrocardiography (FPE), we can approximate
the human torso as an isotropic and inhomogeneous volume conductor; indeed, as reported
in [45], the torso is not made of excitable cells, as the heart, and thus there is no need for a
model able to simulate the behaviour of the transmembrane potential. The inhomogeneity
derives from the presence of different organs (bones, lungs, blood vessels, etc.), which are
characterized by different electric conductivities.

Under the isolated heart assumption, at any t ∈ [t0;T ] the torso potential uT can be
computed by solving a generalized Laplace equation of the form

−∇ · (DT∇uT ) = 0 in ΩT (16)

coupled with a homogeneous Neumann boundary condition at the body surface ΓB and with
an inhomogeneous Dirichlet one at the epicardium ΓH , where the extracellular potential ue
acts as boundary datum. In Eq (16) ΩT is the reference torso domain and DT represents
the torso conductivity tensor.

As discussed in [4], working under the isolated heart assumption provides the advantage
of getting a one-way coupling between the heart and torso problems, easing and speeding
up the computations. It also prevents from imposing the continuity of the electric potential
fluxes at the heart-torso interface; in terms of body surface potentials, this results in signals
that often show the correct shape, but that feature abnormal magnitudes.

Upon a Galerkin FE approximation, the problem writes as follows.
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Problem 2. Given µ ∈ P ⊂ Rp, find uth = uth(t;µ) such that:

At(µ)uth(t) = −At
ΓH

(µ)uΓH
eh

(t) t ∈ [t0, T ] (17)

where At
ΓH

(µ) =: At(µ)[·, {jDir}], being At is the torso stiffness matrix and {jDir} the
set of Degrees of Freedom (DOFs) at which the Dirichlet boundary condition is imposed.
Furthermore uΓH

eh
(t) represents the FE discretization of the trace of the extracellular potential

ue on the epicardial surface ΓH at the time instant t.

Model order reduction

In the ST-RB-DNN model, Reduced Order Model (ROM) techniques have been used
both to estimate physically meaningful and dimensionality-reduced latent representations
of the epicardial potential fields and to efficiently solve the generalized Laplace equation in
the torso, in order to reconstruct signals matching the ones given in input. Considering
that Problem 2 is stationary, the latter task can be carried out by resorting to the classical
RB method [38], i.e. by deriving a basis for a dimensionality-reduced subspace in space (via
Proper Orthogonal Decomposition (POD) of the snapshots’ tensor), performing a projection
along the spatial dimension and solving the resulting reduced problem independently at all
the discrete time instants. The former task, instead, can be much better accomplished by
resorting to spatio-temporal ROM techniques, that allow to encode the information coming
from time-dependent fields into a very low number of coefficients, (almost) independent
of the level of refinement of the grid along both the spatial and the temporal dimension.
In particular, the space-time-reduced subspace where the epicardial potential fields have
been projected has been generated using the Tailored Temporal Subspaces via ST-HOSVD
approach proposed in [8]. This strategy is based on the computation of a tailored tem-
poral basis for each element of the spatial one, allowing for a dramatic reduction of the
dimensionality of the resulting spatio-temporal subspace. We notice that estimating a FOM
approximation of the epicardial potential field is not a viable option in the framework of
the ST-RB-DNN model as that would significantly increase the overall complexity, severely
hindering the training process. Reference [30] features a detailed theoretical analysis on
this aspect, that can be also adapted to the present case.

In the following, we employ the aforementioned ROM techniques in the ST-RB-DNN
model, in order to efficiently solve the FPE inside an embedded tensorial solver. Consider
the third order tensor X t ∈ RNt

s×Nt×Nµ storing the solutions to (17) at all the Space-Time
N t

sNt DOFs and for Nµ different parameter values. The basis in space, encoded by the

matrix V t
s ∈ RNt

s×nts , is computed by applying a truncated POD to the mode-1 unfolding of
X t. Once such basis is derived, by projecting all quantities onto the dimensionality-reduced
subspace it spans, we get:

Ã
t
(µ)ũ

(l)
th

= ũΩT
(l)

eh
(µ) l ∈ {0, . . . , Nt}, (18)
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where, being At(µ) and uΩT
eh

(µ) defined as in Problem 2:

Ã
t
(µ) =: V tT

s A
t(µ)V t

s ∈ Rnts×nts , (19a)

ũ
(l)
th

=: V tT

s u
(l)
th

∈ Rnts l ∈ {0, . . . , Nt}, (19b)

ũΩT
(l)

eh
(µ) =: −V tT

s A
t(µ)uΩT

(l)

eh
(µ) ∈ Rnts l ∈ {0, . . . , Nt}. (19c)

Based on Eq (17), we can perform a dimensionality reduction step also on the epicardial
extracellular potential. So, let X e ∈ RNe

s×Nt×Nµ be the third-order tensor storing the
values of the epicardial extracellular potential uΓH

eh
at all the N e

sNt Space-Time DOFs of
the epicardial surface and for Nµ different parameter values. Then a reduced basis in space,
stored by the matrix V e

s ∈ RNe
s×nes , can be computed by applying a truncated POD to the

mode-1 unfolding of X e. Eq (17) can so be written in reduced form as:

Ã
t
(µ)ũ

(l)
th

= Ã
t,e

(µ)ũΓH
(l)

eh
(µ) l ∈ {0, . . . , Nt}, (20)

where Ã
t
(µ) and ũ

(l)
th

are defined as in (19a) and (19b) respectively, while

Ã
t,e

(µ) =: V tT

s A
t(µ)V e

s ∈ Rnts×nes , (21a)

ũΓH
(l)

eh
(µ) =: −V eT

s u
ΓH

(l)

eh
(µ) ∈ Rnes l ∈ {0, . . . , Nt}. (21b)

As discussed before, in the framework of the ST-RB-DNN model the epicardial potential
field is projected also along the temporal dimension, as it is extremely convenient to encode
its dynamics in a low and grid-refinement-independent number of coefficients. Following
the Tailored Temporal Subspaces via ST-HOSVD approach, nes different truncated POD
are applied to the projections of the snapshots’ tensor X e onto the spaces spanned by the
different spatial basis elements, i.e.

X e(V e
si) ∈ RNt×Nµ s.t.

(
X e(V e

si)
)
jk

=

Ne
s∑

l=1

X e
ljkV

e
sil
, i ∈ {1, . . . , nes}. (22)

These POD allow to compute the temporal bases V e
ti ∈ RNt×nit ∀ i ∈ {1, . . . , nes}. The

overall Space-Time Reduced Basis for the epicardial potential is then made of nst =:
∑nes

i=1 n
i
t

elements of dimension N e
s ×Nt, each one being defined as the outer product between an

element of the Reduced Basis in space V e
s and an element of the associated Reduced Basis

in time {V e
ti}

nes
i=1.

The embedded reduced solver acting as decoder in the ST-RB-DNN model computes
the ROM-in-space FOM-in-time solution to the generalized Laplace equation in the torso
(see Eq (20)) receiving as input the space-time projection of the epicardial potential field.
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Leveraging orthonormality due to the POD, such projection can be expressed in terms of
the FOM approximation as

(
ûΓH
eh

(µ)
)
k

=

Ne
s∑

i=0

Nt∑
j=0

πk
ij

(
uΓH
eh

(µ)
)
ij

k ∈ N(nst), (23)

where πk
ij denotes the element in position (i, j) of the k-th Space-Time basis function.

Therefore, the ROM-in-space FOM-in-time epicardial potential ũΓH
eh

(µ) can be derived by

expanding in time ûΓH
eh

(µ) as:

(
ũΓH

(l)

(µ)
)
i

=

nit∑
j=0

(
V e

ti

)
jl
ûΓH
F(i,j)(µ) i ∈ {1, . . . , nes} l ∈ {0, . . . , Nt}, (24)

where

F :
(
N(nes),N(nit)

)
3 (i, j)→

i−1∑
k=1

nkt + j ∈ N(nst) (25)

is the mapping from the Space and Time bases indexes to the Space-Time basis index.

Remark: if the torso is approximated as an inhomogeneous volume conductor, featuring
the presence of organs with different electric conductivities, then it is possible to take
advantage of an affine parametrization to efficiently assemble the stiffness matrix during
the online stage. For instance, if we suppose the torso to be partitioned into N t

p parts with

conductivities µt =: {σtp}
Nt
p

p=1, then the stiffness matrix can be written as

At
(
µt
)

=

Nt
p∑

p=1

σtpA
t
p (26)

where At
p is the stiffness matrix associated to the DOFs belonging to the part p of the

torso and computed assuming a default conductivity of 1. Readily, an equivalent affine

decomposition applies also to the reduced torso stiffness matrix Ã
t
(µt).
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