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Abstract

In this paper, we propose a full computational pipeline to simulate the
hemodynamics in the aorta including the valve. Closed and open valve
surfaces, as well as the lumen aorta, are reconstructed directly from medical
images using new ad hoc algorithms, allowing a patient-specific simulation.
The fluid dynamics problem that accounts from the movement of the valve
is solved by a new 3D-0D fluid-structure interaction model in which the
valve surface is implicitly represented through level set functions, yielding,
in the Navier-Stokes equations, a resistive penalization term enforcing the
blood to adhere to the valve leaflets. The dynamics of the valve between its
closed and open position is modeled using a reduced geometric 0D model.
At the discrete level, a Finite Element formulation is used and the SUPG
stabilization is extended to include the resistive term in the Navier-Stokes
equations. Then, after time discretization, the 3D fluid and 0D valve models
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are coupled through a staggered approach. This computational pipeline,
applied to a patient specific geometry and data, can reliably reproduce
the movement of the valve, the sharp pressure jump occurring across the
leaflets, and the blood flow pattern inside the aorta.

1 Introduction

In the context of computational fluid dynamics for the cardiovascular system (see
e.g. (Quarteroni, 2015; Formaggia et al, 2010; Peskin, 2002)) patient-specific sim-
ulations have become increasingly important (Caballero and Láın, 2013; Taylor
and Steinman, 2010): indeed, they can be used together with classical imaging
methods to perform diagnosis, to provide more insights in the study of the evo-
lution of pathologies, or to help in surgical procedure planning, e.g. to virtually
create alternative treatment strategies for a given patient.

In the whole cardiovascular system, the proximal aorta together with the
aortic valve is likely the most investigated environment (Caballero and Láın,
2013; Chandran and Vigmostad, 2013; Faggiano et al, 2013a; Conti et al, 2010a;
Pasta et al, 2013; Marom et al, 2013; Tse et al, 2011; Rinaudo and Pasta, 2014;
Wendell et al, 2013). The aorta is the main artery of the human body suppling
oxygenated blood and nutrients to all the components of the body. It originates
from the left ventricle of the heart and extends down to the abdomen. In its
first tract, it comprises the aortic root and the ascending aorta. The aortic
root includes: (a) three enlargements, the so called sinuses of Valsalva, classified
as left-coronary, right-coronary and non-coronary sinuses, (b) the fibrous aortic
annulus connecting the valve leaflets, the sinuses, and the ventricle, and (c) the
sinotubular junction (STJ) representing the region where the normal tubular
configuration of the aorta is attained. The left ventricle and the aortic root
are separated by the aortic valve which features three thin and flexible leaflets
shaped as curved triangles and attached to the fibrous aortic annulus, forming
with the latter a parabolic profile (Charitos and Sievers, 2013). The efficient
opening and closing of the aortic valve during the cardiac cycle guarantees the
appropriate circulation of blood flow from the left ventricle to the ascending
aorta, thus preventing regurgitation phenomena.

Other than focusing on the valve in physiological conditions, different stud-
ies were conducted to understand aortic pathologies; in this respect, we recall
computational studies of aortic diseases due to bicuspid aortic valve (Chandran
and Vigmostad, 2013; Faggiano et al, 2013a; Vergara et al, 2012; Conti et al,
2010a; Pasta et al, 2013; Marom et al, 2013; Bonomi et al, 2015), computational
investigations of valve prosthesis (Morganti et al, 2014; Auricchio et al, 2014,
2011; De Hart et al, 2003a; Nestola et al, 2016), and aortic aneurysms or dis-
section studies (Tse et al, 2011; Rinaudo and Pasta, 2014). Among these, some
studies aim at understanding the valve mechanics with a particular interest for
stresses internal to the valve leaflets and the aortic root (Morganti et al, 2014;
Auricchio et al, 2014, 2011; De Hart et al, 2003a; Marom et al, 2013; Conti et al,
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2010b), while other studies focus on the fluid dynamics in the aorta investigating
possible abnormalities trough appropriate indicators (Chandran and Vigmostad,
2013; Faggiano et al, 2013a; Vergara et al, 2012; Conti et al, 2010a; Pasta et al,
2013; Tse et al, 2011; Rinaudo and Pasta, 2014; Bonomi et al, 2015; Nestola
et al, 2016). In this work, we introduce a numerical method able to capture the
features of the blood flow through the first tract of the aorta. Since the flow field
strongly depends on the aortic valve function, the latter should be necessarily
included in our model. Indeed, the valve regulates the blood flow and plays an
important role in both physiological and pathological scenarios.

Our model for the valve characterization involves a three-dimensional (3D)
fluid-structure interaction (FSI) model accounting for the coupling between valve
dynamics and blood flow. Computational methods for FSI simulations of aortic
valve dynamics can be tentatively grouped into four categories: the approaches
based on the so called Arbitrary Lagrangian Eulerian (ALE) formulation (Chan-
dra et al, 2012; Cheng et al, 2004; Marom et al, 2013), those based on the
Immersed Boundary (IB) methods (Peskin, 1972; McQueen and Peskin, 2000;
Griffith, 2012), those based on Fictitious Domain (FD) formulations (van Loon
et al, 2006; De Hart et al, 2004, 2003b,a), and those based on hybrid formula-
tions (Ge and Sotiropoulos, 2007; Borazjani et al, 2010; Ge and Sotiropoulos,
2010; Le and Sotiropoulos, 2013; Kamensky et al, 2015). All of them require a
spatial discretization of the problem over a computational mesh. In the ALE
formulation, the computational mesh is deformed to follow the boundaries of
the fluid domain, in this case the aortic valve leaflets; however, this approach
requires frequent remeshing of the domain to deal with large mesh deformation
and involves topology changes when the valve opens and closes. In both IB and
FD methods the fluid is instead discretized in a fixed computational domain,
while the valve structure is discretized in a separate body-fitted mesh with the
coupling accounted either explicitly or implicitly by adding suitable forces at the
fluid/solid interface. In particular, for the IB method, the appropriate forces are
explicitly added to the fluid equation and distributed over all nodes of the fluid
mesh through a smoothed Dirac delta function (Peskin, 1972, 2002). An evo-
lution of the original method, in which the mesh is adaptively refined in the
proximity of the immersed boundaries, was applied to aortic valve simulations
in Griffith (2012). In the FD method the coupling between the fluid and the
solid problem is made through Lagrange multipliers (van Loon et al, 2006); the
method had been applied to simulate a trileaflet aortic valve at non-physiological
Reynolds numbers (Re = 900) and with symmetry assumption on the geometry
(De Hart et al, 2004, 2003b,a; Morsi et al, 2007). Finally, among the hybrid
formulations, we recall the Curvilinear Immersed Boundary (CURVIB) method
developed by Ge and Sotiropoulos (2007) which integrates structured curvilin-
ear boundary fitted grids with an IB method. The CURVIB method had been
applied to study trileaflet and bileaflet aortic valves with physiologic, pulsat-
ing flows, even if not in realistic aortas (Le and Sotiropoulos, 2013; Ge and
Sotiropoulos, 2010; Borazjani, 2013). Borazjani et al (2010) tested the method
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in a patient-specific anatomic aorta, even if only a simple mechanical bileaflet
valve has been simulated. Another recent method is the ALE/IB Immersogeo-
metric method proposed by Kamensky et al (2015) and Hsu et al (2014) which
combines a variational IB method and the traditional ALE technique. The au-
thors applied the method to a simplified aortic root geometry and valve leaflets
demonstrating promising abilities of the proposed strategy (Hsu et al, 2014).

A major challenge in trileaflet aortic valve FSI simulations is to capture the
coaptation between the leaflets of the valve during the closing phase. Most of
the previous methods have circumvented this problem by allowing the valve to
remain partially open (Kamensky et al, 2015; De Hart et al, 2003b; Borazjani,
2013). Astorino et al (2009) introduced an algorithm for calculating self-contacts
of thin structures inside a fluid domain using the FD formulation, which they
applied to aortic valve simulations, even if only for small values of diastolic
transvalvular pressure, specifically about 0.1 mmHg. Marom et al (2012) have
carried out 3D FSI simulations for an aortic valve with leaflet coaptation, by
coupling a Finite Element (FE) commercial code for the mechanics of the leaflets
with a commercial finite volume flow solver; however, only the final stages of the
valve closure in a simplified geometry has been successfully simulated.

Several challenges arise when using full 3D FSI models. They regard high
computational costs, handling of large displacements of the valve leaflets in the
aortic root, contact among the leaflets, and high pressure jumps across a closed
or nearly closed valve. At the numerical level, highly accurate, stable, and ro-
bust spatial and time discretization schemes must be used. For these reasons,
full 3D FSI models are nowadays mostly restricted to study valves in simplified
configurations possibly with simplified flow assumptions or only with a simpler
bileaflet mechanical valve. Indeed, to the best of our knowledge, a 3D FSI simu-
lation with trileaflet aortic valve and patient-specific aortic and valve geometry
has not been successfully pursuit yet.

Concerning the patient-specific studies of the fluid dynamics in the ascend-
ing aorta reported in literature, a full model of the valve is not even considered
when the focus is on valves pathologies (Faggiano et al, 2013a; Vergara et al,
2012; Della Corte et al, 2012; Pasta et al, 2013; Tse et al, 2011; Rinaudo and
Pasta, 2014; Bonomi et al, 2015; Nestola et al, 2016). Indeed, the valve is either
completely neglected (Tse et al, 2011; Nestola et al, 2016), or included as an
orifice at the inlet surface without the need of providing its detailed geometry
(Faggiano et al, 2013a; Vergara et al, 2012; Wendell et al, 2013), or embedded
as a set of fixed surfaces inside the aortic domain (Della Corte et al, 2012; Pasta
et al, 2013; Rinaudo and Pasta, 2014; Bonomi et al, 2015). In all these cases,
the adopted model describes only the open and closed states of the valve with-
out accounting for the intermediate positions between these two configurations.
Nevertheless, most of the above mentioned papers highlight the importance of
the inclusion of the valve in the model in terms of patient-specific valve orifice or
in terms of patient-specific valve leaflets. In particular, Faggiano et al (2013a),
Vergara et al (2012) and Wendell et al (2013) showed that the inclusion of the
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shape of the valve orifice determines the correct flow pattern in the vessel, high-
lighting also the influence of the area of the orifice. Della Corte et al (2012)
stressed the importance to include the leaflets surfaces in the fluid simulations,
reporting that cusp opening restrictions or asymmetries cause a modification to
the physiological flow direction. A recent work of Bonomi et al (2015) highlights
how important the inclusion of fixed leaflets in the model is for the genera-
tion of specific helical flow patterns which otherwise could not have been fully
reproduced.

Based on the above considerations, we aim at providing a computational
method to study and numerically simulate the fluid dynamics in the aorta in-
cluding the valve leaflets and the aortic valve orifice for the whole cardiac cycle by
means of a reduced FSI model for the characterization of the interaction between
the blood flow and the valve leaflets. Specifically, we propose a new method for
the representation of the valve leaflets, which we name Resistive Immersed Im-
plicit Surface (RIIS) method. Indeed, our approach is based on the Resistive
Immersed Surface (RIS) approach, originally proposed in Fernández et al (2008)
to study a porous interface immersed in a fluid and lately used in Astorino et al
(2012) to model the aortic valve. However, in the original RIS approach, the
mechanics of the leaflets is neglected and the valve is replaced by two immersed
surfaces fixed in space describing the open and the closed valve, respectively.
The presence of two valve surfaces is taken into account in the momentum equa-
tion of the Navier-Stokes equations by adding a penalization term, specifically
a resistive term, which weakly enforces the blood to adhere to the leaflets. In
our approach, we extend the model of Fernández et al (2008) representing the
valve surfaces implicitly through a level set formulation for the leaflets. In this
way, the immersed surfaces are described analytically, thus avoiding the need of
discretizing them by a computational mesh. Moreover, we use our RIIS method
in a 3D-0D FSI reduced model for the interactions between the fluid and the
valve leaflets. We model the dynamics of the valve between its closed and open
position using a 0D model proposed by Korakianitis and Shi (2006) based on
a second order ordinary differential equation (ODE) with the leaflets angle as
the unique, dependent variable. In particular, the configuration of the valve
leaflets at each time instant depends on the flow rate and the pressure field
in the aorta and in the left ventricle as forcing terms of the 0D valve model.
This is achieved through a reduced fully coupled 3D-0D FSI model where the
Navier-Stokes equations for the blood flow are coupled to the ODE representing
the valve dynamics. The leaflets position affects the momentum equation of the
Navier-Stokes equations by means of the resistive term, for which the valve is
described with implicit level set functions (RIIS); on the other side, the ODE
describing the dynamics of the valve receives as input the pressure jump across
the valve and the flow rate. Our reduced 3D-0D FSI model provides the motion
of the orifice and of the leaflets position at a limited computational cost with
respect to a full 3D FSI solver. Indeed, our model is solved in an Eulerian formu-
lation and in a fixed computational domain. A similar resistive Eulerian surfaces
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framework was firstly proposed by Laadhari and Quarteroni (2016). However,
in our work we propose a significantly different algorithm to couple the 3D fluid
and 0D valve models which allows to obtain realistic physiological results. For
the numerical approximation of the Navier-Stokes equations with the RIIS for-
mulation, we consider the FE method for which the approximate velocity and
pressure variables are built from Lagrangian polynomial basis functions of the
same degree. In order to obtain a stable formulation and to control numeri-
cal instabilities associated to the highly advective blood flow regime through the
valve, we consider and extend for the first time the SUPG stabilization (Bazilevs
et al, 2007; Forti and Dedè, 2015) to the Navier-Stokes equations with RIIS in
the framework of the variational multiscale method (VMS). Finally, in order to
deal with patient-specific cases, we develop a full computational pipeline start-
ing from medical images and ending with the numerical simulation results. In
particular, we propose a technique to segment both the aorta and the leaflets
from Computed Tomography images. The result of the segmentation of the
aorta is then transformed into a computational mesh, while we propose a new
interpolation strategy which allows to transform a point cloud description of the
patient-specific leaflets in an implicit level set function to be used in the RIIS
formulation. To summarize, in this work we first propose a new method for the
computational fluid dynamics in the aorta with the inclusion of the movement of
the valve leaflets and then we propose a computational pipeline that allows per-
forming such simulations in a patient-specific setting, for both aorta and aortic
valve leaflets.

The outline of the paper is as follows: in Section 2 the reduced 3D-0D FSI
model for the aortic valve is mathematically described, while in Section 3 its
numerical approximation is afforded; the generation of the aortic domain and the
patient-specific leaflets is presented in Section 4. In Section 5, the whole pipeline
is applied to a patient-specific dataset and numerical results on valve movement,
pressure and velocity fields are reported; conclusions follow in Section 6.

2 Mathematical Modeling

In this section, we describe the RIIS model, we adapt it to describe the fluid
dynamics of the Aortic Valve (AV-RIIS model), we recall the 0D model based
on ODEs proposed by Korakianitis and Shi (2006) to compute the aortic valve
angle (AV-0D model), and finally we show our approach to couple the AV-0D
and the AV-RIIS models into the 3D-0D FSI model for the aortic valve.

2.1 The Resistive Immersed Implicit Surface (RIIS) Model

We describe the mathematical model adopted to represent a fluid in a general
domain with an immersed surface into it. In particular, first we recall the RIS
model (Fernández et al, 2008), then we describe the surface through an implicit
function, and finally we present our RIIS model.
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Given a fixed domain Ω ⊂ R
3 and an immersed surface Γ ⊂ Ω, the RIS

model introduced by Fernández et al (2008) consists in enriching the classical
Navier-Stokes equations with a penalization term in the conservation momentum
equation holding only on the immersed surface Γ. The RIS Eulerian formula-
tion for a generic incompressible homogeneous Newtonian fluid reads: find the
velocity u and the pressure p such that, for all t ∈ (0, T ):





ρ
∂u

∂t
− 2µ∇ ·D(u) + ρ(u ·∇)u

+∇p + δΓRΓ,ε(u− uΓ) = f in Ω

∇ · u = 0 in Ω

(1)

endowed with suitable initial and boundary conditions. We indicate with ρ the
density of the fluid, with µ its dynamic viscosity, and with D(u) the strain rate
tensor

D(u) =
∇u+∇Tu

2
. (2)

The corresponding Cauchy stress tensor, in case of Newtonian fluids, reads:

σ(u, p) = −pI + 2µD(u), (3)

where I is the identity tensor. The quantities δΓ, RΓ,ε and uΓ, all referring to
the immersed surface Γ, represent the “Dirac distribution” used to localize Γ in
Ω, a symmetric and positive second order tensor modeling its resistance, and the
velocity of Γ, respectively; at this stage, uΓ has to be referred as a data for the
fluid problem. For the sake of simplicity, we also assume that the boundary ∂Ω
of the domain is divided into two nonoverlapping subsets ∂ΩD and ∂ΩN such
that ∂Ω = ∂ΩD ∪ ∂ΩN where Dirichlet and Neumann boundary conditions are
assigned:

u = g on ∂ΩD × (0, T ),

σn = h on ∂ΩN × (0, T ),
(4)

respectively, for g and h given; problem (1) is endowed with the initial condition:

u(x, 0) = u0(x) in Ω, (5)

for some initial velocity u0. The symmetric tensor RΓ,ε was introduced in
Fernández et al (2008) to model fixed porous interfaces (for which uΓ = 0) and
in particular medical stent devices. In Astorino et al (2012) the same method
is used to model impermeable fixed surfaces (e.g. a fully open and fully closed
aortic valve), for which RΓ = RΓ I with the real valued function RΓ chosen
sufficiently large to weakly enforce the fluid velocity u to be small or nearly
zero in proximity of the surface Γ. In this paper, we generalize the latter case
for a moving immersed surface (i.e. uΓ 6= 0). Furthermore, we underline that
this method can be interpreted as a weak imposition of a no-slip condition on
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the immersed surface Γ, provided that suitable scalings with respect to the dis-
cretization parameters are introduced. For this reason, we select RΓ,ε = RΓ/ε I,
with ε > 0 a suitable length scale that we will later link to the FE mesh size. In
this way, we have RΓ/ε→ ∞ for ε→ 0, ensuring that u|Γ → uΓ.

By defining the Hilbert spaces V = {v ∈ [H1(Ω)]3 : v|∂ΩD
= g}, V0 =

{v ∈ [H1(Ω)]3 : v|∂ΩD
= 0}, and Q = L2(Ω) and by choosing v ∈ V0 and

q ∈ Q as test functions for velocity and pressure, respectively, we write the weak
formulation of problem (1)-(4) as follows: find u ∈ L2(R+;V )∩C0(R+; [L2(Ω)]3)
and p ∈ L2(R+;Q) such that, for all v ∈ V0 and q ∈ Q:





(
ρ
∂u

∂t
,v

)
+ a(u,v)

+ c(u,u,v) + b(v, p) = F (v)

−b(u, q) = 0,

(6)

where we denote with (·, ·) the scalar product in L2(Ω) and we define the
following forms and linear functionals: a : V × V → R, b : V × Q → R,
c : V × V × V → R, F : V → R such that:

a(u,v) := ã(u,v) + aΓ(u,v),

ã(u,v) :=

∫

Ω
2µD(u) : D(v) dx,

aΓ(u,v) :=
RΓ

ε

∫

Γ
(u− uΓ) · v dγ,

b(v, p) := −

∫

Ω
p∇ · v dx,

c(w,u,v) :=

∫

Ω
ρ
(
(w ·∇)u

)
· v dx,

F (v) :=

∫

Ω
f · v dx +

∫

∂ΩN

h · v dγ.

(7)

We notice that the form aΓ(u,v) is associated to the definition of the “Dirac
distribution” in Eq. (1), that is

〈δΓ(u− uΓ),v〉 =

∫

Γ
(u− uΓ) · v dγ, (8)

for all v ∈ V ; the method can be easily generalized to the case of N immersed
surfaces Γi by introducing the bilinear form aΓ,N (u,v) =

∑N
i=1RΓi

/εi
∫
Γi
(u −

uΓi
) · v dγ, for some {εi}

N
i=1.

Our approach consists in describing the immersed surface Γ as an implicit
surface (Osher and Fedkiw, 2001). This is made by exploiting two level set
functions ϕ,ψ : Ω → R and combining them to implicitly describe the open
immersed surface Γ as:

Γ = {x ∈ Ω : ϕ(x) = 0 and ψ(x) ≤ 0} . (9)
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Figure 1: The two level set functions: a 2D schematic example of the description
of the immersed surface Γ through the level set functions ϕ and ψ (left); the
application to the description of the aortic valve, the values of the distance
function ϕ imaged on a slice (right).

A graphical sketch of the idea is shown for a 2D case in Figure 1, left. The use
of two level set functions allows to model an open immersed surface. The first
level set function ϕ is used to identify the immersed surface Γ as a part of its
zero-level; the auxiliary level set function ψ is used to cut the zero-level of ϕ in
order to obtain the final open surface Γ. Furthermore, we require that the level
set function ϕ is a signed distance function (for which |∇ϕ| = 1). In this way,
we ensure that the value of the function ϕ in Ω represents the signed distance
to the immersed surface Γ (Osher and Fedkiw, 2001). As example, we show in
Figure 1, right, the values taken by the distance function ϕ at a constant level
of the coordinate z, where Ω represents the aortic root and Γ is the open aortic
valve.

Now, we use the two level set functions ϕ and ψ to describe the immersed
surface Γ implicitly. First, we define a smooth Dirac function to approximate
the “Dirac distribution” δΓ as follows:

δε(ϕ) =

{(
1 + cos πϕ/ε

)
/2ε if |ϕ| ≤ ε,

0 if |ϕ| > ε.
(10)

In this manner, we have
∫ +∞
−∞ δε(ϕ) dϕ ≡

∫ +ε

−ε
δε(ϕ) dϕ = 1. We observe that

the smoothing parameter ε is the same length scale of Eqs. (1) and (7) used
to weakly enforce the velocity u to adhere to uΓ on Γ through the resistive
approach. We obtain:

|Γ| =

∫

Ω
δΓ dx =

∫

Ω

(
1−H(ψ)

)
δε(ϕ) dx, (11)

where H is the Heaviside function:

H(ϕ) =

{
1 if |ϕ| ≥ 0,

0 if |ϕ| < 0,
(12)
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with the definition of Γ in Eq. (9) and the fact that ϕ is a signed distance function.
Therefore, we approximate the resistive term aΓ(u,v) of Eq. (7) as:

RΓ

ε

∫

Γ
(u− uΓ) · dγ

≃
RΓ

ε

∫

Ω

(
1−H(ψ)

)
δε(ϕ) (u − uΓ) · v dx,

(13)

the latter term being an approximation of RΓ

ε
〈δΓ(u−uΓ), v〉. This approxima-

tion allows to replace the surface integral on Γ with an integral in the whole
domain Ω. We remark that such approximation improves for ε → 0. Accord-
ing to this approach, one can describe a moving immersed surface by suitably
defining the level set functions ϕ and ψ as dependent on the time variable t
other than the spatial variable x. These features can be introduced in virtue
of the implicit definition of the immersed surface Γ and, for this reason, we
name our approach Resistive Immersed Implicit Surface (RIIS). More explicitly,
we redefine the bilinear form a(u,v) in Eq. (7) introducing the bilinear form
aRIIS(u,v) as:

a(u,v) := ã(u,v) + aRIIS(u,v),

aRIIS(u,v) :=

:=
RΓ

ε

∫

Ω

(
1−H(ψ)

)
δε(ϕ) (u − uΓ) · v dx.

(14)

2.2 The RIIS Model for the Aortic Valve (AV-RIIS)

We use the RIIS model to describe the blood flow through the aortic valve.
For this reason, we identify the domain Ω with the anatomical region composed
by the final part of the left ventricle, the aortic root, and the ascending aorta.
Hence, we split the boundary as: ∂Ω = ∂Ωwall ∪ ∂Ωin ∪ ∂Ωout, where the three
subsets of ∂Ω represent the lumen surface of the aorta, the inlet boundary in
the left ventricle, and the outlet boundary at the upper end of the ascending
aorta, respectively. In particular, we assume the inlet ∂Ωin and the outlet ∂Ωout

boundaries as the planar surfaces orthogonal to the centerline of the vessel, with
outward normals nin and nout, respectively. By recalling the notation of Eq. (4)
∂Ωwall = ∂ΩD and ∂Ωin ∪ ∂Ωout = ∂ΩN , we assign an homogeneous Dirichlet
condition on ∂Ωwall for the velocity and Neumann conditions both on the inlet
and the outlet boundaries to set the pressure:

u = 0 on ∂Ωwall × (0, T ),

σnin = pinnin on ∂Ωin × (0, T ),

σnout = poutnout on ∂Ωout × (0, T ),

(15)

where pin = pin(t) and pout = pout(t) are the pressure functions prescribed
according to physiological values.
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We define the two level set functions ϕ and ψ in order to represent the aortic
valve at each time t ∈ (0, T ). More in detail, through the level set functions
ϕop, ϕcl, ψop, ψcl : Ω → R, we represent the valve in the fully open (op) and
closed (cl) configurations; such functions are fixed in Ω and independent of time.
Indeed, the valve remains in one of these two configurations for almost the whole
cardiac cycle, except during its fast opening and closing stages. Moreover, we can
reconstruct these two configurations directly from medical images in a patient-
specific geometry (as will be outlined in Section 4), while it is basically impossible
to recover the level set functions for the intermediate valve configurations (during
the opening and closing stages). The configuration of the valve at each time is
then obtained by linearly interpolating the open and the closed ones as:

ϕ̃(x, t) = ϕ(x,K(t))

= K(t)ϕop(x) + (1−K(t))ϕcl(x),

ψ̃(x, t) = ψ(x,K(t))

= K(t)ψop(x) + (1−K(t))ψcl(x),

(16)

by means of a suitable time dependent interpolation function K : R → [0, 1], for
all t, that will be characterized later. Hence, the evolution in time of the two
level set functions ϕ and ψ depends only on the evolution in time of the function
K. Note that the two distance functions ϕop and ϕcl must use the same sign
convention, i.e. negative values within the aortic valve (where the blood flows
from the ventricle to the aortic root) and positive outside it.

Now, we define the velocity of the aortic valve uΓ. We observe that the
movement between its closed and its open position is mainly orthogonal to the
valve surface Γ. Thus, we assume the velocity of the valve uΓ to have the same
direction of the normal to the surface of the valve represented by ϕ. Therefore,
by exploiting the properties of the level set functions (Osher and Fedkiw, 2001)
and the fact that ϕ is also a signed distance function (|∇ϕ| = 1), we define the
velocity of the valve as:

ũΓ(x, t) = −
∂ϕ̃(x, t)

∂t
∇ϕ̃(x, t)

= −
∂ϕ(x,K)

∂K

dK(t)

dt
∇ϕ(x,K(t)).

(17)

Indeed, the vector ∇ϕ̃ is equivalent to the normal of the surface nΓ (positive
outside the aortic valve, coherently with the sign convention), while the scalar
function −∂ϕ̃/∂t is related to the magnitude of the velocity field ũΓ (Osher and
Fedkiw, 2001) since we assumed uΓ = (uΓ ·nΓ)nΓ. We notice that, if the valve
is opening, −∂ϕ̃/∂t is positive and the velocity ũΓ takes the same direction
and verse of the surface normal nΓ; on the contrary, if the valve is closing the
quantity −∂ϕ̃/∂t is negative and the velocity ũΓ takes the opposite verse of the
surface normal nΓ. Finally, by using the definition (16) of the distance function
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kp kf kb kv ϑmin ϑmax

5500 rad
s2 mmHg

50 s−1 2 rad
sm

7 rad
sm

5o 75o

Table 1: Parameters of the AV-OD model for the aortic valve angle
fromKorakianitis and Shi (2006).

ϕ, we express uΓ through the function K(t) as:

uΓ(x,K(t)) =
dK(t)

dt

(
ϕcl(x)− ϕop(x)

)

·
(
K(t)∇ϕop(x) + (1−K(t))∇ϕcl(x)

)
.

(18)

Eqs. (15), (16), and (18) determine our approach to apply the general RIIS
model to the Aortic Valve (AV-RIIS). In summary, we describe explicitly the
aortic valve in the open and closed configurations through ϕop and ϕcl, while
we obtain the intermediate configurations and the valve velocity uΓ through the
choice of a suitable function K(t); we outline our approach to determine K(t) in
Section 2.4.

2.3 The OD Model for the Aortic Valve Angle (AV-0D)

We exploit the 0D model proposed by Korakianitis and Shi (2006) for the aortic
valve (AV-0D model) to model in a realistic way its behavior during the cardiac
cycle. The AV-0D model consists in a ODE with the opening angle ϑ(t) of the
valve as dependent variable, for which the forces acting on the valve are modeled
by using the pressure in the left ventricle Plv, the pressure in the first section of
the ascending aorta Pao, and the flow rate in the ascending aorta Qao as:





d2ϑ(t)

dt2
+ kf

dϑ(t)

dt
=

= kp
(
Plv(t)− Pao(t)

)
cos

(
ϑ(t)

)

− kv sgn(Qao(t))Qao(t) sin
(
2ϑ(t)

)

+ kbQao(t) cos
(
ϑ(t)

)
∀t ∈ (0, T ),

ϑ(0) = ϑmin,

dϑ(0)

dt
= 0,

(19)

where sgn(·) is the sign function; kf , kp, kv , and kb are suitable valve parameters.
Since the aortic valve yields a fixed angle when totally open or closed, the model
also defines minimum ϑmin and maximum ϑmax angles leading to the constraint
ϑ(t) ∈ [ϑmin, ϑmax], for all t. The values of the parameters originally proposed in
(Korakianitis and Shi, 2006) for a physiological aortic valve are shown in Table
1.
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2.4 Coupling the AV-0D and the AV-RIIS Models

We now couple the (3D) AV-RIIS fluid dynamics model with the AV-0D valve
model. First, we define the relations between the pressure values Plv and Pao

and the flow rate Qao involved in the AV-0D model (19) and the pressure p and
the velocity u in the AV-RIIS 3D model as:

Plv(t) = |Ωlv|
−1

∫

Ωlv

p(x, t) dx,

Pao(t) = |Ωao|
−1

∫

Ωao

p(x, t) dx,

Qao(t) = −

∫

∂Ωin

u(x, t) · nin(x) dγ,

(20)

where Ωlv and Ωao are two suitable control volumes taken upstream the aortic
valve (i.e. in the proximity of the left ventricle base) and downstream (at the
initial section of the ascending aorta), respectively.

We now link the AV-RIIS model to the AV-0D model through the interpola-
tion function K(t) of Eq. (16). We introduce for this reason the concept of the
valvular plane Γvp, a fixed plane parallel to the annulus (Charitos and Sievers,
2013) used in radiology to track the dynamics of the valve and of its orifice. In
the AV-RIIS model, exploiting Γvp and the negative part of the distance function
ϕ of Eq. (16), we express the Orifice Area (OA) of the valve in terms of K as:

OA(K) =

∫

Γvp

χ{x:ϕ(x,K)<0} dγ, (21)

where χ is the characteristic function. Equivalently, we can define the orifice area
corresponding to the fully open valve, say OAmax, using the level set function
ϕop:

OAmax =

∫

Γvp

χ{x:ϕop(x)<0} dγ. (22)

Korakianitis and Shi (2006) introduced the Area Resistance (ARao) coefficient
representing the resistance to the blood flow through the orifice; in this AV-0D
model, ARao is dependent on the opening angle ϑ as:

ARao(ϑ) =

(
1− cos(ϑ)

)2

(1− cos(ϑmax))2
. (23)

We define the coefficient ÃRao as the opening fraction of the valvular orifice in
terms of K as:

ÃRao(K) :=
OA

(
K
)

OAmax
. (24)

Then, we findK such that: ÃRao(K) ≡ ARao(ϑ) for any given ϑ; this corresponds
to reinterpret the resistance to the blood flow introduced by Korakianitis and
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Shi (2006) as the fraction of opening of the valvular orifice. Since ÃRao depends

only on the function K, enforcing ÃRao(K) ≡ ARao(ϑ) couples the AV-0D and
the AV-RIIS models; more explicitly, we have the following nonlinear coupling
equation:

OA(K(t)) −ARao(ϑ(t))OAmax = 0 ∀t ∈ (0, T ). (25)

2.5 The Reduced 3D-0D FSI Model

We write now the fully coupled reduced 3D-0D FSI model: for all t ∈ (0, T ),
find u : Ω → R

3, p : Ω → R, ϑ ∈ [ϑmin, ϑmax], andK ∈ [0, 1] such that, for all
v ∈ V0 and q ∈ Q:

AV-RIIS





(
ρ
∂u

∂t
,v

)
+ ā(u,v,K)

+ c(u,u,v) + b(v, p) = F (v)

− b(u, q) = 0

AV-0D





d2ϑ

dt2
+ kf

dϑ

dt
=

= kp (Plv − Pao) cos(ϑ)

− kv sgn(Qao)Qao sin(2ϑ)

+ kbQao cos(ϑ)

coupling {OA(K) − ARao(ϑ)OAmax = 0,

(26)
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with initial conditions u(x, 0) = 0, ϑ(0) = ϑmin, and dϑ/dt(0) = 0 (for which
also K(0) ≡ 0), where:

ā(u,v,K) := ã(u,v) + āRIIS(u,v,K),

ã(u,v) =2µ

∫

Ω
D(u) : D(v) dx,

āRIIS(u,v,K) =
RΓ

ε

∫

Ω

(
1−H(ψ(K))

)

· δε(ϕ(K))(u − uΓ) · v dx,

ϕ(K) =Kϕop + (1−K)ϕcl,

ψ(K) =Kψop + (1−K)ψcl,

uΓ(K) =
dK

dt

(
ϕcl − ϕop

)

·
(
K∇ϕop + (1−K)∇ϕcl

)
,

b(v, p) = −

∫

Ω
p∇ · v dx,

c(w,u,v) = ρ

∫

Ω

(
(w ·∇)u

)
· v dx,

F (v) =

∫

∂Ωin

pinnin · v dγ

+

∫

∂Ωout

poutnout · v dγ,

Plv = |Ωlv|
−1

∫

Ωlv

p dx,

Pao = |Ωao|
−1

∫

Ωao

p dx,

Qao = −

∫

∂Ωin

u · nin dγ,

OA(K) =

∫

Γvp

χ{x:ϕ(x,K)<0} dγ,

ARao(ϑ) =

(
1− cos(ϑ)

)2

(1− cos(ϑmax))2
.

(27)

The coupled model of Eq. (26) is a reduced FSI model in the sense that the
movement of the aortic valve is described by means of a single variable, the
(idealized) opening angle ϑ through a 0D ODE.

3 Numerical Approximation

We focus on the numerical approximation of the fully coupled model (26). First,
we discretize the three submodels of the problem (26) separately.
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3.1 AV-RIIS Model: Space and Time Discretizations

The AV-RIIS model of Eq. (26) is discretized in space using the stabilized FE
method (Quarteroni, 2014) for which the approximated velocity and pressure
variables are built from Lagrangian polynomial basis functions of equal degree.
More formally, let Th be a tetrahedralization of our domain Ω ⊂ R

3 representing
the aortic root such that Ω =

⋃
T∈Th

T and h = max
T∈Th

(diam(T )). We introduce

the space:
Xr

h =
{
vh ∈ C0(Ω̄) : vh|T ∈ P

r, r ≥ 1, ∀T ∈ Th
}
, (28)

where we denote with P
r the finite dimensional space of polynomials of degree

r. We define the FE spaces for the velocity as V r
h = ([Xr

h]
3 ∩ V0) and for the

pressure as Qr
h = Xr

h ∩Q.
We consider the time discretization by means of Backward Differentiation

Formula (BDF) of a generic order σ = 1, 2, . . . and by adopting a semi-implicit
treatment for the nonlinear term, through equal order extrapolation (Gauthier
et al, 2004). In order to limit the computational burden of the spatial dis-
cretization we choose FE spaces V r

h and Qr
h, which are not inf-sup stable and

require a suitable stabilization. In order to obtain a stable formulation and to
control numerical instabilities associated to the highly advective flow regime in
the valve, we consider and extend to the AV-RIIS case the Streamline Upwind
Petrov Galerkin (SUPG) stabilization for the Navier-Stokes equations. Further-
more, as proposed by Forti and Dedè (2015) for time discretization based on the
BDF scheme, we set the SUPG parameters in a straightforward way following
the Variational Multiscale (VMS) concept (Bazilevs et al, 2007). More in de-
tails, after partitioning the time interval (0, T ) into time instants {tn}

N
n=0 equally

spaced by ∆t, we stabilize both the momentum and the continuity equation as
follows: for all n ≥ σ, assuming that Kn and un−i

h for i = 1, . . . , σ are given, we
find un

h ∈ V r
h and pnh ∈ Qr

h such that:

(
ρ
ασu

n
h − u

n,BDFσ
h

∆t
,vh

)
+ ā(un

h,vh,K
n)

+ c(un,σ
h ,un

h,vh) + b(vh, p
n
h) − b(un

h, qh)

+
(
τn,σM rnM (un

h, p
n
h), ρ(u

n,σ
h ·∇)vh +∇qh

)

−
(
τn,σC rnC(u

n
h), ∇ · vh

)
= F (vh)

(29)

for all vh ∈ V r
h and qh ∈ Qr

h, where ā(·, ·), b(·, ·), c(·, ·, ·), F (·) are defined in Eq.

(27) and ασ, u
n,BDFσ
h , and the extrapolated velocity u

n,σ
h depend on the order

σ of the BDF scheme; see (Forti and Dedè, 2015). The two terms rnM and rnC
represent the residuals of the momentum and continuity equations, the former
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including the RIIS term:

rnM (un
h, p

n
h) = ρ

ασu
n
h − u

n,BDFσ
h

∆t
− µ∆un

h

+ ρ
(
u
n,σ
h ·∇

)
un
h + ∇pnh

+
RΓ

ε

(
1−H(ψ(Kn))

)
δε(ϕ(K

n)) (un
h − un

Γ),

rnC(u
n
h) = ∇ · un

h,

(30)

while τn,σM and τn,σC are the stabilization parameters, set as:

τn,σM =

(
4ρ2

∆t2
+
ρ2

h2

∣∣un,σ
h

∣∣2 + Cr
µ2

h4

+
R2

Γ

ε2
(
1−H(ψ(Kn))

)2
δ2ε(ϕ(K

n))

)− 1

2

,

τn,σC =
h2

τn,σM

,

(31)

where Cr = 60 · 2r−2. We remark that, as in Forti and Dedè (2015), we extrapo-
late both the residual and the stabilization parameters in time according to the
BDF scheme. The stabilization parameters (31) strictly depend on the local spa-
tial discretization h and on the local velocity magnitude (Forti and Dedè, 2015).
Moreover, in our approach, τn,σM and τn,σC also depend on the resistive term and
its location in Ω through Γ; the choice of τn,σM is motivated by the presence of
the RIIS term in the momentum equation of the Navier-Stokes equations. Con-
cerning the RIIS term in ā(un

h,vh,K
n), we evaluate the two level set functions

ϕ and ψ at the current time using Kn and, coherently, we use a BDF scheme to
discretize the time derivative of K, as:

āRIIS(u
n
h,vh,K

n) =
RΓ

ε

∫

Ω

(
1−H(ψ(Kn))

)

· δε(ϕ(K
n)) (un

h − u
n,σ
Γ ) · vh dx,

u
n,σ
Γ =

ασKn −Kn,BDFσ

∆t

(
ϕcl − ϕop

)

·
(
Kn∇ϕop + (1−Kn)∇ϕcl

)
.

(32)

We remark that the level set functions ϕcl, ϕop, ψcl, and ψop are not discretized
in space, since we define them analytically (as described in Section 4); hence,
these can be evaluated directly at the quadrature nodes. Even if the described
method can be solved with an arbitrary order σ of the BDF scheme, we will
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adopt a second order scheme (BDF2, σ = 2) for which:

ασ = 3
2 ,

u
n,BDFσ
h = 2un−1

h − 1
2u

n−2
h ,

u
n,σ
h = 2un−1

h − un−2
h ,

Kn,BDFσ = 2Kn−1
h − 1

2K
n−2
h .

(33)

3.2 The Reduced 3D-0D FSI Model: Numerical Approximation

Given the initial condition u
j
h = 0 and ϑj = ϑmin (Kj = 0), for j = 0, . . . , σ− 1,

the numerical solution of the full system (26) consists in a staggered strategy
based on the semi-implicit discretization of the AV-RIIS model and an explicit
scheme for the AV-OD model: at each time instant tn for which n ≥ σ, given
Pn−1
lv , Pn−1

ao , Qn−1
ao , ϑn−1, un−i

h , Kn−i, i = 1, . . . , σ, we find un
h, p

n
h, ϑ

n and Kn

as follows:

1. find ϑn solving the AV-0D ODE in (26) with an explicit fourth order
Runge-Kutta method (Quarteroni et al, 2010), using ϑn−1, Pn−1

lv , Pn−1
ao ,

and Qn−1
ao ;

2. given ϑn, find Kn ∈ [0, 1] solving the nonlinear coupling equation (25)
using the bisection method; indeed, we reinterpret the equation as the root
finding of a nonlinear monotone function G in Kn such that G(0)G(1) ≤ 0
for all ϑn ∈ [ϑmin, ϑmax], where:

G(Kn) = OA(Kn)−

(
1− cos

(
ϑn

))2

(1− cos(ϑmax))2
OAmax; (34)

3. given Kn, find the solution of the discrete AV-RIIS model (un
h, p

n
h) solving

the linear system stemming from the semi-implicit formulation (29);

4. update Pn
lv, P

n
ao, and Q

n
ao using Eq. (20) and the computed solution (un

h, p
n
h)

of the AV-RIIS model.

4 Patient-Specific Modeling: Geometry and Bound-

ary Conditions

In this section, we focus on the patient-specific geometry reconstruction of the
aortic root and valve from medical images; first, we deal with a reference dataset
and then with the description of the methods used to reconstruct the aortic root
and lumen and the aortic valve leaflets. We describe our method by applying it
to the reference dataset without loss of generality. Similarly, it can be applied to
any other medical image provided the valve leaflets are at least partially visible
in their closed and open configurations.

18



Figure 2: Aortic lumen reconstruction: original diastolic 3D-CE-CT image
cropped in proximity of the region of interest (left), preprocessed image (center)
and reconstructed surface (right). The ascending aorta (AA), the left ventricle
(LV), the left atrium (LA), and the right (RC) and left (LC) coronary arteries
are indicated.

4.1 Patient Dataset

The data that we use correspond to a patient routinely referred to the Cardiac
Surgery Department of Ospedale Sacco, Milano, Italy. A Philips Brilliance CT
64-slice system is employed to perform a 3D Contrast Enhanced Computed To-
mography (3D-CE-CT) study with a slice thickness of 0.67mm, a slice spacing
of 0.33mm, a reconstruction matrix of 512 × 512 pixels, and a final resolution
of 0.45mm × 0.45mm × 0.33mm. The 3D-CE-CT images were acquired by a
retrospective ECG-gated protocol and 10 scan volumes were generated at dif-
ferent instants of the cardiac cycle. The International Review Broad approval
was obtained for the conduct of this study and the board waived the need for
patient consent.

4.2 Aortic Lumen Reconstruction

A surface model of the last part of the left ventricle, the aortic root, and the
ascending aorta is obtained from the medical images previously described. In
particular, we select a diastolic image from those available because this configu-
ration is assumed for the most part of the cardiac cycle (Figure 2, left). We use
a region-based segmentation technique named Connected Component Localiza-
tion of the Region-Scalable Fitting Energy originally proposed in Fedele et al
(2015). The method is based on the minimization of the Region Scalable Fitting
Energy through the Split-Bregman method as proposed in Yang et al (2010) and
incorporates an iterative Connected Component extraction. Since the method
depends on the image intensity values, we perform an image preprocessing to
enhance the contrast between the aorta vessel and the background and to delete
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the nearby organs with similar image intensity (Fedele et al, 2015) (Figure 2,
center). We highlight that we choose this method because of its ability to auto-
matically reconstruct in a single step and in a precise way the aortic root with
the Sinuses of Valsalva, the ascending aorta, and the aortic arch. The output
of the method is a triangulated surface representing the interface between the
vessel lumen and the arterial wall, see Figure 2, right.

4.3 Aortic Valve Reconstruction

We describe how to analytically define the two pairs of level set functions
(ϕcl, ψcl) and (ϕop, ψop) which represent the two valve configurations. Indeed, we
recall that, consistently with Eq. (9), we define the implicit surfaces representing
the closed valve Γcl and the open valve Γop as:

Γcl = {x ∈ Ω : ϕcl(x) = 0 and ψcl(x) ≤ 0} ,

Γop = {x ∈ Ω : ϕop(x) = 0 and ψop(x) ≤ 0} .
(35)

The general idea of our reconstruction method consists in selecting in the dias-
tolic and systolic images some sets of control points lying on the leaflets, and
then performing a polynomial fitting on each resulting cloud of points associated
either to Γcl or Γop; finally, such polynomials are combined in order to define an
expression for each level set function.

As a preliminary step, we semi-automatically rotate the 3D-CE-CT reference
system in order to have the z-axis growing distally and orthogonally to the
valvular plane, which in radiology is referred as the plane passing through the
aortic annulus (Charitos and Sievers, 2013). Choosing a reference system in this
way makes the valve leaflets more visible in a 3D-CE-CT image. We apply this
rotation to a diastolic image (the same used for the aortic surface reconstruction)
and a systolic image in which the leaflets are completely open; concerning the
systolic image, the transformation also takes into account for the misregistration
between the two acquisitions. In Figure 3, top, we show the closed and open
leaflets in a plane orthogonal to the z-axis of the new reference system (x, y, z).

The selection of control points and the polynomial fitting are performed in
a different manner for the two valve configurations. In the rest of this section,
we indicate with p the polynomial surfaces described as explicit functions of the
z coordinate (z = p(x, y)) and with P the corresponding implicit descriptions
(P (x) = P (x, y, z) = z−p(x, y)); also, we underline the degree of the polynomial
as subscript and the related leaflets as superscripts (L, R and N for the left, the
right and the non-coronary leaflet, respectively).

Closed valve. For each leaflet, we collect three sets of control points: in the
distal part, characterized by the region of leaflet coaptation (Figure 3, top-left),
we perform two first degree polynomial fittings, each one representing two at-
tached leaflets between two sinuses of Valsalva; instead, the proximal part, where
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R

Figure 3: View of the 3D-CE-CT medical image in planes parallel to the valvular
plane (top): diastolic image with the distal (top-left) and the proximal (top-
center) parts of the closed leaflets and systolic image with the open leaflets
(top-right). Three examples of clouds of control points with the corresponding
level set in transparency (mid): ϕL,cl (mid-left), ϕL,op (mid-center) and ψop

(mid-right). The reconstructed open (bottom-left) and closed (bottom-center)
leaflets superimposed to the 3D-CE-CT medical image and compared to each
other (bottom-right). The left coronary (L), the right coronary (R) and the
non-coronary (N) sinuses of Valsalva are indicated.

the leaflet is clearly separated from the others (Figure 3, top-center), is described
by a second degree polynomial. The existence of two clearly distinguishable re-
gions in the closed leaflet is physiological, as reported for example by Charitos
and Sievers (2013). As an example, in Figure 3, mid-left, we represent for the
left coronary leaflet the three clouds with different shapes of points: the trian-
gular and squared points, where two leaflets are attached to each other, lead to
the polynomials pNL

1 and pLR1 , respectively; the cloud made of circular points
leads to the second order polynomial pL2 . Consequently, we define the implicit
surfaces PNL

1 (x), PLR
1 (x) and PL

2 (x).

Open valve. For each open leaflet (Figure 3, top-right), we proceed as fol-
lows: first, as shown for the left coronary leaflet in Figure 3, mid-center, we
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collect a unique cloud of points and we repeat at greater z the points in the
final distal part of the leaflet; second, we rotate the coordinate system (x, y, z)
in order to have the z-axis orthogonal to the leaflet, defining a leaflet-specific
reference system; finally, we fit each set of points with an explicit fifth degree
polynomial and we find the corresponding implicit description in the original
reference system (x, y, z) applying the opposite rotation to the coordinates. For
instance, in the case of the left coronary leaflet the rotation leads to a new refer-
ence system (xL, yL, zL) where we define the explicit polynomial pL5 (x

L, yL) and
the corresponding implicit description PL

5 (x
L); applying the inverse rotation to

the coordinates we find the desired implicit surface PL
5 (x).

We now define the two level set functions ϕop and ϕcl as a combination of
the implicit polynomial surfaces just defined:

1. for each leaflet, we change the sign of the implicit functions involved in
its definition (e.g. PNL

1 , PLR
1 , PL

2 , and P
L
5 for the left coronary leaflet) in

order to yield a positive sign outside the valve orifice and a negative one
otherwise;

2. for each closed leaflet, we apply the minimum operator to the three involved
polynomials; e.g., for the left coronary leaflet we have:

ϕL,cl(x) = min
{
PNL
1 (x), PLR

1 (x), PL
2 (x)

}
; (36)

3. for each open leaflet, we apply the minimum operator between the related
fifth degree polynomial and the corresponding closed leaflet expression just
defined; e.g., for the left coronary leaflet we have:

ϕL,op(x) = min
{
PL
5 (x), ϕL,cl(x)

}
, (37)

this operation guarantees that the open and closed representations are
attached at the same position in the annulus (see Figure 3, bottom-right);

4. for each configuration, we finally define the complete level set functions ϕop

and ϕcl using the maximum operator between the three leaflets expressions:

ϕop(x) = max {ϕN,op(x), ϕL,op(x), ϕR,op(x)}

ϕcl(x) = max {ϕN,cl(x), ϕL,cl(x), ϕR,cl(x)} .
(38)

Concerning the auxiliary level set functions ψcl and ψop, for each configuration,
we select a unique set of points lying on the final distal part of the leaflets (Fig-
ure 3, mid-right) and we perform a fifth degree polynomial fitting that defines
directly the two implicit expressions. Finally, as last step of the method, we per-
form a regularization of the level set functions ϕcl and ϕop in order to ensure that
these are signed distance functions (Osher and Fedkiw, 2001) (the regularized
function ϕop was previously shown in Figure 1, right).
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In Figure 3, mid and bottom, we highlight Γcl and Γop in red and green,
respectively; in Figure 3, mid, we color with pale gray the part of the first level
set ϕ excluded by the auxiliary level set function ψ and with dark gray the zero
level of the function ψop. We remark that, the repetition of the points distally in
the case of the open leaflet ensures a continuity in the direction of the z-axis to
the level set ϕop (Figure 3, mid-center). In Figure 3, bottom, as example of the
reliability of our method, we show the final closed and open valve superimposed
to the 3D-CE-CT images.

4.4 Mesh Generation

The computational mesh for our simulations is constructed starting from the
output of the segmentation method, i.e. the triangular surface representing the
aortic lumen (Figure 2, right), consistently rotated according to the reference
system defined for the implicit surfaces Γcl and Γop.

As first step, we crop the coronary arteries from the model interpolating
the resulting hole with a thin plate spline. Then, the surface is cut by planes
perpendicular to the lumen longitudinal axis at the left ventricle and at the aortic
arch in order to create the inlet and the outlet section, respectively (Figure 4, top-
left). To minimize the sensitivity to the boundary conditions that we set, straight
flow extensions are added to the inlet and outlet faces of the model. The fluid
domain is then created filling the resulting surface with linear tetrahedra with
the tool described in Faggiano et al (2013b) and implemented in the Vascular
Modeling Toolkit (vmtk1). In particular, we first define four regions on the
surface: a region near the valve (region 1), a buffer region around the first one
(region 2), a third region representing the residual ascending aorta (region 3),
and a fourth region representing the flow extensions (region 4). For each of these
regions, we set a different mesh refinement obtaining a highly refined mesh in the
first region and three different refinements in the other three regions gradually
coarsening while moving away from the valve; we show in Figure 4, top-right, an
example of this type of refinement in a coarse mesh made of 105 tetrahedra. The
final mesh used for the numerical simulations is composed of 2.31·106 tetrahedra,
with the finest region (region 1) characterized by a mean mesh size of 0.2mm
which is 2.5 times smaller than the coarsest one (region 4).

4.5 Boundary Conditions

The boundary conditions of the AV-RIIS model are two pressure profiles, pin for
the inlet ∂Ωin and pout for the outlet ∂Ωout (see Eq. (15)). Concerning the outlet
pressure profile pout, we impose the realistic curve proposed in Korakianitis and
Shi (2006) with a minimum pressure value of 80mmHg at the beginning of
the systole (when the left ventricle pressure overcomes the aortic pressure) and
a maximum pressure of 120mmHg at late systole (Figure 4, bottom, dashed

1http://www.vmtk.org

23



Figure 4: Processed aortic lumen surface (top-left), opened at the left ventricle
(LV) and at the aortic arch (AA); an example of a coarse tetrahedral mesh with
flow extensions characterized by four different regions of refinement (top-right);
the boundary conditions for one heart beat (bottom).

blue curve). Concerning the inlet pressure profile pin, we take advantage of
the available patient-specific data, i.e. the maximum flow rate measured by
ultrasound. To this aim we proceed as follows:

1. We perform a first simulation with a fixed open valve (for which K = 1)
prescribing at the inlet the flow rate profile of Avolio (1980) rescaled in
order to obtain the maximum patient-specific flow rate (Figure 4, bottom,
dotted black curve). To prescribe this flow rate, a Dirichlet boundary
condition with a flat velocity profile is imposed on the inlet ∂Ωin (Faggiano
et al, 2013a; Bonomi et al, 2015). In order to work with regime values of
pressure and velocities, we run this simulation for three heart beats.

2. We obtain the systolic pressure profile psysin as result of the last heart beat
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Figure 5: Systolic 3D-CE-CT image of the patient sliced along the non-
coronary/right view (left), left/non-coronary view (center) and left/right view
(right). The reconstructed open valve is superimposed in bright color. The left
(L), the right (R) and the non-coronary (N) sinuses of Valsalva are indicated.

at the inlet.

3. We link such pressure profile psysin with a realistic left ventricle diastolic
pressure equal to 10mmHg (Korakianitis and Shi, 2006) obtaining the
complete inlet profile pin (Figure 4, bottom, continuous red curve).

5 Results and Discussion

In order to highlight the capability of our method to reconstruct the patient-
specific leaflets, we report in Figure 5 three different views of the systolic 3D-
CE-CT image of the patient with the reconstructed open valve superimposed:
our method captures the complex geometry of the leaflets, following its curva-
tures and irregularities. As it can be appreciated also from Figure 3, in the open
position the studied leaflets are clearly asymmetrical in both their shape and po-
sition with respect to the aortic root: the non-coronary leaflet is almost straight
and attached to the wall (Figure 5, left and center); the right-coronary leaflet is
characterized by a large space behind it (the right-coronary sinus) and it assumes
a standard configuration (Sturla et al, 2013) with two changes in curvature and
a profile completely convex toward the sinus (Figure 5, left and right); on the
contrary, the left-coronary leaflet appears to be not fully opened and assumes
an almost straight configuration in the left-non and right-left views (Figure 5,
center and right). These differences are physiological and are specific to this
patient. As also highlighted in Faggiano et al (2013a), Della Corte et al (2012)
and Bonomi et al (2015), leaflets opening restrictions or asymmetries can influ-
ence the flow direction and the generation of helical flow patterns making the
patient-specific leaflet reconstruction an important step toward patient-specific
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simulations of the aorta (Marom, 2015).
Concerning the numerical simulation, we implement our model in the LifeV

library2. In particular, the library provides an efficient and flexible parallel
framework (based on the openMPI standard) to assemble the FE matrices and
uses the Trilinos library3 to deal with preconditioning and resolution of the linear
system; see in particular the FSI solvers in (Crosetto et al, 2011), (Deparis et al,
2015), and (Tricerri et al, 2015). The results that we show in this section are
obtained running the simulations on a cluster using 192 CPUs, with a mesh
composed of 1.5 · 106 degrees of freedom. We set the blood dynamic viscosity
µ = 3.5 ·10−3 g/(mm ·s) and the blood density ρ = 10−3 g/mm3. We choose the
time step equal to 2 · 10−4 s; for time independency, we find that when doubling
the time step, the results are not affected by appreciable changes. We set the
resistance RΓ = 106 g/(mm · s) to weakly enforce the no-slip condition on the
leaflets of the valve, even in case of an high pressure gradient across them. The
value of ε is chosen equal to 0.4mm: indeed, since the mesh size near the leaflets
is about 0.3mm, this value of ε ensures that the smooth Dirac function δε (Eq.
(10)) has support over about three mesh elements.

In Figure 6 we show the evolution of the quantities involved in the AV-0D
model (Plv , Pao and Qao of Eq. (20)) and the evolution of the valvular angle
and of the orifice area: the leaflets start the opening stage when the pressure
in the upstream control volume (at the end of the left ventricle) overcomes
the one measured downstream (in the aortic root); on the contrary, the closing
procedure starts when the downstream pressure exceeds again the upstream
pressure at t = 0.251 s, although the flow rate is still positive for further 65ms.
This behavior is obtained in virtue of the inclusion of the AV-0D model in
our method. Indeed, as opposed to other full 3D-FSI approaches (Hsu et al,
2014; Kamensky et al, 2015; De Hart et al, 2003b; Borazjani et al, 2010), our
AV-RIIS model has the advantage of being independent on the choice of the
stress-free configuration of the valve. As also highlighted by Marom (2015),
this choice remains a controversial aspect in case of patient-specific simulations
since a stress-free configuration might not exist in native valves; nevertheless,
handling this critical aspect is not required by our formulation.

In a physiological aortic valve, the evolution of the orifice area during the
systole can be divided into three stages (Leyh et al, 1999; Handke et al, 2003;
Van Steenhoven et al, 1981): a rapid opening phase, a slow closure with very
small changes of the orifice area, and a rapid closure. The general trend repro-
duced by our model (Figure 6, bottom) coincides with this three-stages behavior
described in the in-vivo studies (Leyh et al, 1999; Handke et al, 2003; Van Steen-
hoven et al, 1981) with the slow closure approximated by a fixed valve position,
as expected by the AV-0D model (Korakianitis and Shi, 2006). The duration of
the opening and closing phases is of 11ms and 65ms, respectively, which are

2www.lifev.org
3www.trilinos.org
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Figure 6: Evolution, during systole, of the quantities driving the AV-0D model
(top): the pressure in the control volumes taken upstream (’p left ventricle’,
dashed green line) and downstream (’p aortic root’, continuous orange line)
the aortic valve, and the flow rate at the inlet (’flow rate’, dotted black line).
Evolution (bottom) of the valvular angle ϑ (continuous red line) and of the orifice
area (dotted blue line).

times comparable to the ones shown by the AV-0D model of Korakianitis and
Shi (2006). On the contrary, the in-vivo measurements generally show a slower
opening phase (Leyh et al, 1999; Handke et al, 2003): in particular, the study
of Handke et al (2003) show average opening and closing times of 76 ± 30ms
and 42± 16ms, respectively. The fact that the opening stage is faster than the
realistic one induces an high valve velocity uΓ leading to some numerical insta-
bility: for this reason we consider in our model uΓ = 0, a choice which affects
the fluid behavior, in a limited manner, only during the fast valve opening.

The dynamics of the valve is visualized in Figure 7, where a sequence of
snapshots in time over the cardiac cycle is shown. The opening and closing con-
figurations assumed by the orifice show a perfect match with the shapes measured
in-vivo (Van Steenhoven et al, 1981; Handke et al, 2003), thus demonstrating the
capability of our method of reconstructing the intermediate valve shapes from
the patient-specific open and closed leaflets. During the opening phase, the shape
starts from a stellate configuration (Figure 7, top-left) and becomes triangular
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Figure 7: Top view of the aortic valve shape in some instants of the cardiac
cycle: opening valve (top) and closing valve (bottom). The left (L), the right
(R), and the non-coronary (N) sinuses of Valsalva are indicated.

(Figure 7, top-center) and then circular at the maximum opening (Figure 7,
top-right); during the closing procedure, the shape of the valve changes toward
a triangular morphology (Figure 7, bottom-left and bottom-center). Finally, at
the end of the systole and during the whole diastole the valve is completely closed
(Figure 7, bottom-right). Such behavior is also observed, for instance, by Ranga
et al (2006), in a simulation performed in a symmetric and idealized geometry;
on the contrary, our patient-specific geometry leads to an asymmetric shape of
the orifice resulting more similar to the in-vivo images shown by Handke et al
(2003).

In Figure 8, we show contours of the velocity magnitude on a long-axis slice
at six different time instants during the systole, with the leaflets visible in trans-
parency. First, we remark the performance of our method, since the velocity
remains practically null on the leaflets even when the maximum velocity mag-
nitude of about 1.7m/s is reached. The position of the slice passing by the left
and the non-coronary sinus allows to analyze the deviation of the flow from the
aortic centerline: it is evident that the patient-specific valve geometry influences
the flow direction generating an asymmetric jet which impacts the aortic wall at
the systolic peak (Figure 8, top-right). Such flow deviation starts to be visible
from the end of the early systole (Figure 8, top-center) and becomes more and
more evident at late systole (Figure 8, bottom). We emphasize the importance of
using the patient-specific geometry of the leaflets in order to obtain such results
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Figure 8: Velocity magnitude contours depicted on a long-axis slice passing by
the left (L) and the non-coronary (N) Valsalva sinuses, at six different time
instants during systole. The aorta and the leaflets are shown in transparency.

(Marom, 2015); we stress the concept that an idealized symmetric geometry for
the aortic root, or even only for the three leaflets, can not capture such complex
dynamics of the blood flow (Borazjani et al, 2010; Hsu et al, 2014; Ranga et al,
2006).

In Figure 9, we show at four different times of the cardiac cycle the blood
pressure on the same long-axis slice of Figure 8 and inside the volumetric mesh
nearby the left coronary leaflet for ϕ ∈ [−0.6, 0.6]. The pressure field during the
opening of the valve, at the early systole, is visible in Figure 9 (t = 0.01s): in
this phase the pressure in the left ventricle and in the aortic root is almost ho-
mogeneous, with the highest pressure gradient localized among the leaflets. The
zoom inside the mesh nearby the left coronary leaflet enhances the localization
of the pressure drop in the interior part of the valve, while the external part of
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Figure 9: Blood pressure at four different times during the cardiac cycle: pressure
depicted on a long-axis slice passing by the left (L) and the non-coronary (N)
Valsalva sinuses and on the volumetric mesh zoomed nearby the left coronary
leaflet, where the level set function ϕ ∈ [−0.6, 0.6] at the current time.

the leaflet is characterized by a constant pressure. At the systolic peak (Figure
9, t = 0.15s), we can draw similar considerations concerning the pressure dis-
tribution in the left ventricle and in the sinuses of Valsalva, while the situation
drastically changes in the ascending aorta. Indeed, the deviation of the flow un-
derlined in Figure 8, top-right, induces a corresponding pressure peak near the
wall and, as a consequence, a depression zone in the central part of the ascending
aorta. However, in this phase, the pressure in the left ventricle is higher than the
average pressure in the aortic root and the valve remains fully open. On the con-
trary, at the late diastole we notice the opposite situation (Figure 9, t = 0.30s):
the blood slows down and, despite the flow rate is still positive, the pressure
gradient inverts its direction leading to the valve closure. The depression zone is
still present in this phase, coherently with the persistent flow deviation (Figure
8, bottom-right). In Figure 9 (t = 0.50s), we show an instant of the diastolic
phase characterized by the high pressure jump of more than 90mmHg across
the leaflets. By looking at the volumetric mesh of the left coronary leaflet, it
is interesting to note how the sharp pressure jump is localized in a region of
thickness 2ε corresponding to about three mesh elements, i.e. basically where
the RIIS resistive term extend its action; on the contrary, outside this region,
the pressure is not affected by this high pressure jump taking values with small
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oscillations around the lowest and the highest values of the color legend. More
in general, looking at the four volumetric meshes nearby the left coronary leaflet
shown in Figure 9, bottom, we notice the ability of our method in reproducing
the presence of the valve using the resistive RIIS term and, as a consequence,
without the necessity of meshing the valve surface; indeed, the movement of the
leaflets does not modify the computational mesh, but it is totally described by
the evolution of the two level set functions ϕ and ψ through our method.

With the aim of showing the evolution of the 3D vortex structures in the
aorta, we show in Figure 10 the Q-criterion (Hunt et al, 1988) normalized for its
maximum value at each time instances and the velocity streamlines. Concerning
the early systole, the Q-criterion shows a ring detaching and then breaking away
from the three leaflets (Figure 10, top); this highlights well organized laminar
vortex structures in this phase of the cardiac cycle. It is interesting to note the
asymmetry of the ring that evolves mainly in the two coronary sinuses rather
than in the non-coronary one; indeed, since the aortic wall is almost attached to
the non-coronary leaflet, the vortexes do not have sufficient space to develop in
this sinus. The ring visualized by the Q-criterion in early systole is also discussed
by Borazjani et al (2010), where the authors also underline that in an anatomic
aorta the ring is asymmetric rather than symmetric as it would occur in an
idealized aorta. At this stage of the cardiac cycle, the movement of the vortex
from the right and left coronary sinuses to the ascending aorta is clearly visible
also by looking at the streamlines (Figure 10, bottom-left and bottom-center).
As reported in Charitos and Sievers (2013), these vortexes also help the leaflets
not to attach to the aortic wall. During the central part of the systole, when
the flow rate and the velocity magnitude reach their peak values, the vortex
structures break down into smaller structures (Figure 10, center-left); a similar
behavior is commented in (Borazjani et al, 2010). Looking at the streamlines
(Figure 10, bottom-right) we notice how, in this phase, a disorganized recircula-
tion appears at a bigger scale, localized in the region of the aorta opposite to the
non-coronary sinus: this phenomenon contributes to the deviation of the blood
jet to the wall, as noticeable in Figure 8 by observing the velocity magnitude.
At the late systole, when the velocity decreases again, the size of vortex struc-
tures increases and their localization in the opposite region of the non-coronary
sinus is more evident (Figure 10, center-center). Finally, the patterns assumed
by the Q-criterion during the diastole are particularly interesting (Figure 10,
center-right): a big cylindrical shape appears in the ascending aorta indicat-
ing an organized recirculation, while two helical patterns appear only in the two
coronary sinuses indicating the presence of vortexes; as reported in Charitos and
Sievers (2013), these vortexes are physiological and contribute to the closure of
the leaflets and to the perfusion of the coronary arteries. We remark that the
behavior captured by our AV-RIIS model could not have been observed using a
simplified symmetrical geometry.
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Figure 10: Vortex structures visualized by a volume rendering of the normalized
Q-criterion at different instants of the cardiac cycle (top); on the bottom stream-
lines of the velocity: the evolution of the vortexes in the right and left coronary
sinuses during the early systole (left and center), and the systolic peak in the
ascending aorta (right). The aorta and the leaflets are imaged in transparency
and the left (L), the right (R) and the non-coronary (N) Valsalva sinuses are
indicated.
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6 Conclusions

In this paper, a full computational pipeline to simulate patient-specific hemody-
namics in the aorta with patient-specific aortic valve is presented. The frame-
work includes a segmentation method for the aorta and a reconstruction method
able to obtain the closed and the open configurations of the patient-specific valve.
The fluid dynamics problem with the movement of the valve is solved by a new re-
duced 3D-0D FSI model (AV-RIIS). The model is based on an analytical implicit
representation of the valve leaflets through a level set formulation. The presence
of the valve is then included in the momentum equation of the Navier-Stokes
equations by adding a resistive term, which weakly enforces the blood to adhere
to the leaflets (Fernández et al, 2008). The dynamics of the valve between its
closed and open position is modeled using the reduced zero-dimensional model
(AV-0D) proposed by Korakianitis and Shi (2006), and the coupling between
the 3D and 0D models is performed through an original algorithm which allows
to obtain realistic physiological results. At the discrete level, a FE formulation
is used to spatially approximate the Navier-Stokes equations with an extended
SUPG stabilization (Bazilevs et al, 2007; Forti and Dedè, 2015).

We applied our computational pipeline to the analysis of blood flow in a
patient enrolled by Ospedale Sacco of Milano, Italy. The results showed that
our method succeeded in the reconstruction of the patient-specific aortic valve
leaflets in both open and closed positions: this is a very challenging and im-
portant aspect in numerical models for the aortic valve, since the geometrical
configuration of the valve greatly influences the hemodynamics (Marom, 2015).
Moreover, we highlighted the ability of our method to reproduce the motion of
the orifice and of the leaflets position during the cardiac cycle. Concerning the
pressure field inside the aorta, the results demonstrated that the method is capa-
ble to capture the sharp pressure jump across the valve without the necessity of
meshing the valve leaflets. The recovered velocity field evidenced an asymmetric
fluid pattern, which is strictly linked to patient-specific geometric asymmetries,
captured thanks to our method.

In summary, we demonstrated the importance of counting on a framework
which is capable of simulating blood flow through a patient-specific aortic valve;
as a matter of fact, even more sophisticated approaches used with idealized
leaflets, could hardly grasp the asymmetrical hemodynamics characterizing this
patient. The variability among different patients can be captured only consid-
ering the patient-specific aortic geometry and the patient-specific leaflets in the
correct position.

The analysis reported in this work is purely demonstrative of the ability of
our method and we did not provide any clinical interpretation of the numerical
results associated to the patient; however, since our reduced 3D-0D FSI model
is conceived to work on patient-specific data, it can be used to understand the
hemodynamics of the ascending aorta, as well to study aortic and valvular dis-
eases.
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Astorino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid–structure interaction
and multi-body contact: application to aortic valves. Computer Methods in
Applied Mechanics and Engineering 198(45):3603–3612

Astorino M, Hamers J, Shadden SC, Gerbeau JF (2012) A robust and efficient
valve model based on resistive immersed surfaces. International Journal for
Numerical Methods in Biomedical Engineering 28(9):937–959

Auricchio F, Conti M, Morganti S, Totaro P (2011) A computational tool to
support pre-operative planning of stentless aortic valve implant. Medical En-
gineering & Physics 33(10):1183–1192

Auricchio F, Conti M, Ferrara A, Morganti S, Reali A (2014) Patient-specific
simulation of a stentless aortic valve implant: the impact of fibres on leaflet
performance. Computer Methods in Biomechanics and Biomedical Engineer-
ing 17(3):277–285

Avolio P (1980) Multi-branched model of the human arterial system. Medical &
biological Engineering & computing 18(6):709–18

Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007) Variational
multiscale residual-based turbulence modeling for large eddy simulation of in-
compressible flows. Computer Methods in Applied Mechanics and Engineering
197(1):173–201

Bonomi D, Vergara C, Faggiano E, Stevanella M, Conti C, Redaelli A, Puppini
G, Faggian G, Formaggia L, Luciani G (2015) Influence of the aortic valve
leaflets on the fluid-dynamics in aorta in presence of a normally functioning
bicuspid valve. Biomechanics and Modeling in Mechanobiology 14(6):1349–
1361

Borazjani I (2013) Fluid–structure interaction, immersed boundary-finite ele-
ment method simulations of bio-prosthetic heart valves. Computer Methods
in Applied Mechanics and Engineering 257:103–116

34



Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid–structure inter-
action simulations of flow through a bi-leaflet mechanical heart valve in an
anatomic aorta. Annals of Biomedical Engineering 38(2):326–344
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Tricerri P, Dedè L, Deparis S, Quarteroni A, Robertson AM, Sequeira A
(2015) Fluid-structure interaction simulations of cerebral arteries modeled
by isotropic and anisotropic constitutive laws. Computational Mechanics
55(3):479–498

Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the
development of dissecting aneurysm within patient-specific dissecting aneuris-
mal aortas using computational fluid dynamics (cfd) simulations. Journal of
Biomechanics 44(5):827–836

Van Steenhoven A, Verlaan C, Veenstra P, Reneman R (1981) In vivo cine-
matographic analysis of behavior of the aortic valve. American Journal of
Physiology-Heart and Circulatory Physiology 240(2):H286–H292

Vergara C, Viscardi F, Antiga L, Luciani GB (2012) Influence of bicuspid valve
geometry on ascending aortic fluid dynamics: a parametric study. Artificial
Organs 36(4):368–378

Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL,
Pelech AN, Shadden SC, LaDisa JF (2013) Including aortic valve morphology
in computational fluid dynamics simulations: initial findings and application
to aortic coarctation. Medical Engineering & Physics 35(6):723–735

Yang Y, Li C, Kao CY, Osher S (2010) Split bregman method for minimization of
region-scalable fitting energy for image segmentation. In: Advances in Visual
Computing, Springer, pp 117–128

39



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

22/2016 Antonietti, P.F.; Facciola', C.; Russo, A.;Verani, M.
Discontinuous Galerkin approximation of  flows in fractured porous media

21/2016 Ambrosi, D.; Zanzottera, A.
Mechanics and polarity in cell motility

19/2016 Guerciotti, B.; Vergara, C.
Computational comparison between Newtonian and non-Newtonian blood
rheologies in stenotic vessels

20/2016 Wilhelm, M.; Sangalli, L.M.
Generalized Spatial Regression with Differential Regularization

Guerciotti, B.; Vergara, C.
Computational comparison between Newtonian and non-Newtonian blood
rheologies in stenotic vessels

18/2016 Ferroni, A.; Antonietti, P.F.; Mazzieri, I.; Quarteroni, A. 
Dispersion-dissipation analysis of 3D continuous and discontinuous spectral
element methods for the elastodynamics equation 

17/2016 Penati, M.; Miglio, E.
A new mixed method for the Stokes equations based on
stress-velocity-vorticity formulation

16/2016 Agosti, A.; Antonietti, P.F.; Ciarletta, P.; Grasselli, M.; Verani, M.
A Cahn-Hilliard type equation with degenerate mobility and single-well
potential. Part I: convergence analysis of a continuous Galerkin finite
element discretization.

15/2016 Ieva, F.; Paganoni, A.M.
A taxonomy of outlier detection methods for robust classification in
multivariate functional data

14/2016 Bonomi, D.; Manzoni, A.; Quarteroni, A.
A matrix discrete empirical interpolation method for the efficient model
reduction of parametrized nonlinear PDEs: application to nonlinear elasticity
problems


	qmox23-copertina
	mox-201667121616
	qmox23-terza_di_copertina

