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Abstract

We developed a non-linear multi-mechanism model, that is suitable to represent
the mechanical behavior of the healthy arterial wall and the early stage cerebral
aneurysm formation. A cerebral aneurysm is a localized bulge of the arterial
wall, resulting from an initial dilatation.

The core of the multi-mechanism model is to consider the arterial wall made
up of two mechanisms, related to its two main passive constituents: elastin and
collagen. Histological studies show that the early stage aneurysm formation is
associated with the disruption of elastin, that is found fragmented in the ar-
terial wall. From experimental observations, the elastin actively contributes to
load bearing even at low deformation levels, while the collagen network is in a
crimped state in its stress-free configuration. For larger deformations, the colla-
gen network stretches out and starts to contribute to the mechanical behavior of
the arterial wall. The strain energy of the model is additively composed of two
terms, one related to the first mechanism and the other related to the second

*This work has been supported by the ERC Advanced Grant N.227058 MATHCARD



(a) Draw of the circle of willis with some (b) Clinical angiography image of an
aneurysms [IJ. aneurysm at the apex of the basilar artery
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F1cURE 1: Graphic representation and clinical image of cerebral aneurysms.

one. The collagen recruitment happens when a threshold deformation is reached.
In our model this threshold is checked at each time step in each element of the
computational domain allowing a non-uniform collagen activation across the ma-
terial. The fragmentation of elastin is modeled by multiplying the stress tensor
term related to the first mechanism by a suitable damage coefficient. The latter
gradually decreases from one (first mechanism active) to zero (disappearance of
first mechanism) as function of deformation.

Our model has been implemented in a FE code that has been validated on a
set of test cases for which an analytical solution is available, showing the expected
behavior. Numerical simulations for more realistic geometries have shown that
the computational multi-mechanism model is able to capture the non-linearity
and inelasticity of the arterial wall, as well as early stage aneurysm formation.

keywords: Cerebral aneurysm, Cerebral arteries, Multi-mechanism model, Weakly
compressible materials, Finite element analysis, Continuos damage.

1 Introduction to cerebral aneurysms

A cerebral aneurysm (also known as intracranial or intracerebral aneurysm) is
an abnormal localized dilation of a cerebral artery, filled with blood (figure
and . Usually, it is asymptomatic until rupture. When rupture occurs, the
aneurysm leaks or spills blood in the subarachnoid space in the brain, causing
the so-called subarachnoid hemorrhage [3]. This hemorrhage is potentially lethal



with a mortality rate as high as 50%. Many patients who survive have perma-
nent disability. Some aneurysms reveal their presence before rupture by exerting
pressure on a nerve or on the surrounding brain tissue. Usually that happens
when the aneurysm is localized in the posterior cerebral circulation. Cerebral
aneurysms can occur anywhere in the brain, but usually they are located on,
or close to, the Circle of Willis [A], between the underside of the brain and the
base of the skull. No method is yet known to prevent the formation of a cerebral
aneurysm. The difference between a healthy and a pathological artery is based
on the knowledge of the mophological structure of the arterial wall.

1.1 Histology of cerebral arteries and aneurysm wall

In this work we focus on the passive behavior of arteries, that is the mechanical
stress-strain relation of its own material seen as an inert material: remodelling
issues are neglected. From the structural point of view, the arterial wall is com-
posed of three distinct layers, the tunica intima, the tunica media and the tunica
externa (adventitia). In figure Bl there is a schematic representation of the com-
ponents of a healthy arterial wall.

The intima is the innermost layer of the artery. It consists mainly of a single
layer of endothelial cells. In healthy young individuals, the intima is very thin
and provides a minor contribution to the mechanical properties of the arterial
wall. However, the intima thickens and stiffens with age (arteriosclerosis), hence
the mechanical contribution may become relevant. Pathological changes of the
intimal components may be associated with atherosclerosis, the most common
disease of the arterial wall. It consists in deposition of material, such as calcium,
cellular waste products, and fibrin, that in a healthy situation are carried away
by the blood flow. The resulting build-up is called atherosclerotic plaque. It may
be very complex in geometry and biochemical composition. The presence of this
pathological structure causes significant alterations in the mechanical behavior
of the arterial wall [5].

The media is the middle layer of an artery and it is composed of a complex
three-dimensional network of smooth muscle cells, elastin and collagen fibrils.
Elastic layers, called fenestrated elastic laminae, separate the media into a vary-
ing number of well-defined concentrically fiber reinforced layers [6]. The number
of elastic laminae decreases toward the peripheral circulation. The media is sep-
arated from the intima and the adventitia by the internal elastic lamina (IEL)
and the external elastic lamina (EEL), respectively. In small vessels, and in
particular in cerebral arteries, the EEL is poorly developed [{].

The adventitia, the outermost layer of an artery, is mainly made of collagen,
fibroblasts, and fibrocytes, which are cells that mainly produce collagen. The
adventitia is surrounded by connective tissue. The thickness of the adventitia
strongly depends on the artery type. In particular, in cerebral arteries this
constitutive layer is almost absent [[f]. Close to the bifurcations, the media
tapers gradually. At the bifurcations, the tunica media is completely replaced
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FIGURE 2: Model of the major components of a healthy artery [I1]. The three main
layers visible in the draw are the tunica intima, made of endothelial cells,
the tunica media, made of muscle cells, elastin and collagen, and the tunica
adventitia, mainly made of collagen.

by the adventitia [{].

The structure of an aneurysmatic wall can be classified accordingly to the
type of tissue of the cerebral arterial wall region from which it develops. The
adventitia is detected at the outer wall of aneurysms and appears stretched [§].
At the orifice of the aneurysm, the media terminates or, at most, slightly extends
into the aneurysm neck region, while the elastic tissue, presumably of the TEL,
may be fragmented or slightly extended [9]. Away from the orifice, the media
layer is completely absent from aneurysm wall. Remnants of elastic tissue can
be found at the inner wall of aneurysms [I{].

Cerebral aneurysms grow over a long time scale, hence the structure of their
wall undergoes to mophological changes that may differ in ruptured and unrup-
tured aneurysms [I0]. In recent hystologycal studies four different wall types have
been detected that likely reflect consecutive stages of degenarion of aneurism wall
before rupture [I0).

Mechanical data for aneurysm initiation were first obtained by Scott, Fergu-
son, and Roach [IZ]. Figure Bl shows the mean stress-strain curves of cerebral
arteries that underwent loading inflation and extension cyclic test. The disten-
sibility curve abruptly changes after some runs to pressures up to 200 mmHg.
These changes are not observed when the arteries are loaded to lower levels. In
[12], it was conjectured that the abrupt change is related to elastin fragmenta-
tion in the arterial wall, due to mechanical loads. Notice that the curve in figure
Bi(b) (after change), returns to a relaxed state different from the undamaged one
(figure Bl(a)), because of a residual stress, due to the irreversible loss of elastin in
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F1GURE 3: The graph shows an inflating test on a circumferential segment of sixteen
anterior carotid arteries. Figure (a) represents the mechanical response of
the arterial wall during some initial runs, up to a pressure of 200 mmHg.
After some runs an abrupt change in the arterial wall occurs and its new
mechanical behavior is represented by Figure (b) (Data from [12]).

the arterial wall.

1.2 Classification and treatment of cerebral aneurysms

There are three types of cerebral aneurysms. A saccular aneurysm is a rounded
or pouch-like sac that is attached by a well-defined neck to an artery or a branch
of a blood vessel. Also known as a berry aneurysm (because it resembles a
berry hanging from a vine), this most common form of cerebral aneurysm is
typically found on arteries at the base of the brain. Saccular aneurysms most
often occur in adults. A lateral aneurysm appears as a bulge in the wall of the
blood vessel, while a fusiform aneurysm is formed by the widening along the
wall of the vessel. Aneurysms are also classified by size. Small aneurysms are
less than 11 millimeters in diameter, large aneurysms are 11-25 millimeters, and
giant aneurysms are greater than 25 millimeters in diameter [I3].

The causes of cerebral aneurysms formation are a subject of intense inves-
tigation. In some specific cases inherited and acquired risk factors have been
related to their pathologic onset [I4]. Mainly hereditary connective tissue disor-
ders have been associated with aneurysm formation, presumably as a result of
the weakening of the vascular wall. Some other diseases show connection with
cerebral aneurysms, as coarctation of the aorta artery or fibromuscular dysplasia,
most likely because of the elevated blood pressure that occurs in these conditions.



Moreover a connection between brain aneurysms and cocaine use or general drugs
abuse has been noted. This association is thought to be due to increased turbu-
lence of blood flow and repeated, transient cases of hypertension [I4]. However,
the causes of initiation, development and rupture of most aneurysms is still not
known.

There are many imaging techniques for intracranial aneurysms identification,
such as the intra-arterial digital subtraction angiography, magnetic resonance
angiography, computed tomographic angiography, and transcranial Doppler ul-
trasonography. Some of these medical practices are invasive because they are
carried out by means of X-ray techniques and other are expensive, so that they
are not used for screening [I]. This is the main reason there is much more infor-
mation on ruptured aneurysms rather than unruptured ones. One of the main
studies on unruptured aneurysm is the ISUIA (International Study of Unruptured
Intracranial Aneurysms), evaluating the risk of aneurysms rupture throughout
clinical examinations of approximate 2000 patient records dating back to 1998
[[5]. Often unruptured aneurysms are discovered accidentally and in these cases
it is not well understood which is the right strategy. When the aneurysm is big,
it is usually treated, when the size is small, there is no general indication about
the treatment to employ. Many small aneurysms never rupture [IJ, but there is
no rule.

Nowadays there are few techniques to treat unruptured aneurysms. The
most invasive one is the clipping technique, that implies an open brain surgery
to insert a clip that closes the aneurysm neck [I6]. Less invasive is the coiling
technique, that consists of inserting a coil by means of an endoscopic procedure.
The coil fills the bleb and causes a cloth formation inside the aneurysm [I7].
More recently, the adoption of vascular endoprostheses (“flow diverting” stents)
together with coiling, is increasing, with the aim of protecting the aneurysm
sac from the blood flow. All these techniques are well known. However they
may cause complications, so it is extremely important to have some auxiliary
treatment tools and also have more information about the aneurysm pathology
to help in the selection of a treatment strategy [I8] [I9].

2  Multi-mechanism model

In this section the basic kinematics, the stress and elasticity tensors for a multi-
mechanism model are presented. Focusing on the specific application of arterial
wall, we consider two strain energy functions: one of the elastin component of
arterial wall and the other related to collagen fibers. Restricting attention to
an homogeneous hyperelastic material, the combination of the two mechanisms
can suitably represent the non-linear and inelastic behavior of arterial wall. At
low level of deformations, only elastin contributes to tension, while for larger
deformations, the collagen starts to bear load. Hence the two mechanisms are
triggered in different ranges of deformation.
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FIGURE 4: The two reference configuration of the model: €2 is related to the elastin
mechanism and €25 to the collagen mechanism. §(¢) is the current configu-
ration.

2.1 Kinematics of a multi-mechanism model

Let us consider a body 4 and a bounded domain € C R3 which represents the
region occupied by the body in its reference, stress free, configuration. Associ-
ated with € there is a time reference frame, so that the body is in reference
configuration 1 at time ¢t = t1. At this stage the position of a material point
Py € €y is identified by the vector X; as shown in figure H

During the motion, the body % leaves its undeformed state to reach a current
configuration Q(t), ¢t > ¢1, where the position vector of a material point is x =
x1(Xq,t). The vector function x1(Xj,t) is a smooth, single-valued function,
invertible and continuously differentiable with respect to its arguments as many
times as required. The deformation gradient related to this motion is:

3X1 (Xl, t)

Fl(Xlat) = X, ’ (1)

where the subscript “1” denotes all the quantities evaluated in the reference con-
figuration ;.

During this first stage of the deformation, only elastin contributes to the me-
chanical behavior of the body, so that the stress tensor depends only on Fy (X, 1),
like a standard single mechanism elastic material.

The strain energy function per unit volume, in the reference configuration
Ql, is

W(t) = Wi(F1(Xy,1)). (2)



When the body reaches configuration Qg = €(t2) the recruitment of collagen
fibers occurs. As the body deforms further, corresponding to increased values
of deformation, both mechanisms are active and contribute the load bearing.
Adopting now {29 as a reference configuration for the second mechanism, a mate-
rial point position, in such a reference configuration, is identified by the position
vector:

X2 = X(Xl,tg) = Xl(Xl,tg), (3)

and, in the current configuration €(t), t > to, the position of a material particle
can be represented by the position vector:

X:XQ(XQ,t—tQ), (4)

where the vector function x2(Xa,t —t2) as well, is a smooth, single-valued func-
tion, invertible and continuously differentiable with respect to its arguments
many times as required. If we define a new reference time frame ¢ in Qs such
that ¢/ =t — to, (@) becomes x = x2(Xq,t’), and the deformation gradient that
describes the motion from the reference configuration €2y is:

ox Xg,t/ 3X2 Xg,t/

(5)

where now the subscript index “2” denotes that all the variables are referred to
Qo.

In the current configuration Q(¢) an infinitesimal displacement dx can be
related to both reference configurations as follows

dx = Fl(Xl, t)Xm == F2(X2, t,)dXQ. (6)

By means of (@) and (Bl) we can find the relation between the deformation gra-
dients
F2(X2’t/) = Fl(Xl’t) FII(Xl’t2)’ (7)

where the tensor Fl_l(Xl,tg) is known. We can now compute the determinant
of each term of equation () as

det(Fg(Xg,t/)) = det(Fl(Xl,t)) det(FIl(Xl,tQ)). (8)

If we denote Jo(t') = det(Fo(Xa,t')) and Ji(t) = det(F1(Xq,t)), we have the
relation

To(t') = J(t) (H(t2)) ", 9)

where (J1 (152))_1 is related to the reference configuration €5 and it is a known
scalar value constant in time, after the collagen recruitment has occurred.
The infinitesimal volume transformation among all configurations is

dQ(t) = Jy(H)dQ; = Jo(¢)dQs, (10)



so that the relation between an infinitesimal volume element in 1 and §29 reads
dQ2 = Ji(t) (Ja(t)) " de, (11)

and from ([ we finally have
dQo = Jy(t2)d€. (12)

After collagen recruitment, the strain energy function associated with the
hyperelastic material has contribution from both mechanisms

W(t) = WLQ(Fl(Xl,t),FQ(XQ,t,)). (13)

When a second critical value of deformation is reached, we hypothesize that
elastin starts to degrade, and the first mechanism is weakened.

Before elastin breakage happens, the material behavior is purely elastic, i.e.
after unloading it is able to recover the initial configuration ;. Due to the
irreversible nature of elastin breakage, in the unloading stage, the material is
no longer able to recover the configuration 21, but it eventually reaches another
reference configuration Q) that depends on the entity of the elastin damage. In
particular, when all the elastin is broken, { corresponds to o, only due to
relaxed collagen fibers.

W1 and W5 have to be invariant with respect to superimposed rigid rotations
relative to the correspondent reference configuration €2 and €25. The most gen-
eral strain energy functions satisfying the invariance requirements are expressed
by . .

W1 = Wl(Cl), and Wg == WQ(CQ), (14)

where C; and Cs are the right Cauchy-Green tensors of the first and second
mechanism, respectively

C,=FIF,, and C,=FIF,. (15)

With a further hypothesis of isotropy (which is definitely acceptable for elastin
mechanism), without loss in generality, the strain energy functions take the form

Wy = Wi(I, 11, I11I;), and Wy = Wy(Iy, 115, I11y), (16)

where (I1,1I,111;) and ([2,II5,1115) are the principal invariants of C; and
C, respectively. Collagen fibers are instead arranged with a specific orientation
through the arterial wall and we should introduce in W5 a dependence to account
for the anisotropy of fibers, as explained in [20]. As the focus of this work is the
implementation of the multi-mechanism model, at the moment we accept the
isotropy hypothesis for collagen too, with future expectative of correcting it.

The last assumption is that the two mechanisms are independent, so that the
strain energy function when both elastin and collagen are active is

WLQ = Wi + Whs. (17)

The two mechanisms represent the indipendent behavior of elastin and collagen,
respectively. This assumption is largely supported by the fact that both materials
are found in distinct layers in the arterial wall [21].



2.2 Strain energy function

Let us observe that W; and Wy are strain energy functions per unit volume
defined in the reference configuration €2y and s, respectively. In order to have a
complete description in terms of energy of the multi-mechanism model, we need
to refer both the energies to only one reference configuration.

As first step, let us observe that the conservation of mass holds:

/ PdQ:/ P1d91=/ p2 d€da, (18)
Q(t) o3 Qo

where p is the mass density represented in the current configuration and p; and
po are respectively the mass densities in ; and Q9. If we choose as unique
reference configuration 1, by employing ([2) and (), the previous integrals
rewrite

/ le(t)dﬂl :/ pldﬂl :/ p2J1(t2)dQl, (19)
1951 Q1 931

where

pa=p1di(t)~" and p=piJi(t)" (20)
are two relations that allow to relate the mass density in (¢) and Q5 with the
mass density in ;. By means of ([, the total energy in the current configura-
tion Q(t), when both mechanisms are active, is expressed by

%t:/ Jll(t)WldQ+/ Jy () WedQ, (21)
Q(t) Q(t)
such that

%1:/ J7H#)WdQ,  and %:/ Jy () WedQ, (22)
() ()

where 74 is the energy associated to the first mechanism and %, to the second.
If we express the total energy with respect to the reference configuration €y,
from equation (£IJ), by means of the relation (), we have

Uy = | WidQy + / Ty L)y (1) Wad Q. (23)
Ql Q1
The insertion of relation (@) in the previous one gives
Uot = | Widh +/ J1(t2)Wad2y, (24)
Q1 Q1

where we recall that Jy(t2) is known after the collagen recruitment has occurred.
If we define Wy, as the total strain energy per unit volume in €1, such that

Yoy — / Wiord€, (25)
951

because all the integrals are referred to the volume occupied by the body in the
reference configuration €21, when both mechanisms are active, we have

Wiot = Wi 4 J1(t2) Ws. (26)

10



2.3 Stress and elasticity tensors

In this paragraph we introduce the multiplicative decomposition of the deforma-

tion gradient F into an isochoric (or distortional) and a volumetric (or dilational)

part [22] [23] [IT], to derive the stress tensors for a weakly compressible material.
The multiplicative decomposition of the deformation gradient F reads

F = FF, (27)

where F = J~3F is the isochoric part, and F = J5T is the volumetric part, with
I the second order identity tensor. The isochoric part of the deformation gradient
takes into account the deformation without change in volume, so that det F = 1.
The volumetric part contains all the volumetric deformation contributions, and
detF = J.

In the same way, we can derive the multiplicative decomposition of the right
and left Cauchy-Green tensors:

C = FI'F=( )
B = FF =FFFF)! =FFE)T(F)T =7

and define the unimodular right and left Cauchy-Green tensors as the isochoric
part of C and B:

__ —T— 2 . __
C=F F=J3C, with detC =1, (30)
B=FF =J 3B, with detB=1. (31)

In particular, together with the invariants of C we introduce the modified invari-
ants of C as

1

Io =t1C, Ilo=5((trC)* —tx(C%), [llc=detC=J? (32)
— 1 — —2

Iz=tC, IIz= 5((wcﬁ —tr(CY), IlIz=1, (33)

and similar definitions hold for B and B.
The use of (1), supplies the correspondent strain energy function for an
isotropic frame indifferent material [23] splitted as

W(J, I, .Ug) =Wy (J) + Wiso(Ig, IIg), (34)
where:

1) Wy depends merely on the volume changing part throughout J.

2) Wiso is purely isochoric and depends on the invariants of the unimodular
right Cauchy-Green C.

11



Let us derive now the stress tensors for a weakly compressible material. The
use of the decomposition technique (B4l allows us to express componentwise the
second Piola-Kirchhoff stress tensor S as

dw AWyor  dWiso
Sap =2 =9 35
AB = 2004 s <ch3 * dCAB) (35)
where the volumetric contribution is
AWy dWyq dJ W d(vVdetC) (36)
dCap ~ dJ dCap * dCap
1 d(det C) , 1 _
= W =W —— (detC)O7L =
UOlQ\/detC dCap o /det C (det ©) O
= vol v det C CA%? - Wéol JCZE’
and the isochoric part is
dWiso o dWiso dEMN (37)
dCap  dCyN dCap’
Let us compute each term of (1) separately:
dWiso  OWiso O0lm OWiso Oll= (38)
dCyn Ol 9Cyy  Ollz OC N
oWw; oW,
— Z506 180 I 5
Ol MN ST Al (Teduy = Cur),
and
dEMN B d(J72/3CMN) B d((det C)fl/?’CMN) (39)
dCAB N dCAB B dCAB

dCaB dCagB

— _é(det C)*1/3CE}BCMN + (det C) Y36 4ps05n =

= —é(det C)~3 Cun + (det C)~

1
= J23amdsN — gcf@chN).

If we define the fourth order tensor Papyn = (damdBn — C’ABCMN) finally
the second Piola-Kirchhoff stress tensor reads

— — aVViso aWiso =
Sap = W), JC 5 +2J 2/3([P’ABMN)< Eya OmN + Eyia (Iz6mN — CMJ(JZ}Q)
c c

where the stress is composed by
(SUOI)AB = Wzﬁol‘]CZé, (41)

oW, oW; —
(Siso)ap = 277 23(Papun) 2SN + = (Isdpun — Cun) ) -(42)
(BIC ol ¢ )

12



From equation (BH) and the definition of the first Piola-Kirchhoff stress tensor P
componentwise:

Pip = FiaSa, (43)

we have AW AW,  dW
Pip = 2F A~ = 2F, vol 150 ) 44
B AdCan A(dCAB + dCAB> (44)

With similar calculation as before the volumetric and isochoric parts of the stress
tensor read

(onl)iB = JWéOIE_BT’ (45)
oW oW —

Pio)ip = 2J 3F (P = — (Is0mN — 4

(Piso)iB J Al ABMN)< Gy MN + 8[15( OMN CMN)) 6)

We can now evaluate the Cauchy stress tensor T in the current configuration;
componentwise

T;; = J 'FiaSapFjp, (47)
hence from (B3
_ aw _ AWy dW;
Ty = 2J Py Fip =27, ( vo ﬂ)p A8
j AdCap P NaCap T a0 )

and the Cauchy stress tensor decomposes as
(Tool)ij = Winij, (49)

o = 20 P Fua®apnen) (B 200un + 072 Lbasn — Casw) ) i)
c c
We observe that, by construction, in the current configuration the volumetric
part of the stress tensor is spherical, as the hydrostatic pressure in incompressible
materials.
In the balance of linear momentum we employ the first Piola-Kirchhoff stress
tensor P, hence in the following all the calculation are made in terms of P.
Finally, we introduce the fourth order elasticity tensors, obtained by:

a]-:)vol aI)iso

(Cvol = OF ) and (Ciso = OF

. (51)

2.4 Collagen recruitment

The collagen recruitment and the elastin breakage are introduced on the basis of
an invariant scalar function s that measures the deformation [24]:

5(Cp) = 3(C1(Xq, 1), x). (52)

If the measure is homogeneous, there is no direct dependence on the position x.
During the motion, the collagen activation occurs at a threshold value s = s,

13



and at the corresponding material point, all the collagen fibers are recruited
simultaneously. If the deformation is non-uniform, the activation criterion can
be satisfied at different times in different points of the body; moreover for an
inhomogeneous body, s, will depend on the material position too.

For isotropic materials, we may express the homogeneous measure s as:

1

5(Cy) = .

Wiiso(Ig,, I15,), (53)
where C, is a convenient coefficient with dimension of Pa=!' and Wi, is the
isochoric strain energy function of the first mechanism.

Finally, by means of the total strain energy function (Z6l), we can express the
contribution of both mechanisms in the reference configuration €2; as

< s <
th:{ Wiy for 0 < s < s,

Wy + Jl(tQ)WQ for s > s,. (54)

The use of equation (B4)) for a multi-mechanism model leads to split further
the energy into Wi,e and Wo,,y, representing the change in volume of the body
during the motion, while Wi;4, and Wa;s, represent the incompressible contribu-
tions of each mechanism. Hence (B4 becomes

: <s<
Wtot _ { leol + leso for 0 S S Sa, (55)

Wivot + Whiso + J1(t2) Wayer + Waiso) for s > s,.

To write the balance of linear momentum in the reference configuration €2
we need to derive the first Piola-Kirchhoff stress tensor of a multi-mechanism.
In the following we explicitly indicate the dependence on different time frames
when needed for clarity:

Pi(t) = P(t)1vor + P(t)1iso, and Pa(t') = P(t")z 01 + P(t')24s0, (56)
that, by means of ({3 and (#Hl), may be rewritten as:
dWl vol

Pt)iva = A(t) A0 Fi(t) 7, (57)
Pt = 2502 R (0P s (T). (58)
and
P = Tlt) e Balt) . (59)
P = 20) PRat)P s (T222). (60)
To simplify the notation, let us define
Fi(X1,t) = F* and Ji(ts) = J*. (61)

14



hence from () and (@), we have
Fo(t') =Fi(t)(F)™t and Jo(t) = Ji(t) (J*)L. (62)

The replacement of (62) in (Ed) and (B0) allows us to pull back the first
Piola-Kirchhoff of the second mechanism Ps to the reference configuration €2;.

When P(t)240 and P(t)2;s, are expressed with respect to the first reference
configuration €21, we may neglect in notation their dependence over time, and
the total first Piola-Kirchhoff stress tensor for a multi-mechanism model reads

P- { Piyor +Piiso for 0 < s < s, (63)

Pl vol + Pliso + J*(P2vol + P2iso) for s > Sq-

The stress tensors P; and Py are strongly non-linear, hence to linearize and
solve the balance of linear momentum, we need to compute the fourth order
elasticity tensors. By means of (Il) we find

(Cl = g—i:i, and (CQ = g—i:f, (64)
where both C; and Cs are obtained deriving P; and Ps with respect to Fy,
because both of them refer to the first reference configuration £2;.

We observe that in Finite Element Method procedure, the linearization of
the stress tensors Py and P» is obtained by computing their Frechet derivative
in the direction of an increment 6F of the deformation gradient. We indicate
these derivatives as:

8P1 aPQ
Dp,P1[0F{] = — : 0F d Dp,Ps|oFi] = —= : 6F 65
7 P1]0F1] oF, 1, an 7 P2[0F] oF, 15 (65)
where “:” denotes the tensor operation obtained by saturation of the last two

indices of the tensors involved, and the result is a second order tensor. Thanks
to definiton (B4]) we have:
DF1P1[5F1] == (Cl : 6F1, and DF1P2[6F1] == (C2 : 5F1, (66)

that represent the linearization of stress tensors Py and Py with respect of an
increment of deformation dF;.

2.4.1 Volumetric stress and elasticity tensors

To compute the volumetric part of the stress tensor for the first and second
mechanism, we introduce the volumetric strain energy function per unit volume:

Wi vol = Z((JZ- — 12+ (InJ)?), with i=1,2, (67)

where K; is the compression modulus (or bulk modulus), and expression (7))
holds for both elastin and collagen (respectively i = 1, 2).
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The derivative of W, with respect to J; reads

sz vol
dJ;

1

JAanZ-), with 7=1,2. (68)

K;
— =1
2(J +

From (B7), the volumetric part of the first Piola-Kirchhoff stress tensor for the
first mechanism is:

K 1 K
Ploo = 71J1(J1 14 711nJl)F;T — 71(J12 — Ji +InJ)F; 7, (69)

and, from (B9, the stress tensor for the second mechanism is

K 1
Poyor = TZJQ(J2 -1+ ZIDJ2)F§T (70)

We need to replace expression (2) in [{d) to pull back Py to :

Ky Jv (N J* Ji wy—1\—T
Py = 20 g () (R (F
2 vol 9 J* (J* +J1H<J*>>( 1( ) )

(GG

The volumetric part of the stress tensor, obtained by adding ([E9) and () is
non-linear with respect to the deformation gradient F.
The fourth order elasticity tensors are:

Clun = 12, and Cau = 22 (72)
From (B3 [[2) the linearization of Py, reads:
Cioo : OF; = % Ji(2J; — 1+ Jil) (F;T:oF)F; T (73)
— %(Jf — Ji +InJ)) F L oFTFT,
and the linearization of Pq,,; is:
Copol : OF; = % Ji (2% - Ji + 1) (F; 7. oF)FTFT (74)

K 2
() () () e

where 0F is a variation of F;.
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2.4.2 TIsochoric stress and elasticity tensors

In this section we compute the incompressible part of the stress tensor for the
multi-mechanism. To model both elastin and collagen (k = 1,2) with a Neo-
Hookean constitutive law we introduce the strain energy function:

M .
Wik = 5 g, =3), with k=12, (75)
and NH NH
Wi O(W N
d( _k;zso) — ( k‘ZSO)I — %I’ Wlth kj = 1’ 2, (76)
dC, Bj'ac 2

where I is the second order identity tensor.
From (E]) and (@), the isochoric part of the first Piola-Kirchhoff stress tensor,
for the first mechanism reads

_ 1 .
P, = sy (Fl - 3laF T) - (77)

To derive the isochoric part of the first Piola-Kirchhoff stress tensor, for the
second mechanism, we need to compute Csy, the right Cauchy-Green tensor for
the second mechanism, in terms of Cy:

Cy = (F)TC(F) L, (78)

and its deviatoric part is:

—2/3
a- () ® T (79

Hence,

—2/3 —2/3
Iz, =trCy = (%) tr((F*)"TCy(F*)™!) = <%> tr((F)L(F) T Cy)

where we used the relation (F*)TF* = C* and the symmetry of Cj.
Relations (60), (R0) and ([), help us in deriving the expression of the iso-
choric part of the first Piola-Kirchhoff stress tensor, for the second mechanism

NH J1 23 x\—1 1 a\T—T
Pjiso = 12 T* Fp (F*)" — §ICQ(F ) F, . (81)

The fourth order elasticity tensors are:

opNH opYH
(Civzls{o = 813121305 and (Cévvlgl = a:éllso . (82)
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From (B3] B2)) the linearization of Py, reads:

2 a3
Clf:oF1= — Zmd; 23 (F T 5F)F, (83)
2 B _
+ §u1]51(F1T:6F1)F1T
2 _
— gmdy P (F e E )R

+ o J PR+ % I5, FT6F]FT.

and the linearization of Py, is:

NH 2 Jl /3 T 1
Ol R = = S () T ORIRE) &4
2 _ N _
+ g H2 e, (BT 0F ) (F)TF "
1 Jl 2/ 1 T 1 T T T
- g (ﬁ) ((C") :0F Fi1 +(C)" : Fi0F)(F") Fy.

g\ 23 o
+ e (J—) OF (F*)~1 + 3 e, FHTF T oFTF T,

We observe that if F* = F; then PYH — (.

21is0
The other constitutive law we may use to model elastin and collagen is derived
by the exponential strain energy function:

WEs = ST 1) with =12, (85)
i

and . .
d( i‘isg) _ a(Wjisg)I _ ﬂew(lgj—3)1
dC; e 2 ’

J

with j=1,2, (36)

where I is the second order identity tensor.
From (B8] and (&), the isochoric part of the first Piola-Kirchhoff stress tensor,
for the first mechanism is:

3} 1
AT (01 —3Cr'®C): I) : (87)
where ® is the outer tensor product. Finally,
3} 1
PP = age e 20 <F1 - §F1T101) ' (88)

From (B0) and (BH), the isochoric part of the stress tensor for the second
mechanism is:

pExr _ 2 (Ig,—3) J1 B xy—1 1 . .
2is0 — Q2€ 2 ﬁ F, (F ) (]I - §C2 ® CZ) g | ) (89)
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where we need to introduce ([[¥) and (&0).
After some calculations

—2/3 .
Pg;‘; = agewu@_?’) <%> (Fl (F*)_l - g(F*)TFfTICz> ) (90)

as in the previous case, we observe that when F* = F; then Pg;f; = 0.

For the exponential material, the fourth order elasticity tensors read:

E P]{]xp E PIQEXP
che _ op and che _ T (91)
From (B2l @), the linearization of (BY) reads:
x 2 5. —3) 71— -
Crb 6F1= — Zai e g (1 4y I )(FyT  6F)F (92)
2 I~ —3 _ _
+ g e (14 lg )(F;T R )FT
2 _ 3y _
- o e R (1 gy I )(F - 6F)F; T

+ 20[1 Y1 671(161 —3) J;4/3 (Fl : 5F1)F1
+ o 671(161—3) J1—2/3 oF,

+ % SR S ) 2

and the linearization of (@) results:

(CEXp :(5F1 = -

21so0

g (TP _ o
202, 3) (J_l) (1 + 2Lz, ) (F T 2 6F)F(F*) " (93)

ap U™ [0 (14 o0, ) (BT B ) ()T
02l —3) Ji —2/3 1 T
_ 92 ml, <_> (1+721g,)((C) " : 6F
+ (CH)7LFL6F)(F)TFT
iz -3) (N e
" a272€v2( o ) (ﬁ) ((C*)—l;éFF{Fl
(O E Ry ()

—2/3
+ e () omr”

+ % el AS T a) lh
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D(s™®) = 1/2* tanh((s, - s"“*"‘)/(sf -s))*+ 12, s =1

FIGURE 5: Example of analytic expression for the damage function D(s™**) for elastin
degradation for different values of s..

2.5 Elastin degradation

The first mechanism is associated with the elastin component of arterial wall.
As pointed out in Section [[T], early stage aneurysm formation is hypothesized to
be related to a mechanical damage of elastin. Hence, we introduce, in the multi-
mechanism model a continuous isotropic damage model for the first mechanism.
This approach, in the contest of multi-mechanism models, was first presented by
Robertson and coworkers [25].

We define an internal damage variable D € [0, 1] and following the ap-
proach described in [26] we postulate that the decoupled representation of the
first mechanism strain energy function (see equation (B4l)) still holds for the free
energy:

WP (J, Iz, 11z, , D) = Wiy (J) + (1 = D)Whiso(Iz,, II5,), (94)

where Wi, (J) is the same function defined in Section which describes the
volumetric elastic response, and WMSO(IG,IIE) is the isochoric effective strain
energy of the undamaged material, which describes the isochoric elastic response.
We observe that deformations due to temperature changes are neglected. As
suggested in [27], the damage phenomenon affects only isochoric deformations.
We call PP the first Piola-Kirchhoff stress tensor of the damage model.

From relation (fH), the volumetric part of PP is

Pﬁ)ol = Py, (95)
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and from the Clausius-Plank inequality, it follows that [28]:

P{)iso = (1 - D)Plism (96)
owp . :
— 8Dl D = WhyisoD > 0. (97)

Inequality (7)) specifies that damage is a dissipative and irreversible phenomenon.
Moreover, Wi;s, is the thermodynamic conjugate variable of D, and the evolution
of D may be described in terms of Wy;s,.

Let us consider again the scalar function of deformation s(Cy(t)) defined in
(E3), and consider a threshold s, below which no damage occurs. We suppose
that s, > s,, where s, is defined in Section Z4l and represents the scalar measure
of deformation at which collagen is recruited. While the body deforms, as long
as s(C1(t)) < sp, elastin damage never occurs and after the unloading stage
the body recovers its initial stress-free configuration €2;. Once the deformation
threshold s = s; is reached, an irreversible damage to elastin component prevents
the body, in the unloading stage, to recover the initial configuration €; and it
will reach another stress-free configuration.

To take into account the gradual irreversible damage of elastin material, we
define

(G (1)) = max, s(Ci (7)) (98)

as the maximum of our measure s(Cy(t)) during the history of deformation. At
each time step, i.e. at each value of deformation, the quantity

#(Ci(t)) = s"™(C1(t)) — s(Ci(t)) = 0 (99)
represents a surface in strain space. The normal to this surface is N;z, = %;

when N, : 0C; > 0 the strain is increasing (loading stage), otherwise when
Niso : 6C1 < 0 the strain is decreasing (unloading stage).

An example of an analytic expression for the damage variable D in terms of

max j

S 1S:

=G 1 a0

D(s™*) = ltanh
2 Sp — Se
where sy and s. are two scalar parameters, and D depends on C(t) through
sM(Cy(t)). We observe that when s™* = s;, D(sy) = 0.5, i.e. the elastin at
the correspondent point is half-degraded, and s, contains the information about
the speed of the damage process.
At each time ¢, the evolution of the damage is regulated by

D . o
. aamax Smax lf QS e 0 and N’iSO : 601 > 0,
D=1 (101)

0 otherwise.
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Finally, we may represent the first Piola-Kirchhoff stress tensor P of the full
multi-mechanism model with damage as:

P1voi + Piiso for 0 < s < s,
P = Pl vol T Pliso + J*(P2 vol T P2iso) for Sq < S8 < Sbp, (102)
Piyor + (1= D)P1iso + J* (Poyol + P2iso) for s > sp.

As Pqyo and Pg,o have the role of penalizing the material compression,
they do not have a specific constitutive meaning for the multi-mechanism model.
Hence, to simplify the equation, we consider only one volumetric contribution:

onl =P vol s (103)
and rewrite equation ([[I2) as
Piiso for 0 < s < s,
P= onl + Pliso + J*PZiso for Sq < 8 < Sb; (104)

(1 — D)Pliso + J*(PQ iso) for s > sp.

From (B4)), the fourth order isochoric elasticity tensor for the first mechanism

with damage is:
0((1 = D)P1iso)
D
cb 1
liso 6F1 ) ( 05)

and the linearization of the first Piola-Kirchhoff stress tensor reads

oD
ClDiSO : (5F1 = (1 — D) (Cliso : (5F1 — E(Plisg & Pliso) : (5]::‘17 (106)
0P ;
where Cq ;50 = 6%230 has been calculated in Section EZZ2]in the case of a specific
1

choice of a Neo-Hookean or exponential material for the first mechanism.

3 Weak formulation

In the Finite Element framework, we need to formulate the motion problem in
a variational form and discretize it with respect to time and space. Our Finite
Element discretization is quite standard, the main difficulty is in the calculation
of the stress terms and their linearization.

We remark that non-linearity is an essential ingredient of elasticity for finite
deformations. In finite elasticity, in general, the stress tensor depends upon non-
linear kinematic terms that are a function of the deformation gradient. Moreover,
if the constitutive law used to describe the material is a non-linear relation of
stress and strain, the stress tensor is affected by another non-linearity. Another
aspect of the formulation that increases the complexity of the computational
problem is that the weak compressibility of the non-linear material of interest is
manifested using a penalty term. This term is strongly non-linear with respect
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to the deformation gradient by coupling all the components of the unknown
displacement field.

The linearization, performed by computing the Frechet of the non-linear
terms, and the solution of the system are obtained using an iterative Newton-
Raphson procedure, enhanced with a linesearch backtracking algorithm.

The linearization of the nonlinear stress tensor needed in the Newton-Raphson
method is the fourth order elasticity tensor. As described in Section 2EAT] EZA2]
and Z3 we computed the exact form of the fourth order elasticity tensors for all
the nonlinear materials introduced in the multi-mechanism model.

3.1 Principle of virtual power

Let us consider the bounded domain Q7 C R3, representing the reference config-
uration of a body, the principle of virtual power may be expressed as:

/ (divP(u) + p1b — p1a) - dvdQ; =0 (107)
1951

where dv is an arbitrary virtual velocity, satisfying possible constraints, the first

Piola-Kirchhoff stress tensor P is expressed as a function of unknown displace-
2

D
ment u = u(Xy,t), a= D—tl; is the acceleration field, and b are the body forces.

The scalar equation ([II7) is fully equivalent to the vectorial motion equation:
pra = divP(u) + p1b, (108)

thanks to the arbitrariness of the virtual velocity function. With further calcu-
lations we have:

2
/ p1E dvdQy = / divP(u) - dvdy +/ p1b - dv dQ;. (109)
o Dt o o

We define the external surface 02 = I'p UT'n, UT'y,. In particular I'p is the
part of the surface we impose the Dirichlet homogeneous boundary conditions and
I'ny, 'y, are those parts where we prescribe the Newmann boundary conditions.
I'n, is the stress free surface and on I'y, is imposed a known traction t. The
whole boundary conditions and initial values are:

u(0) = up;
v(0) = vo;
u(t) =0on I'p; (110)

Pn =0 on I'yy;
Pn=t on I'y,.

From the divergence theorem and the boundary conditions (1), we obtain:

D?u
— dvd); = — P : Vov dQ
/gl Prpp OV Ea /Ql () : Vv di,

+ / t-5fvd21+/ pib - dv dQy, (111)
o 951
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where dX; is and infinitesimal surface element of 0.
In particular, we observe that:

0 0 Dén D 0én .
Vv = v = = —— =0F 112
YTox, YT oX, bt Dtox, OV (112)
with én an arbitrary virtual displacement. The replacement of ([I2) in (I,
gives the expression of the virtual power principle for the first Piola-Kirchhoff
stress tensor P with its conjugate virtual deformation 6F;:

D? .
/ pl—l; ovd€)y + / P(u) :0F1dQ; = / t-ovdXy +/ p1b - dv d€)y.
o, Dt o o0 o
(113)
The reinterpretation of the virtual velocity dv in ([[I3) as a test function, provides
the weak formulation of problem ().
3.2 Continuous weak formulation
Let V be the space of vector functions defined as follows:
V() = {¢ € [H'(Q1)]® such that ¢ = 0onT'p}. (114)
The weak formulation of problem ([F]) states:
For any t > 0 find u=u(t) € V(1) such that u(0) = ug, v(0) = vo and:

D?*u
| s - #d0 +awg) = F(@), Vo V) (115)
951
with
o) = [ Plw: Vo, (116)
951
and
Z = - pdY b-¢ddQ;. 7
F(P) /mltqb 1+/le1 ¢ dQ, (117)

3.3 Discrete weak formulation

To perform the spatial discretization of equation ([[IZ), we consider the finite
element spaces defined on a partition of the reference domain €7 by a mesh ’7’{7’
made of generic elements K. Let us assume the mesh is geometrically conforming
and made of tetrahedra. Hence, the approximated domain is

o= > K (118)
KET{l

To perform the spatial discretization, we consider Lagrangian finite elements so
that the corresponding functional space is:

xn () = {¢n € COQ), ¢nlx € PV(K), VK € 1}, (119)
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where PV (K) is the space of polynomials of degree N defined on each element
K € 71I'. The discrete functional space for the displacement unknown in the
reference configuration is V;,(QF) = [xn(7)]?. Finally, the discrete weak formu-
lation of the problem ([[I3) can be written as:

For any t > 0 find up, = uy(t) € Vh(Q’f) such that up(0) = ugp, vy (0) = vop
and:

2

o e d el ) = Fd), VeneVi@l)  (120)

with
a(uh,th) = / P(uh) . V¢h dQl, (121)

of

and

y(cﬁh) = / th . d)h dEl + / plbh . d)h dQl, (122)
o0k 971

where ug, and wqy, are suitable approximation of the initial data compatible
with the imposed boundary conditions; t; is an approximation of the imposed
traction and by, is an approximation of the body forces.

Let {¢z}i\;‘/1 be the Lagrange basis associated to the finite element space of
displacement V;,(2), we approximate the solution as:

w,(X) = > u;¢i(X) (123)
i€ Ny
The substitution of expression ([Z3)) in equation ([20), supplies the algebraic
form of the semi-discretized problem:

MU+ K(U)=F (124)

where U is the unknown displacement vector. For a three-dimensional problem, if
{q’),}fivl are linear functions, the size of vector U is equal to the number of degrees
of freedom, i.e. 3 Ny, where Ny is the number of nodes of the computational
domain. M is the mass matrix and F is the vector that takes into account the
contributions of the body forces and the traction boundary condition. K(U)
denotes a vector that takes into account the non-linear stiffness contribution due
to the discretization of the stress tensors.

The representation of the generic entry (4, 7), with 4,5 = {1,..., Ny} of each
matrix and vector in system ([[24)) is therefore:

M;; = fg? p1 @i d; Ay,

K(U); = fon P( Z U, ¢i(X)) : Vp; Ay,

i€ Ny

Fj = faggz Z ti Oi P d21,+/h Z bi i ¢j dQ.

iENy 0 ieny
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3.4 Time Discretization

The initial-value problem for ([Z)) consists of finding a displacement U = U(¢)
satisfying (L) and the given initial data:

U(0) = Uy, U(0) = V,. (125)

To carry out the time discretization of system ([Z4]), we partition the time
interval T = [0,7] into N subintervals I, = [t",t"!], for 0 < n < N, with
0=1t"<tl <... <tV =T, where t" is a generic time step. For the sake of
simplicity, we consider only uniform intervals 6t = dt,, = t"*1 — ™. In order to
simplify the notation, we indicate with U"*! = U(t"*!) and similarly F*+! =
F(tn+1).

Among all possible choices of time discretization schemes for a second or-
der equation, we employ a Newmark scheme, which consists of the following
equations:

MAn+1 + K(UnJrl) _ Fn+17 (126)
2

UM = U vt (- QAT +CA™Y, (127)

Vi = V4 Gt(1— 0)A™ + 0A™T, (128)

where V"*1 is the approximation of U(#"*1) and A™*! is the approximation of

U(tn+1) m

To guarantee the numerical stability of the scheme, the two parameters have
to satisfy the relation > 1 and ¢ > (6 + 3)? [B0]. The choice of parameters
0= (= % leads to a second order method (mid-point), that is a fully non
dissipative scheme, so that, no mechanism exists to damp high frequencies due
to truncation errors [3T].

In our case, we were interested in quasi-static deformations of the structures
and, in order to avoid the spurious oscillations in the solution, we choose the
parameters as § = 0.5 and ¢ = 1. With this choice, the time scheme reduces to
the first order Backward Euler scheme for displacement equation, while for the
velocity we still maintain the secon order convergence [29]. The degradation of
one order of the time scheme does not affect the precision of the displacement
solution when looking for quasi-static deformations. In contrast, in the case of
propagation of waves, the dynamics of the phenomenon is important and the
precision of the time scheme becomes fundamental. With this in mind, the code
was made to handle the general case so that these parameters could be selected
depending on the application.

The use of scheme (26— [M2])) in system ([24)) gives:
2

57 MU 4 (K(U™T) = iM(U" +6tV™) 4+ (1 — O)MA™, (129)

ot?
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and

2 2 (1-¢)
ATl = gyt S (U 4 5tV — AT 1
Vol = VL Gt[(1 — 0)A™ + AT, (131)

3.5 Linearization and solution

In this work the solution of the algebraic system ([[29) is performed iteratively
using the Newton-Raphson method [22] [28].

Let us define the function Z(-) : R" — R", where r is the total number of
degrees of freedom, hence the dimension of system ([29]):

LU = MU KU -
%M(U" + VSt — (1— ()MA™. (132)

With such an approach, solving system ([[29)) is equivalent to finding the root of
the nonlinear equation:

22Ut =0 (133)
Moreover, we observe that the term —z2 M (U™ + V"6t) — (1 — ()MA" is a

constant vector at each time step n+1, because it is computed by using the known
vector U™. Let us consider the fixed time step "+ where we are computing the
solution. Hence, the index k refers to a generic iteration of the Newton-Raphson
method. Therefore we call UZH = U,.

The general formulation of the Newton-Raphson method provides an iterative
procedure to solve the nonlinear system ([[Z9). Given an initial guess Uy, at each
iteration k& we have to solve the linear system for the unknown Uy, = Uy, 1 —Uy:

DyZ(Uy)[6Ug] = —Z(Uy,). (134)

After solving ([C3) in terms of §Uy, we have to update the displacement Uy =
U, + 6U.

To solve (34 we need to compute the Frechet derivative or directional deriva-
tive of .Z(Uy) with respect to an increment JUy, [32]:

Du.2/(U) [0y = tim Z O D) = Z W) (135)

The displacement increment §Uj, represents in R3 the direction along which we
are differentiating the function .. Referring to ([32)), we observe that

2

Dy Z(Up)[0Uk] = 5

MéUy, + (DyK(Uy,) [0Uy], (136)
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hence the term to linearize is DyK(Uy) [0Ug], that comes from the stress tensor.
In order to understand how to perform the derivative of such a term, we recall
that

K(Uy) = /Q P(U,) : Vo dQ, (137)

where P is the first Piola-Kirchhoff stress tensor, nonlinear in U, and ¢ is a test
function defined in Section As we pointed out above the linearization has to
be performed at each iteration k£ of the Newton-Raphson method. To simplify
the notation, in the following calculation we neglect the subscript k referred as
the displacement vector U and its variation 4U. We observe that integration in
space on a fixed domain and functional derivation commute and from equation

([37), we have

DuK(U)[9U] = lim é <K(U teH) - K(U)) _

1
- hm—(/ P(U + £5U) :v¢d91—/ P(U) ;qudm) -
e—0¢€ Q}ll Q?

_ / lim * (P(U +<6U) ~ P(U)) : Vode2; =
Q

he—0 €
- DyP(U)[5U] : Ve dQy. (138)

o

In particular, we observe that the first Piola-Kirchhoff stress tensor may
depend on the unknown displacement U through the deformation gradient F;.
In this case, we may employ the chain rule to linearize P(F,(U)):

DyP(F(U))[6U] = Dp, P(F))[0F4], (139)
and

Dy, K(F1)[6F,] = /Qh Dr, P(F,)[6F,] dQ;. (140)

It is useful to recall that, for a multi-mechanism model with weakly com-
pressible materials (see section and following), the most general expression
of the nonlinear term K(F;) decomposes as

K(F1) =Kiwo(F1) + Kiiso(F1) + Ki o1 (F1) + Kaiso(F1), (141)
where
K 100 (F)) = / P o(Fy): VpdQy, =12, (142)
of
Klvol(Fl) = /Qh Plvol(Fl) : V¢dQIa l= 1a2' (143)
1

28



3.5.1 Linesearch algorithm

Finally, we observe that the Newton-Raphson method is locally convergent, in the
sense that it converges only if the initial guess is “close enough” to the solution. In
order to improve the convergence properties and be independent from the initial
guess, we add a linesearch backtracking procedure [33] to the basic algorithm.
This technique consists in computing at each time step, a coefficient «j to tune
the descendent step computed by (3.

When the descendent direction 60Uy, is calculated according to ([3Z4), and Uy
is known, the coefficient oy is computed as a minimum of £ (U, + axdUy):

ap = arg min £ (U + adUy) (144)
a€ERT

In practical applications there are specific rules implemented to find «y, we use
the Goldenstein Rules [34].
The generic steps of the total algorithm can be summarized as follows:

1. Choose an initial guess Uy and a tolerance ¢.

2. Compute a descendent direction §Uy, solving (3.
3. Compute a suitable coefficient ay, through ([Z4]).

4. Update the solution Uy,1 = U + a0Uy.

5. Test for convergence ||[Up;1 — U] < e.

6. Exit if the test in 5. is true, go back to 2. if it is false.

4 Code validation, comparison with analytic solutions

The numerical code has been validated by comparing analytic solutions for a
single mechanism material with numerical results for the same problem. The
constitutive laws used in the validation procedure were a Neo-Hookean and ex-
ponential constitutive laws.

We consider a cylinder with axis in the x direction, with radius 0.5 ¢cm and
height 1 cm. The lower base of the cylinder is constrained to slide on the zy plane,
so that it can shrink in direction orthogonal to its axis, but it can’t move in the
x direction (Dirichlet homogeneous boundary conditions on the x component
of displacement). The upper section of the cylinder is loaded in traction. The
lateral surface is stress free (Neumann homogeneous boundary conditions). The
test is carried out as a series of quasi-static deformations and at each time step
the traction increases linearly with time. A picture of results from the numerical
simulation is shown in figure Bl
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F1cURE 6: Example of the tension test carried on a cylinder with the isochoric Neo-
Hookean constitutive law for a single-mechanism. The color scale represents
the displacement in the axial direction (x).

4.1 Analytic solution

In the case of tension test of a cylinder loaded in the axial direction, the deforma-
tion A1 along the axis is homogeneous, and the corresponding first Piola-Kirchhoff
stress tensor can be computed analytically. The deformation inside the cylinder
is uniform. The axial direction and two orthogonal directions are principal axis
of strain and stress, hence the deformation gradient F is:

A 00
F=( 0 Xx 0 |, (145)
0 0 A

where A and Ag are principal deformations in directions orthogonal to the axis.
The jacobian of the motion is J = detF = Aj A A3.
The right Cauchy-Green strain tensor is:

o0 0
cC=| 0 X o |, (146)
0 0 M

and from (BI) the unimodular Cauchy-Green strain tensor C = .J~2/3C.
The kinematics invariants we need, can be written in terms of principal
stretches:

Ic = t1C =\ + )} +\3; (147)
Iz = tC=J%3¢; (148)
Il = detC = J% = AN\ (149)

Because the test is symmetric in directions y and z, orthogonal to the axis x
of the cylinder, we have that Ao = A3, and using relation ([Z9) we find:

J
do =g =4[5 (150)
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The strain energy function W of the material is composed of a volumetric
term (W) depending only on J and a deviatoric term (Wjs,) depending only
on I, the first modified invariant of C:

W = WZ‘SO(Ig) =+ Wvol(J) (151)

ow
The first Piola-Kirchhoff stress tensor P is obtained by evaluating oF In

the present simple case, from (Bl the principal components of stress are:

ow

P, = 2F 152

11 nae T (152)
ow

P. = 2F 153

29 T (153)
ow

P = 2F . 154

33 CrTom (154)

4.2 Neo-Hookean constitutive law

To represent the material behavior of the deviatoric part, we choose the Neo-
Hookean constitutive law for a single-mechanism, given by ([[4), and for the
volumetric part we use expression (2). In the paper of Neff and Hartmann [23]
a proof of the polyconvexity of the chosen strain energy function that guarantees
the existence of an equilibrium solution is shown.

After some calculations, the principal components of first Piola-Kirchhoff
stress tensor are obtained:

P— wf 2M\ 2)\2)\3()\% + )\% + )\g)
=5\ 23" 3.75/3

K K

Cp 20 200+ A+ N)) | K K B
Po = 2 <J2/3 3.75/3 + 5 InJ + 5 MAs(J —1), (156)
(22 20+ +A)) | K K
Fs3 =5 <J2/3 - 3.75/3 + 3w InJ+ 3 Ao(J —1) (157)

From (I&f), we can express Ay and A3 as function of J and A;. As the lateral
surface of the cylinder is stress free, Poo = P33 = 0. We can replace Ao and A3,
for example in equation ([[Af]), thus we obtain a relation between J and Ai:

" A1 A\ A K |\ K J
JEN— _ S KA RS I WO Ay i g’
22 +2 JnJ+2)\1 )\1(J )=0
(

2 J2/3 3.J5/3

158)
The solution of this algebraic equation gives J once the stretch A\ is fixed.
Finally we compute the principal component of stress in axial direction:

byt (2)\1 2J(A%+2rﬂ)> K KJ

=5\ 725 37573 + 2—)\1an+ EA_l(J_ 1). (159)
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(a) Analytic and numerical solution of the (b) Analytic and numerical solution of the
tension test with Neo-Hookean constitutive tension test with Exponential constitutive
law. law.

FiGURE 7: Comparison between the analytic and the numerical solution. Both graphs
represent, the principal component Py of the first Piola-Kirchhoff stress
tensor versus the axial stretch \;.

The technique used to derive the principal stress P;; follows that proposed in
Ogden [B39].

In Figure the comparison between the analytic solution and the nu-
merical solution of this tension test is shown. Material parameters are y =
27.6810° Pa and K = 107 Pa, for both the numerical and analytic solution.

4.3 Exponential constitutive law

In this section we use an exponential isochoric constitutive law to model a single-
mechanism material. The corresponding strain energy function is given by ex-
pression (BH). For the volumetric part of the strain energy function we again
use (EZ). Also for the exponential case, in Neff and Hartmann [23] this choice of
strain energy function is shown to be polyconvex, thus guaranteeing the existence
of an equilibrium solution.

If we proceed with calculations as in the previous section, in this case, the

32



principal components of the first Piola-Kirchhoff stress tensor are:

2 2 2
py _ © (ey(hf];?;xg_g) (ul 20 A3 (A%+A§+A§)>>

J2/3 3.75/3
K K
+ 2—)\1 InJ + 5)\2)\3(11 - 1), (160)
2 2 2
Py - & ev(“f,é?g*“—s) 2% 2023 (B + B+ 1)
2 J2/3 3J5/3
K K
+ 2—)\2 InJ + E)\l)\g(t] — 1), (161)
(ﬁﬂ%ﬂ% 73) 92\ 2\ A ()\2 A2+ )\2)
Py = S\ 3 20 (AT + A
2 J2/3 3 .J5/3
K K
+ W InJ + 5)\1)\2(J —1). (162)

As for the Neo-Hookean material, during the tension test, the lateral surface
of the cylinder is stress free, and Py = P33 = 0. If we consider equation Py =0
and we replace Ay and A3 by means of ([[{), we obtain a relation between J and

)\1:
M2l J J J
a 7(%*) 2% 25 (2
P22 - € —

2 J2/3 3.J5/3

K [\ K. [J
=/ A/ =(J=1) = 0. 1
oG S 1) =0 (163)

For a chosen A\, we can compute J from ([[63]) and the principal component
of stress in the axial direction can be obtained from:

M2l J (2 J
g e’y(%—3> 2)\1 B 2>\—1 <)\1 +2)\—1)
J2/3 3.J5/3

Po=

+ %an—F%)\%(J—l), (164)
As noted in Section EE2 the technique used to derive the principal stress Ppp
follows the guideline proposed by Ogden [35].

In Figurethe analytic and the numerical solution for this tensions test are
shown. The same material parameters have been used to compute the analytical
solution and the numerical simulation. These are oy = 7.1210% Pa, v, = 0.86,
and K =107 Pa.
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FIGURE 8: Lo norm of (J — 1) with respect to different values of the bulk modulus K.

Neo-Hook Exponential
1t Mech. | pp =27.6810% Pa | a; = 7.1210% Pa, v, = 0.86
2nd Mech. - as = 31.2810°% Pa, v, = 1.87

TaBLE 1: Table of material parameters used in strain energy functions (&4 Ba).

5 Material parameters

The strain energy function adopted herein is the sum of a Neo-Hookean material
plus an Exponential law, for the second mechanism, as suggested in [24], [20]. The
material parameters used for the double-mechanism are taken from the literature
[20] and are listed in table [

The volumetric coefficient K (bulk modulus) of the strain energy function (see
expression (7)) cannot be measured by experiments, it multiplies the volumetric
part of the strain energy function, giving rise to a penalty term, that allows the
material only slight compression. In Le Tallec [36], we find the suggestion that
for a FE displacement formulation it should be in the range:

C,10% < K < €4 108, (165)

where C is the characteristic shear modulus of the material. For smaller values
of K there is a loss of accuracy in computing the solution and for larger values
the condition number of the associated discrete linear system becomes too large.
In figure [ is shown the relation between the compression modulus K and the
compressibility the material exhibits when J moves away from 1.
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(a) Example of the tension test carried
on the cylinder with the isochoric Neo-
Hookean constitutive law for a single-
mechanism. The color scale represents
the displacement in the axis direction (x).
Scrolling is allowed on the lower base of the
cylinder.
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(b) Comparison between the stress-strain
graph for the tension test with a single and
a double mechanism law. The blue line
is the behavior of a double Neo-Hook and
Exponential model, and the red dashed
line in a single Neo-Hookean model. The
two curves overlap until the deformation

threshold activates the exponential colla-
gen mechanism.

FIGURE 9: Tension test in case of uniform deformations.

In this work we use for the bulk modulus the value K = 107 Pa, that is
included in range ([63) when Cs = py or Cs = a.

We observe that in [20] the chosen value of the compression modulus is
K = 10° Pa, allowed by the use of a FE mixed (displacement and pressure)
formulation.

6 Numerical results

Some simple numerical tests have been used to explain the behavior of the col-
lagen recruitment mechanism within the double mechanism model in the case of
uniform deformations and non-uniform deformations. The tests were performed
as a series of quasi-static deformations.

We consider a cylinder with the upper surface in traction, linearly varying
with time, the lateral surface is stress free, and the homogeneous Dirichlet bound-
ary conditions are imposed on the component of displacement along the cylinder
axis « on the lower surface. The initial length of the cylinder is 1 cm and its
radius 0.5 cm. A picture of the deformed cylinder is shown in figure

In this test, the deformation is uniform, i.e. it is the same at each point.
Therefore, the deformation threshold s, = 0.5 is reached simultaneously by all
elements of the computational domain. In figure a comparison of the stress-
strain curve obtained with a double-mechanism and a single-mechanism model
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(a) Example of a tension test carried
on the cylinder with the isochoric Neo-
Hookean constitutive law for a single-
mechanism. The color scale represents
the displacement in the axis direction

2
P11 [dyne/cm?]

i T i
| I I
| |
il i e [
I I I
I I I
- T b [E——
! I j I
I I I I
o . . . .
1 11 1.2 13 14 15 1.6 1.7

(b) Comparison between the stress-
strain graph for a tension test with a
single and a double mechanism law.
The blue line is the behavior of a double
Neo-Hookean and exponential model,

and the red dashed line in a single
Neo-Hookean model. The two curves
smoothly separates because the colla-
gen recruitment is gradual throughout
the cylinder.

(x). The lower base of the cylinder is
now locked.

FI1GURE 10: Tension test in case of non-uniform deformations.

is shown. The deformation A; is computed as the current length over the initial
length of the cylinder and the stress Pj; is the principal first Piola-Kirchhoff
stress component in the axial direction . The double-mechanism, composed by
a Neo-Hookean material for the first mechanism and an exponential material for
the second, is compared with a single Neo-Hookean material. It can be observed,
in figure that the two curves overlap until the threshold value is reached
(which corresponds to s = s,). Above this value, they are different. In fact, at
s = s, the second mechanism becomes active in all the points of the cylinder.

To test the behavior of the double-mechanism model for non-uniform defor-
mation, we modify the previous tension test imposing a Dirichlet homogeneous
boundary condition on all the components of displacement at the lower base of
the cylinder (see figure [[0(a))).

In this case, the deformation is not the same at all the points of the cylin-
der. As the deformation is non-uniform, at each time only some elements are
activated. In figure [[L0(b)] we plot Py1, the first Piola-Kirchhoff stress component
in the axial direction z, versus the deformation \;, computed as in the previous
test. The blue curve represents a double-mechanism made of a Neo-Hookean and
exponential material, and the red dashed curve is a single Neo-Hookean mech-
anism. In this case, we observe that before the collagen recruitment, the two
curves overlap, but the split-up is very smooth, due to the fact that the second
mechanism becomes active smoothly within the elements of the computational
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(a) 150" frame
(c) 170" frame (d) 180" frame
(e) 190™ frame (f) 200" frame

FiGURE 11: The picture shows the highlighting of activated elements at different time,
i.e. at different values of traction, and the correspondent graph of scalar

measure of deformation s = LW}l along the axis x, with respect to the

activation threshold s, = 0.5. The activated elements are plotted on the
unloaded geometry.

domain.

We notice that for large enough traction, the deformation overcomes the
threshold at the elements of the upper surface first, followed by the rest of the
cylinder. Correspondingly, in figures [l the activation of the elements belong-
ing to the upper surface of the cylinder occurs earlier than the activation of the
elements below them. In figures [, activated elements at different time frame
(i.e. at different values of traction) are shown highlighted on the unloaded ge-
ometry. Fach picture is joined by the corresponding graph of the scalar measure
of deformation s = #%le\lfg, defined in Section 2] along the cylinder axis x.
The red horizontal line corresponds to s = s, = 0.5.
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6.1 Inflation of thick walled cylinder with narrowing radius

To show the behavior of the full multi-mechanism damage model, we consider
an inflation test carried on a straight tube, representing a portion of an artery,
where the inner radius is decreasing along the axis. This geometrical feature may
represent an initial unhealthy situation of the artery.

The inflation test has been performed as a series of quasi static inflation,
increasing the internal pressure linearly with time. The length of the tube is 3
cm, the minimum and maximum inner radius are 0.3 and 0.1 cm, and the outer
radius is 0.5 ¢cm. The parameters used are s, = 0.5, for collagen activation,
se = 1.15, and sy = 1.1 for the elastin damage model. The geometrical domain
used for the inflation test is made of 68973 tetrahedra.

The inflation of the cylinder induces a non-uniform deformation within the
tube. In particular, the deformation is maximum at the inner of the cylinder and
radially decreases toward the external surface. Hence, the activation of collagen
elements starts from the elements belonging to the inner surface of the tube,
where the activation threshold is overcome, and gradually involves contiguous
elements.

Performing the test, we observe that the deformation field depends on the
thickness of the tube. Where the arterial wall is thicker the deformation is
smaller, and the subsequent activation of collagen involves only few elements
close to the lumen, while where the wall is thinner, the deformation is larger
and all the collagen elements are activated. In left figure [2 the elements in
which collagen has been recruited are plotted on the unloaded geometry. The
right figure [[2 shows the elements in which the elastin is damaged. As for the
collagen, we observe that where the arterial wall is thinner, the deformation is
bigger and the damage of elastin elements happens earlier than in the rest of the
tube, starting from the elements belonging to the lumen and propagating within
the arterial wall.

We underline that the threshold for the irreversible damage of elastin is
greater than the threshold for the collagen activation, i.e. the degradation of
the first mechanism happens in the elements where the second mechanism is al-
ready present. From the point of view of the mechanical response of the material,
this means that the elements where there is no more elastin are less stiff than
the contiguous elements where both mechanisms are present.

In particular, this happens where the arterial wall is thinner. The conse-
quence is that the arterial wall becomes weaker and consequently the deforma-
tion larger. In figure [l we show the comparison between the unloaded geometry
and the deformed geometry. In particular the deformation of the portion of the
tube where the elastin is damaged may be very similar to the initial stage of an
aneurysm formation. Let us suppose that the portion of the artery where the
wall is thinner represents a pathological state, due to hemodynamical or geomet-
rical factors. We may interpret our numerical results, as a prediction that, in
presence of damage of elastin components, the portion of an artery where the
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F1GURE 12: Picture of activated collagen elements (left) and damaged elastin elements
(right) for an inflation test of a straight tube with narrowing radius. The
final inflation pressure is 31 KPa. The activated and damaged elements
are plotted on the unloaded geometry.

wall is thinner is very likely a site where an aneurysm will develop.

7 Conclusion and discussion

In this paper we have presented the numerical implementation and results ob-
tained for a multi-mechanism model suitable to simulate the non-linear and in-
elastic behavior of cerebral arteries. The theoretical model was first presented
by Robertson and coworkers [24].

The biggest challenge of this model is the need for two distinct reference con-
figurations for elastin and collagen. Our contribution to the multi-mechanism
model is the derivation of the Lagrangian formulation of the whole constitutive
model in the first (elastin) reference configuration. Hence, it has been necessary
to map the stress tensor of the collagen mechanism to the elastin reference con-
figuration. The resulting non-standard formulation required particular attention
in the code implementation. The final non-linear system has been solved by
means of the Newton-Raphson method with exact jacobian computation [37].
The multi-mechanism model presented in this paper has been implemented in
the Finite Element library LifeV [38].

The main limitation of the model presented is to consider the arterial wall
homogeneous, while its real structure is layered and each layer is characterized by
a strong anisotropy due to a particular orientation of collagen fibers. Moreover
we can underline that the modular procedure used to define the strain energy
function can easily extended to the anisotropic case as shown in [20], [25].

Even with such limitation, the numerical results obtained with our solver
show that the multi-mechanism model is able to capture the non-linear char-
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FicUure 13: Comparison between the unloaded geometry and the deformed geometry of
a portion of a cylindrical artery with inner narrowin radius. In particular
the deformation of the portion of the tube where the elastin is damaged
may be very similar to the initial stage of an aneurysm formation.

acteristics of the arterial wall. At low levels of deformation the elastin (first
mechanism) supplies weak resistance to the tension test, while when the collagen
enters the model, it renders the whole material stiffer, until the elastin damage
occurs. We showed that the way the collagen is recruited depends in a very
general way by the deformation field.

We observed that in presence of a non-uniform deformation field, within the
computational domain, we may have some elements in which only the first mech-
anism is active, elements in which both first and second mechanism are present,
and elements in which the second mechanism is active and the first is totally
or partially damaged. Regarding a single element, the collagen activation and
the elastin degradation are implemented as gradual phenomena, that do not in-
duce a discontinuity in the stress tensor governing the mechanical response of the
specific element. But contiguous elements may have different and discontinuous
stress response, and such a phenomenon may induce instabilities in the whole
material behavior. This difficulty is overcome by using a well refined mesh.

Finally a more realistic inflation test has been shown. In this numerical sim-
ulation, we observe that the collagen recruitment and elastin deactivation start
from the lumen of the arteries, where the deformation is wider. In particular, the
narrowing of the internal radius of the cylinder, may be interpreted as an initial
unhealthy situation, that leads to an non-uniform damage of the elastin mech-
anism and leads to an enlargement of the arterial segment. From a qualitative
point of view the enlargement may represent the initial stage of an aneurysm
formation, due to mechanical damage of elastin components of arterial wall.
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