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tWe developed a non-linear multi-me
hanism model, that is suitable to representthe me
hani
al behavior of the healthy arterial wall and the early stage 
erebralaneurysm formation. A 
erebral aneurysm is a lo
alized bulge of the arterialwall, resulting from an initial dilatation.The 
ore of the multi-me
hanism model is to 
onsider the arterial wall madeup of two me
hanisms, related to its two main passive 
onstituents: elastin and
ollagen. Histologi
al studies show that the early stage aneurysm formation isasso
iated with the disruption of elastin, that is found fragmented in the ar-terial wall. From experimental observations, the elastin a
tively 
ontributes toload bearing even at low deformation levels, while the 
ollagen network is in a
rimped state in its stress-free 
on�guration. For larger deformations, the 
olla-gen network stret
hes out and starts to 
ontribute to the me
hani
al behavior ofthe arterial wall. The strain energy of the model is additively 
omposed of twoterms, one related to the �rst me
hanism and the other related to the se
ond
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(a) Draw of the 
ir
le of willis with someaneurysms [1℄. (b) Clini
al angiography image of ananeurysm at the apex of the basilar artery[2℄.Figure 1: Graphi
 representation and 
lini
al image of 
erebral aneurysms.one. The 
ollagen re
ruitment happens when a threshold deformation is rea
hed.In our model this threshold is 
he
ked at ea
h time step in ea
h element of the
omputational domain allowing a non-uniform 
ollagen a
tivation a
ross the ma-terial. The fragmentation of elastin is modeled by multiplying the stress tensorterm related to the �rst me
hanism by a suitable damage 
oe�
ient. The lattergradually de
reases from one (�rst me
hanism a
tive) to zero (disappearan
e of�rst me
hanism) as fun
tion of deformation.Our model has been implemented in a FE 
ode that has been validated on aset of test 
ases for whi
h an analyti
al solution is available, showing the expe
tedbehavior. Numeri
al simulations for more realisti
 geometries have shown thatthe 
omputational multi-me
hanism model is able to 
apture the non-linearityand inelasti
ity of the arterial wall, as well as early stage aneurysm formation.keywords: Cerebral aneurysm, Cerebral arteries, Multi-me
hanism model, Weakly
ompressible materials, Finite element analysis, Continuos damage.1 Introdu
tion to 
erebral aneurysmsA 
erebral aneurysm (also known as intra
ranial or intra
erebral aneurysm) isan abnormal lo
alized dilation of a 
erebral artery, �lled with blood (�gure 1(a)and 1(b)). Usually, it is asymptomati
 until rupture. When rupture o

urs, theaneurysm leaks or spills blood in the subara
hnoid spa
e in the brain, 
ausingthe so-
alled subara
hnoid hemorrhage [3℄. This hemorrhage is potentially lethal2



with a mortality rate as high as 50%. Many patients who survive have perma-nent disability. Some aneurysms reveal their presen
e before rupture by exertingpressure on a nerve or on the surrounding brain tissue. Usually that happenswhen the aneurysm is lo
alized in the posterior 
erebral 
ir
ulation. Cerebralaneurysms 
an o

ur anywhere in the brain, but usually they are lo
ated on,or 
lose to, the Cir
le of Willis [4℄, between the underside of the brain and thebase of the skull. No method is yet known to prevent the formation of a 
erebralaneurysm. The di�eren
e between a healthy and a pathologi
al artery is basedon the knowledge of the mophologi
al stru
ture of the arterial wall.1.1 Histology of 
erebral arteries and aneurysm wallIn this work we fo
us on the passive behavior of arteries, that is the me
hani
alstress-strain relation of its own material seen as an inert material: remodellingissues are negle
ted. From the stru
tural point of view, the arterial wall is 
om-posed of three distin
t layers, the tuni
a intima, the tuni
a media and the tuni
aexterna (adventitia). In �gure 2 there is a s
hemati
 representation of the 
om-ponents of a healthy arterial wall.The intima is the innermost layer of the artery. It 
onsists mainly of a singlelayer of endothelial 
ells. In healthy young individuals, the intima is very thinand provides a minor 
ontribution to the me
hani
al properties of the arterialwall. However, the intima thi
kens and sti�ens with age (arterios
lerosis), hen
ethe me
hani
al 
ontribution may be
ome relevant. Pathologi
al 
hanges of theintimal 
omponents may be asso
iated with atheros
lerosis, the most 
ommondisease of the arterial wall. It 
onsists in deposition of material, su
h as 
al
ium,
ellular waste produ
ts, and �brin, that in a healthy situation are 
arried awayby the blood �ow. The resulting build-up is 
alled atheros
leroti
 plaque. It maybe very 
omplex in geometry and bio
hemi
al 
omposition. The presen
e of thispathologi
al stru
ture 
auses signi�
ant alterations in the me
hani
al behaviorof the arterial wall [5℄.The media is the middle layer of an artery and it is 
omposed of a 
omplexthree-dimensional network of smooth mus
le 
ells, elastin and 
ollagen �brils.Elasti
 layers, 
alled fenestrated elasti
 laminae, separate the media into a vary-ing number of well-de�ned 
on
entri
ally �ber reinfor
ed layers [6℄. The numberof elasti
 laminae de
reases toward the peripheral 
ir
ulation. The media is sep-arated from the intima and the adventitia by the internal elasti
 lamina (IEL)and the external elasti
 lamina (EEL), respe
tively. In small vessels, and inparti
ular in 
erebral arteries, the EEL is poorly developed [7℄.The adventitia, the outermost layer of an artery, is mainly made of 
ollagen,�broblasts, and �bro
ytes, whi
h are 
ells that mainly produ
e 
ollagen. Theadventitia is surrounded by 
onne
tive tissue. The thi
kness of the adventitiastrongly depends on the artery type. In parti
ular, in 
erebral arteries this
onstitutive layer is almost absent [7℄. Close to the bifur
ations, the mediatapers gradually. At the bifur
ations, the tuni
a media is 
ompletely repla
ed3



Figure 2: Model of the major 
omponents of a healthy artery [11℄. The three mainlayers visible in the draw are the tuni
a intima, made of endothelial 
ells,the tuni
a media, made of mus
le 
ells, elastin and 
ollagen, and the tuni
aadventitia, mainly made of 
ollagen.by the adventitia [7℄.The stru
ture of an aneurysmati
 wall 
an be 
lassi�ed a

ordingly to thetype of tissue of the 
erebral arterial wall region from whi
h it develops. Theadventitia is dete
ted at the outer wall of aneurysms and appears stret
hed [8℄.At the ori�
e of the aneurysm, the media terminates or, at most, slightly extendsinto the aneurysm ne
k region, while the elasti
 tissue, presumably of the IEL,may be fragmented or slightly extended [9℄. Away from the ori�
e, the medialayer is 
ompletely absent from aneurysm wall. Remnants of elasti
 tissue 
anbe found at the inner wall of aneurysms [10℄.Cerebral aneurysms grow over a long time s
ale, hen
e the stru
ture of theirwall undergoes to mophologi
al 
hanges that may di�er in ruptured and unrup-tured aneurysms [10℄. In re
ent hystology
al studies four di�erent wall types havebeen dete
ted that likely re�e
t 
onse
utive stages of degenarion of aneurism wallbefore rupture [10℄.Me
hani
al data for aneurysm initiation were �rst obtained by S
ott, Fergu-son, and Roa
h [12℄. Figure 3 shows the mean stress-strain 
urves of 
erebralarteries that underwent loading in�ation and extension 
y
li
 test. The disten-sibility 
urve abruptly 
hanges after some runs to pressures up to 200 mmHg.These 
hanges are not observed when the arteries are loaded to lower levels. In[12℄, it was 
onje
tured that the abrupt 
hange is related to elastin fragmenta-tion in the arterial wall, due to me
hani
al loads. Noti
e that the 
urve in �gure3(b) (after 
hange), returns to a relaxed state di�erent from the undamaged one(�gure 3(a)), be
ause of a residual stress, due to the irreversible loss of elastin in4
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Figure 3: The graph shows an in�ating test on a 
ir
umferential segment of sixteenanterior 
arotid arteries. Figure (a) represents the me
hani
al response ofthe arterial wall during some initial runs, up to a pressure of 200 mmHg.After some runs an abrupt 
hange in the arterial wall o

urs and its newme
hani
al behavior is represented by Figure (b) (Data from [12℄).the arterial wall.1.2 Classi�
ation and treatment of 
erebral aneurysmsThere are three types of 
erebral aneurysms. A sa

ular aneurysm is a roundedor pou
h-like sa
 that is atta
hed by a well-de�ned ne
k to an artery or a bran
hof a blood vessel. Also known as a berry aneurysm (be
ause it resembles aberry hanging from a vine), this most 
ommon form of 
erebral aneurysm istypi
ally found on arteries at the base of the brain. Sa

ular aneurysms mostoften o

ur in adults. A lateral aneurysm appears as a bulge in the wall of theblood vessel, while a fusiform aneurysm is formed by the widening along thewall of the vessel. Aneurysms are also 
lassi�ed by size. Small aneurysms areless than 11 millimeters in diameter, large aneurysms are 11-25 millimeters, andgiant aneurysms are greater than 25 millimeters in diameter [13℄.The 
auses of 
erebral aneurysms formation are a subje
t of intense inves-tigation. In some spe
i�
 
ases inherited and a
quired risk fa
tors have beenrelated to their pathologi
 onset [14℄. Mainly hereditary 
onne
tive tissue disor-ders have been asso
iated with aneurysm formation, presumably as a result ofthe weakening of the vas
ular wall. Some other diseases show 
onne
tion with
erebral aneurysms, as 
oar
tation of the aorta artery or �bromus
ular dysplasia,most likely be
ause of the elevated blood pressure that o

urs in these 
onditions.5



Moreover a 
onne
tion between brain aneurysms and 
o
aine use or general drugsabuse has been noted. This asso
iation is thought to be due to in
reased turbu-len
e of blood �ow and repeated, transient 
ases of hypertension [14℄. However,the 
auses of initiation, development and rupture of most aneurysms is still notknown.There are many imaging te
hniques for intra
ranial aneurysms identi�
ation,su
h as the intra-arterial digital subtra
tion angiography, magneti
 resonan
eangiography, 
omputed tomographi
 angiography, and trans
ranial Doppler ul-trasonography. Some of these medi
al pra
ti
es are invasive be
ause they are
arried out by means of X-ray te
hniques and other are expensive, so that theyare not used for s
reening [1℄. This is the main reason there is mu
h more infor-mation on ruptured aneurysms rather than unruptured ones. One of the mainstudies on unruptured aneurysm is the ISUIA (International Study of UnrupturedIntra
ranial Aneurysms), evaluating the risk of aneurysms rupture throughout
lini
al examinations of approximate 2000 patient re
ords dating ba
k to 1998[15℄. Often unruptured aneurysms are dis
overed a

identally and in these 
asesit is not well understood whi
h is the right strategy. When the aneurysm is big,it is usually treated, when the size is small, there is no general indi
ation aboutthe treatment to employ. Many small aneurysms never rupture [1℄, but there isno rule.Nowadays there are few te
hniques to treat unruptured aneurysms. Themost invasive one is the 
lipping te
hnique, that implies an open brain surgeryto insert a 
lip that 
loses the aneurysm ne
k [16℄. Less invasive is the 
oilingte
hnique, that 
onsists of inserting a 
oil by means of an endos
opi
 pro
edure.The 
oil �lls the bleb and 
auses a 
loth formation inside the aneurysm [17℄.More re
ently, the adoption of vas
ular endoprostheses (��ow diverting� stents)together with 
oiling, is in
reasing, with the aim of prote
ting the aneurysmsa
 from the blood �ow. All these te
hniques are well known. However theymay 
ause 
ompli
ations, so it is extremely important to have some auxiliarytreatment tools and also have more information about the aneurysm pathologyto help in the sele
tion of a treatment strategy [18℄ [19℄.2 Multi-me
hanism modelIn this se
tion the basi
 kinemati
s, the stress and elasti
ity tensors for a multi-me
hanism model are presented. Fo
using on the spe
i�
 appli
ation of arterialwall, we 
onsider two strain energy fun
tions: one of the elastin 
omponent ofarterial wall and the other related to 
ollagen �bers. Restri
ting attention toan homogeneous hyperelasti
 material, the 
ombination of the two me
hanisms
an suitably represent the non-linear and inelasti
 behavior of arterial wall. Atlow level of deformations, only elastin 
ontributes to tension, while for largerdeformations, the 
ollagen starts to bear load. Hen
e the two me
hanisms aretriggered in di�erent ranges of deformation.6
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x3

x1Figure 4: The two referen
e 
on�guration of the model: Ω1 is related to the elastinme
hanism and Ω2 to the 
ollagen me
hanism. Ω(t) is the 
urrent 
on�gu-ration.2.1 Kinemati
s of a multi-me
hanism modelLet us 
onsider a body B and a bounded domain Ω1 ⊆ R
3 whi
h represents theregion o

upied by the body in its referen
e, stress free, 
on�guration. Asso
i-ated with Ω1 there is a time referen
e frame, so that the body is in referen
e
on�guration Ω1 at time t = t1. At this stage the position of a material point

P1 ∈ Ω1 is identi�ed by the ve
tor X1 as shown in �gure 4.During the motion, the body B leaves its undeformed state to rea
h a 
urrent
on�guration Ω(t), t > t1, where the position ve
tor of a material point is x =
χ1(X1, t). The ve
tor fun
tion χ1(X1, t) is a smooth, single-valued fun
tion,invertible and 
ontinuously di�erentiable with respe
t to its arguments as manytimes as required. The deformation gradient related to this motion is:

F1(X1, t) =
∂χ1(X1, t)

∂X1
, (1)where the subs
ript �1� denotes all the quantities evaluated in the referen
e 
on-�guration Ω1.During this �rst stage of the deformation, only elastin 
ontributes to the me-
hani
al behavior of the body, so that the stress tensor depends only on F1(X1, t),like a standard single me
hanism elasti
 material.The strain energy fun
tion per unit volume, in the referen
e 
on�guration

Ω1, is
W (t) = W1(F1(X1, t)). (2)7



When the body rea
hes 
on�guration Ω2 = Ω(t2) the re
ruitment of 
ollagen�bers o

urs. As the body deforms further, 
orresponding to in
reased valuesof deformation, both me
hanisms are a
tive and 
ontribute the load bearing.Adopting now Ω2 as a referen
e 
on�guration for the se
ond me
hanism, a mate-rial point position, in su
h a referen
e 
on�guration, is identi�ed by the positionve
tor:
X2 = x(X1, t2) = χ1(X1, t2), (3)and, in the 
urrent 
on�guration Ω(t), t > t2, the position of a material parti
le
an be represented by the position ve
tor:

x = χ2(X2, t − t2), (4)where the ve
tor fun
tion χ2(X2, t− t2) as well, is a smooth, single-valued fun
-tion, invertible and 
ontinuously di�erentiable with respe
t to its argumentsmany times as required. If we de�ne a new referen
e time frame t′ in Ω2 su
hthat t′ = t − t2, (4) be
omes x = χ2(X2, t
′), and the deformation gradient thatdes
ribes the motion from the referen
e 
on�guration Ω2 is:

F2(X2, t
′) =

∂x(X2, t
′)

∂X2
=

∂χ2(X2, t
′)

∂X2
, (5)where now the subs
ript index �2� denotes that all the variables are referred to

Ω2. In the 
urrent 
on�guration Ω(t) an in�nitesimal displa
ement dx 
an berelated to both referen
e 
on�gurations as followsdx = F1(X1, t)dX1 = F2(X2, t
′)dX2. (6)By means of (6) and (3) we 
an �nd the relation between the deformation gra-dients

F2(X2, t
′) = F1(X1, t)F

−1
1 (X1, t2), (7)where the tensor F

−1
1 (X1, t2) is known. We 
an now 
ompute the determinantof ea
h term of equation (7) as

det(F2(X2, t
′)) = det(F1(X1, t)) det(F−1

1 (X1, t2)). (8)If we denote J2(t
′) = det(F2(X2, t

′)) and J1(t) = det(F1(X1, t)), we have therelation
J2(t

′) = J1(t)
(

J1(t2)
)−1

, (9)where (J1(t2)
)−1 is related to the referen
e 
on�guration Ω2 and it is a knowns
alar value 
onstant in time, after the 
ollagen re
ruitment has o

urred.The in�nitesimal volume transformation among all 
on�gurations isdΩ(t) = J1(t)dΩ1 = J2(t

′)dΩ2, (10)8



so that the relation between an in�nitesimal volume element in Ω1 and Ω2 reads
dΩ2 = J1(t)

(

J2(t
′)
)−1dΩ1, (11)and from (9) we �nally have

dΩ2 = J1(t2)dΩ1. (12)After 
ollagen re
ruitment, the strain energy fun
tion asso
iated with thehyperelasti
 material has 
ontribution from both me
hanisms
W (t) = W1,2(F1(X1, t),F2(X2, t

′)). (13)When a se
ond 
riti
al value of deformation is rea
hed, we hypothesize thatelastin starts to degrade, and the �rst me
hanism is weakened.Before elastin breakage happens, the material behavior is purely elasti
, i.e.after unloading it is able to re
over the initial 
on�guration Ω1. Due to theirreversible nature of elastin breakage, in the unloading stage, the material isno longer able to re
over the 
on�guration Ω1, but it eventually rea
hes anotherreferen
e 
on�guration Ω̂ that depends on the entity of the elastin damage. Inparti
ular, when all the elastin is broken, Ω̂ 
orresponds to Ω2, only due torelaxed 
ollagen �bers.
W1 and W2 have to be invariant with respe
t to superimposed rigid rotationsrelative to the 
orrespondent referen
e 
on�guration Ω1 and Ω2. The most gen-eral strain energy fun
tions satisfying the invarian
e requirements are expressedby

W1 = W̃1(C1), and W2 = W̃2(C2), (14)where C1 and C2 are the right Cau
hy-Green tensors of the �rst and se
ondme
hanism, respe
tively
C1 = F

T
1 F1, and C2 = F

T
2 F2. (15)With a further hypothesis of isotropy (whi
h is de�nitely a

eptable for elastinme
hanism), without loss in generality, the strain energy fun
tions take the form

W1 = W̌1(I1, II1, III1), and W2 = W̌2(I2, II2, III2), (16)where (I1, II1, III1) and (I2, II2, III2) are the prin
ipal invariants of C1 and
C2 respe
tively. Collagen �bers are instead arranged with a spe
i�
 orientationthrough the arterial wall and we should introdu
e in W2 a dependen
e to a

ountfor the anisotropy of �bers, as explained in [20℄. As the fo
us of this work is theimplementation of the multi-me
hanism model, at the moment we a

ept theisotropy hypothesis for 
ollagen too, with future expe
tative of 
orre
ting it.The last assumption is that the two me
hanisms are independent, so that thestrain energy fun
tion when both elastin and 
ollagen are a
tive is

W1,2 = W1 + W2. (17)The two me
hanisms represent the indipendent behavior of elastin and 
ollagen,respe
tively. This assumption is largely supported by the fa
t that both materialsare found in distin
t layers in the arterial wall [21℄.9



2.2 Strain energy fun
tionLet us observe that W1 and W2 are strain energy fun
tions per unit volumede�ned in the referen
e 
on�guration Ω1 and Ω2, respe
tively. In order to have a
omplete des
ription in terms of energy of the multi-me
hanism model, we needto refer both the energies to only one referen
e 
on�guration.As �rst step, let us observe that the 
onservation of mass holds:
∫

Ω(t)
ρ dΩ =

∫

Ω1

ρ1 dΩ1 =

∫

Ω2

ρ2 dΩ2, (18)where ρ is the mass density represented in the 
urrent 
on�guration and ρ1 and
ρ2 are respe
tively the mass densities in Ω1 and Ω2. If we 
hoose as uniquereferen
e 
on�guration Ω1, by employing (12) and (10), the previous integralsrewrite

∫

Ω1

ρJ1(t)dΩ1 =

∫

Ω1

ρ1dΩ1 =

∫

Ω1

ρ2J1(t2)dΩ1, (19)where
ρ2 = ρ1J1(t2)

−1 and ρ = ρ1J1(t)
−1 (20)are two relations that allow to relate the mass density in Ω(t) and Ω2 with themass density in Ω1. By means of (10), the total energy in the 
urrent 
on�gura-tion Ω(t), when both me
hanisms are a
tive, is expressed by

Utot =

∫

Ω(t)
J−1

1 (t)W1dΩ +

∫

Ω(t)
J−1

2 (t′)W2dΩ, (21)su
h that
U1 =

∫

Ω(t)
J−1

1 (t)W1dΩ, and U2 =

∫

Ω(t)
J−1

2 (t′)W2dΩ, (22)where U1 is the energy asso
iated to the �rst me
hanism and U2 to the se
ond.If we express the total energy with respe
t to the referen
e 
on�guration Ω1,from equation (21), by means of the relation (12), we have
Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J−1
2 (t′)J1(t)W2dΩ1. (23)The insertion of relation (9) in the previous one gives

Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J1(t2)W2dΩ1, (24)where we re
all that J1(t2) is known after the 
ollagen re
ruitment has o

urred.If we de�ne Wtot as the total strain energy per unit volume in Ω1, su
h that
Utot =

∫

Ω1

WtotdΩ1, (25)be
ause all the integrals are referred to the volume o

upied by the body in thereferen
e 
on�guration Ω1, when both me
hanisms are a
tive, we have
Wtot = W1 + J1(t2)W2. (26)10



2.3 Stress and elasti
ity tensorsIn this paragraph we introdu
e the multipli
ative de
omposition of the deforma-tion gradient F into an iso
hori
 (or distortional) and a volumetri
 (or dilational)part [22℄ [23℄ [11℄, to derive the stress tensors for a weakly 
ompressible material.The multipli
ative de
omposition of the deformation gradient F reads
F = F̂F, (27)where F = J− 1

3 F is the iso
hori
 part, and F̂ = J
1

3 I is the volumetri
 part, with
I the se
ond order identity tensor. The iso
hori
 part of the deformation gradienttakes into a

ount the deformation without 
hange in volume, so that detF = 1.The volumetri
 part 
ontains all the volumetri
 deformation 
ontributions, and
det F̂ = J .In the same way, we 
an derive the multipli
ative de
omposition of the rightand left Cau
hy-Green tensors:

C = F
T
F = (F̂F)T F̂F = (F)T (F̂)T F̂F = J

2

3 (F)T F, (28)
B = FF

T = F̂F(F̂F)T = FF̂(F̂)T (F)T = J
2

3F(F)T , (29)and de�ne the unimodular right and left Cau
hy-Green tensors as the iso
hori
part of C and B:
C = F

T
F = J− 2

3 C, with detC = 1, (30)
B = FF

T
= J− 2

3B, with detB = 1. (31)In parti
ular, together with the invariants of C we introdu
e the modi�ed invari-ants of C as
IC = trC, IIC =

1

2
((trC)2 − tr(C2)), IIIC = detC = J2, (32)

IC = trC, IIC =
1

2
((trC)2 − tr(C2

)), IIIC = 1, (33)and similar de�nitions hold for B and B.The use of (27), supplies the 
orrespondent strain energy fun
tion for anisotropi
 frame indi�erent material [23℄ splitted as
W (J, IC , IIC) = Wvol(J) + Wiso(IC , IIC), (34)where:1) Wvol depends merely on the volume 
hanging part throughout J .2) Wiso is purely iso
hori
 and depends on the invariants of the unimodularright Cau
hy-Green C. 11



Let us derive now the stress tensors for a weakly 
ompressible material. Theuse of the de
omposition te
hnique (34) allows us to express 
omponentwise these
ond Piola-Kir
hho� stress tensor S as
SAB = 2

dW

dCAB
= 2
(dWvol

dCAB
+

dWiso

dCAB

)

, (35)where the volumetri
 
ontribution is
dWvol

dCAB
=

dWvol

dJ

dJ

dCAB
= W ′

vol

d(
√

detC)

dCAB
= (36)

= W ′
vol

1

2
√

detC

d(detC)

dCAB
= W ′

vol

1

2
√

detC
(detC)C−1

AB =

=
1

2
W ′

vol

√
detCC−1

AB =
1

2
W ′

volJC−1
AB,and the iso
hori
 part is

dWiso

dCAB
=

dWiso

dCMN

dCMN

dCAB
. (37)Let us 
ompute ea
h term of (37) separately:

dWiso

dCMN

=
∂Wiso

∂IC

∂IC

∂CMN

+
∂Wiso

∂IIC

∂IIC

∂CMN

(38)
=

∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN ),and
dCMN

dCAB
=

d(J−2/3CMN )

dCAB
=

d((detC)−1/3CMN )

dCAB
(39)

= −1

3
(detC)−4/3 d(detC)

dCAB
CMN + (detC)−1/3 dCMN

dCAB

= −1

3
(detC)−1/3C−1

ABCMN + (detC)−1/3δAMδBN =

= J−2/3(δAM δBN − 1

3
C−1

ABCMN ).If we de�ne the fourth order tensor PABMN = (δAM δBN − 1
3C−1

ABCMN ), �nallythe se
ond Piola-Kir
hho� stress tensor reads
SAB = W ′

volJC−1
AB + 2J−2/3(PABMN )

(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

,(40)where the stress is 
omposed by
(Svol)AB = W ′

volJC−1
AB , (41)

(Siso)AB = 2J−2/3(PABMN )
(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

.(42)12



From equation (35) and the de�nition of the �rst Piola-Kir
hho� stress tensor P
omponentwise:
PiB = FiASAB, (43)we have

PiB = 2FiA
dW

dCAB
= 2FiA

(dWvol

dCAB
+

dWiso

dCAB

)

. (44)With similar 
al
ulation as before the volumetri
 and iso
hori
 parts of the stresstensor read
(Pvol)iB = JW ′

volF
−T
iB , (45)

(Piso)iB = 2J−2/3FiA(PABMN )
(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

.(46)We 
an now evaluate the Cau
hy stress tensor T in the 
urrent 
on�guration;
omponentwise
Tij = J−1FiASABFjB, (47)hen
e from (35)

Tij = 2J−1FiA
dW

dCAB
FjB = 2J−1FiA

(dWvol

dCAB
+

dWiso

dCAB

)

FjB, (48)and the Cau
hy stress tensor de
omposes as
(Tvol)ij = W ′

volδij , (49)
(Tiso)ij = 2J−5/3FiA(PABMN )

(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

FjB.(50)We observe that, by 
onstru
tion, in the 
urrent 
on�guration the volumetri
part of the stress tensor is spheri
al, as the hydrostati
 pressure in in
ompressiblematerials.In the balan
e of linear momentum we employ the �rst Piola-Kir
hho� stresstensor P, hen
e in the following all the 
al
ulation are made in terms of P.Finally, we introdu
e the fourth order elasti
ity tensors, obtained by:
Cvol =

∂Pvol

∂F
, and Ciso =

∂Piso

∂F
. (51)2.4 Collagen re
ruitmentThe 
ollagen re
ruitment and the elastin breakage are introdu
ed on the basis ofan invariant s
alar fun
tion s that measures the deformation [24℄:

s(C1) = ŝ(C1(X1, t),x). (52)If the measure is homogeneous, there is no dire
t dependen
e on the position x.During the motion, the 
ollagen a
tivation o

urs at a threshold value s = sa,13



and at the 
orresponding material point, all the 
ollagen �bers are re
ruitedsimultaneously. If the deformation is non-uniform, the a
tivation 
riterion 
anbe satis�ed at di�erent times in di�erent points of the body; moreover for aninhomogeneous body, sa will depend on the material position too.For isotropi
 materials, we may express the homogeneous measure s as:
s(C1) =

1

Cs
W1iso(IC1

, IIC1
), (53)where Cs is a 
onvenient 
oe�
ient with dimension of Pa−1 and W1iso is theiso
hori
 strain energy fun
tion of the �rst me
hanism.Finally, by means of the total strain energy fun
tion (26), we 
an express the
ontribution of both me
hanisms in the referen
e 
on�guration Ω1 as

Wtot =

{

W1 for 0 ≤ s ≤ sa,

W1 + J1(t2)W2 for s > sa.
(54)The use of equation (34) for a multi-me
hanism model leads to split furtherthe energy into W1vol and W2vol, representing the 
hange in volume of the bodyduring the motion, while W1iso and W2iso represent the in
ompressible 
ontribu-tions of ea
h me
hanism. Hen
e (54) be
omes

Wtot =

{

W1vol + W1iso for 0 ≤ s ≤ sa,

W1vol + W1iso + J1(t2)(W2vol + W2iso) for s > sa.
(55)To write the balan
e of linear momentum in the referen
e 
on�guration Ω1we need to derive the �rst Piola-Kir
hho� stress tensor of a multi-me
hanism.In the following we expli
itly indi
ate the dependen
e on di�erent time frameswhen needed for 
larity:

P1(t) = P(t)1vol + P(t)1 iso, and P2(t
′) = P(t′)2 vol + P(t′)2 iso, (56)that, by means of (45) and (46), may be rewritten as:

P(t)1 vol = J1(t)
dW1 voldJ1(t)

F1(t)
−T , (57)

P(t)1 iso = 2J1(t)
−2/3

F1(t)P1 :
(dW1 isodC1

)

, (58)and
P(t′)2 vol = J2(t

′)
dW2voldJ2(t′)

F2(t
′)−T , (59)

P(t′)2 iso = 2J2(t
′)−2/3

F2(t
′)P2 :

(dW2 isodC2

)

. (60)To simplify the notation, let us de�ne
F1(X1, t2) = F

∗ and J1(t2) = J∗. (61)14



hen
e from (7) and (9), we have
F2(t

′) = F1(t)(F
∗)−1 and J2(t

′) = J1(t) (J∗)−1. (62)The repla
ement of (62) in (59) and (60) allows us to pull ba
k the �rstPiola-Kir
hho� of the se
ond me
hanism P2 to the referen
e 
on�guration Ω1.When P(t)2 vol and P(t)2 iso are expressed with respe
t to the �rst referen
e
on�guration Ω1, we may negle
t in notation their dependen
e over time, andthe total �rst Piola-Kir
hho� stress tensor for a multi-me
hanism model reads
P =

{

P1 vol + P1 iso for 0 ≤ s ≤ sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for s > sa.
(63)The stress tensors P1 and P2 are strongly non-linear, hen
e to linearize andsolve the balan
e of linear momentum, we need to 
ompute the fourth orderelasti
ity tensors. By means of (51) we �nd

C1 =
∂P1

∂F1
, and C2 =

∂P2

∂F1
, (64)where both C1 and C2 are obtained deriving P1 and P2 with respe
t to F1,be
ause both of them refer to the �rst referen
e 
on�guration Ω1.We observe that in Finite Element Method pro
edure, the linearization ofthe stress tensors P1 and P2 is obtained by 
omputing their Fre
het derivativein the dire
tion of an in
rement δF1 of the deformation gradient. We indi
atethese derivatives as:

DF1
P1[δF1] =

∂P1

∂F1
: δF1, and DF1

P2[δF1] =
∂P2

∂F1
: δF1, (65)where � :� denotes the tensor operation obtained by saturation of the last twoindi
es of the tensors involved, and the result is a se
ond order tensor. Thanksto de�niton (64) we have:

DF1
P1[δF1] = C1 : δF1, and DF1

P2[δF1] = C2 : δF1, (66)that represent the linearization of stress tensors P1 and P2 with respe
t of anin
rement of deformation δF1.2.4.1 Volumetri
 stress and elasti
ity tensorsTo 
ompute the volumetri
 part of the stress tensor for the �rst and se
ondme
hanism, we introdu
e the volumetri
 strain energy fun
tion per unit volume:
Wi vol =

Ki

4
((Ji − 1)2 + (lnJi)

2), with i = 1, 2, (67)where Ki is the 
ompression modulus (or bulk modulus), and expression (67)holds for both elastin and 
ollagen (respe
tively i = 1, 2).15



The derivative of Wi vol with respe
t to Ji readsdWi voldJi
=

Ki

2
(Ji − 1 +

1

Ji
lnJi), with i = 1, 2. (68)From (57), the volumetri
 part of the �rst Piola-Kir
hho� stress tensor for the�rst me
hanism is:

P1 vol =
K1

2
J1(J1 − 1 +

1

J1
lnJ1)F

−T
1 =

K1

2
(J2

1 − J1 + lnJ1)F
−T
1 , (69)and, from (59), the stress tensor for the se
ond me
hanism is

P2 vol =
K2

2
J2(J2 − 1 +

1

J2
lnJ2)F

−T
2 . (70)We need to repla
e expression (62) in (70) to pull ba
k P2 vol to Ω1:

P2 vol =
K2

2

J1

J∗

(

J1

J∗
− 1 +

J∗

J1
ln

(

J1

J∗

))

(F1 (F∗)−1)−T

=
K2

2

(

(

J1

J∗

)2

− J1

J∗
+ ln

(

J1

J∗

)

)

F
−T
1 (F∗)T (71)The volumetri
 part of the stress tensor, obtained by adding (69) and (71) isnon-linear with respe
t to the deformation gradient F1.The fourth order elasti
ity tensors are:

C1 vol =
∂P1 vol

∂F1
, and C2 vol =

∂P2 vol

∂F1
. (72)From (65, 72) the linearization of P1 vol reads:

C1 vol : δF1 =
K1

2
J1(2J1 − 1 +

1

J1
) (F−T

1 : δF1)F
−T
1 (73)

− K1

2
(J2

1 − J1 + lnJ1)F
−T
1 δFT

1 F
−T
1 ,and the linearization of P2 vol is:

C2 vol : δF1 =
K2

2
J1

(

2
J1

J∗2
− 1

J∗
+ 1

)

(F−T
1 : δF1)F

−T
1 F

∗T (74)
− K2

2

(

(

J1

J∗

)2

−
(

J1

J∗

)

+ ln

(

J1

J∗

)

)

F
−T
1 δF1

T
F
−T
1 F

∗T ,where δF1 is a variation of F1.
16



2.4.2 Iso
hori
 stress and elasti
ity tensorsIn this se
tion we 
ompute the in
ompressible part of the stress tensor for themulti-me
hanism. To model both elastin and 
ollagen (k = 1, 2) with a Neo-Hookean 
onstitutive law we introdu
e the strain energy fun
tion:
WNH

k iso =
µk

2
(ICk

− 3), with k = 1, 2, (75)and d(WNH
k iso)dCk

=
∂(WNH

k iso)

∂ICk

I =
µk

2
I, with k = 1, 2, (76)where I is the se
ond order identity tensor.From (58) and (76), the iso
hori
 part of the �rst Piola-Kir
hho� stress tensor,for the �rst me
hanism reads

P
NH
1 iso = µ1J

−2/3
1

(

F1 −
1

3
IC1

F
−T
1

)

. (77)To derive the iso
hori
 part of the �rst Piola-Kir
hho� stress tensor, for these
ond me
hanism, we need to 
ompute C2, the right Cau
hy-Green tensor forthe se
ond me
hanism, in terms of C1:
C2 = (F∗)−T

C1(F
∗)−1, (78)and its deviatori
 part is:

C2 =

(

J1

J∗

)−2/3

(F∗)−T
C1(F

∗)−1. (79)Hen
e,
IC2

= trC2 =

(

J1

J∗

)−2/3

tr
(

(F∗)−T
C1(F

∗)−1
)

=

(

J1

J∗

)−2/3

tr
(

(F∗)−1(F∗)−T
C1

)

=

(

J1

J∗

)−2/3

tr
(

(C∗)−1
C1) =

(

J1

J∗

)−2/3

(C∗)−1 : C1, (80)where we used the relation (F∗)T F
∗ = C

∗ and the symmetry of C1.Relations (60), (80) and (75), help us in deriving the expression of the iso-
hori
 part of the �rst Piola-Kir
hho� stress tensor, for the se
ond me
hanism
P

NH
2 iso = µ2

(

J1

J∗

)−2/3(

F1 (F∗)−1 − 1

3
IC2

(F∗)TF
−T
1

)

. (81)The fourth order elasti
ity tensors are:
C

NH
1 iso =

∂P
NH
1 iso

∂F1
, and C

NH
2 vol =

∂P
NH
2 iso

∂F1
. (82)17



From (65, 82) the linearization of P1 iso reads:
C

NH
1 iso : δF1 = − 2

3
µ1 J

−2/3
1 (F−T

1 : δF1)F1 (83)
+

2

9
µ1 IC1

(F−T
1 : δF1)F

−T
1

− 2

3
µ1 J

−2/3
1 (F1 : δF1)F

−T
1

+ µ1 J
−2/3
1 δF1 +

µ1

3
IC1

F
−T δFT

1 F
−T .and the linearization of P2 iso is:

C
NH
2 iso : δF1 = − 2

3
µ2

(

J1

J∗

)−2/3

(F−T
1 : δF1)F1(F

∗)−1 (84)
+

2

9
µ2 IC2

(F−T
1 : δF1)(F

∗)T F
−T
1

− 1

3
µ2

(

J1

J∗

)−2/3

((C∗)−1 : δFT
1 F1 + (C∗)−1 : FT

1 δF1)(F
∗)T F

−T
1

+ µ2

(

J1

J∗

)−2/3

δF1(F
∗)−1 +

µ2

3
IC2

(F∗)T F
−T
1 δFT

1 F
−T
1 .We observe that if F

∗ = F1 then P
NH
2 iso = 0.The other 
onstitutive law we may use to model elastin and 
ollagen is derivedby the exponential strain energy fun
tion:

W
Exp
j iso =

αj

2γj
(e

γj(ICj
−3) − 1), with j = 1, 2, (85)and d(WExp

j iso)dCj

=
∂(WExp

j iso)

∂ICj

I =
αj

2
e
γj(ICj

−3)
I, with j = 1, 2, (86)where I is the se
ond order identity tensor.From (58) and (86), the iso
hori
 part of the �rst Piola-Kir
hho� stress tensor,for the �rst me
hanism is:

P
Exp
1 iso = α1e

γ1(IC1
−3)

J
−2/3
1 F1

(

(I − 1

3
C

−1
1 ⊗ C1) : I

)

, (87)where ⊗ is the outer tensor produ
t. Finally,
P

Exp
1 iso = α1e

γ1(IC1
−3)

J
−2/3
1

(

F1 −
1

3
F
−T
1 IC1

)

. (88)From (60) and (86), the iso
hori
 part of the stress tensor for the se
ondme
hanism is:
P

Exp
2 iso = α2e

γ2(IC2
−3)
(

J1

J∗

)−2/3

F1 (F∗)−1

(

(I − 1

3
C

−1
2 ⊗C2) : I

)

, (89)18



where we need to introdu
e (78) and (80).After some 
al
ulations
P

Exp
2 iso = α2e

γ2(IC2
−3)
(

J1

J∗

)−2/3(

F1 (F∗)−1 − 1

3
(F∗)TF

−T
1 IC2

)

, (90)as in the previous 
ase, we observe that when F
∗ = F1 then P

Exp
2 iso = 0.For the exponential material, the fourth order elasti
ity tensors read:

C
Exp
1 iso =

P
Exp
1 iso

∂F1
, and C

Exp
2 iso =

P
Exp
2 iso

∂F1
. (91)From (65, 91), the linearization of (88) reads:

C
Exp
1 iso : δF1 = − 2

3
α1 e

γ1(IC1
−3)

J
−2/3
1 (1 + γ1IC1

)(F−T
1 : δF1)F1 (92)

+
2

9
α1 e

γ1(IC1
−3)

IC1
(1 + γ1IC1

)(F−T
1 : δF1)F

−T
1

− 2

3
α1 e

γ1(IC1
−3)

J
−2/3
1 (1 + γ1IC1

)(F1 : δF1)F
−T
1

+ 2α1 γ1 e
γ1(IC1

−3)
J
−4/3
1 (F1 : δF1)F1

+ α1 e
γ1(IC1

−3)
J
−2/3
1 δF1

+
α1

3
e
γ1(IC1

−3)
IC1

F
−T
1 δFT

1 F
−T
1 .and the linearization of (90) results:

C
Exp
2 iso : δF1 = − 2

3
α2 e

γ2(IC2
−3)

(

J1

J∗

)−2/3

(1 + γ2IC2
)(F−T

1 : δF1)F1(F
∗)−1 (93)

+
2

9
α2 e

γ2(IC2
−3)

IC2
(1 + γ2IC2

)(F−T
1 : δF1)(F

∗)TF
−T
1

− α2

3
e
γ2(IC2

−3)
(

J1

J∗

)−2/3

(1 + γ2IC2
)
(

(C∗)−1 : δFT
1 F1

+ (C∗)−1 : FT
1 δF1

)

(F∗)TF
−T
1

+ α2 γ2 e
γ2(IC2

−3)
(

J1

J∗

)−4/3
(

(C∗)−1 : δFT
1 F1

+ (C∗)−1 : FT
1 δF1

)

F1(F
∗)−1

+ α2 e
γ2(IC2

−3)
(

J1

J∗

)−2/3

δF1(F
∗)−1

+
α2

3
e
γ2(IC2

−3)
IC2

(F∗)TF
−T
1 δFT

1 F
−T
1 .
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 + .3Figure 5: Example of analyti
 expression for the damage fun
tion D(smax) for elastindegradation for di�erent values of se.2.5 Elastin degradationThe �rst me
hanism is asso
iated with the elastin 
omponent of arterial wall.As pointed out in Se
tion 1.1, early stage aneurysm formation is hypothesized tobe related to a me
hani
al damage of elastin. Hen
e, we introdu
e, in the multi-me
hanism model a 
ontinuous isotropi
 damage model for the �rst me
hanism.This approa
h, in the 
ontest of multi-me
hanism models, was �rst presented byRobertson and 
oworkers [25℄.We de�ne an internal damage variable D ∈ [0, 1] and following the ap-proa
h des
ribed in [26℄ we postulate that the de
oupled representation of the�rst me
hanism strain energy fun
tion (see equation (34)) still holds for the freeenergy :

W D
1 (J, IC1

, IIC1
, D) = W1vol(J) + (1 − D)W1iso(IC1

, IIC1
), (94)where W1vol(J) is the same fun
tion de�ned in Se
tion 2.3 whi
h des
ribes thevolumetri
 elasti
 response, and W1iso(IC1

, IIC1
) is the iso
hori
 e�e
tive strainenergy of the undamaged material, whi
h des
ribes the iso
hori
 elasti
 response.We observe that deformations due to temperature 
hanges are negle
ted. Assuggested in [27℄, the damage phenomenon a�e
ts only iso
hori
 deformations.We 
all PD

1 the �rst Piola-Kir
hho� stress tensor of the damage model.From relation (94), the volumetri
 part of P
D
1 is

P
D
1vol = P1vol, (95)20



and from the Clausius-Plank inequality, it follows that [28℄:
P

D
1iso = (1 − D)P1iso, (96)

−∂W D
1

∂D
Ḋ = W1isoḊ ≥ 0. (97)Inequality (97) spe
i�es that damage is a dissipative and irreversible phenomenon.Moreover, W1iso is the thermodynami
 
onjugate variable of Ḋ, and the evolutionof D may be des
ribed in terms of W1iso.Let us 
onsider again the s
alar fun
tion of deformation s(C1(t)) de�ned in(53), and 
onsider a threshold sb below whi
h no damage o

urs. We supposethat sb > sa, where sa is de�ned in Se
tion 2.4 and represents the s
alar measureof deformation at whi
h 
ollagen is re
ruited. While the body deforms, as longas s(C1(t)) < sb, elastin damage never o

urs and after the unloading stagethe body re
overs its initial stress-free 
on�guration Ω1. On
e the deformationthreshold s = sb is rea
hed, an irreversible damage to elastin 
omponent preventsthe body, in the unloading stage, to re
over the initial 
on�guration Ω1 and itwill rea
h another stress-free 
on�guration.To take into a

ount the gradual irreversible damage of elastin material, wede�ne

smax(C1(t)) = max
0≤τ≤t

s(C1(τ)), (98)as the maximum of our measure s(C1(t)) during the history of deformation. Atea
h time step, i.e. at ea
h value of deformation, the quantity
φ(C1(t)) = smax(C1(t)) − s(C1(t)) = 0 (99)represents a surfa
e in strain spa
e. The normal to this surfa
e is Niso = ∂φ

∂C1

;when Niso : δC1 > 0 the strain is in
reasing (loading stage), otherwise when
Niso : δC1 < 0 the strain is de
reasing (unloading stage).An example of an analyti
 expression for the damage variable D in terms of
smax is:

D(smax) =
1

2
tanh

sf − smax(C1(t))

sf − se
+

1

2
, (100)where sf and se are two s
alar parameters, and D depends on C1(t) through

smax(C1(t)). We observe that when smax = sf , D(sf ) = 0.5, i.e. the elastin atthe 
orrespondent point is half-degraded, and se 
ontains the information aboutthe speed of the damage pro
ess.At ea
h time t, the evolution of the damage is regulated by
Ḋ =











∂D

∂smax
˙smax if φ = 0 and Niso : δC1 > 0,

0 otherwise.

(101)21



Finally, we may represent the �rst Piola-Kir
hho� stress tensor P of the fullmulti-me
hanism model with damage as:
P =







P1 vol + P1 iso for 0 ≤ s ≤ sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for sa < s ≤ sb,

P1 vol + (1 − D)P1 iso + J∗(P2 vol + P2 iso) for s > sb.

(102)As P1 vol and P2 vol have the role of penalizing the material 
ompression,they do not have a spe
i�
 
onstitutive meaning for the multi-me
hanism model.Hen
e, to simplify the equation, we 
onsider only one volumetri
 
ontribution:
Pvol = P1 vol, (103)and rewrite equation (102) as

P = Pvol +







P1 iso for 0 ≤ s ≤ sa,

P1 iso + J∗
P2 iso for sa < s ≤ sb,

(1 − D)P1 iso + J∗(P2 iso) for s > sb.

(104)From (64), the fourth order iso
hori
 elasti
ity tensor for the �rst me
hanismwith damage is:
C

D
1 iso =

∂ ((1 − D)P1 iso)

∂F1
, (105)and the linearization of the �rst Piola-Kir
hho� stress tensor reads

C
D
1 iso : δF1 = (1 − D) C1 iso : δF1 −

∂D

∂s
(P1 iso ⊗ P1 iso) : δF1, (106)where C1 iso =

∂P1 iso

∂F1
has been 
al
ulated in Se
tion 2.4.2 in the 
ase of a spe
i�

hoi
e of a Neo-Hookean or exponential material for the �rst me
hanism.3 Weak formulationIn the Finite Element framework, we need to formulate the motion problem ina variational form and dis
retize it with respe
t to time and spa
e. Our FiniteElement dis
retization is quite standard, the main di�
ulty is in the 
al
ulationof the stress terms and their linearization.We remark that non-linearity is an essential ingredient of elasti
ity for �nitedeformations. In �nite elasti
ity, in general, the stress tensor depends upon non-linear kinemati
 terms that are a fun
tion of the deformation gradient. Moreover,if the 
onstitutive law used to des
ribe the material is a non-linear relation ofstress and strain, the stress tensor is a�e
ted by another non-linearity. Anotheraspe
t of the formulation that in
reases the 
omplexity of the 
omputationalproblem is that the weak 
ompressibility of the non-linear material of interest ismanifested using a penalty term. This term is strongly non-linear with respe
t22



to the deformation gradient by 
oupling all the 
omponents of the unknowndispla
ement �eld.The linearization, performed by 
omputing the Fre
het of the non-linearterms, and the solution of the system are obtained using an iterative Newton-Raphson pro
edure, enhan
ed with a linesear
h ba
ktra
king algorithm.The linearization of the nonlinear stress tensor needed in the Newton-Raphsonmethod is the fourth order elasti
ity tensor. As des
ribed in Se
tion 2.4.1, 2.4.2,and 2.5, we 
omputed the exa
t form of the fourth order elasti
ity tensors for allthe nonlinear materials introdu
ed in the multi-me
hanism model.3.1 Prin
iple of virtual powerLet us 
onsider the bounded domain Ω1 ⊆ R
3, representing the referen
e 
on�g-uration of a body, the prin
iple of virtual power may be expressed as:

∫

Ω1

(divP(u) + ρ1b− ρ1a) · δυ dΩ1 = 0 (107)where δυ is an arbitrary virtual velo
ity, satisfying possible 
onstraints, the �rstPiola-Kir
hho� stress tensor P is expressed as a fun
tion of unknown displa
e-ment u = u(X1, t), a =
D2

u

Dt2
is the a

eleration �eld, and b are the body for
es.The s
alar equation (107) is fully equivalent to the ve
torial motion equation:
ρ1a = divP(u) + ρ1b, (108)thanks to the arbitrariness of the virtual velo
ity fun
tion. With further 
al
u-lations we have:

∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 =

∫

Ω1

divP(u) · δυ dΩ1 +

∫

Ω1

ρ1b · δυ dΩ1. (109)We de�ne the external surfa
e ∂Ω1 = ΓD ∪ ΓN0
∪ ΓNt . In parti
ular ΓD is thepart of the surfa
e we impose the Diri
hlet homogeneous boundary 
onditions and

ΓN0
, ΓNt are those parts where we pres
ribe the Newmann boundary 
onditions.

ΓN0
is the stress free surfa
e and on ΓNt is imposed a known tra
tion t. Thewhole boundary 
onditions and initial values are:























u(0) = u0;
v(0) = v0;
u(t) = 0 on ΓD;
Pn = 0 on ΓN0

;
Pn = t on ΓNt .

(110)From the divergen
e theorem and the boundary 
onditions (110), we obtain:
∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 = −

∫

Ω1

P(u) : ∇δυ dΩ1

+

∫

∂Ω1

t · δυ dΣ1 +

∫

Ω1

ρ1b · δυ dΩ1, (111)23



where dΣ1 is and in�nitesimal surfa
e element of ∂Ω1.In parti
ular, we observe that:
∇δυ =

∂

∂X1
δυ =

∂

∂X1

Dδη

Dt
=

D

Dt

∂δη

∂X1
= δḞ1, (112)with δη an arbitrary virtual displa
ement. The repla
ement of (112) in (111),gives the expression of the virtual power prin
iple for the �rst Piola-Kir
hho�stress tensor P with its 
onjugate virtual deformation δḞ1:

∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 +

∫

Ω1

P(u) : δḞ1 dΩ1 =

∫

∂Ω1

t · δυ dΣ1 +

∫

Ω1

ρ1b · δυ dΩ1.(113)The reinterpretation of the virtual velo
ity δυ in (113) as a test fun
tion, providesthe weak formulation of problem (108).3.2 Continuous weak formulationLet V be the spa
e of ve
tor fun
tions de�ned as follows:
V (Ω1) = {φ ∈ [H1(Ω1)]

3 su
h thatφ = 0 onΓD}. (114)The weak formulation of problem (108) states:For any t > 0 �nd u = u(t) ∈ V (Ω1) su
h that u(0) = u0, v(0) = v0 and:
∫

Ω1

ρ1
D2

u

Dt2
· φ dΩ1 + a(u,φ) = F (φ), ∀φ ∈ V (Ω1) (115)with
a(u,φ) =

∫

Ω1

P(u) : ∇φ dΩ1, (116)and
F (φ) =

∫

∂Ω1

t · φ dΣ1 +

∫

Ω1

ρ1b · φ dΩ1. (117)3.3 Dis
rete weak formulationTo perform the spatial dis
retization of equation (115), we 
onsider the �niteelement spa
es de�ned on a partition of the referen
e domain Ω1 by a mesh τh
1made of generi
 elements K. Let us assume the mesh is geometri
ally 
onformingand made of tetrahedra. Hen
e, the approximated domain is

Ωh
1 =

∑

K∈τh
1

K. (118)To perform the spatial dis
retization, we 
onsider Lagrangian �nite elements sothat the 
orresponding fun
tional spa
e is:
χN (τh

1 ) = {φh ∈ C0(Ωh
1), φh|K ∈ P

N (K), ∀K ∈ τh
1 }, (119)24



where P
N (K) is the spa
e of polynomials of degree N de�ned on ea
h element

K ∈ τh
1 . The dis
rete fun
tional spa
e for the displa
ement unknown in thereferen
e 
on�guration is Vh(Ωh

1) = [χN (τh
1 )]3. Finally, the dis
rete weak formu-lation of the problem (115) 
an be written as:For any t > 0 �nd uh = uh(t) ∈ Vh(Ωh
1) su
h that uh(0) = u0h, vh(0) = v0hand :

∫

Ωh
1

ρ1
D2

uh

Dt2
· φh dΩ1 + a(uh,φh) = F (φh), ∀φh ∈ Vh(Ωh

1) (120)with
a(uh,φh) =

∫

Ωh
1

P(uh) : ∇φh dΩ1, (121)and
F (φh) =

∫

∂Ωh
1

th · φh dΣ1 +

∫

Ω1

ρ1bh · φh dΩ1, (122)where u0h and w0h are suitable approximation of the initial data 
ompatiblewith the imposed boundary 
onditions; th is an approximation of the imposedtra
tion and bh is an approximation of the body for
es.Let {φi}NV
i=1 be the Lagrange basis asso
iated to the �nite element spa
e ofdispla
ement Vh(Ωh

1), we approximate the solution as:
uh(X) =

∑

i∈NV

ui φi(X) (123)The substitution of expression (123) in equation (120), supplies the algebrai
form of the semi-dis
retized problem:
MÜ + K(U) = F (124)where U is the unknown displa
ement ve
tor. For a three-dimensional problem, if

{φi}NV
i=1 are linear fun
tions, the size of ve
tor U is equal to the number of degreesof freedom, i.e. 3NV , where NV is the number of nodes of the 
omputationaldomain. M is the mass matrix and F is the ve
tor that takes into a

ount the
ontributions of the body for
es and the tra
tion boundary 
ondition. K(U)denotes a ve
tor that takes into a

ount the non-linear sti�ness 
ontribution dueto the dis
retization of the stress tensors.The representation of the generi
 entry (i, j), with i, j = {1, . . . , NV } of ea
hmatrix and ve
tor in system (124) is therefore:

Mij =
∫

Ωh
1

ρ1 φi φj dΩ1,

K(U)j =
∫

Ωh
1

P
(

∑

i∈NV

Ui φi(X)
)

: ∇φj dΩ1,

Fj =
∫

∂Ωh
1

∑

i∈NV

ti φi φj dΣ1,+

∫

Ωh
1

∑

i∈NV

bi φi φj dΩ1.25



3.4 Time Dis
retizationThe initial-value problem for (124) 
onsists of �nding a displa
ement U = U(t)satisfying (124) and the given initial data:
U(0) = U0, U̇(0) = V0. (125)To 
arry out the time dis
retization of system (124), we partition the timeinterval I = [0, T ] into N subintervals In = [tn, tn+1], for 0 ≤ n ≤ N , with

0 = t0 < t1 < · · · < tN = T , where tn is a generi
 time step. For the sake ofsimpli
ity, we 
onsider only uniform intervals δt = δtn = tn+1 − tn. In order tosimplify the notation, we indi
ate with U
n+1 = U(tn+1) and similarly F

n+1 =
F(tn+1).Among all possible 
hoi
es of time dis
retization s
hemes for a se
ond or-der equation, we employ a Newmark s
heme, whi
h 
onsists of the followingequations:

MA
n+1 + K(Un+1) = F

n+1, (126)
U

n+1 = U
n + δtVn +

δt2

2
[(1 − ζ)An + ζAn+1], (127)

V
n+1 = V

n + δt[(1 − θ)An + θAn+1], (128)where V
n+1 is the approximation of U̇(tn+1) and A

n+1 is the approximation of
Ü(tn+1) [29℄.To guarantee the numeri
al stability of the s
heme, the two parameters haveto satisfy the relation θ ≥ 1

2 and ζ ≥ 1
2 (θ + 1

2)2 [30℄. The 
hoi
e of parameters
θ = ζ = 1

2 leads to a se
ond order method (mid-point), that is a fully nondissipative s
heme, so that, no me
hanism exists to damp high frequen
ies dueto trun
ation errors [31℄.In our 
ase, we were interested in quasi-stati
 deformations of the stru
turesand, in order to avoid the spurious os
illations in the solution, we 
hoose theparameters as θ = 0.5 and ζ = 1. With this 
hoi
e, the time s
heme redu
es tothe �rst order Ba
kward Euler s
heme for displa
ement equation, while for thevelo
ity we still maintain the se
on order 
onvergen
e [29℄. The degradation ofone order of the time s
heme does not a�e
t the pre
ision of the displa
ementsolution when looking for quasi-stati
 deformations. In 
ontrast, in the 
ase ofpropagation of waves, the dynami
s of the phenomenon is important and thepre
ision of the time s
heme be
omes fundamental. With this in mind, the 
odewas made to handle the general 
ase so that these parameters 
ould be sele
teddepending on the appli
ation.The use of s
heme (126 � 128) in system (124) gives:
2

δt2
MU

n+1 + ζK(Un+1) =
2

δt2
M(Un + δtVn) + (1 − ζ)MA

n, (129)26



and
A

n+1 =
2

ζδt2
U

n+1 − 2

ζδt2
(Un + δtVn) − (1 − ζ)

ζ
A

n, (130)
V

n+1 = V
n + δt[(1 − θ)An + θAn+1]. (131)3.5 Linearization and solutionIn this work the solution of the algebrai
 system (129) is performed iterativelyusing the Newton-Raphson method [22℄ [28℄.Let us de�ne the fun
tion L (·) : R

r → R
r, where r is the total number ofdegrees of freedom, hen
e the dimension of system (129):

L (Un+1) =
2

δt2
MU

n+1 + ζK(Un+1) −
2

δt2
M(Un + V

nδt) − (1 − ζ)MA
n. (132)With su
h an approa
h, solving system (129) is equivalent to �nding the root ofthe nonlinear equation:

L (Un+1) = 0 (133)Moreover, we observe that the term − 2
δt2 M(Un + V

nδt) − (1 − ζ)MA
n is a
onstant ve
tor at ea
h time step n+1, be
ause it is 
omputed by using the knownve
tor U

n. Let us 
onsider the �xed time step tn+1 where we are 
omputing thesolution. Hen
e, the index k refers to a generi
 iteration of the Newton-Raphsonmethod. Therefore we 
all U
n+1
k = Uk.The general formulation of the Newton-Raphson method provides an iterativepro
edure to solve the nonlinear system (129). Given an initial guess U0, at ea
hiteration k we have to solve the linear system for the unknown δUk = Uk+1−Uk:

DUL (Uk)[δUk ] = −L (Uk). (134)After solving (134) in terms of δUk, we have to update the displa
ement Uk+1 =
Uk + δUk.To solve (134) we need to 
ompute the Fre
het derivative or dire
tional deriva-tive of L (Uk) with respe
t to an in
rement δUk [32℄:

DUL (Uk)[δUk ] = lim
ε→0

L (Uk + εδUk) − L (Uk)

ε
. (135)The displa
ement in
rement δUk represents in R

3 the dire
tion along whi
h weare di�erentiating the fun
tion L . Referring to (132), we observe that
DUL (Uk)[δUk ] =

2

δt2
MδUk + ζDUK(Uk) [δUk] , (136)27



hen
e the term to linearize is DUK(Uk) [δUk], that 
omes from the stress tensor.In order to understand how to perform the derivative of su
h a term, we re
allthat
K(Uk) =

∫

Ωh
1

P(Uk) : ∇φ dΩ1 (137)where P is the �rst Piola-Kir
hho� stress tensor, nonlinear in U, and φ is a testfun
tion de�ned in Se
tion 3.3. As we pointed out above the linearization has tobe performed at ea
h iteration k of the Newton-Raphson method. To simplifythe notation, in the following 
al
ulation we negle
t the subs
ript k referred asthe displa
ement ve
tor U and its variation δU. We observe that integration inspa
e on a �xed domain and fun
tional derivation 
ommute and from equation(137), we have
DUK(U)[δU] = lim

ε→0

1

ε

(

K(U + εH) − K(U)
)

=

= lim
ε→0

1

ε

(

∫

Ωh
1

P(U + εδU) : ∇φ dΩ1 −
∫

Ωh
1

P(U) : ∇φ dΩ1

)

=

=

∫

Ωh
1

lim
ε→0

1

ε

(

P(U + εδU) − P(U)
)

: ∇φ dΩ1 =

=

∫

Ωh
1

DUP(U)[δU] : ∇φ dΩ1. (138)In parti
ular, we observe that the �rst Piola-Kir
hho� stress tensor maydepend on the unknown displa
ement U through the deformation gradient F1.In this 
ase, we may employ the 
hain rule to linearize P(F1(U)):
DUP(F(U))[δU] = DF1

P(F1)[δF1], (139)and
DF1

K(F1)[δF1] =

∫

Ωh
1

DF1
P(F1)[δF1]dΩ1. (140)It is useful to re
all that, for a multi-me
hanism model with weakly 
om-pressible materials (see se
tion 2.3 and following), the most general expressionof the nonlinear term K(F1) de
omposes as

K(F1) = K1 vol(F1) + K1 iso(F1) + K1 vol(F1) + K2 iso(F1), (141)where
Kl iso(F1) =

∫

Ωh
1

Pl iso(F1) : ∇φ dΩ1, l = 1, 2; (142)
Kl vol(F1) =

∫

Ωh
1

Pl vol(F1) : ∇φ dΩ1, l = 1, 2. (143)28



3.5.1 Linesear
h algorithmFinally, we observe that the Newton-Raphson method is lo
ally 
onvergent, in thesense that it 
onverges only if the initial guess is �
lose enough� to the solution. Inorder to improve the 
onvergen
e properties and be independent from the initialguess, we add a linesear
h ba
ktra
king pro
edure [33℄ to the basi
 algorithm.This te
hnique 
onsists in 
omputing at ea
h time step, a 
oe�
ient αk to tunethe des
endent step 
omputed by (134).When the des
endent dire
tion δUk, is 
al
ulated a

ording to (134), and Ukis known, the 
oe�
ient αk is 
omputed as a minimum of L (Uk + αkδUk):
αk = arg min

α∈R+
L (Uk + αδUk) (144)In pra
ti
al appli
ations there are spe
i�
 rules implemented to �nd αk, we usethe Goldenstein Rules [34℄.The generi
 steps of the total algorithm 
an be summarized as follows:1. Choose an initial guess U0 and a toleran
e ε.2. Compute a des
endent dire
tion δUk solving (134).3. Compute a suitable 
oe�
ient αk through (144).4. Update the solution Uk+1 = Uk + αkδUk.5. Test for 
onvergen
e ||Uk+1 − Uk|| < ε.6. Exit if the test in 5. is true, go ba
k to 2. if it is false.4 Code validation, 
omparison with analyti
 solutionsThe numeri
al 
ode has been validated by 
omparing analyti
 solutions for asingle me
hanism material with numeri
al results for the same problem. The
onstitutive laws used in the validation pro
edure were a Neo-Hookean and ex-ponential 
onstitutive laws.We 
onsider a 
ylinder with axis in the x dire
tion, with radius 0.5 cm andheight 1 cm. The lower base of the 
ylinder is 
onstrained to slide on the zy plane,so that it 
an shrink in dire
tion orthogonal to its axis, but it 
an't move in the

x dire
tion (Diri
hlet homogeneous boundary 
onditions on the x 
omponentof displa
ement). The upper se
tion of the 
ylinder is loaded in tra
tion. Thelateral surfa
e is stress free (Neumann homogeneous boundary 
onditions). Thetest is 
arried out as a series of quasi-stati
 deformations and at ea
h time stepthe tra
tion in
reases linearly with time. A pi
ture of results from the numeri
alsimulation is shown in �gure 6.
29



Figure 6: Example of the tension test 
arried on a 
ylinder with the iso
hori
 Neo-Hookean 
onstitutive law for a single-me
hanism. The 
olor s
ale representsthe displa
ement in the axial dire
tion (x).4.1 Analyti
 solutionIn the 
ase of tension test of a 
ylinder loaded in the axial dire
tion, the deforma-tion λ1 along the axis is homogeneous, and the 
orresponding �rst Piola-Kir
hho�stress tensor 
an be 
omputed analyti
ally. The deformation inside the 
ylinderis uniform. The axial dire
tion and two orthogonal dire
tions are prin
ipal axisof strain and stress, hen
e the deformation gradient F is:
F =





λ1 0 0
0 λ2 0
0 0 λ3



 , (145)where λ2 and λ3 are prin
ipal deformations in dire
tions orthogonal to the axis.The ja
obian of the motion is J = detF = λ1λ2λ3.The right Cau
hy-Green strain tensor is:
C =





λ2
1 0 0
0 λ2

2 0
0 0 λ2

3



 , (146)and from (30) the unimodular Cau
hy-Green strain tensor C = J−2/3
C.The kinemati
s invariants we need, 
an be written in terms of prin
ipalstret
hes:

IC = trC = λ2
1 + λ2

2 + λ2
3; (147)

IC = trC = J−2/3IC; (148)
IIIC = detC = J2 = λ2

1λ
2
2λ

2
3. (149)Be
ause the test is symmetri
 in dire
tions y and z, orthogonal to the axis xof the 
ylinder, we have that λ2 = λ3, and using relation (149) we �nd:

λ2 = λ3 =

√

J

λ1
. (150)30



The strain energy fun
tion W of the material is 
omposed of a volumetri
term (Wvol) depending only on J and a deviatori
 term (Wiso) depending onlyon IC , the �rst modi�ed invariant of C:
W = Wiso(IC) + Wvol(J) (151)The �rst Piola-Kir
hho� stress tensor P is obtained by evaluating ∂W

∂F
. Inthe present simple 
ase, from (44) the prin
ipal 
omponents of stress are:

P11 = 2F11
∂W

∂C11
, (152)

P22 = 2F22
∂W

∂C22
, (153)

P33 = 2F33
∂W

∂C33
. (154)4.2 Neo-Hookean 
onstitutive lawTo represent the material behavior of the deviatori
 part, we 
hoose the Neo-Hookean 
onstitutive law for a single-me
hanism, given by (75), and for thevolumetri
 part we use expression (67). In the paper of Ne� and Hartmann [23℄a proof of the poly
onvexity of the 
hosen strain energy fun
tion that guaranteesthe existen
e of an equilibrium solution is shown.After some 
al
ulations, the prin
ipal 
omponents of �rst Piola-Kir
hho�stress tensor are obtained:

P11 =
µ

2

(

2λ1

J2/3
− 2λ2λ3(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ1
ln J +

K

2
λ2λ3(J − 1), (155)

P22 =
µ

2

(

2λ2

J2/3
− 2λ1λ3(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ2
ln J +

K

2
λ1λ3(J − 1), (156)

P33 =
µ

2

(

2λ3

J2/3
− 2λ1λ2(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ3
ln J +

K

2
λ1λ2(J − 1) .(157)From (150), we 
an express λ2 and λ3 as fun
tion of J and λ1. As the lateralsurfa
e of the 
ylinder is stress free, P22 = P33 = 0. We 
an repla
e λ2 and λ3,for example in equation (156), thus we obtain a relation between J and λ1:

P22 =
µ

2





2
√

J
λ1

J2/3
−

2λ1

√

J
λ1

(λ2
1 + 2 J

λ1
)

3J5/3



+
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(J −1) = 0.(158)The solution of this algebrai
 equation gives J on
e the stret
h λ1 is �xed.Finally we 
ompute the prin
ipal 
omponent of stress in axial dire
tion:
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(a) Analyti
 and numeri
al solution of thetension test with Neo-Hookean 
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(b) Analyti
 and numeri
al solution of thetension test with Exponential 
onstitutivelaw.Figure 7: Comparison between the analyti
 and the numeri
al solution. Both graphsrepresent the prin
ipal 
omponent P11 of the �rst Piola-Kir
hho� stresstensor versus the axial stret
h λ1.The te
hnique used to derive the prin
ipal stress P11 follows that proposed inOgden [35℄.In Figure 7(a) the 
omparison between the analyti
 solution and the nu-meri
al solution of this tension test is shown. Material parameters are µ =
27.68 105 Pa and K = 107 Pa, for both the numeri
al and analyti
 solution.4.3 Exponential 
onstitutive lawIn this se
tion we use an exponential iso
hori
 
onstitutive law to model a single-me
hanism material. The 
orresponding strain energy fun
tion is given by ex-pression (85). For the volumetri
 part of the strain energy fun
tion we againuse (67). Also for the exponential 
ase, in Ne� and Hartmann [23℄ this 
hoi
e ofstrain energy fun
tion is shown to be poly
onvex, thus guaranteeing the existen
eof an equilibrium solution.If we pro
eed with 
al
ulations as in the previous se
tion, in this 
ase, the

32



prin
ipal 
omponents of the �rst Piola-Kir
hho� stress tensor are:
P11 =
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λ1λ2(J − 1). (162)As for the Neo-Hookean material, during the tension test, the lateral surfa
eof the 
ylinder is stress free, and P22 = P33 = 0. If we 
onsider equation P22 = 0and we repla
e λ2 and λ3 by means of (150), we obtain a relation between J and

λ1:
P22 =
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(J − 1) = 0. (163)For a 
hosen λ1, we 
an 
ompute J from (163) and the prin
ipal 
omponentof stress in the axial dire
tion 
an be obtained from:
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(J − 1), (164)As noted in Se
tion 4.2, the te
hnique used to derive the prin
ipal stress P11follows the guideline proposed by Ogden [35℄.In Figure 7(b) the analyti
 and the numeri
al solution for this tensions test areshown. The same material parameters have been used to 
ompute the analyti
alsolution and the numeri
al simulation. These are α1 = 7.12 103 Pa, γ1 = 0.86,and K = 107 Pa. 33
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Figure 8: L∞ norm of (J − 1) with respe
t to di�erent values of the bulk modulus K.Neo-Hook Exponential
1st Me
h. µ1 = 27.68 104 Pa α1 = 7.12 103 Pa, γ1 = 0.86

2nd Me
h. - α2 = 31.28 103 Pa, γ2 = 1.87Table 1: Table of material parameters used in strain energy fun
tions (67, 75, 85).5 Material parametersThe strain energy fun
tion adopted herein is the sum of a Neo-Hookean materialplus an Exponential law, for the se
ond me
hanism, as suggested in [24℄, [20℄. Thematerial parameters used for the double-me
hanism are taken from the literature[20℄ and are listed in table 1.The volumetri
 
oe�
ient K (bulk modulus) of the strain energy fun
tion (seeexpression (67)) 
annot be measured by experiments, it multiplies the volumetri
part of the strain energy fun
tion, giving rise to a penalty term, that allows thematerial only slight 
ompression. In Le Talle
 [36℄, we �nd the suggestion thatfor a FE displa
ement formulation it should be in the range:
Cs 102 ≤ K ≤ Cs 106, (165)where Cs is the 
hara
teristi
 shear modulus of the material. For smaller valuesof K there is a loss of a

ura
y in 
omputing the solution and for larger valuesthe 
ondition number of the asso
iated dis
rete linear system be
omes too large.In �gure 8 is shown the relation between the 
ompression modulus K and the
ompressibility the material exhibits when J moves away from 1.34



(a) Example of the tension test 
arriedon the 
ylinder with the iso
hori
 Neo-Hookean 
onstitutive law for a single-me
hanism. The 
olor s
ale representsthe displa
ement in the axis dire
tion (x).S
rolling is allowed on the lower base of the
ylinder.
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(b) Comparison between the stress-straingraph for the tension test with a single anda double me
hanism law. The blue lineis the behavior of a double Neo-Hook andExponential model, and the red dashedline in a single Neo-Hookean model. Thetwo 
urves overlap until the deformationthreshold a
tivates the exponential 
olla-gen me
hanism.Figure 9: Tension test in 
ase of uniform deformations.In this work we use for the bulk modulus the value K = 107 Pa, that isin
luded in range (165) when Cs = µ1 or Cs = α1.We observe that in [20℄ the 
hosen value of the 
ompression modulus is
K = 109 Pa, allowed by the use of a FE mixed (displa
ement and pressure)formulation.6 Numeri
al resultsSome simple numeri
al tests have been used to explain the behavior of the 
ol-lagen re
ruitment me
hanism within the double me
hanism model in the 
ase ofuniform deformations and non-uniform deformations. The tests were performedas a series of quasi-stati
 deformations.We 
onsider a 
ylinder with the upper surfa
e in tra
tion, linearly varyingwith time, the lateral surfa
e is stress free, and the homogeneous Diri
hlet bound-ary 
onditions are imposed on the 
omponent of displa
ement along the 
ylinderaxis x on the lower surfa
e. The initial length of the 
ylinder is 1 
m and itsradius 0.5 
m. A pi
ture of the deformed 
ylinder is shown in �gure 9(a).In this test, the deformation is uniform, i.e. it is the same at ea
h point.Therefore, the deformation threshold sa = 0.5 is rea
hed simultaneously by allelements of the 
omputational domain. In �gure 9(b) a 
omparison of the stress-strain 
urve obtained with a double-me
hanism and a single-me
hanism model35



(a) Example of a tension test 
arriedon the 
ylinder with the iso
hori
 Neo-Hookean 
onstitutive law for a single-me
hanism. The 
olor s
ale representsthe displa
ement in the axis dire
tion(x). The lower base of the 
ylinder isnow lo
ked.
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0

1

2

3

4

5

6

7

8

9
x 10

5

λ
1

P
11

  [
dy

ne
/c

m
2 ] 

 

 

NH + Exp
NH

(b) Comparison between the stress-strain graph for a tension test with asingle and a double me
hanism law.The blue line is the behavior of a doubleNeo-Hookean and exponential model,and the red dashed line in a singleNeo-Hookean model. The two 
urvessmoothly separates be
ause the 
olla-gen re
ruitment is gradual throughoutthe 
ylinder.Figure 10: Tension test in 
ase of non-uniform deformations.is shown. The deformation λ1 is 
omputed as the 
urrent length over the initiallength of the 
ylinder and the stress P11 is the prin
ipal �rst Piola-Kir
hho�stress 
omponent in the axial dire
tion x. The double-me
hanism, 
omposed bya Neo-Hookean material for the �rst me
hanism and an exponential material forthe se
ond, is 
ompared with a single Neo-Hookean material. It 
an be observed,in �gure 9(b), that the two 
urves overlap until the threshold value is rea
hed(whi
h 
orresponds to s = sa). Above this value, they are di�erent. In fa
t, at
s = sa the se
ond me
hanism be
omes a
tive in all the points of the 
ylinder.To test the behavior of the double-me
hanism model for non-uniform defor-mation, we modify the previous tension test imposing a Diri
hlet homogeneousboundary 
ondition on all the 
omponents of displa
ement at the lower base ofthe 
ylinder (see �gure 10(a)).In this 
ase, the deformation is not the same at all the points of the 
ylin-der. As the deformation is non-uniform, at ea
h time only some elements area
tivated. In �gure 10(b) we plot P11, the �rst Piola-Kir
hho� stress 
omponentin the axial dire
tion x, versus the deformation λ1, 
omputed as in the previoustest. The blue 
urve represents a double-me
hanism made of a Neo-Hookean andexponential material, and the red dashed 
urve is a single Neo-Hookean me
h-anism. In this 
ase, we observe that before the 
ollagen re
ruitment, the two
urves overlap, but the split-up is very smooth, due to the fa
t that the se
ondme
hanism be
omes a
tive smoothly within the elements of the 
omputational36



(a) 150
th frame (b) 160

thframe
(
) 170

th frame (d) 180
thframe

(e) 190
th frame (f) 200

thframeFigure 11: The pi
ture shows the highlighting of a
tivated elements at di�erent time,i.e. at di�erent values of tra
tion, and the 
orrespondent graph of s
alarmeasure of deformation s = 1

µ1

WNH
1 iso, along the axis x, with respe
t to thea
tivation threshold sa = 0.5. The a
tivated elements are plotted on theunloaded geometry.domain.We noti
e that for large enough tra
tion, the deformation over
omes thethreshold at the elements of the upper surfa
e �rst, followed by the rest of the
ylinder. Correspondingly, in �gures 11, the a
tivation of the elements belong-ing to the upper surfa
e of the 
ylinder o

urs earlier than the a
tivation of theelements below them. In �gures 11, a
tivated elements at di�erent time frame(i.e. at di�erent values of tra
tion) are shown highlighted on the unloaded ge-ometry. Ea
h pi
ture is joined by the 
orresponding graph of the s
alar measureof deformation s = 1

µ1
W NH

1 iso, de�ned in Se
tion 2.4.2, along the 
ylinder axis x.The red horizontal line 
orresponds to s = sa = 0.5.
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6.1 In�ation of thi
k walled 
ylinder with narrowing radiusTo show the behavior of the full multi-me
hanism damage model, we 
onsideran in�ation test 
arried on a straight tube, representing a portion of an artery,where the inner radius is de
reasing along the axis. This geometri
al feature mayrepresent an initial unhealthy situation of the artery.The in�ation test has been performed as a series of quasi stati
 in�ation,in
reasing the internal pressure linearly with time. The length of the tube is 3
m, the minimum and maximum inner radius are 0.3 and 0.1 
m, and the outerradius is 0.5 
m. The parameters used are sa = 0.5, for 
ollagen a
tivation,
se = 1.15, and sf = 1.1 for the elastin damage model. The geometri
al domainused for the in�ation test is made of 68973 tetrahedra.The in�ation of the 
ylinder indu
es a non-uniform deformation within thetube. In parti
ular, the deformation is maximum at the inner of the 
ylinder andradially de
reases toward the external surfa
e. Hen
e, the a
tivation of 
ollagenelements starts from the elements belonging to the inner surfa
e of the tube,where the a
tivation threshold is over
ome, and gradually involves 
ontiguouselements.Performing the test, we observe that the deformation �eld depends on thethi
kness of the tube. Where the arterial wall is thi
ker the deformation issmaller, and the subsequent a
tivation of 
ollagen involves only few elements
lose to the lumen, while where the wall is thinner, the deformation is largerand all the 
ollagen elements are a
tivated. In left �gure 12, the elements inwhi
h 
ollagen has been re
ruited are plotted on the unloaded geometry. Theright �gure 12 shows the elements in whi
h the elastin is damaged. As for the
ollagen, we observe that where the arterial wall is thinner, the deformation isbigger and the damage of elastin elements happens earlier than in the rest of thetube, starting from the elements belonging to the lumen and propagating withinthe arterial wall.We underline that the threshold for the irreversible damage of elastin isgreater than the threshold for the 
ollagen a
tivation, i.e. the degradation ofthe �rst me
hanism happens in the elements where the se
ond me
hanism is al-ready present. From the point of view of the me
hani
al response of the material,this means that the elements where there is no more elastin are less sti� thanthe 
ontiguous elements where both me
hanisms are present.In parti
ular, this happens where the arterial wall is thinner. The 
onse-quen
e is that the arterial wall be
omes weaker and 
onsequently the deforma-tion larger. In �gure 13 we show the 
omparison between the unloaded geometryand the deformed geometry. In parti
ular the deformation of the portion of thetube where the elastin is damaged may be very similar to the initial stage of ananeurysm formation. Let us suppose that the portion of the artery where thewall is thinner represents a pathologi
al state, due to hemodynami
al or geomet-ri
al fa
tors. We may interpret our numeri
al results, as a predi
tion that, inpresen
e of damage of elastin 
omponents, the portion of an artery where the38



Figure 12: Pi
ture of a
tivated 
ollagen elements (left) and damaged elastin elements(right) for an in�ation test of a straight tube with narrowing radius. The�nal in�ation pressure is 31 KPa. The a
tivated and damaged elementsare plotted on the unloaded geometry.wall is thinner is very likely a site where an aneurysm will develop.7 Con
lusion and dis
ussionIn this paper we have presented the numeri
al implementation and results ob-tained for a multi-me
hanism model suitable to simulate the non-linear and in-elasti
 behavior of 
erebral arteries. The theoreti
al model was �rst presentedby Robertson and 
oworkers [24℄.The biggest 
hallenge of this model is the need for two distin
t referen
e 
on-�gurations for elastin and 
ollagen. Our 
ontribution to the multi-me
hanismmodel is the derivation of the Lagrangian formulation of the whole 
onstitutivemodel in the �rst (elastin) referen
e 
on�guration. Hen
e, it has been ne
essaryto map the stress tensor of the 
ollagen me
hanism to the elastin referen
e 
on-�guration. The resulting non-standard formulation required parti
ular attentionin the 
ode implementation. The �nal non-linear system has been solved bymeans of the Newton-Raphson method with exa
t ja
obian 
omputation [37℄.The multi-me
hanism model presented in this paper has been implemented inthe Finite Element library LifeV [38℄.The main limitation of the model presented is to 
onsider the arterial wallhomogeneous, while its real stru
ture is layered and ea
h layer is 
hara
terized bya strong anisotropy due to a parti
ular orientation of 
ollagen �bers. Moreoverwe 
an underline that the modular pro
edure used to de�ne the strain energyfun
tion 
an easily extended to the anisotropi
 
ase as shown in [20℄, [25℄.Even with su
h limitation, the numeri
al results obtained with our solvershow that the multi-me
hanism model is able to 
apture the non-linear 
har-39



Figure 13: Comparison between the unloaded geometry and the deformed geometry ofa portion of a 
ylindri
al artery with inner narrowin radius. In parti
ularthe deformation of the portion of the tube where the elastin is damagedmay be very similar to the initial stage of an aneurysm formation.a
teristi
s of the arterial wall. At low levels of deformation the elastin (�rstme
hanism) supplies weak resistan
e to the tension test, while when the 
ollagenenters the model, it renders the whole material sti�er, until the elastin damageo

urs. We showed that the way the 
ollagen is re
ruited depends in a verygeneral way by the deformation �eld.We observed that in presen
e of a non-uniform deformation �eld, within the
omputational domain, we may have some elements in whi
h only the �rst me
h-anism is a
tive, elements in whi
h both �rst and se
ond me
hanism are present,and elements in whi
h the se
ond me
hanism is a
tive and the �rst is totallyor partially damaged. Regarding a single element, the 
ollagen a
tivation andthe elastin degradation are implemented as gradual phenomena, that do not in-du
e a dis
ontinuity in the stress tensor governing the me
hani
al response of thespe
i�
 element. But 
ontiguous elements may have di�erent and dis
ontinuousstress response, and su
h a phenomenon may indu
e instabilities in the wholematerial behavior. This di�
ulty is over
ome by using a well re�ned mesh.Finally a more realisti
 in�ation test has been shown. In this numeri
al sim-ulation, we observe that the 
ollagen re
ruitment and elastin dea
tivation startfrom the lumen of the arteries, where the deformation is wider. In parti
ular, thenarrowing of the internal radius of the 
ylinder, may be interpreted as an initialunhealthy situation, that leads to an non-uniform damage of the elastin me
h-anism and leads to an enlargement of the arterial segment. From a qualitativepoint of view the enlargement may represent the initial stage of an aneurysmformation, due to me
hani
al damage of elastin 
omponents of arterial wall.
40
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