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We propose a Semi-Parametric Mixed-Effects Multinomial regression
model to deal with estimation and inference issues in the case of categori-
cal and hierarchical data. The proposed modelling assumes the probability of
each response category to be identified by a set of fixed and random effects
parameters, estimated by means of an Expectation-Maximization algorithm.
Random effects are assumed to follow a discrete distribution with an a priori
unknown number of support points. For a K−category response, this method
identifies a latent structure at the highest level of grouping, where groups are
clustered into (K − 1)−dimensional subpopulations. This method is an ex-
tension of the multinomial semi-parametric EM algorithm proposed in the
literature, in which we relax the independence assumption across random-
effects relative to different response categories. Since the category-specific
random effects arise from the same subjects, their independence assumption
is seldom verified in real data. In this sense, the proposed method properly
models the natural data structure, as emerges by the results of simulation and
case studies, which highlight the importance of taking into account the data
dependence structure in real data applications.

1. Introduction & Literature. The big data hera has increased the collection of any type of data and, among
the others, of categorical data. Quality of life, patient recovery or pain, diagnostic evaluations, political or religious
philosophy, educational evaluations are only few examples of ordered and unordered categorical data that are continu-
ously collected and used by companies, countries or different stakeholders to enhance their work. In the framework of
generalized linear models, multinomial responses have always been treated separately from other response distribu-
tions. Despite the multinomial distribution belongs to the exponential family, most of the algorithms and procedures
that implement linear models for responses in the exponential family do not include the multinomial one. Since, for a
multicategory response, multiple logits must be considered, multinomial models can be better treated as multivariate
generalised linear models (Tutz and Hennevogl, 1996). This applies also in the context of hierarchical data, i.e. data
containing observations naturally nested within groups, such as longitudinal data or repeated measurements (Agresti,
2018). Hierarchical data are usually treated by means of mixed-effects models (Pinheiro and Bates, 2006), but their
developments to handle multinomial responses are also quite limited.

Mixed-effects models include in the linear predictor both fixed effects associated to the entire population and ran-
dom effects associated to the groups in which observations are nested, drawn at random from the population (Gold-
stein, 2011). This mechanism allows to account for various correlation structures among the nested observations,
which are not independent, modelling the within-group correlation. Typically, mixed-effects linear models assume
both the random effects and the errors to follow a Gaussian distribution and are intended for grouped data in which
the response variable is continuous (Pinheiro and Bates, 2006). When the response has a different distribution in the
exponential family, generalized linear mixed-effects models (GLMMs) extend generalized linear models to include
random effects (Diggle et al., 2002; Agresti, 2018). In GLMMs, the response distribution is defined conditionally on
the random effects and the marginal distribution of the response can be obtained by integrating out the random ef-
fects. Although GLMMs have been developed for a consistent set of response distributions in the exponential family
(among the others, binomial, Poisson, Gamma, Inverse Gaussian), there has been little development for multinomial
responses. In particular, the majority of the research in this area focuses on ordinal models with logit and probit link
functions for cumulative probabilities (Anderson et al., 2013; Coull and Agresti, 2000; Dos Santos and Berridge,
2000), while nominal responses have received less attention, probably due to the higher level of complexity required
by their modelling. Indeed, an appropriate link function for nominal responses is the baseline-category logit, where
fixed and random coefficients vary according to the response category. For this reason, mixed-effects linear models for
a multinomial response are often treated as multivariate models, where the integration issues typical of GLMMs grow
in complexity (De Leeuw et al., 2008). Various approximations for evaluating the integral over the random effects
distribution have been proposed in the literature: the most frequently used methods are based on fist- or second-order
Taylor expansions (Goldstein and Rasbash, 1996), on a combination of a fully multivariate Taylor expansion and a
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Laplace approximation (Raudenbush et al., 2000), or using Gauss-Hermite quadrature (Stroud and Secrest, 1966).
Nonetheless, these cited procedures are computationally very complex (McCulloch and Searle, 2001) and many au-
thors have reported biased estimates using them (Breslow and Lin, 1995; Raudenbush et al., 2000; Rodríguez and
Goldman, 1995). Specific softwares have been developed to perform these kind of estimates - among the others,
HLM (Raudenbush, 2004), MLwiN (Steele et al., 2005), WinBugs (Spiegelhalter et al., 2003)) - but, they resulted to
be not very flexible and they often require a high level of expertise on behalf of the user. In one of the most recent
works on this topic (Hadfield et al., 2010), the authors develop a Markov Chain Monte Carlo (MCMC) method for
multi-response generalized linear mixed models, to provide a robust strategy for marginalizing the random effects
(Zhao et al., 2006). This model is developed in a Bayesian context - where the distinction between fixed and random
effects does not technically exist - and the user should define the prior distributions on the parameters. The relative
MCMCglmm R package (Hadfield et al., 2010) is, to the best of our knowledge, the only R package (R Core Team,
2019) that performs parametric mixed-effects multinomial regression.

A more recent branch of the literature about mixed-effects linear models proposes a semi-parametric approach
in which the random effects are assumed to follow a discrete distribution with an a priori unknown number of
support points (Aitkin, 1999; Masci et al., 2019). While parametric mixed-effects models usually identify a normal
distribution of random effects and each highest level unit’s point estimate is extracted from this distribution, the semi-
parametric approach identifies a classification of highest level units that are clustered into subpopulatons standing
on the similarities of their effects. Semi-parametric Mixed-effects Linear Models (SLMMs) have been proposed
for a continuous response (Masci et al., 2019), for multiple continuous responses (Masci et al., 2021a) and for a
binary response (Maggioni, 2020). A very recent work proposes semi-parametric mixed-effects linear models for a
multinomial response (Masci et al., 2021b). The authors in Masci et al. (2021b) face a classification problem with
hierarchical data. They aim to profile engineering students of Politecnico di Milano (PoliMI) into three categories
(early dropout, late dropout and graduated), given some student personal and career information and considering
their nested structure within 19 engineering degree programmes. To this end, they propose the Multinomial Semi-
Parametric Expectation-Maximization algorithm (Dempster et al., 1977), called MSPEM, for SLMMs dealing with
a multinomial response. In particular, they assume the random effects of the model to follow a multivariate discrete
distribution with an a priori unknown number of support points, that is allowed to differ across response categories.
The discrete distribution assumption on the random effects in a multinomial model allows to express the likelihood
as a weighted sum instead of a multiple integral, significantly simplifying the estimation procedure of the model
parameters. The baseline-category logit approach considers category-specific fixed and random effects parameters.
In Masci et al. (2021b), the authors develop a method that assumes the random effects relative to different response
categories to be independent. This assumption simplifies the parameters estimation procedure, but it is a strong and
often unrealistic assumption, since the random effects of different logits arising from the same subject are expected
to be somehow related.

In this work, we propose a new method to fit semi-parametric multinomial mixed-effects models that does not
assume the independence across the category-specific random effects distributions and that is able to model different
dependence structures across the multinomial categories. In particular, for a multinomial response assuming K dif-
ferent categories, we assume the random effects to follow a joint (K − 1)-variate discrete distribution. Each of the
(K − 1) marginal distributions is allowed to have a different number of support points. For this reason, we refer to
this proposed method as the Joint Multinomial Semi-Parametric EM algorithm, the JMSPEM algorithm. This mod-
elling allows to take into account the dependence structure among the categories when estimating the parameters,
resulting in two main advantages: the former is that we avoid bias in the estimates, induced by the natural depen-
dence across categories; the latter is that, by jointly estimating the highest level units effects on the K − 1 logits, we
better investigate and interpret their trends. The assumption of discrete random effects provides a new interpretation
of units at the highest level of the hierarchy, that are clustered into subpopulations, identified by the support points
of the discrete distribution. This approach has several advantages (Rights and Sterba, 2016): first of all, by assuming
discrete random effects, it is possible to identify a latent structure at the highest level of the hierarchy, that is a valu-
able alternative to the ranking provided by assuming gaussian random effects; secondly, since the semi-parametric
approach is more flexible and it does not assume a priori any parametric distribution, it can potentially estimate the
real distribution of the random effects; third, when the number of groups is extremely large, the identification of
subpopulations might help in interpreting the results, thanks to the dimensional reduction; lastly, the identification of
subpopulations gives insights about the outlier identification, since the most populated subpopulations reveal which
are the reference trends, while the smallest ones contain those groups whose observations tend to have anomalous
behaviours with respect to the majority.

In order to insert the JMSPEM method in a clear inferential framework, we complete the algorithm by adding
a method to compute the standard errors of the estimates and to assess the significance of the coefficients. In par-
ticular, the variance of the ML estimator is calculated by the inverse of the Fisher information matrix. For what
concerns random-effects significance, the Variance Partition Coefficient (VPC) for a semi-parametric multinomial
mixed-effects model is proposed.
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Modelling the dependence across categories increases the dimensional complexity of the estimates, requiring a not
trivial computational improvement. In order to test and investigate the potential of the JMSPEM algorithm, we retrace
both the simulation and the case studies proposed in Masci et al. (2021b), underlying the differences and, potentially,
the advantages of the JMSPEM algorithm with respect to the MSPEM one. Results of the simulation study show
that the parameters estimated by the JMSPEM algorithm have reduced bias and variance with respect to the ones
estimated by MSPEM algorithm. Moreover, in the case study, the subpopulations identified at the highest level of the
hierarchy are robustly coherent with the ranking estimated by the parametric MCMCglmm method.

The remaining part of the paper is organized as follows: in Section 2 we describe the JMSPEM model and algo-
rithm; in Section 3 we retrace the simulation study proposed in Masci et al. (2021b) comparing the results of JMSPEM
and MSPEM; in Section 4 we apply the JMSPEM algorithm to the Politecnico di Milano case study presented in Masci
et al. (2021b) for modelling higher education student dropout and we compare the results obtained by applying three
methods: MSPEM, JMSPEM and the parametric method MCMCglmm; Section 5 draws the conclusions.

2. Methodology: joint semi-parametric mixed-effects model for a multinomial response. In this section, we
first recall the basics of a mixed-effects multinomial model with discrete random effects (Subsection 2.1), and, then,
we present the JMSPEM model and algorithm (Subsection 2.2).

2.1. Mixed-effects models for a multinomial response with discrete random effects. Let consider a multinomial
logistic regression model for nested data with a two-level hierarchy (Agresti, 2018; De Leeuw et al., 2008), where
each observation j, for j = 1, . . . , ni, is nested within a group i, for i= 1, . . . , I . Let Yi = (Yi1, . . . , Yini

) be the ni-
dimensional response vector for observations within the i−th group. The multinomial distribution with K categories
relative to Yij is the following:

(1) Yij =


1 πij1

2 πij2

. . .

K πijK

,

where k = 1, . . . ,K indexes the K support points of the discrete distribution of Yij and πijk is the probability that
observation j within group i assumes value k. Mixed-effects multinomial models assume that the probability that
Yij = k, i.e. πijk, is given by

(2)

{
πijk = P (Yij = k) = exp(ηijk)

1+
∑K

k=2 exp(ηijk)
for k = 2, . . . ,K

πij1 = P (Yij = 1) = 1
1+

∑K
k=2 exp(ηijk)

,

where ηijk = x′
ijαk+z′ijδik is the linear predictor. xij is the p×1 covariates vector (includes a 1 for the intercept) of

the fixed effects, αk is the p× 1 vector of regression parameters of the fixed effects, zij is the q× 1 covariates vector
of the random effects (includes a 1 for the intercept) and δik is the q×1 vector of regression parameters of the random
effects. Logit models for nominal response basically pair each category with a baseline category. This formulation
considers K − 1 contrasts, between each category k, for k = 2, . . . ,K , and the reference category1, that is k = 1.
Consequently, each category is assumed to be related to a latent “response tendency” for that category with respect
to the reference one. Each contrast k′, k′ = 1, . . . ,K − 1, is characterized by the set of contrast-specific parameters
(αk′ ;δik′ , for i= 1, . . . , I), that models the probability of Yij being equal to k ≡ k′+1 with respect to the probability
of Yij being equal to 1 (the reference category)2. Starting from Eq. (2), the log-odds of each response with respect to
the reference category are:

log

(
πijk
πij1

)
= ηijk k = 2, . . . ,K.(3)

For each contrast, the contrast-specific random-effects parameters describe the latent structure at the highest level of
the hierarchy.

The Maximum Likelihood Estimation (MLE) method allows to estimate the model parameters of this probability
distribution.

1We consider the first category as the reference one but this choice is arbitrary and it does not affect the model formulation.
2Note that k′ ≡ k − 1 for k = 2, . . . ,K and, therefore the sequence of parameters (αk′ ;δik′ , for i = 1, . . . , I), for k′ = 1, . . . ,K − 1 is

equal to the sequence (αk;δik , for i= 1, . . . , I) for k = 2, . . . ,K .
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Considering A= (α2, . . . ,αK) and ∆i = (δi2, . . . ,δiK), the distribution of Yij , conditional on the random effects
distribution, takes the following form:

p(Yij |A,∆i) =π
1{Yij=1}

ij1 × π
1{Yij=2}

ij2 × . . .× π
1{Yij=K}

ijK =

=

K∏
k=1

π
1{Yij=k}

ijk =

=

K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

.(4)

Assuming that Yij and Yij′ are independent for j ̸= j′, the conditional distribution of Yi is:

p(Yi|A,∆i) =

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) ×

ni∏
j=1

p(Yij |A,∆i) =(5)

=

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) ×

ni∏
j=1

K∏
k=1

π
1{Yij=k}

ijk =

=

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) ×

ni∏
j=1

K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

.

In the semi-parametric approach presented in Masci et al. (2021b), the coefficients of the random effects are assumed
to follow a discrete distribution with an a priori unknown number of support points (Masci et al., 2019). Under this
assumption, the multinomial logit takes the form:

ηijk = x′
ijαk + z′ijbmkk mk = 1, . . . ,Mk, k = 2, . . . ,K,(6)

where Mk is the total number of support points of the discrete distribution of b relative to the k−th category, for
k = 2, . . . ,K . The random effects distribution relative to each category k, for k = 2, . . . ,K , can be expressed as a set
of points (b1k, . . . ,bMkk), where Mk ≤ I and bmkk ∈Rq for mk = 1, . . . ,Mk, and a set of weights (w1k, . . . ,wMkk),
where

∑Mk

mk=1wmkk = 1 and wmk
≥ 0:

B=



{
b12, b22, . . . , bM22

(w12), (w22), . . . , (wM22)

. . .

. . .{
b1K , b2K , . . . , . . . , bMKK

(w1K), (w2K), . . . , . . . , (wMKK)

.(7)

The discrete distributions P ∗
k , for k = 2, . . . ,K , belong to the class of all probability measures on Rq and are assumed

to be independent. P ∗
k is a discrete measure with Mk support points that can then be interpreted as the mixing

distribution that generates the density of the stochastic model in (6). In particular, wmkk = P (δik = bmkk), for i =
1, . . . , I . The maximum likelihood estimator P̂ ∗

k of P ∗
k can be obtained following the theory of mixture likelihoods in

Lindsay (1983); Lindsay et al. (1983), who proved the existence, discreteness and uniqueness of the semi-parametric
maximum likelihood estimator of a mixing distribution, in the case of exponential family densities.

Given this formulation, in Masci et al. (2021b) the authors propose the MSPEM algorithm for the joint estimations
of αk, (b1k, . . . ,bMkk) and (w1k, . . . ,wMkk), for k = 2, . . . ,K , which is performed through the maximization of the
likelihood, mixture by the discrete distribution of the random effects. In the MSPEM steps, under the independence
assumption across the contrast-specific random-effects, when estimating the support points relative to each contrast,
the other contrast-specific random-effects parameters are fixed to the mean of the relative discrete distributions. In
other words, when estimating the random effects of a group with respect to a response category, the random effects
of this specific group with respect to the other categories are ignored. This assumption simplifies the parameters
estimation procedure, but, as previously discussed, it is often too strict and unrealistic.
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2.2. The JMSPEM method. In the proposed JMSPEM method, we start from the modelling proposed in Eq.s
(6) and (7), but we do not assume independence across the random effects distributions relative to the (K − 1)
categories. Instead of considering K−1 independent univariate discrete distributions, we refer to the (K−1)−variate
distribution of random effects. The object B defined in Eq. (7) is identified by a discrete distribution P∗, that belongs
to the class of all probability measures on Rq×(K−1). P∗ is a discrete measure with Mtot support points, where
Mtot =

∏K
k=2Mk is the number of all possible combinations of the k-specific random-effects parameters bmkk,

for mk = 1, . . . ,Mk and k = 2, . . . ,K . We use m = 1, . . . ,Mtot to index the Mtot (K − 1)−variate support points
and relative weights. By marginalizing this multivariate distribution, we then extract the marginal random effects
distribution relative to each contrast k′, for k′ = 1, . . . ,K − 1.

The marginal likelihood is obtained as a weighted sum of all the conditional probabilities. In particular, the
marginal likelihood of Yi is the weighted sum of the likelihood of Yi conditioned to all the Mtot possible com-
binations of the values of the (K − 1) discrete distributions of random effects:

h(Yi|A) =

Mtot∑
m=1

wmp(Yi|A,Bm).(8)

wm is the weight of the m−th combination of the (K − 1) weights distributions and, analogously, Bm is the m−th
combination of the (K − 1) random effects coefficients distributions.

Under these assumptions, the JMSPEM parameters estimates can be obtained by maximizing the likelihood in Eq.
(8). Thanks to the likelihood convexity property, the maximization can be computed in two separate steps: one for
computing the weights of the multivariate discrete distribution of the random effects and one for computing fixed
effects coefficients and random effects support points iteratively.

In particular, the updated parameters are obtained such that:

L(A(up)|y)≥ L(A|y),

where A(up) are the updated fixed effects coefficients and the likelihood L(A(up)|y) is computed summing up the
random effects with respect to the updated discrete distribution (B

(up)
m ,w

(up)
m ) for m = 1, . . . ,Mtot. Thanks to the

definition of the likelihood function in Eq. (8), we have that:

log

(
L(A(up)|y)
L(A|y)

)
=

I∑
i=1

log

(
p(yi|A(up))

p(yi|A)

)
.

All these terms can be bounded above by the quantity:

(9) log

(
p(yi|A(up))

p(yi|A)

)
≥Qi(θ

(up), θ)−Qi(θ, θ),

where

Qi(θ
(up), θ) =

Mtot∑
m=1

(
wmp(yi|A,Bm)

p(yi|A)

)
log(w(up)

m p(yi|A,Bm)).

Qi(θ, θ) is analogously defined and θ = (A,B1, . . . ,BMtot
,w1, . . . ,wM ). This bound can be found thanks to the

convexity of the logarithm (proof in Azzimonti et al. (2013)). Defining

Q(θ(up), θ) =

I∑
i=1

Qi(θ
(up), θ) and Q(θ, θ) =

I∑
i=1

Qi(θ, θ),

we obtain, thanks to Eq. (9), an upper bound for the quantity of interest

log

(
L(A(up)|y)
L(A|y)

)
≥Q(θ(up), θ)−Q(θ, θ).

In order to show now that ∀θ,Q(θ(up), θ) ≥ Q(θ, θ), we can show that, ∀θ fixed, θ(up) is defined as the
argmaxθ̃Q(θ̃, θ).
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Defining Wim as the probability that the i−th group belongs to the m−th combination among the Mtot possible
combinations, conditionally on the observations yi and given the fixed effects parameters A, we obtain

Q(θ̃, θ) =

I∑
i=1

Mtot∑
m=1

(
wmp(yi|A,Bm)

p(yi|A)

)
log(w̃mp(yi|Ã, B̃m)) =

=

I∑
i=1

Mtot∑
m=1

Wim log(w̃mp(yi|Ã, B̃m)) =

=

I∑
i=1

Mtot∑
m=1

Wim log(w̃m) +

I∑
i=1

M∑
m=1

Wim log(p(yi|Ã, B̃m)) =

=J1(w̃1, . . . , w̃Mtot
) + J2(Ã, B̃1, . . . , B̃Mtot

).(10)

w is an array with K − 1 dimensions, i.e. a (M2 ×M3 × . . . ×MK)− dimensional array, and each element wm

represents the weight of the m−th (K − 1)−variate support point. Equivalently, W is an array with K dimensions,
i.e. a (I ×M2 ×M3 × . . .×MK)− dimensional array of conditional weights3. In particular,

(11) wm = P (∆i =Bm)

and

Wim =
wmp(yi|A,Bm)∑Mtot

γ=1 wγp(yi|A,Bγ)
=

=
p(∆i =Bm)p(yi|A,Bm)

p(yi|A)
=

=
p(yi,∆i =Bm|A)

p(yi|A)
=

=p(∆i =Bm|yi,A) m= 1, . . . ,Mtot.(12)

By marginalizing W with respect to k, we obtain the marginal conditional weights matrices Wk, for k = 2, . . . ,K .
The functionals J1 and J2 can be maximized separately. In particular, by maximizing the functional J1 we obtain the
updates for the weights of the random effects distribution and, by maximizing the functional J2 in an iterative way,
we obtain the estimates of A and Bm, for m= 1, . . . ,Mtot.

The EM algorithm for the maximization of the two functionals is an iterative algorithm that alternates two steps:
the expectation step in which we compute the conditional expectation of the likelihood function with respect to
the random effects, given the observations and the parameters that are computed in the previous iteration, and the
maximization step in which we maximize the conditional expectation of the likelihood function. The observations
are the values of the response variable yij and of the covariates xij and zij , for j = 1, . . . , ni and i = 1, . . . , I . The
algorithm allows the number ni, for i= 1, . . . , I , of observations to be different across groups, but, within each group
missing data are not handled. The EM algorithm stops when the convergence or a maximum number of iterations are
reached. In particular, the update for the parameters is given by:

(13) w(up)
m =

1

I

I∑
i=1

Wim m= 1, . . . ,Mtot,

and

(A(up),b
(up)
1 , . . . ,b

(up)
(K−1)) = argmax

A,Bm

Mtot∑
m=1

I∑
i=1

Wim × lnp(yi|A,Bm).(14)

3Note that we are using a single index m to index a position in multidimensional objects (arrays w and W ). We make this choice to ease
the notation, calling with m the m−th combination of (K − 1) indices.
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The weight w(up)
m is the mean of the conditional weights of the I groups, relative to the m−th (K − 1)−variate

support point. Coefficient Wim represents the probability that group i belongs to the m−th (K − 1)−variate sub-
population, identified by the relative K − 1 marginal subpopulations, conditionally on observations yi and given the
fixed coefficients A. The maximization step in Eq. (14) involves two steps and it is done iteratively. In the first step,
thanks to the convexity of the logarithm, for each category k, for k = 2, . . . ,K , we compute the argmax with respect
to the support points bmkk, for mk = 1, . . . ,Mk, keeping A and bl, for l ̸= k, fixed to the values computed at the
previous iteration. In this way, we can maximize the expected log-likelihood (computed in the expectation step) with
respect to all support points bmkk separately, i.e.

b
(up)
mkk

=argmax
bk

Ctot,k∑
cmk

=1

I∑
i=1

Wicmk
lnp(yi|A,bk,B

(old)
cmk

)

mk = 1, . . . ,Mk, k = 2, . . . ,K.(15)

where Ctot,k =Mtot/Mk is the number of (K−1)−variate support points that have mk as marginal support point for
category k. Wicmk

represents the probability that group i belongs to the latent subpopulation cmk
, that is identified

by mk, relatively to category k, and the support points relative to the other K − 2 categories that correspond to the
cmk

−th combination. B(old)
cmk

is the set of random effects coefficients, estimated at the previous iteration, relative to
categories (2, . . . , k− 1, k+ 1, . . . ,K), that compose the cmk

−th combination with mk. In particular,

(16) p(yi|A,bk,B
(old)
cmk

) =

(∑K
γ=1

(∑ni

j=1 1{yij=γ}

))
!∏K

γ=1

((∑ni

j=1 1{yij=γ}

)
!
) ×

ni∏
j=1

K∏
γ=1

(
exp(ηijγ)

1 +
∑K

ν=2 exp(ηijν)

){1yij=γ}

,

where

(17) ηijγ =

{
x′
ijαk + z′ijbk if γ = k

x′
ijαγ + z′ijb

(old)
(mγγ)cmk

if γ ̸= k
.

b
(old)
(mγγ)cmk

are the random effects coefficients relative to the support point (mγγ)cmk

, that is the support point relative
to category γ that compose the cmk

−th combination with mk.
In the second step, we fix the support points of the random effects distributions computed in the previous step

and we compute the argmax in Eq. (14) with respect to A. Again, thanks to the convexity of the logarithm, we can
compute the argmax in Eq. (14) with respect to αk, separately for each k = 2, . . . ,K , keeping αl, for l ̸= k fixed to
the values computed at the previous iteration.

To compute the point Bm for each group i, for i= 1, . . . , I , we maximize the conditional probability of ∆i given
the observations yi and the coefficient A. The estimates of the coefficients ∆i of the random effects for each group
is obtained by maximizing Wim over m, i.e.

∆̂i =Bm̃ where m̃= argmax
m

Wim

i= 1, . . . ,N.(18)

Notice that, despite MSPEM and JMSPEM algorithm skeletons are basically the same, substantial differences
regard essentially the estimation of the random effects, i.e. of the weights (Eq. 13) and of the random effects support
points (Eq. 15). In the MSPEM algorithm, only marginal weights and marginal conditional weights matrices are
treated and in the maximization in Eq. 15, the groups’ belonging to the subpopulations relative to the other categories
are ignored. In the JMSPEM algorithm, all weights and conditional weights are treated in their multivariate setting
and the function to be maximized in Eq. 15 takes into account the conditional weights of groups across all categories.
The multivariate optimization implies an increased computational cost, that scales with the number of covariates and
of response-categories.

During the iterations of the EM algorithm, the reduction of the support points of the random effects discrete
distributions is performed. All details about the discrete distribution support points initialization, the support points
collapse criterion, the convergence criterion and model identifiability can be found in Masci et al. (2021b).

Besides the point estimates of both fixed and random effects coefficients, a further improvement provided by the
JMSPEM algorithm regards the computation of their standard errors and the assessment of their significance. The
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variance of maximum likelihood estimators is calculated by the inverse of the Fisher information matrix. Being θ the
parameter vector to be estimated and θ̂ML its ML estimate:

V ar(θ̂ML) = [I(θ̂ML)
−1]

= (−E[H(θ̂ML)])
−1

=

(
−
[
∂2lnL(θ)
∂θ∂θ′

]
θ=θ̂ML

)−1

.

H(θ̂ML) is the Hessian matrix, i.e., the matrix of second derivatives of the likelihood L with respect to the parameter
θ, evaluated in θ̂ML. The second derivatives of the observed-data log-likelihood are obtained by numerical differen-
tiation (Meng and Rubin, 1991). The standard error of each estimator is just the square root of this estimated variance
(King, 1989; Long and Long, 1997).

3. Simulation study. In this section, we retrace the simulation study proposed in Masci et al. (2021b), to compare
the performances of the JMSPEM method with the ones of the MSPEM method. A categorical response variable
assuming K = 3 possible values is considered, where k = 1 is the reference category. Three different settings are
simulated: (i) one considering only a random intercept; (ii) one considering only a random slope; (iii) one considering
both random intercept and random slope4.

I = 100 groups of data are considered, where each group contains 200 observations5. Data are simulated in order to
induce the presence of three subpopulations regarding category k = 2, i.e. M2 = 3, and two subpopulations regarding
category k = 3, i.e. M3 = 2. In particular, for j = 1, . . . ,200 and i= 1, . . . ,100, the model is

πijk = P (Yij = k) =
exp(ηijk)

1 +
∑3

l=2 exp(ηijl)
for k = 2,3;

πij1 = P (Yij = 1) =
1

1+
∑3

l=2 exp(ηijl)
,(19)

where the linear predictor ηik = (ηi1k, . . . , ηi200k) is generated in the following ways6:

(i) Random intercept case (ηik = α1kx1i + α2kx2i + δik)

ηi2 =


+4x1i − 3x2i − 7 i= 1, . . . ,30

+4x1i − 3x2i − 4 i= 31, . . . ,60

+4x1i − 3x2i − 2 i= 61, . . . ,100

ηi3 =

{
−2x1i + 2x2i − 5 i= 1, . . . ,60

−2x1i + 2x2i − 2 i= 61, . . . ,100
(20)

(ii) Random slope case (ηik = α1k + α2kx1i + δikz1i)

ηi2 =


−1− 3x1i + 5z1i i= 1, . . . ,30

−1− 3x1i + 2z1i i= 31, . . . ,60

−1− 3x1i − 1z1i i= 61, . . . ,100

ηi3 =

{
−2 + 2x1i − 2z1i i= 1, . . . ,60

−2 + 2x1i − 6z1i i= 61, . . . ,100
(21)

4In Masci et al. (2021b), the authors make this choice since in the application for modelling student dropout, the model considers a 3-
categories response and only a random intercept. In the simulation study, they maintain the 3-categories response, to ease the reader, and,
besides the case (i) of a random intercept, they add the other two random effects cases, in order to show the method results in more complex
settings. They also include two covariates in the model (considered as both fixed or one random and one fixed) to be in line with the case study.

5The number of observations is allowed to be different across groups. Here, to facilitate the reader and without loss of generality, they are
taken equal across groups.

6Without loss of generality, we consider two covariates, simulating the case in which they are both fixed or one random and one fixed. The
choice of coefficients values is arbitrary: in this case, they are chosen in order to simulate different situations in which we obtain both balanced
and unbalanced categories.
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(iii) Random intercept and slope case (ηik = αkx1i + δ1ik + δ2ikz1i)

ηi2 =


−5x1i − 6 + 5z1i i= 1, . . . ,30

−5x1i − 4 + 2z1i i= 31, . . . ,60

−5x1i − 8− 1z1i i= 61, . . . ,100

ηi3 =

{
+2x1i + 1− 4z1i i= 1, . . . ,60

+2x1i − 1 + 2z1i i= 61, . . . ,100
(22)

Variables x1, x2 and z1 are normally distributed with mean equal to 0 and standard deviation equal to 1.
All the parameters used to simulate the data and the tuning parameters of the semiparamatric method are equal

to the ones in Masci et al. (2021b). In particular, we perform 100 runs of the JMSPEM algorithm for each of the
three settings shown in (20), (21) and (22). We fix Dk = 1 as threshold value for the support points collapse criterion
, for k = {2,3}, tollR = tollF = 0.01, itmax = 50 and it1 = 30 (see Appendix B in Masci et al. (2021b)
for the details). In all the runs, the JMSPEM algorithm converges in a number of iterations that ranges between
4 and 7, slightly quicker with respect to MSPEM, whose number of iterations ranges between 5 and 10. Table 1
compares the JMSPEM performances with the MSPEM ones, reporting the number of runs out of 100 in which the
two methods identify the simulated number of subpopulations (i.e. M2 = 3 and M3 = 2) and correctly assign groups
to the identified subpopulations, for all the three settings.

TABLE 1
JMSPEM and MSPEM methods performances across the 500 runs for each of the three cases. The first two columns report the number of runs
out of 500 in which the algorithms identify the correct number of subpopulations that are simulated in the data generating process (DGP) in

Eq. (20), (21) and (22); third and fourth columns report the number of runs out of the number of runs in which the algorithms identify M2 = 3
and M3 = 2 (reported in the first two columns) in which the algorithms correctly assign each group to the correspondent subopulation.

# runs in which the method # runs in which the method correctly
identifies M2 = 3 and M3 = 2 classifies all groups into subpopulations

MSPEM JMSPEM MSPEM JMSPEM

(i)Random intercept
473 out of 500 480 out of 500 470 out of 473 471 out of 480

case
(ii) Random slope

453 out of 500 452 out of 500 427 out of 453 452 out of 452
case

(iii) Random intercept
422 out of 500 460 out of 500 315 out of 422 400 out of 460

and slope case

Except for the case (ii), the JMSPEM algorithm correctly identifies the simulated number of subpopulations and
classifies groups into these subpopulations in a higher number of runs with respect to the MSPEM algorithm. In the
random slope case, the two methods identifies the correct number of subpopulations with approximately the same
incidence, but the JMSPEM algorithm shows a better performance in assigning groups to these identified subpopula-
tions.

Table B1 reports the results of the JMSPEM estimated coefficients in the three different settings. Descriptive
statistics about estimated fixed effects coefficients are computed on the total number of runs, while random effects
ones are computed only on the runs in which the estimated number of subpopulations corresponds to the simulated
one (that is the majority of the cases). Note that, when the algorithm identifies a higher number of subpopulations with
respect to the simulated ones, it simply splits a subpopulation into two or more subpopulations, but the fixed effects
coefficients estimates do not result to be affected by the number of subpopulations identified in the data. Estimates
result to be very accurate, both for fixed and random effects, and their variability across runs is substantially low. Table
B1 in Appendix reports the MSPEM estimated parameters. Compared to MSPEM, the JMSPEM method produces
more precise and stable estimates. We observe a 93.55%, 64.12% and 51.43% decrease in the mean estimation
error, for the three settings, respectively. Moreover, given that the ML estimates in multinomial regression are only
asymptotically unbiased, we expect the performance of the algorithm to increase when the number of observations
increases (Masci et al., 2021b).

All details about the tuning parameters and insights about how to identify their best choice can be found in Masci
et al. (2019) and Masci et al. (2021b).
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TABLE 2
Fixed and random effects coefficients estimated by JMSPEM algorithm in the three different settings. Estimates are reported in terms of mean

± sd, computed on the 500 runs of the simulation study for the fixed effects coefficients and on the runs in which the algorithm identifies
M2 = 3 and M3 = 2 (reported in Table 1) for the random effects ones. In order to ease the comparison with the DGPs, True Values (TV) of

the coefficients used to simulate data are reported under the relative estimates.

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = 4.002± 0.085 α̂22 =−2.998± 0.080
b̂12 =−7.009± 0.152 ŵ12 = 0.300

b̂22 =−4.006± 0.084 ŵ22 = 0.300

b̂32 =−2.012± 0.061 ŵ32 = 0.400

TV =+4 TV =−3 TV = (−7,−4,−2) TV = (0.3,0.3,0.4)

k=3
α̂13 =−1.994± 0.038 α̂23 = 2.005± 0.037

b̂13 =−5.016± 0.091 ŵ13 = 0.599

b̂23 =−2.004± 0.048 ŵ23 = 0.401

TV =−2 TV =+2 TV = (−5,−2) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by JMSPEM algorithm for the DGP in Eq. (20).

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 =−0.993± 0.038 α̂22 =−2.963± 0.079
b̂12 = 4.964± 0.143 ŵ12 = 0.300

b̂22 = 1.946± 0.053 ŵ22 = 0.301

b̂32 =−1.017± 0.052 ŵ32 = 0.399

TV =−1 TV =−3 TV = (+5,+2,−1) TV = (0.3,0.3,0.4)

k=3
α̂13 =−1.873± 0.029 α̂23 = 1.859± 0.049

b̂13 =−1.699± 0.156 ŵ13 = 0.600

b̂23 =−5.307± 0.289 ŵ23 = 0.400

TV =−2 TV =+2 TV = (−2,−6) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by JMSPEM algorithm for the DGP in Eq. (21).

α̂k b̂1mkk b̂2mkk ŵmkk

k=2 α̂2 =−5.007± 0.125
b̂112 =−5.982± 0.057 b̂212 = 5.032± 0.146 ŵ12 = 0.300

b̂122 =−4.459± 0.118 b̂222 = 1.827± 0.136 ŵ22 = 0.300

b̂132 =−8.011± 0.129 b̂232 − 1.147± 0.097 ŵ32 = 0.400

TV =−5 TV = (−6,−4,−8) TV = (+5,+2,−1) TV = (0.3,0.3,0.4)

k=3
α̂3 = 2.021± 0.048

b̂113 = 0.836± 0.047 b̂213 =−3.742± 0.092 ŵ13 = 0.600

b̂123 =−0.917± 0.044 b̂223 = 2.139± 0.165 ŵ23 = 0.400

TV =+2 TV = (+1,−1) TV = (−4,+2) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by JMSPEM algorithm for the DGP in Eq. (22).
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Extending the approach presented in Masci et al. (2021b) into our multivariate setting, we evaluate the uncertainty
of classification of groups into subpopulations by measuring, for each group, the normalised entropy of the condi-
tional weights distribution. By looking at the 3−dimensional array W , we evaluate the uncertainty of classification of
each group into one of the Mtot (K − 1)−variate subpopulations. Contrary to MSPEM, that considers the marginal
conditional weights matrices Wk, for k = {2, . . . ,K}, to compute the response category-specific uncertainty of clas-
sification, by looking at the K−dimensional array W we compute the global uncertainty of classification of each
group, with respect to all response categories. The normalised entropy of each first-dimension i of the array W is
computed as the entropy Ei = −

∑Mtot

m=1Wim ln(Wim) divided by the maximum possible entropy value relative to
Mtot subpopulations, i.e. − ln(1/Mtot). We recall that the lowest level of uncertainty is reached when the algorithm
assigns a group to a bivariate subpopulation m, with probability 1; in this case, the normalised entropy of the group
would be equal to 0. On the opposite, the highest level of uncertainty is reached when the distribution of the con-
ditional weights of a group i is uniform on the Mtot subpopulations (Wim = 1/Mtot for m=1, . . . ,Mtot), which
corresponds to an entropy Ei = − ln(1/Mtot), and, therefore, to a normalised entropy equal to 1. The normalised
entropy constitutes also a driver for the choice of the tuning parameters Dk (details in Masci et al. (2021b)). Figure 1
reports the distribution of the normalised entropy of Wi, for i= 1, . . . , I , for the three simulated cases, mediated on
the runs in which the JMSPEM algorithm identifies M2 = 3 and M3 = 2.

Fig 1: Boxplots of the normalised entropy of W , measured for each group, obtained by mediating the entropy in the
runs in which the algorithm identifies M2 = 3 and M3 = 2, for the random intercept case (a), random slope case (b)

and random intercept and slope case (c).

(a) Random intercept case (b) Random slope case (c) Random intercept and slope case

We observe that the entropy level is always very low (considering that maximum normalised entropy is 1), suggesting
that, for the simulated data, the JMSPEM algorithm clearly distinguishes the presence of patterns within the data. The
normalised entropy computed on the runs in which the algorithm identifies a higher number of subpopulations is, as
expected, higher: since the algorithm estimates two very close subpopulations instead of the single simulated one, it
does not clearly distinguish the belonging of groups into these subpopulations.

4. Case study: University student dropout across engineering degree programmes. The main novelty in-
troduced by the JMSPEM algorithm is twofold. The former regards the ability to take into account and model the
correlation structure across response category-specific random effects; the latter regards the positioning of the method
in a tailored inferential framework.

In order to test and evaluate these aspects in a real data example, we reproduce the case study presented in Masci
et al. (2021b) and we compare our results with the ones obtained by both the MSPEM and the parametric MCM-
Cglmm methods.

4.1. Data and model setting. The case study consists in the application of the method to data about Politecnico di
Milano (PoliMI) students, in order to classify different profiles of engineering students and to identify subpopulations
of similar degree programmes. The authors in Masci et al. (2021b) consider the concluded careers of students enrolled
in 19 engineering programmes of PoliMI in the academic year between 2010/2011 and 2015/2016. The dataset
considers 18,604 concluded careers of students nested within 19 engineering degree programmes (the smallest and
the largest degree programmes contain 341 and 1,246 students, respectively). 32.7% of these careers is concluded
with a dropout, while the remaining 67.3% regards graduate students. The response variable regards the status of the
concluded career that can be classified as:
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• graduate - occurs when the student concludes his/her career obtaining the bachelor degree (67.3% of the sample);
• early dropout - occurs when the student drops within the 3rd semester after the enrolment (16.2% of the sample);
• late dropout - occurs when the student drops after the 3rd semester after the enrolment (16.5% of the sample).

The distinction between the two types of dropout is motivated by the interest in distinguishing the determinants that
drive them, that might be structurally different and approached by different mitigation strategies.

Regarding student characteristics, besides the status of the concluded career and the degree programme the student
is enrolled in, the number of European Credit Transfer System credits (ECTS), i.e. the credits he/she obtained at the
first semester of the first year of career (the variable has been standardized in order to have 0 mean and 1 sd) and
his/her gender (the sample contains 22.3% females and 77.7% males) are considered7. Table 3 reports the variables
considered in the analysis with their explanation. For further information on the original dataset and the preprocessing
phase please refer to Masci et al. (2021b).

TABLE 3
List and explanation of variables at student level to be included in the model (Masci et al., 2021b)

Variable Description Type of variable

Status Status of concluded career 3-levels factor (G = graduate; D1 = early dropout; D2
= late dropout)

Gender gender of the student binary (Male=0, Female=1)

TotalCredits1.1 number of ECTS obtained by the student during the
first semester of the first year

continuous

DegProg Degree programme the student is enrolled in 19-levels factor

The modelling proposed is the following. For each student j, for j = 1, . . . , ni, nested within degree programme i,
for i= 1, . . . , I (with I = 19), the mixed-effects multinomial logit model takes the form:

(23) Yij =


Graduate πij1

Early dropout πij2

Late dropout πij3

,

where

(24) πijk = P (Yij = k) =
exp(ηijk)

1 +
∑3

k=2 exp(ηijk)
for k = 1, . . . ,3

and

(25) ηijk =

{
x′
ijαk + δik k = 2,3

0 k = 1
.

Yij corresponds to the student Status (Graduate is the reference category); xij is the 2−dimensional vector of fixed
effects covariates, that contains student Gender and
TotalCredits1.1; αk is the 2-dimensional vector of fixed effects coefficients relative to the k−th category; and
δik is the random intercept relative to the i−th degree programme (DegProg) and to the k−th category.

Given the data setting and model formulation presented in Eq.s (23, 24, 25) , we apply the JMSPEM algorithm to
PoliMI data and we compare the results with the ones obtained by applying the MSPEM algorithm and the parametric
MCMCglmm method. The aim of the study is to model the probability of being early or late dropout student, with
respect to being a graduate one, given student characteristics and early career information, and considering the nested
structure of students within the 19 degree programmes. Both MSPEM and JMSPEM algorithms, by assuming discrete
random effects, identify subpopulations of degree programmes, depending on their effects on early and late dropout
probability, while the MCMCglmm algorithm, by assuming Gaussian random effects, identifies a ranking of degree
programmes.

The MSPEM algorithm assumes the two effects of each degree programme on early and late dropout probability
to be independent, while in the JMSPEM algorithm, we assume there is an unknown dependence structure.

7In Masci et al. (2021b), the authors state that only information at the first semester of career is used because it is observable for all students
(either dropout or graduate) and it allows to predict student dropout as soon as possible, i.e. at the beginning of the student career.
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4.2. JMSPEM results. We run the JMSPEM algorithm with the same parameters setting chosen in Masci et al.
(2021b): tollR=tollF=10−2, itmax=60, it1=20, w̃ = 0 and Dk = 0.3, for k = 2,3. The algorithm converges in
9 iterations and identifies 5 supopulations for both categories k = 2 (early dropout) and k = 3 (late dropout). Tables 4
and 5 report the estimated model parameters and the distributions of the 19 degree programmes across the identified
subpopulations, respectively.

TABLE 4
Fixed and random effects coefficients estimated by JMSPEM algorithm for student dropout prediction. Standard errors of the estimates are

reported in brackets. Asterisks denote different levels of significance: . 0.01 < p-val < 0.1; * 0.001 < p-val < 0.01; ** 0.0001 < p-val < 0.001;
*** p-val < 0.0001.

α̂1k α̂2k b̂mkk ŵmkk

(Gender) (TotalCredits1.1) (random intercept DegProg) (weight)

k=2 α̂12 = 0.014(0.0609) α̂22 =−2.684∗∗∗(0.0218)

b̂12 =−3.504(0.0780) ŵ12 = 0.100

b̂22 =−3.023(0.0710) ŵ22 = 0.167

b̂32 =−2.485(0.0385) ŵ32 = 0.291

b̂42 =−2.138(0.0537) ŵ42 = 0.391

b̂52 =−1.728(0.0429) ŵ42 = 0.051

k=3 α̂13 =−0.577∗∗∗(0.0606) α̂23 =−1.907∗∗∗(0.0211)

b̂13 =−2.491(0.1001) ŵ13 = 0.147

b̂23 =−1.950(0.0566) ŵ23 = 0.173

b̂33 =−1.601(0.0386) ŵ33 = 0.321

b̂43 =−1.245(0.0519) ŵ43 = 0.144

b̂53 =−0.903(0.0430) ŵ53 = 0.215
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TABLE 5
Distribution of the 19 degree programmes across the 5 identified subpopultions relative to k = 2,3. For each k, subpopulations are ordered

from 1 to 5 coherently with the estimated coefficients reported in Table 4.
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Focusing on the random effects, last two columns in Table 4 report, for each k, the random intercepts associated
to the five subpopulations with their weights, ordered increasingly. The JMSPEM algorithm identifies Biomedical
Engineering as the degree programme in which students are more likely to early drop, all else equal, while Civil
and Environmental engineering and Environmental and Land Planning engineering result to be the ones in which
students tend to early drop less than the others, all else equal (Table 5). These two subpopulations have relatively
lower weights with respect to the other three subpopulations, that represent the majority of the sample, and, conse-
quently, are interpreted as the ones containing three degree programmes with anomalous behaviors. For late dropout,
degree programmes are more uniformly distributed across the five subpopulations, starting from Subpopulation 1,
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that contains the three degree programmes associated to the lowest late dropout probability, until Subpopulation 5,
that contains the four degree programmes associated to the highest late dropout probability.

We evaluate the uncertainty of classification by measuring, for each degree programme i = 1, . . . ,19, the nor-
malised entropy of the conditional weights, computed as Ei = −

∑Mtot

m=1Wim ln(Wim) divided by the maximum
possible entropy value relative to Mtot subpopulations, i.e. − ln(1/Mtot), where Mtot = 5× 5 = 25. Mean and me-
dian of the 19 normalised entropy distribution are 0.0785 and 0.0426, respectively, while minimum and maximimum
values are 0.0002 and 0.2681,respectively, indicating a low level of uncertainty of classification.

Besides the support points and relative weights of the two marginal discrete distributions of random-effects B2

and B3 reported in Table 4, we estimate their variance-covariance matrix, the correlation between B2 and B3 and
the VPCs. Given the estimated support points bmkk, for mk = 1, . . . ,Mk and k = {2,3}, and relative weights, the
variance σ2

rk of the two marginal distributions of random effects can be computed, thanks to the Eve’s law, as

(26) σ2
rk = V ar[Bk] =E[V ar[Bk|(b1k, . . . , bMkk)]] + V ar[E[Bk|(b1k, . . . , bMkk)]],

where

E[V ar[Bk|(b1k, . . . , bMkk)]] =

=E[B2
k|(b1k, . . . , bMkk)]− (E[Bk|(b1k, . . . , bMkk)])

2 =

=

Mk∑
mk=1

b2mkk ×wmkk −

(
Mk∑

mk=1

bmkk ×wmkk

)2

and, assuming bmkk, for mk = 1, . . . ,Mk, to be independent

V ar[E[Bk|(b1k, . . . , bMkk)]] =

= V ar

[
Mk∑

mk=1

bmkk ×wmkk

]
=

=

Mk∑
mk=1

V ar[bmkk]×w2
mkk.

For k = {2,3}, by summing up these two quantities in Eq. (26), we obtain

σ2
r2 = 0.2275 + 0.0146 = 0.2421

and

σ2
r3 = 0.2603 + 0.0006 = 0.2609.

In order to compute the covariance, we refer to the estimated 5× 5-matrix of joint weights w 8:

w=


0.0947 0.0049 0 0 0
0.0526 0.1130 0.0013 0 0

0 0.0044 0.1167 0.1355 0.0348
0 0.0511 0.1524 0.0081 0.1797
0 0 0.0508 0 0

 .
Thanks to this quantity, we can compute the covariance between B2 and B3 as:

Cov(B2,B3) =E[B2B3]−E[B2]E[B3] =

=

M2×M3∑
m=1

wm × bm2 × bm3 −

(
M2∑

m2=1

wm22 × bm22

)
×

(
M3∑

m3=1

wm33 × bm33

)
=

= 4.1553− (−2.5024)× (−1.5916) = 0.1725.

8Rows and columns refer to the support points as ordered in Table 4, for k = {2,3}, respectively.
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The variance-covariance matrix of B is, therefore,

V ar(B2,B3) =

0.2421 0.1725

0.1725 0.2609


and the correlation between B1 and B2 is 0.6863, that is in line with what we expected by looking at Panel (a) in
Figure 2.

To measure the significance of the random-effects estimated by JMSPEM, we compute the VPC relative to each
logit. For each k = {2,3}, the portion of the total variability in the response explained by the latent structure identified
at the degree programmes level is

V PCk =
σ2
rk

σ2
rk × π2/3

,

that corresponds to V PC2 = 0.06857 and V PC3 = 0.07348, respectively. For both early and late dropout, about 7%
of the total variability is explained by the subpopulations structure. Results of MCMCglmm provide V PC2 = 0.0906
and V PC3 = 0.1091.

4.3. Comparison between JMSPEM, MSPEM and MCMCglmm. For comparing JMSPEM results with the ones
obtained by applying MSPEM and MCMCglmm algorithms to this case study, we report in Appendix fixed and ran-
dom effects estimates of the two alternative methods. Starting from fixed effects, Tables A1 and A2 in Appendix
report the fixed effects coefficients estimated by MSPEM and MCMCglmm, while first two columns in Table 4 report
JMSPEM fixed-effects estimates. Results of the three methods are comparable: MSPEM and JMSPEM estimated
coefficients are very close to each other and coherent with the MCMCglmm ones. Furthermore, the significant coeffi-
cients estimated by JMSPEM and MCMCglmm are the same. MSPEM algorithm does not include any measurement
of standard errors or coefficients significance. In particular, both JMSPEM and MCMCglmm show that females have,
on average, a lower probability of late dropout with respect to males, while no significant gender difference emerges
for early dropout, and that the number of credits obtained at the first semester is inversely proportional to the proba-
bility of both early and late dropout. Fixed effects result to be robust and invariant with respect to different random
effect assumptions.

Regarding the random effects, Tables A1 and A3 in Appendix report the MSPEM estimates. Comparing the sub-
populations identified by the two semi-parametric methods we notice some differences. Both MSPEM and JMSPEM
identify Biomedical engineering as the degree programme in which students are more likely to early drop. For late
dropout, both MSPEM and JMSPEM algorithms assign Civil and Environmental engineering and Environmental and
Land Planning engineering to the subpopulation associated to the highest late dropout probability. The remaining
of the distributions of degree programmes on the estimated subpopulations is more heterogeneous across the two
methods. What is also interesting to compare between MSPEM and JMSPEM results is the distribution of degree
programmes on the bivariate subpopulations, displayed in Figure 2. Each bubble size is proportional to the weight of
the bivariate subpopulation. From an interpretative point of view, Figure 2 helps us in comparing the effect of each de-
gree programmes with respect to early and late dropout. For JMSPEM, the distribution of the weights on the bisector
of the figure in Panel (a) suggests that, except for very few cases (e.g., Biomedical Engineering), degree programmes
effects are quite coherent between early and late dropout. On the opposite, the distribution of the weights of the bi-
variate subpopulations obtained by applying the MSPEM algorithm (Panel (b)) suggests that degree programmes in
which students are more likely to early drop are less likely to late drop and vice-versa. This result demonstrates that
different assumptions on the dependence structure across random effects distributions lead to relevant differences in
the estimates and in their interpretation.
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Fig 2: Distribution of the weights of the JMSPEM (panel (a)) and MSPEM (panel (b)) estimated bivariate
subpopulations. Bubble size is proportional to the number of degree programmes belonging to the subpopulations

couple. Image in panel (b) is taken from Masci et al. (2021b).

(a) JMSPEM degree programmes
distribution across subpopulations.

(b) MSPEM degree programmes
distribution across subpopulations.

Regarding the comparison with the parametric MCMCglmm approach, Figure 3 shows the rankings of the esti-
mated random intercepts, with their confidence intervals, for early (Panel (a)) and late dropout (Panel (b)), respec-
tively. In order to ease the comparison with JMSPEM results, we annotated the subpopultion number, estimated by
JMSPEM, alongside the degree programmes names. The JMSPEM subpopulations and the MCMCglmm rankings are
extremely coherent. The same does not holds for the MSPEM results. Figure A1 in Appendix shows the same MCM-
Cglmm ranking, alongside which are reported the Subpopulations estimated by MSPEM algorithm (Masci et al.,
2021b): the matching between the ranking and the subpopulations is less precise.

Fig 3: Panels (a) and (b) show the ranking of the MCMCglmm estimated intercepts with their confidence intervals
relative to the 19 degree programmes, for k=2 (Early dropout) and k=3 (Late dropout), respectively. Alongside

degree programmes names, we report subpopulations indexes estimated by JMSPEM algorithm. Colours are only
intended to help in the visualization.

(a) Degree programmes intercepts for Early Dropout (b) Degree programmes intercepts for Late Dropout
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Lastly, we evaluate and compare the goodness of fit of the three methods, by computing their relative misclassifi-
cation tables (Table 6).

TABLE 6
Misclassification tables relative to JMSPEM (left tabular), MSPEM (central tabular) and MCMCglmm (right tabular) predictions, expressed

in percentages.

obs D1 obs D2 obs G

pred D1 0.099 0.060 0.018
pred D2 0.033 0.043 0.014
pred G 0.032 0.064 0.637

obs D1 obs D2 obs G

pred D1 0.095 0.063 0.019
pred D2 0.035 0.038 0.017
pred G 0.032 0.066 0.635

obs D1 obs D2 obs G

pred D1 0.100 0.058 0.018
pred D2 0.032 0.047 0.017
pred G 0.030 0.061 0.637

Error rates are 22.1% for JMSPEM, 21.6% for MCMCglmm and 23.3% for MSPEM, respectively. As noted in
Masci et al. (2021b), we expect the MCMCglmm to have the best fit, since it estimates a single random effect for
each degree programme (and, therefore, it fits the data ‘deeply’). JMSPEM error rate is lower than the MSPEM
one and it is very close to the MCMCglmm one, suggesting that the identified subpopulations catch almost the
entire heterogeneity across degree programmes effects. This is somehow expected since JMSPEM and MCMCglmm
modellistic assumptions are more flexible and less strict with respect to MSPEM ones, leading to a better capacity to
model the real dynamics within the data.

Given the high predictive performance and the matching with the parametric approach, the JMSPEM algorithm
proves to produce precise and reliable estimates.

5. Concluding remarks and future perspectives. In this paper, we propose a mixed-effects model with discrete
random effects for an unordered multinomial response, together with a suitable inferential framework. Estimates of
parameters are obtained through an Expectation-Maximization algorithm, called JMSPEM. The proposed method
is an extension of the MSPEM algorithm presented in Masci et al. (2021b), in which we relax the independence
assumption across response categories. The JMSPEM algorithm consists in a semi-parametric approach that assumes
the response category-specific random effects to follow a discrete distribution with an a priori unknown number of
mass points, that are allowed to differ across response categories. With respect to the traditional parametric approach,
the JMSPEM algorithm constitutes a valid alternative, both from a computational and an interpretative point of view.
Indeed, the discrete distribution on the random effects allows to write the likelihood function as a weighted sum,
avoiding integration issues typical of parametric mixed-effects multinomial models, and, moreover, allows to identify
a latent structure of subpopulations at the highest level of grouping. With respect to the existing MSPEM algorithm,
that has been developed under the independence assumption across the response category-specific random effects
distributions, the JMSPEM algorithm, by relaxing this often too strict and unrealistic assumption, results to be a
more sophisticated and flexible method. Besides its potential to take into account and model more complex data
structures, the JMSPEM algorithm produces more accurate estimates and provides a measure of the significance and
the uncertainty of the estimates.

After describing the JMSPEM method, we reproduce the simulation study and the case study reported in Masci
et al. (2021b), in order to test and evaluate the performances of the JMSPEM algorithm, compared to the MSPEM
ones. In confirmation of what is expected from a theoretical point of view, taking into account the dependence struc-
ture that is naturally intrinsic within the data results to be a significant value added. Results of the simulations show
that JMSPEM produces very accurate estimates, with a reduced bias with respect to the MSPEM estimates. The
JMSPEM fitting and predictive power is also confirmed when applied to the real data example. In the context of pre-
dicting the types of concluded careers of Politecnico di Milano students, nested within different engineering degree
programmes, the JMSPEM algorithm proves higher predictive performance compared to MSPEM. Moreover, the esti-
mated subpopulations of degree programmes, that differ from the ones estimated by MSPEM, are extremely coherent
with the ranking obtained by applying the parametric MCMCglmm, proving the relevant effect that the assumption
on the random effects dependence structure has on the results.

This paper enters both in the literature about multinomial regression (Agresti, 2018) and in the one about mixed-
effects models with discrete random effects (Aitkin, 1999; Hartzel, 2000; Masci et al., 2019). The proposed method
contributes to both the streams but, at the same time, suffers from some of their typical criticalities. Given the pres-
ence of multiple logits, multinomial regression models are often treated as multivariate models and, in addition, the
likelihood function is such that its maximization in closed form is not feasible. These two aspects contribute to require
an important computing power and numerical methods for the maximization steps. For what concerns mixed-effects
models with discrete random effects, we believe that they are extremely useful in many different contexts of applica-
tion and that the research of a latent structure of subpopulations at the highest level of grouping is an innovative and
interesting way of analysing this level of the hierarchy. Their application to real data in which the cardinality of the
groups is very high and in which subpopulations are a posteriori explained can be extremely informative. Nonethe-
less, although these methods do not require to fix the number of subpopulations a priori but they estimate it together
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with the other parameters, this estimate is extremely sensitive to the choice of the threshold distance D. Some crite-
ria to choose D have been proposed in the literature (Masci et al., 2019, 2021b) but its choice is still sensitive and
impacting. For these reasons, future work will be devoted to the embedding of more efficient optimization algorithms
and to the development of a clear rule to drive the choice of the threshold distance D.

The JMSPEM algorithm can be applied to any classification problem dealing with an unordered categorical re-
sponse and hierarchical data, a context in which the statistical literature is still poor and quite challenging. Its exten-
sion to deal with ordinal responses could be a further interesting development.
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APPENDIX A: MSPEM AND MCMCGLMM ALGORITHMS RESULTS FOR THE POLIMI CASE STUDY

This section reports the results of the MSPEM algorithm and of the MCMCglmm method applied to PoliMI data
(Masci et al., 2021b). In particular, Table A1 reports the fixed and random effects coefficients estimated by MSPEM
algorithm for student dropout prediction; Table A2 reports fixed effects coefficients estimated by MCMCglmm algo-
rithm for student dropout prediction.

TABLE A1
Fixed and random effects coefficients estimated by MSPEM algorithm for student dropout prediction.

α̂1k α̂2k b̂mkk ŵmkk

(Gender) (TotalCredits1.1) (random intercept DegProg) (weight)

k=2 α̂12 =−0.153 α̂22 =−2.704

b̂12 =−2.841 ŵ12 = 0.482

b̂22 =−2.423 ŵ22 = 0.272

b̂32 =−2.096 ŵ32 = 0.193

b̂42 =−1.586 ŵ42 = 0.053

k=3 α̂13 =−0.685 α̂23 =−1.899

b̂13 =−2.152 ŵ13 = 0.210

b̂23 =−1.733 ŵ23 = 0.421

b̂33 =−1.219 ŵ33 = 0.262

b̂43 =−0.880 ŵ43 = 0.107

TABLE A2
Fixed effects coefficients estimated by MCMCglmm algorithm for student dropout prediction.

Variable name post.mean l− 95% CI u− 95% CI pMCMC

k=2
Intercept −2.552 −2.854 −2.269 < 0.001 ∗ ∗
Gender −0.027 −0.106 0.153 0.769
TotalCredits1.1 −2.797 −2.884 −2.702 < 0.001 ∗ ∗

k=3
Intercept −2.354 −2.672 −2.049 < 0.001 ∗ ∗
Gender −0.634 −0.464 −0.802 < 0.001 ∗ ∗
TotalCredits1.1 −2.135 −2.198 −2.067 < 0.001 ∗ ∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Fig A1: Panels (a) and (b) report the MCMCglmm estimated intercepts with their confidence intervals relative to the
19 degree programmes for k=2 (Early dropout) and k=3 (Late dropout), respectively. Alongside the degree

programmes names, subpopulations indexes estimated by MSPEM algorithm are reported (Masci et al., 2021b).
Colours are only intended to help in the visualization.

(a) Degree programmes intercepts for Early Dropout (b) Degree programmes intercepts for Late Dropout

TABLE A3
Distribution of the 19 degree programmes across the 4 identified subpopultions relative to k = 2,3. For each k, the order of the 4

subpopulations is coherent to the one of the estimated random intercepts in Table A1.

Early dropout (k=2)

Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4

Aerospace Eng Civil Eng Chemical Eng Biomedical Eng
Civil and Environmental Eng Building Eng Materials and Nanot. Eng

Automation Eng Telecom. Eng Physics Eng
Industrial Production Eng Energy Eng Mathematical Eng

Electrical Eng Management Eng
Electronic Eng Eng of Computing Systems

Mechanical Eng
Environ. and Land Planning Eng

Late dropout (k=3)

Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4

Biomedical Eng Aerospace Eng Civil Eng Electronic Eng
Management Eng Chemical Eng Building Eng Eng of Computing Systems
Mathematical Eng Civil and Environmental Eng Automation Eng

Environ. and Land Planning Eng Materials and Nanot. Eng Telecom. Eng
Industrial Production Eng Electrical Eng

Energy Eng
Physics Eng

Mechanical Eng
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APPENDIX B: MSPEM RESULTS OF THE SIMULATION STUDY

TABLE B1
Table of fixed and random effects coefficients estimated by MSPEM algorithm in the simulation study, first presented in Masci et al. (2021b)
and reproduced in this paper. Estimates are reported in terms of mean ± sd, computed on the 500 runs of the simulation study for the fixed

effects coefficients and on the runs in which the algorithm identifies M2 = 3 and M3 = 2 (shown in Table 1 in Masci et al. (2021b) and here
reported in Table 1) for the random effects ones. In order to ease the comparison with the DGPs, True Values (TV) of the coefficients used to

simulate data are reported under the relative estimates.

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = 4.096± 0.081 α̂22 =−3.051± 0.053
b̂12 =−6.819± 0.182 ŵ12 = 0.300

b̂22 =−3.916± 0.109 ŵ22 = 0.300

b̂32 =−2.122± 0.099 ŵ32 = 0.400

TV =+4 TV =−3 TV = (−7,−4,−2) TV = (0.3,0.3,0.4)

k=3
α̂13 =−2.067± 0.046 α̂23 = 2.059± 0.034

b̂13 =−5.200± 0.089 ŵ13 = 0.599

b̂23 =−1.899± 0.048 ŵ23 = 0.401

TV =−2 TV =+2 TV = (−5,−2) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (20).

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 =−1.195± 0.039 α̂22 =−2.766± 0.085
b̂12 = 4.786± 0.121 ŵ12 = 0.300

b̂22 = 1.811± 0.071 ŵ22 = 0.301

b̂32 =−0.117± 0.134 ŵ32 = 0.399

TV =−1 TV =−3 TV = (+5,+2,−1) TV = (0.3,0.3,0.4)

k=3
α̂13 =−1.672± 0.039 α̂23 = 1.713± 0.051

b̂13 =−1.601± 0.057 ŵ13 = 0.600

b̂23 =−4.791± 0.210 ŵ23 = 0.400

TV =−2 TV =+2 TV = (−2,−6) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (21).

α̂k b̂1mkk b̂2mkk ŵmkk

k=2 α̂2 =−5.013± 0.098
b̂112 =−5.863± 0.236 b̂212 = 5.091± 0.195 ŵ12 = 0.300

b̂122 =−4.700± 0.129 b̂222 = 2.801± 0.119 ŵ22 = 0.300

b̂132 =−8.022± 0.237 b̂232 =−1.185± 0.079 ŵ32 = 0.400

TV =−5 TV = (−6,−4,−8) TV = (+5,+2,−1) TV = (0.3,0.3,0.4)

k=3
α̂3 = 1.977± 0.040

b̂113 = 0.739± 0.058 b̂213 =−3.651± 0.092 ŵ13 = 0.600

b̂123 =−0.888± 0.055 b̂223 = 2.419± 0.160 ŵ23 = 0.400

TV =+2 TV = (+1,−1) TV = (−4,+2) TV = (0.6,0.4)

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (22).
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