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Abstract

Probability density functions are frequently used to characterize the distribu-

tional properties of large-scale database systems. As functional compositions,

densities carry primarily relative information. As such, standard methods of func-

tional data analysis (FDA) are not appropriate for their statistical processing. The

specific features of density functions are accounted for in Bayes spaces, which

result from the generalization to the infinite dimensional setting of the Aitchison

geometry for compositional data. The aim of the paper is to build up a concise

methodology for functional principal component analysis of densities. We pro-

pose the simplicial functional principal component analysis (SFPCA), which is

based on the geometry of the Bayes space B2 of functional compositions. We

perform SFPCA by exploiting the centred log-ratio transform, an isometric iso-

morphism between B2 and L2 which enables one to resort to standard FDA tools.

Advances of the proposed approach are demonstrated using a real-world example

of population pyramids in Upper Austria.

Keywords: compositional data; Bayes spaces; centred log-ratio transformation; func-

tional principal component analysis

1 Introduction

An increasing number of studies are nowadays based on large amounts of data. As a

direct consequence, the importance of Functional Data Analysis (FDA, e.g., Ramsay
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and Silverman, 2002, and references therein) has recently strongly increased. In recent

years, a large body of literature has been developed in this field (e.g., Ramsay and

Silverman, 2005; Horváth and Kokoszka, 2012, and references therein), however, still

little attention has been paid to the problem of dealing with functional data that are

probability density functions (Delicado, 2007, 2011; Nerini and Ghattas, 2007; Zhang

and Müller, 2011; Menafoglio et al., 2014). Even though it might seem that density

functions are just a special case of functional data –with a constant-integral-constraint

equal to one– standard FDA methods appear to be inappropriate for their treatment,

as they do not account for the particular constrained nature of the data. This problem

is well known in the finite dimensional setting, where specific techniques have been

worked out to deal with compositional data (e.g., Aitchison, 1986; Pawlowsky-Glahn

and Egozcue, 2001; Egozcue and Pawlowsky-Glahn, 2006; Egozcue, 2009; Pawlowsky-

Glahn and Buccianti, 2011, and references therein), i.e., multivariate data carrying only

relative information, usually represented in proportions or percentages. Those tech-

niques are mainly based on a geometric perspective grounded on the Aitchison geom-

etry in the simplex, which properly accounts for the compositional nature of the data.

In this context, probability density functions have been recently interpreted as func-

tional compositional data, i.e., functional data carrying only relative information. To

handle this kind of data, the Aitchison geometry has been recently extended to the so

called Bayes spaces: a Hilbert space structure for σ-finite measures, including proba-

bility measures, has been worked out in (van den Boogaart et al., 2014), based on the

pioneering work of Egozcue et al. (2006) and the subsequent development of (van den

Boogaart et al., 2010; Egozcue et al., 2013). The name Bayes spaces comes from the

primary purpose of the approach, which is to assign a simple algebraic interpretation for

the basic notions of mathematical statistics (e.g., the Bayes theorem as a paradigm of

information acquisition van den Boogaart et al., 2010). The idea of Bayes spaces was

first exploited in Delicado (2011) for the statistical analysis of density functions in the

context of dimensionality reduction through functional principal component analysis

and multidimensional scaling. Very recently, the Hilbert space structure of probability

density functions with a compact support has been used by Menafoglio et al. (2014)

to work out a kriging methodology for probability density functions. Even though the

last developments in this field (van den Boogaart et al., 2014) enable one to deal with

general σ-finite measures which are not necessarily compactly supported, this general

theory seems to be still hard to be used in practice, mainly due to its highly technical

construction involving reference measures different from the Lebesgue measure. How-

ever, from the application viewpoint, the hypothesis of finite support does not appear to

be too restrictive (Delicado, 2011; Menafoglio et al., 2014), and thus we shall focus on

compactly supported probability density functions.

The aim of this work is to make a step forward in the direction of functional princi-

pal component analysis in Bayes spaces, moving from the work of Delicado (2011). In

particular, we shall geometrically work out the problem of functional principal compo-

nent analysis (FPCA) in the Bayes space of probability density functions. Furthermore,

we will propose the use of the centred log-ratio transform (clr, van den Boogaart et al.,

2014; Menafoglio et al., 2014) for its practical implementation. We remark that, unlike
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the non-linear transformations which are commonly used for probability density func-

tions (e.g., the logarithmic transformation Delicado, 2011), the centred log-ratio trans-

formation is an isometric isomorphism between the Bayes space of probability density

functions and the space L2 of square-integrable real measurable functions. From an

application viewpoint this is extremely important, as it allows to solve the problem of

FPCA with the usual L2 geometry, while accounting for the non-linear geometry of

Bayes spaces.

The remaining part of the paper is organized as follows. Section 2 introduces the

Bayes space of probability densities functions as well as the clr transformation which

will be used for their processing. FPCA is recalled in Section 3 for L2 data. The

extension of FPCA to Bayes spaces is proposed in Section 4. In Section 5, we apply the

developed methodology to a real case study dealing with the age distributions in Upper

Austria, with the aim of characterizing the main modes of variability of these densities.

Section 6 eventually concludes the work.

2 Density functions as elements of the Bayes space

The theory of Bayes spaces (Egozcue and Pawlowsky-Glahn, 2006; van den Boogaart

et al., 2010, 2014; Egozcue et al., 2013) has been introduced as a generalization to den-

sity functions of the Aitchison geometry. This is commonly used for compositional

data, i.e., multivariate observations carrying only relative information (e.g., Aitchison,

1986; Pawlowsky-Glahn and Buccianti, 2011, and references therein), which are usu-

ally collected in the form of constrained data summing up to a constant, usually set

to 1 or 100, in case of proportions or percentages, respectively. Any probability den-

sity function f(x) can be considered as a compositional vector with infinitely many

parts (Egozcue and Pawlowsky-Glahn, 2006): as such, it inherits the key features of

compositions (Egozcue, 2009).

Consider a σ-finite measure with support I defined on a measurable space (Ω,A).
Like for compositional data, the constant sum constraint

∫
I f(x) dx = 1 = P(Ω) leads

to a representation within a class of functions that provide the same kind of information

– namely, the equivalence class of functions which are proportional to the density func-

tion. In fact, any other representative f̃ within this class, characterized by a constraint∫
I f̃(x) dx = c for c ∈ R, would carry the same information regarding the relative

contribution of any Borel subsets of the real line to the measure of the support. This

property is known as scale invariance. A second important feature of functional compo-

sitions is the relative scale property: the relative increase of a probability over a Borel

set from 0.05 to 0.1 (twice a lot) differs from the increase 0.5 to 0.55 (1.1 multiple),

although the absolute differences are the same in both cases.

Both the scale invariance and the relative scale properties are completely ignored

when considering probability density functions just like unconstrained functional data.

In particular, the usual notion of sum and product by a constant appears inappropriate

when applied to compositions, as the space of functional compositions endowed with

those operations is not a vector space (e.g., the point-wise sum of two compositions
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is not a composition). Instead, the Hilbert space structure of Bayes spaces (van den

Boogaart et al., 2014), which is based on an appropriate geometry, enables one to cap-

ture and properly account for these properties. In the following, we restrict our atten-

tion to density functions with compact support, as in (Delicado, 2011). Both theoretical

and practical reasons motivate this choice. Indeed, when the support is the whole real

line, the Lebesgue measure cannot be used as reference probability measure, leading to

highly technical issues. Moreover, in most real datasets, finite values for the inferior

and superior extremes of the support can be determined without a substantial loss of

generality.

We call B2(I) the Bayes space of (equivalence classes of) nonnegative functional

compositions on a compact subset I of R with square-integrable logarithm (Egozcue

et al., 2006; van den Boogaart et al., 2014). In the following, I will denote an interval

[a, b], but any compact subset of R could be dealt with analogously. Given two abso-

lutely integrable density functions f, g ∈ B2(I) and a real number α ∈ R we indicate

with f ⊕ g and α⊙ f the perturbation and powering operation, respectively, defined as

(Egozcue et al., 2006; van den Boogaart et al., 2014):

(f ⊕ g)(t) =
f(t)g(t)∫

I f(s)g(s) ds
, (α⊙ f)(t) =

f(t)α∫
I f(s)

α ds
, t ∈ I.

The resulting functions are readily seen to be probability density functions. Moreover,

Egozcue et al. (2006) prove that B2(I) endowed with the operations (⊕,⊖) is a vector

space.

To endow B2(I) with a Hilbert space structure, Egozcue et al. (2006) define the

inner product

〈f, g〉B =
1

2η

∫

I

∫

I
ln

f(t)

f(s)
ln

g(t)

g(s)
dt ds, f, g ∈ B2(I) (1)

which induces the following norm,

||f ||B =

[
1

2η

∫

I

∫

I
ln2

f(t)

f(s)
dt ds

]1/2
,

where η stands for the length of the compact set I , namely η = b− a. B2(I), endowed

with the inner product (1), is proved to be a separable Hilbert space in (Egozcue et al.,

2006). As such, it is isomorphic to the Hilbert space L2(I) of (equivalence classes of)

square-integrable real functions on I . An isometric isomorphism between B2(I) and

L2(I) is defined by the centred log-ratio (clr) transformation (van den Boogaart et al.,

2014; Menafoglio et al., 2014), defined for f ∈ B2(I) as

clr(f)(t) = fc(t) = ln f(t)− 1

η

∫

I
ln f(s) ds. (2)

We remark that such an isometry allows to compute operations and inner products

among the elements in B2(I) in terms of their counterpart in L2(I) among the clr-
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transforms, i.e.

clr(f ⊕ g)(t) = fc(t) + gc(t),

clr(α⊙ f)(t) = α · fc(t),

〈f, g〉B = 〈fc, gc〉2 =
∫

I
fc(t)gc(t) dt.

However, the additional condition
∫
I fc(t) dt = 0, needs to be taken into account for

computation and analysis on clr transformed density functions, as we shall show in

Section 4.

3 Principal component analysis for functional data

Principal component analysis (PCA) is a widely used multivariate statistical technique

aiming to capture the main modes of variability of the data by means of a small number

of linear combinations of the original variables. In the functional context, the same

aim is reached by Functional Principal Component Analysis (FPCA). Here, we briefly

recall FPCA, referring the reader, e.g., to Shang (2014) for a survey on this topic.

Let us consider a functional random sample X1, ..., XN in L2(I), and indicate with

〈x, y〉2 =
∫
I x(t)y(t)dt the inner product between two elements x, y in L2(I) and with

‖x‖2 = (
∫
I |x(t)|2dt)1/2 the induced norm. For ease of notation and without loss

of generality, we assume the samples to be centred. FPCA looks firstly for the main

mode of variability, i.e., for the element ξ1 in L2(I) –called first functional principal

component (FPC)– maximizing over ξ ∈ L2(I)

1

N

N∑

i=1

〈Xi, ξ〉22 subject to ‖ξ‖2 = 1. (3)

The remaining FPCs, {ξj}j≥2, capture the remaining modes of variability subject to be

mutually orthogonal, and are thus obtained by solving problem (3) with the additional

orthogonality constraint 〈ξk, ξ〉2 = 0, k < j.

Analogously to the multivariate case, the FPCs {ξj} coincide with the eigenvectors

of the sample covariance operator V : L2(I) → L2(I) (e.g., Horváth and Kokoszka,

2012), acting on x ∈ L2(I) as

V x =
1

N

N∑

i=1

〈Xi, x〉2Xi,

or, equivalently,

V x =

∫

I
v(·, t)x(t)dt,

the kernel v : L2(I)× L2(I) → R being the sample covariance function

v(s, t) =
1

N

N∑

i=1

xi(s)xi(t), s, t ∈ I.
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Therefore, the j-th FPC ξj and the associated scores Ψij = 〈Xi, ξj〉2, i = 1, ..., N , are

obtained by solving the eigenvalue equation

V ξj = ρjξj , (4)

where ρj denotes the j-th eigenvalue, with ρ1 ≥ ρ2 ≥ ... . As in multivariate PCA, for

each j, the eigenvalue ρj is associated with the proportion of total variability explained

by the FPC ξj .
Several computational methods can be employed to solve equation (4) (e.g., Ram-

say and Silverman, 2005; Jones and Rice, 1992; Kneip and Utikal, 1992, and references

therein). Ramsay and Silverman (2005) suggest to express each datum Xi, i = 1, ..., N ,

as a linear combination of K known basis functions φ1, ..., φK and to solve the eigen-

problem (4) through an appropriate matrix coefficient. Indeed, suppose that each datum

Xi, i = 1, ..., N , admits the basis expansion

Xi(·) =
K∑

k=1

cikφk(·), (5)

where cik = 〈Xi, φk〉2, k = 1, ...,K, or, in matrix notation, X(·) = Cφ(·), with

C = (cik) ∈ R
N,K , X(·) = (Xi(·)), and φ(·) = (φi(·)). Then the variance-covariance

function takes the form

v(s, t) = N−1φ(s)′C′
Cφ(t), s, t ∈ I.

Suppose further that the eigenfunction ξj , j ≥ 1, admits the expansion

ξj(·) =
K∑

k=1

bjkφk(·),

bjk = 〈ξj , φk〉2, k = 1, ...,K, or in matrix notation ξj(·) = φ(·)′bj . This yields

V ξj(·) = φ(·)′N−1
C

′
CWbj ,

where Wkl = 〈φk, φl〉2. Therefore the eigenvalue equation (4) reduces to

N−1
C

′
CWbj = ρibj , (6)

and bj is obtained as solution of the linear system (6). Note that in case of basis

orthonormality W = I the FPCA problem reduces to standard multivariate PCA of the

coefficient matrix C. Otherwise, Ramsay and Silverman (2005) show that problem (6)

is equivalent to the eigenproblem

1

N
W

1/2
C

′
CW

1/2
u = ρiu

with u = W
1/2

b, i.e., FPCA reduces to a multivariate PCA of the transformed coeffi-

cient matrix CW
1/2 followed by the transformation b = W

−1/2
u.
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4 Simplicial Functional Principal Component Analysis

In this section, a simplicial version of FPCA will be derived by following the same

scheme that led to the formulation of FPCs in Section 3. Let X1, ..., XN be a centred

sample in B2(I). We consider the problem of finding the simplicial functional principal

components (SFPCs) in B2(I), i.e., the elements {ζj}j≥1, ζj ∈ B2(I), maximizing the

following objective function over ζ ∈ B2(I):

1

N

N∑

i=1

〈Xi, ζ〉B subject to ‖ζ‖B = 1; 〈ζ, ζk〉B = 0, k < j, (7)

where the orthogonality condition 〈ζ, ζk〉B = 0, for k < j, holds only for j ≥ 2.

B2(I) being a separable Hilbert space, problem (7) is well posed (Horváth and

Kokoszka (2012), Theorem 3.2). Indeed, analogously to the L2(I) case previously

discussed, the j-th SFPC solves the eigenvalue equation

V ζj = λj ⊙ ζj ,

(λj , ζj) being the j-th eigenpairs of the sample covariance operator V : B2(I) →
B2(I), acting on x ∈ B2(I) as

V x =
1

N
⊙

N⊕

i=1

〈Xi, x〉B ⊙Xi.

In order to proceed with (7) in practice, we apply the isometric isomorphism be-

tween B2(I) and L2(I) defined by the clr-transform (2) that allows rewriting the prob-

lem (7) as a maximization of the term

1

N

N∑

i=1

〈clr(Xi), clr(ζ)〉2 subject to ‖clr(ζ)‖2 = 1; 〈clr(ζ), clr(ζk)〉2 = 0, k < j

over ζ ∈ B2(I). Therefore, for j ≥ 1 the maximization problem (7) can be equivalently

restated as

1

N

N∑

i=1

〈clr(Xi), ξ〉2 subject to ‖ξ‖2 = 1; 〈ξ, ξk〉2 = 0, k < j;

∫

I
ξ = 0, (8)

where the orthogonality constraint is meaningful only for j ≥ 2 and the zero-integral

constraint accounts for the corresponding clr-transform property.

We now show that (8) is solved by the eigenvectors {ξj}j≥1 of the sample covari-

ance operator Vclr : L2(I) → L2(I) of the transformed sample clr(X1), ..., clr(XN ),
acting on x ∈ L2(I) as

Vclrx =
1

N

N∑

i=1

〈clr(Xi), x〉2 clr(Xi).
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We first notice that, as in the previous case, the eigenvectors {ξj}j≥1 would have solved

problem (8), if it had been stated without the zero-integral condition
∫
I ξ = 0. There-

fore, it suffices to show that ξj fulfills
∫
I ξj = 0 for all j ≥ 1. To this end, we note that

the zero-integral property of the clr-transformed sample implies that Vclr admits a zero

eigenvalue with associated eigenvector ξ0 ≡ 1/
√
b− a:

Vclr ξ0 =
1

N

N∑

i=1

1√
b− a

[∫

I
clr(Xi)

]
clr(Xi) ≡ 0.

Since the eigenvectors {ξj} corresponding to the remaining eigenvalues {ρj} are to

be orthogonal to the eigenvector ξ0, the ξj’s need to satisfy the zero-integral condition∫
I ξj = 0, as 〈ξj , ξ0〉2 = 1/

√
b− a

∫
I ξj . Therefore, problem (7) can be restated

in terms of clr-transforms as (8) and the SFPCs can be obtained by transforming the

eigenvectors {ξj}j≥1 associated to the non-null eigenvalues {ρj}j≥1 of Vclr through the

inverse of the function clr, namely ζj = clr−1(ξj), with ξj 6= ξ0.

To compute the eigenvectors ξj we resort to a method based on a B-spline basis

expansion. Following Machalová et al. (2014), we consider for clr(X1), ..., clr(XN )
and ξj , j ≥ 1, a B-spline basis fulfilling the zero-integral constraint through a zero-sum

condition on the coefficients,

clr(Xi)(·) =
K∑

k=1

cikφk(·),
K∑

k=1

cik = 0, (9)

ξj(·) =
K∑

k=1

bjkφk(·),
K∑

k=1

bjk = 0.

Hence, with the same arguments used in Section 3, bj = (bjk) is obtained as solution

of the linear system

N−1
C

′
CWbj = ρibj ,

where now the rows and columns of the matrix C
′
C add up to zero due to the zero-sum

constraints in (9). Also in this case, the zero sum constraint of bj is inherently kept in

the PCA algorithm.

The interpretation of SFPCs follows the main lines used in the L2(I) case, as the

SFPCs represent the main modes of variability of the observations around the global

mean function, but now within the space B2(I) endowed with the Aitchison geometry.

Hence, useful tools to visualize and interpret the results of SFPCs are the scores plan

graph and the representation of the mean function perturbed by the j-th SFPC ξj pow-

ered by an appropriate constant, which in turn corresponds to the graphs of the mean

+/− the FPCs multiplied by a constant, advocated by Ramsay and Silverman (2005)

in the L2(I) case.
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Figure 1: Upper Austria and its districts.

5 Analysis of Population Age Distributions in the Upper Aus-

tria Regions

In this section we perform the SFPCA of a real dataset dealing with the population age

distributions in Upper Austria. This is the fourth-largest Austrian state in terms of land

area and third-largest by population out of the nine states constituting Austria. Upper

Austria is formed by 15 political districts, displayed in Figure 1. The dataset we con-

sider collects the age distributions of men and women living in N = 114 municipalities

of Upper Austria. We note that this kind of data is often referred to as population pyra-

mid in the literature. A similar dataset –but referring to different countries in the world

for the year 2000– has been considered in Delicado (2011) in the context of dimension-

ality reduction with particular emphasis on graphical displays. The aim of the current

study is to characterize the available population age densities performing a dimension-

ality reduction according to the geometry of the Bayes space B2(I) as opposed to the

usual L2(I) geometry. For the purpose of the present analysis, the possible spatial

dependence among the observations will not be considered. Instead, the geographical

information will be taken into account for the interpretation of the scores.

The raw data have been smoothed by using the procedure detailed in (Machalová et

al., 2014) and recalled in Section 4. In particular, the discrete clr-transforms of raw den-

sities (Egozcue and Pawlowsky-Glahn, 2006) have been projected on a B-spline basis

with compact support I = [0, 100] and five equally spaced knots in (0, 25, 50, 75, 100)
years, with constraints to fulfill the zero-integral condition. The smoothed densities are

displayed in Figure 2, coloured according to the gender information.

The smoothed data have been embedded into the space B2(I) of functional com-

positions, and the methodology devised in Section 4 has been applied, resorting to the

clr-transform (2) to make computations. In particular, here we consider the results of the

SFPCA applied to the whole dataset –i.e., operated on the covariance operator estimated

by simultaneously considering the groups of males and females. In this regard, we note

that the estimated covariance structures of the two sub-populations appear pretty simi-

lar, even though the male group experiments a higher variability on the right tail of the

distribution, as evidenced by the comparison of the sample covariance operators rela-
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Figure 2: Population age densities in Upper Austria and their clr-transforms.
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Figure 3: Sample covariance operator estimated in B2(I) from the smoothed data.

tive to the males and females groups (Figure 3a and 3b, respectively). In particular, the

results of the separate SFPCA on the two subgroups appear consistent with the ones

obtained on the whole dataset.

Figure 4 reports the first two SFPCs corresponding to the whole population, ex-

plaining 90% and 6.4% of the variability, respectively. To ease the SFPC interpretation,

Figure 4 displays also the clr-transformed SFPC, together with the plot of the sample

mean +/− the clr-transform of the SFPCs multiplied by two. Figure 4a evidences that

the first clr-SFPC contrasts the right tail of the distribution (age>75) against its left

part (age≤ 75). This is a clear consequence of the relative scale property of densities

– captured by the clr transformation – that highlights the variability of small relative

contributions. In particular, high scores in the first SFPC associates with a high inci-

dence of the old population on the overall number of inhabitants; conversely, low scores

associates with a high relative contribution of the youth to the overall population. The

second SFPC, displayed in Figure 4b, still characterizes the variability of the right part

of the distribution. Indeed, the main contribution to the second clr-SFPC is provided by

the contrast between the 75-90 years-old population (associated with low scores) and

the remaining part of the population (associated with high scores), with particular em-

phasis to the left and right boundaries of the densities support. We note particularly that

high scores along the second SFPC associates with heavy tails and vice versa. However,

we note that some uncertainty could affect the second estimated SFPC, due to the ab-

sence of data for ages lower than 2 years or higher than 92 years as these values formed

10



0 20 40 60 80 100

0.
01

0
0.

01
2

SFPC 1 (90% explained variability)

age

S
F

P
C

 1

0 20 40 60 80 100

0.
00

0
0.

01
0

Mean +/− 2*SFPC 1

age

de
ns

ity

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

clr(SFPC 1)

age

cl
r(

S
F

P
C

 1
)

0 20 40 60 80 100

−
5

−
3

−
1

1

Mean +/− 2*clr(sFPC 1)

age

cl
r(

de
ns

ity
)

(a) First SFPC

0 20 40 60 80 100

0.
00

8
0.

01
2

0.
01

6

SFPC 2 (6.4% explained variability)

age

S
F

P
C

 2

0 20 40 60 80 100

0.
00

0
0.

01
0

Mean +/− 2*SFPC 2

age

de
ns

ity

0 20 40 60 80 100

−
0.

2
0.

2
0.

4

clr(SFPC 2)

age

cl
r(

S
F

P
C

 2
)

0 20 40 60 80 100

−
5

−
3

−
1

1

Mean +/− 2*clr(sFPC 2)

age

cl
r(

de
ns

ity
)

(b) Second SFPC

Figure 4: SFPCs and their clr-transform: SFPCs and the mean function perturbed by

twice the SFPCs.

interval representatives in the aggregated data set.

Figure 5 reports the estimated third and fourth SFPCs. Although these compo-

nents explain only 1.5% and 0.9% of the overall variability, the visualization of the

mean function perturbed by +/− twice the SFPCs seems to suggest that a very high

variability is left to these components. This counterintuitive result is precisely due to

specific features of the Bayes space B2(I) as opposed to the standard geometry of the

L2(I) space. By way of example, Figures 6-7 report the result of the FPCA performed

according to the L2(I) geometry. We first notice that the L2(I) sample covariance op-

erator (Figure 6) attributes more variability to the left part of the support than its B2(I)
counterpart. This directly reflects on the principal components: even though the first

FPC (Figure 7a) is interpreted similarly to the first SFPC, it attributes much higher vari-

ability to the left part of the support. We further remark that the metric used to measure

the variability readily reflect on the dimensionality reduction. Indeed, the scree-plot

relative to the FPCA (gold line in Figure 6c) suggests the reduction to three or four

SFPCs, as opposed to its SFPCA counterpart (black line in Figure 6c) which suggests

a more synthetic representation based on one or two SFPCs instead.

We focus on the latter case for the analysis of the scores. Figure 8 represents the

plane of the scores relative to the first two SFPCs (left panel) and the second two SFPCs

(right panel), coloured according to the gender information. This evidences that the first

SFPC discriminates between the male and female subpopulations, the latter being asso-

ciated with higher scores (i.e., higher life expectancy). This is readily interpretable in

demographical and sociological terms, as male and female subpopulations are associ-

ated with different lifestyles, with a significant influence on the life expectancy.

In addition, the scores along the first two SFPCs seems to include also a geograph-

ical information. Indeed, the district of Gmunden (GM), see also Figure 1, shows high

scores for both women and men along the first component (see Figure 9, in the light

of Figure 8). This is also true for the South of Steyr rural area (SE). This evidences

the fact that these regions are featured by a high incidence of the old population on the
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Figure 5: SFPCs and their clr-transform: SFPCs and the mean function perturbed by

twice the SFPCs.
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Figure 6: Sample covariance operators estimated in B2(I) and L2(I) from the

smoothed data and scree plot for the SFPCA and FPCA.
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Figure 7: FPCs in the L2(I) geometry: FPCs and the mean function perturbed by twice

the FPCs.

overall number of inhabitants. We also note that the North-West districts of Braunau

am Inn, Ried im Innkreis, and Grieskirchen (BR, RI, GR) appear to be characterized

by a high scores variability. In fact, these belong to a rural area mainly associated with

low scores (i.e., younger population), characterized by some small towns of size be-

tween 10000 and 20000 inhabitants, which are represented by larger scores (i.e., older

population). Overall, city and town areas prove to be associated with a very localized

high incidence of the old population, which is particularly evident in the surrounding of

Linz (L), the capital of Upper Austria which is nearby the center of the map in direction

North-West.

Regarding the second SFPC (bottom panels in Figure 9), different regional struc-

tures appear in the North with respect to the rest of the map. Indeed, the district of

Rohrbach (RO) is associated with pretty low scores for men (i.e., high incidence of 75-

90 years old population), and very low scores for women. Similarly, very low scores

appear for women in the Schärding regions (SD). These regions are mostly rural, with

very few industries. Instead, high scores are recorded for women in the region around

Linz (L), which also experiments high SFPC 1 scores. This is interpreted as an inci-

dence of the old female population which is high, but still less pronounced than in the

southern district of Gmunden, with a more significant incidence of the very young pop-

ulation (<7 years). Interestingly, this pattern is not so evident in the male population.

High scores along the second SFPC are also evident in the industrialized regions of Wels

(WE and WL) and Vöcklabruck (VB), which form a belt from Linz to the South-West

and are characterized with a very young population (both for males and females).

In conclusion, the first SFPC scores appear to increase moving from the North to

the South, except for the city and town areas. The second SFPC scores are mainly as-

sociated with the industrial districts, above all in the female subpopulation, evidencing

quite a high incidence of the very young population in the Linz area as opposed to the
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Figure 8: Scores along the first four SFPCs, coloured according to the gender informa-

tion.

more rural districts of Rohrbach and Schärding (RO and SD).

6 Conclusions

The choice of an appropriate space to perform the analysis is crucial prior to any sta-

tistical processing using FDA methods. This is particularly evident in the presence

of constrained data, such as functional compositions. We focused on the problem of

the dimensionality reduction on probability density functions. In this case, although

the numerical problems resulting from the unit-integral constraint of densities could be

overcome by applying an appropriate preprocessing (e.g., log-transformation as pro-

posed in Ramsay and Silverman (2005)), their inherent properties – as scale invariance

and relative scale – are only captured by using the Bayes spaces methodology. The cen-

tred log-ratio transformation isometrically maps the Bayes space B2(I) into the space

L2(I), and it provides a way to easily apply the standard FDA methods in the presence

of functional compositions. In this sense, it is possible to meaningfully employ the stan-

dard tools for the interpretation of FPCA (e.g., the plot of mean +/− eigenvectors), if

interpreted in the light of the Aitchison geometry which takes into account the relative

information captured by density functions. We note that our proposal stands in continu-

ity with the work of Delicado (2011), who pointed out that his most promising results

were obtained through multidimensional scaling in the Bayes space B2(I). However,

out methodological developments provide a clear direction for the extension to den-

sity functions of several methods in use in FDA, besides opening a variety of further

challenges for the future. One of these is the possibility of considering alternative com-

putational tools, such as the log-ratio transformations with respect to an orthonormal

basis in the Bayes space, with the aim of avoiding the zero-integral constraint resulting

from the clr transformation. Even more promising could be the possibility of extending

the support I to the general case of the whole real line (or any Borel subset) as proposed

in van den Boogaart et al. (2014). The choice of a non-uniform reference measure still
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needs to be thoroughly discussed in terms of applicative consequences, and certainly

deserves to be further investigated.

Acknowledgments

The authors gratefully acknowledge the support of the Operational Program Education

for Competitiveness - European Social Fund (project CZ.1.07/2.3.00/20.0170 of the

Ministry of Education, Youth and Sports of the Czech Republic) and the grant IGA PrF

2014 028 Mathematical Models of the Internal Grant Agency of the Palacky University
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