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Abstract

In this paper, we propose a full computational pipeline to simulate the
hemodynamics in the aorta including the valve. Closed and open valve
surfaces, as well as the lumen aorta, are reconstructed directly from medical
images using new ad hoc algorithms, allowing a patient-specific simulation.
The fluid dynamics problem that accounts from the movement of the valve
is solved by a new 3D-0D fluid-structure interaction model in which the
valve surface is implicitly represented through level set functions, yielding,
in the Navier-Stokes equations, a resistive penalization term enforcing the
blood to adhere to the valve leaflets. The dynamics of the valve between its
closed and open position is modeled using a reduced geometric 0D model.
At the discrete level, a Finite Element formulation is used and the SUPG
stabilization is extended to include the resistive term in the Navier-Stokes
equations. Then, after time discretization, the 3D fluid and 0D valve models



are coupled through a staggered approach. This computational pipeline,
applied to a patient specific geometry and data, can reliably reproduce
the movement of the valve, the sharp pressure jump occurring across the
leaflets, and the blood flow pattern inside the aorta.

1 Introduction

In the context of computational fluid dynamics for the cardiovascular system (see
e.g. (Quarteroni, 2015; Formaggia et al, 2010; Peskin, 2002)) patient-specific sim-
ulations have become increasingly important (Caballero and Lain, 2013; Taylor
and Steinman, 2010): indeed, they can be used together with classical imaging
methods to perform diagnosis, to provide more insights in the study of the evo-
lution of pathologies, or to help in surgical procedure planning, e.g. to virtually
create alternative treatment strategies for a given patient.

In the whole cardiovascular system, the proximal aorta together with the
aortic valve is likely the most investigated environment (Caballero and Lain,
2013; Chandran and Vigmostad, 2013; Faggiano et al, 2013a; Conti et al, 2010a;
Pasta et al, 2013; Marom et al, 2013; Tse et al, 2011; Rinaudo and Pasta, 2014;
Wendell et al, 2013). The aorta is the main artery of the human body suppling
oxygenated blood and nutrients to all the components of the body. It originates
from the left ventricle of the heart and extends down to the abdomen. In its
first tract, it comprises the aortic root and the ascending aorta. The aortic
root includes: (a) three enlargements, the so called sinuses of Valsalva, classified
as left-coronary, right-coronary and non-coronary sinuses, (b) the fibrous aortic
annulus connecting the valve leaflets, the sinuses, and the ventricle, and (c) the
sinotubular junction (STJ) representing the region where the normal tubular
configuration of the aorta is attained. The left ventricle and the aortic root
are separated by the aortic valve which features three thin and flexible leaflets
shaped as curved triangles and attached to the fibrous aortic annulus, forming
with the latter a parabolic profile (Charitos and Sievers, 2013). The efficient
opening and closing of the aortic valve during the cardiac cycle guarantees the
appropriate circulation of blood flow from the left ventricle to the ascending
aorta, thus preventing regurgitation phenomena.

Other than focusing on the valve in physiological conditions, different stud-
ies were conducted to understand aortic pathologies; in this respect, we recall
computational studies of aortic diseases due to bicuspid aortic valve (Chandran
and Vigmostad, 2013; Faggiano et al, 2013a; Vergara et al, 2012; Conti et al,
2010a; Pasta et al, 2013; Marom et al, 2013; Bonomi et al, 2015), computational
investigations of valve prosthesis (Morganti et al, 2014; Auricchio et al, 2014,
2011; De Hart et al, 2003a; Nestola et al, 2016), and aortic aneurysms or dis-
section studies (Tse et al, 2011; Rinaudo and Pasta, 2014). Among these, some
studies aim at understanding the valve mechanics with a particular interest for
stresses internal to the valve leaflets and the aortic root (Morganti et al, 2014;
Auricchio et al, 2014, 2011; De Hart et al, 2003a; Marom et al, 2013; Conti et al,



2010b), while other studies focus on the fluid dynamics in the aorta investigating
possible abnormalities trough appropriate indicators (Chandran and Vigmostad,
2013; Faggiano et al, 2013a; Vergara et al, 2012; Conti et al, 2010a; Pasta et al,
2013; Tse et al, 2011; Rinaudo and Pasta, 2014; Bonomi et al, 2015; Nestola
et al, 2016). In this work, we introduce a numerical method able to capture the
features of the blood flow through the first tract of the aorta. Since the flow field
strongly depends on the aortic valve function, the latter should be necessarily
included in our model. Indeed, the valve regulates the blood flow and plays an
important role in both physiological and pathological scenarios.

Our model for the valve characterization involves a three-dimensional (3D)
fluid-structure interaction (FSI) model accounting for the coupling between valve
dynamics and blood flow. Computational methods for FSI simulations of aortic
valve dynamics can be tentatively grouped into four categories: the approaches
based on the so called Arbitrary Lagrangian Eulerian (ALE) formulation (Chan-
dra et al, 2012; Cheng et al, 2004; Marom et al, 2013), those based on the
Immersed Boundary (IB) methods (Peskin, 1972; McQueen and Peskin, 2000;
Griffith, 2012), those based on Fictitious Domain (FD) formulations (van Loon
et al, 2006; De Hart et al, 2004, 2003b,a), and those based on hybrid formula-
tions (Ge and Sotiropoulos, 2007; Borazjani et al, 2010; Ge and Sotiropoulos,
2010; Le and Sotiropoulos, 2013; Kamensky et al, 2015). All of them require a
spatial discretization of the problem over a computational mesh. In the ALE
formulation, the computational mesh is deformed to follow the boundaries of
the fluid domain, in this case the aortic valve leaflets; however, this approach
requires frequent remeshing of the domain to deal with large mesh deformation
and involves topology changes when the valve opens and closes. In both IB and
FD methods the fluid is instead discretized in a fixed computational domain,
while the valve structure is discretized in a separate body-fitted mesh with the
coupling accounted either explicitly or implicitly by adding suitable forces at the
fluid/solid interface. In particular, for the IB method, the appropriate forces are
explicitly added to the fluid equation and distributed over all nodes of the fluid
mesh through a smoothed Dirac delta function (Peskin, 1972, 2002). An evo-
lution of the original method, in which the mesh is adaptively refined in the
proximity of the immersed boundaries, was applied to aortic valve simulations
in Griffith (2012). In the FD method the coupling between the fluid and the
solid problem is made through Lagrange multipliers (van Loon et al, 2006); the
method had been applied to simulate a trileaflet aortic valve at non-physiological
Reynolds numbers (Re = 900) and with symmetry assumption on the geometry
(De Hart et al, 2004, 2003b,a; Morsi et al, 2007). Finally, among the hybrid
formulations, we recall the Curvilinear Immersed Boundary (CURVIB) method
developed by Ge and Sotiropoulos (2007) which integrates structured curvilin-
ear boundary fitted grids with an IB method. The CURVIB method had been
applied to study trileaflet and bileaflet aortic valves with physiologic, pulsat-
ing flows, even if not in realistic aortas (Le and Sotiropoulos, 2013; Ge and
Sotiropoulos, 2010; Borazjani, 2013). Borazjani et al (2010) tested the method



in a patient-specific anatomic aorta, even if only a simple mechanical bileaflet
valve has been simulated. Another recent method is the ALE/IB Immersogeo-
metric method proposed by Kamensky et al (2015) and Hsu et al (2014) which
combines a variational IB method and the traditional ALE technique. The au-
thors applied the method to a simplified aortic root geometry and valve leaflets
demonstrating promising abilities of the proposed strategy (Hsu et al, 2014).

A major challenge in trileaflet aortic valve FSI simulations is to capture the
coaptation between the leaflets of the valve during the closing phase. Most of
the previous methods have circumvented this problem by allowing the valve to
remain partially open (Kamensky et al, 2015; De Hart et al, 2003b; Borazjani,
2013). Astorino et al (2009) introduced an algorithm for calculating self-contacts
of thin structures inside a fluid domain using the FD formulation, which they
applied to aortic valve simulations, even if only for small values of diastolic
transvalvular pressure, specifically about 0.1 mmHg. Marom et al (2012) have
carried out 3D FSI simulations for an aortic valve with leaflet coaptation, by
coupling a Finite Element (FE) commercial code for the mechanics of the leaflets
with a commercial finite volume flow solver; however, only the final stages of the
valve closure in a simplified geometry has been successfully simulated.

Several challenges arise when using full 3D FSI models. They regard high
computational costs, handling of large displacements of the valve leaflets in the
aortic root, contact among the leaflets, and high pressure jumps across a closed
or nearly closed valve. At the numerical level, highly accurate, stable, and ro-
bust spatial and time discretization schemes must be used. For these reasons,
full 3D FSI models are nowadays mostly restricted to study valves in simplified
configurations possibly with simplified flow assumptions or only with a simpler
bileaflet mechanical valve. Indeed, to the best of our knowledge, a 3D FSI simu-
lation with trileaflet aortic valve and patient-specific aortic and valve geometry
has not been successfully pursuit yet.

Concerning the patient-specific studies of the fluid dynamics in the ascend-
ing aorta reported in literature, a full model of the valve is not even considered
when the focus is on valves pathologies (Faggiano et al, 2013a; Vergara et al,
2012; Della Corte et al, 2012; Pasta et al, 2013; Tse et al, 2011; Rinaudo and
Pasta, 2014; Bonomi et al, 2015; Nestola et al, 2016). Indeed, the valve is either
completely neglected (Tse et al, 2011; Nestola et al, 2016), or included as an
orifice at the inlet surface without the need of providing its detailed geometry
(Faggiano et al, 2013a; Vergara et al, 2012; Wendell et al, 2013), or embedded
as a set of fixed surfaces inside the aortic domain (Della Corte et al, 2012; Pasta
et al, 2013; Rinaudo and Pasta, 2014; Bonomi et al, 2015). In all these cases,
the adopted model describes only the open and closed states of the valve with-
out accounting for the intermediate positions between these two configurations.
Nevertheless, most of the above mentioned papers highlight the importance of
the inclusion of the valve in the model in terms of patient-specific valve orifice or
in terms of patient-specific valve leaflets. In particular, Faggiano et al (2013a),
Vergara et al (2012) and Wendell et al (2013) showed that the inclusion of the



shape of the valve orifice determines the correct flow pattern in the vessel, high-
lighting also the influence of the area of the orifice. Della Corte et al (2012)
stressed the importance to include the leaflets surfaces in the fluid simulations,
reporting that cusp opening restrictions or asymmetries cause a modification to
the physiological flow direction. A recent work of Bonomi et al (2015) highlights
how important the inclusion of fixed leaflets in the model is for the genera-
tion of specific helical flow patterns which otherwise could not have been fully
reproduced.

Based on the above considerations, we aim at providing a computational
method to study and numerically simulate the fluid dynamics in the aorta in-
cluding the valve leaflets and the aortic valve orifice for the whole cardiac cycle by
means of a reduced FSI model for the characterization of the interaction between
the blood flow and the valve leaflets. Specifically, we propose a new method for
the representation of the valve leaflets, which we name Resistive Immersed Im-
plicit Surface (RIIS) method. Indeed, our approach is based on the Resistive
Immersed Surface (RIS) approach, originally proposed in Fernandez et al (2008)
to study a porous interface immersed in a fluid and lately used in Astorino et al
(2012) to model the aortic valve. However, in the original RIS approach, the
mechanics of the leaflets is neglected and the valve is replaced by two immersed
surfaces fixed in space describing the open and the closed valve, respectively.
The presence of two valve surfaces is taken into account in the momentum equa-
tion of the Navier-Stokes equations by adding a penalization term, specifically
a resistive term, which weakly enforces the blood to adhere to the leaflets. In
our approach, we extend the model of Ferndndez et al (2008) representing the
valve surfaces implicitly through a level set formulation for the leaflets. In this
way, the immersed surfaces are described analytically, thus avoiding the need of
discretizing them by a computational mesh. Moreover, we use our RIIS method
in a 3D-0D FSI reduced model for the interactions between the fluid and the
valve leaflets. We model the dynamics of the valve between its closed and open
position using a 0D model proposed by Korakianitis and Shi (2006) based on
a second order ordinary differential equation (ODE) with the leaflets angle as
the unique, dependent variable. In particular, the configuration of the valve
leaflets at each time instant depends on the flow rate and the pressure field
in the aorta and in the left ventricle as forcing terms of the 0D valve model.
This is achieved through a reduced fully coupled 3D-0D FSI model where the
Navier-Stokes equations for the blood flow are coupled to the ODE representing
the valve dynamics. The leaflets position affects the momentum equation of the
Navier-Stokes equations by means of the resistive term, for which the valve is
described with implicit level set functions (RIIS); on the other side, the ODE
describing the dynamics of the valve receives as input the pressure jump across
the valve and the flow rate. Our reduced 3D-0D FSI model provides the motion
of the orifice and of the leaflets position at a limited computational cost with
respect to a full 3D FSI solver. Indeed, our model is solved in an Eulerian formu-
lation and in a fixed computational domain. A similar resistive Eulerian surfaces



framework was firstly proposed by Laadhari and Quarteroni (2016). However,
in our work we propose a significantly different algorithm to couple the 3D fluid
and 0D valve models which allows to obtain realistic physiological results. For
the numerical approximation of the Navier-Stokes equations with the RIIS for-
mulation, we consider the FE method for which the approximate velocity and
pressure variables are built from Lagrangian polynomial basis functions of the
same degree. In order to obtain a stable formulation and to control numeri-
cal instabilities associated to the highly advective blood flow regime through the
valve, we consider and extend for the first time the SUPG stabilization (Bazilevs
et al, 2007; Forti and Dede, 2015) to the Navier-Stokes equations with RIIS in
the framework of the variational multiscale method (VMS). Finally, in order to
deal with patient-specific cases, we develop a full computational pipeline start-
ing from medical images and ending with the numerical simulation results. In
particular, we propose a technique to segment both the aorta and the leaflets
from Computed Tomography images. The result of the segmentation of the
aorta is then transformed into a computational mesh, while we propose a new
interpolation strategy which allows to transform a point cloud description of the
patient-specific leaflets in an implicit level set function to be used in the RIIS
formulation. To summarize, in this work we first propose a new method for the
computational fluid dynamics in the aorta with the inclusion of the movement of
the valve leaflets and then we propose a computational pipeline that allows per-
forming such simulations in a patient-specific setting, for both aorta and aortic
valve leaflets.

The outline of the paper is as follows: in Section 2 the reduced 3D-0D FSI
model for the aortic valve is mathematically described, while in Section 3 its
numerical approximation is afforded; the generation of the aortic domain and the
patient-specific leaflets is presented in Section 4. In Section 5, the whole pipeline
is applied to a patient-specific dataset and numerical results on valve movement,
pressure and velocity fields are reported; conclusions follow in Section 6.

2 Mathematical Modeling

In this section, we describe the RIIS model, we adapt it to describe the fluid
dynamics of the Aortic Valve (AV-RIIS model), we recall the 0D model based
on ODEs proposed by Korakianitis and Shi (2006) to compute the aortic valve
angle (AV-0D model), and finally we show our approach to couple the AV-0D
and the AV-RIIS models into the 3D-0D FSI model for the aortic valve.

2.1 The Resistive Immersed Implicit Surface (RIIS) Model

We describe the mathematical model adopted to represent a fluid in a general
domain with an immersed surface into it. In particular, first we recall the RIS
model (Ferndndez et al, 2008), then we describe the surface through an implicit
function, and finally we present our RIIS model.



Given a fixed domain © C R3 and an immersed surface I' C €, the RIS
model introduced by Ferndndez et al (2008) consists in enriching the classical
Navier-Stokes equations with a penalization term in the conservation momentum
equation holding only on the immersed surface I'. The RIS Eulerian formula-
tion for a generic incompressible homogeneous Newtonian fluid reads: find the
velocity u and the pressure p such that, for all t € (0,7):

paa—,l: —2uV - D(u) + p(u-V)u
+Vp + 5er,€(u — ur) =f in (1)
Veu=0 in Q

endowed with suitable initial and boundary conditions. We indicate with p the
density of the fluid, with y its dynamic viscosity, and with D(w) the strain rate

tensor .
Vu+ Viu
D(u) = ~————. (2)

The corresponding Cauchy stress tensor, in case of Newtonian fluids, reads:
o(u,p) = —pI +2uD(u), (3)

where I is the identity tensor. The quantities dr, Rr . and wur, all referring to
the immersed surface I', represent the “Dirac distribution” used to localize I' in
), a symmetric and positive second order tensor modeling its resistance, and the
velocity of I', respectively; at this stage, ur has to be referred as a data for the
fluid problem. For the sake of simplicity, we also assume that the boundary 92
of the domain is divided into two nonoverlapping subsets 9p and 0y such
that 02 = 9Qp U 0Qn where Dirichlet and Neumann boundary conditions are
assigned:
u=g on 0Qp x (0,7,

4
on=h on 00y x (0,7, )

respectively, for g and h given; problem (1) is endowed with the initial condition:
u(z,0) = up(x) in Q, (5)

for some initial velocity ug. The symmetric tensor Rr. was introduced in
Fernandez et al (2008) to model fixed porous interfaces (for which ur = 0) and
in particular medical stent devices. In Astorino et al (2012) the same method
is used to model impermeable fixed surfaces (e.g. a fully open and fully closed
aortic valve), for which Rp = Rp I with the real valued function Rp chosen
sufficiently large to weakly enforce the fluid velocity u to be small or nearly
zero in proximity of the surface I'. In this paper, we generalize the latter case
for a moving immersed surface (i.e. ur # 0). Furthermore, we underline that
this method can be interpreted as a weak imposition of a no-slip condition on



the immersed surface I', provided that suitable scalings with respect to the dis-
cretization parameters are introduced. For this reason, we select Rr . = Rr/e 1,
with € > 0 a suitable length scale that we will later link to the FE mesh size. In
this way, we have Rp/e — oo for € — 0, ensuring that u|r — wur.

By defining the Hilbert spaces V = {v € [HYQ)]® : v|sa, = g}, Vo =
{v € [HYQ)]? : v|spa, = 0}, and Q = L?(Q2) and by choosing v € V; and
q € Q as test functions for velocity and pressure, respectively, we write the weak
formulation of problem (1)-(4) as follows: find w € L?(R*; V)NCO(R*; [L2(Q)]3)
and p € L2(R*; Q) such that, for all v € Vy and ¢ € Q:

Ou v | +a(u,v)
pat’ )

+ c(u,u,v) + b(v,p) = F(v)
_b(uv Q) =0,

(6)

where we denote with (-,-) the scalar product in L?(2) and we define the
following forms and linear functionals: a : V xV — R, b : V x Q@ — R,
c:VxVxV =R, F:V — R such that:

a(u,v) := a(u,v) + ar(u,v),

a(u,v) := /QQ,u D(u) : D(v)dz,

Br

ar(u,v) := 6 /F(u—uF) -vdy,

b(v,p) := —/QpV-'v dx,

c(w,u,v) = /Qp(('w -V)u) - vde,

F(v)::/ﬂf-vdm—l—/aQNh-vdy.

We notice that the form ar(w,v) is associated to the definition of the “Dirac
distribution” in Eq. (1), that is

(60w — ur), 0) = /F (u— ur) - vdy, (8)

for all v € V; the method can be easily generalized to the case of N immersed
surfaces I'; by introducing the bilinear form ar y(u,v) = ZZ]\L , Rr, /& fFi (u —
ur,) - v dy, for some {g;}¥,.

Our approach consists in describing the immersed surface I' as an implicit
surface (Osher and Fedkiw, 2001). This is made by exploiting two level set
functions ¢, :  — R and combining them to implicitly describe the open
immersed surface I" as:

' ={xecQ:p(x)=0and (x) <0}. 9)



Figure 1: The two level set functions: a 2D schematic example of the description
of the immersed surface I' through the level set functions ¢ and v (left); the
application to the description of the aortic valve, the values of the distance
function ¢ imaged on a slice (right).

A graphical sketch of the idea is shown for a 2D case in Figure 1, left. The use
of two level set functions allows to model an open immersed surface. The first
level set function ¢ is used to identify the immersed surface I' as a part of its
zero-level; the auxiliary level set function 1 is used to cut the zero-level of ¢ in
order to obtain the final open surface I'. Furthermore, we require that the level
set function ¢ is a signed distance function (for which |Vy| = 1). In this way,
we ensure that the value of the function ¢ in Q represents the signed distance
to the immersed surface I' (Osher and Fedkiw, 2001). As example, we show in
Figure 1, right, the values taken by the distance function ¢ at a constant level
of the coordinate z, where €2 represents the aortic root and I' is the open aortic
valve.

Now, we use the two level set functions ¢ and ¥ to describe the immersed
surface I' implicitly. First, we define a smooth Dirac function to approximate
the “Dirac distribution” dér as follows:

b.(0) = { (1+cosmp/e)/2e if |p] <k, (10)

o if || > e.

In this manner, we have fj;o de(p)dp = fj; 0:(¢)dp = 1. We observe that
the smoothing parameter € is the same length scale of Egs. (1) and (7) used
to weakly enforce the velocity u to adhere to ur on I' through the resistive
approach. We obtain:

| = /Q br da = /Q (1 - H()) ba(p) da. (11)

where H is the Heaviside function:

W) = TR0 12)
0 if |p| <0,



with the definition of I" in Eq. (9) and the fact that ¢ is a signed distance function.
Therefore, we approximate the resistive term ar(u,v) of Eq. (7) as:
Rr
— (u—wur) - dy
g (13)

~ % (1—=H(¥)) () (u — ur) - vde,
Q

the latter term being an approximation of %(51“ (u —ur), v). This approxima-
tion allows to replace the surface integral on I' with an integral in the whole
domain €2. We remark that such approximation improves for ¢ — 0. Accord-
ing to this approach, one can describe a moving immersed surface by suitably
defining the level set functions ¢ and 1 as dependent on the time variable ¢
other than the spatial variable x. These features can be introduced in virtue
of the implicit definition of the immersed surface I' and, for this reason, we
name our approach Resistive Immersed Implicit Surface (RIIS). More explicitly,
we redefine the bilinear form a(u,v) in Eq. (7) introducing the bilinear form
aRHg(u,v) as:

a(u,v) := a(u,v) + agrrs(u,v),

arrrs(u,v) = (14)

= % (1—H(¥))d-(¢) (w — ur) - vda.
Q

2.2 The RIIS Model for the Aortic Valve (AV-RIIS)

We use the RIIS model to describe the blood flow through the aortic valve.
For this reason, we identify the domain 2 with the anatomical region composed
by the final part of the left ventricle, the aortic root, and the ascending aorta.
Hence, we split the boundary as: 9Q = 0Qyau U 0Qin U 0Q0ut, Where the three
subsets of 0f) represent the lumen surface of the aorta, the inlet boundary in
the left ventricle, and the outlet boundary at the upper end of the ascending
aorta, respectively. In particular, we assume the inlet 9€2;, and the outlet 9,
boundaries as the planar surfaces orthogonal to the centerline of the vessel, with
outward normals n;, and 14, respectively. By recalling the notation of Eq. (4)
ONwar = 002p and 9, U 0Qu = 0QN, we assign an homogeneous Dirichlet
condition on 0€,q; for the velocity and Neumann conditions both on the inlet
and the outlet boundaries to set the pressure:

u=20 on 8Qwa” X (0, T),
O Nipn = Pin Min on 08y, x (OaT)7 (15)

O Nout = Pout Mout ON 0oyt % (07 T)7

where p;, = pin(t) and pour = pout(t) are the pressure functions prescribed
according to physiological values.

10



We define the two level set functions ¢ and 1 in order to represent the aortic
valve at each time ¢ € (0,7). More in detail, through the level set functions
Cops Pels Yops Va1 + & — R, we represent the valve in the fully open (op) and
closed (cl) configurations; such functions are fixed in €2 and independent of time.
Indeed, the valve remains in one of these two configurations for almost the whole
cardiac cycle, except during its fast opening and closing stages. Moreover, we can
reconstruct these two configurations directly from medical images in a patient-
specific geometry (as will be outlined in Section 4), while it is basically impossible
to recover the level set functions for the intermediate valve configurations (during
the opening and closing stages). The configuration of the valve at each time is
then obtained by linearly interpolating the open and the closed ones as:

oz, t) = p(x, K(t))
= K@) + (1= K®) pa(®), (16)
Blat) = v k()

= K(t) top(x) + (1 = K(t)) tha (),

by means of a suitable time dependent interpolation function K : R — [0,1], for
all ¢, that will be characterized later. Hence, the evolution in time of the two
level set functions ¢ and 1 depends only on the evolution in time of the function
K. Note that the two distance functions ¢,, and ¢, must use the same sign
convention, i.e. negative values within the aortic valve (where the blood flows
from the ventricle to the aortic root) and positive outside it.

Now, we define the velocity of the aortic valve up. We observe that the
movement between its closed and its open position is mainly orthogonal to the
valve surface I'. Thus, we assume the velocity of the valve ur to have the same
direction of the normal to the surface of the valve represented by ¢. Therefore,
by exploiting the properties of the level set functions (Osher and Fedkiw, 2001)
and the fact that ¢ is also a signed distance function (|Vy| = 1), we define the
velocity of the valve as:

ur(xz,t) = ———=Vo(x,t)
(17)

Indeed, the vector V¢ is equivalent to the normal of the surface nr (positive
outside the aortic valve, coherently with the sign convention), while the scalar
function —0p /0t is related to the magnitude of the velocity field ur (Osher and
Fedkiw, 2001) since we assumed ur = (ur - nr)nr. We notice that, if the valve
is opening, —0p /0t is positive and the velocity ur takes the same direction
and verse of the surface normal np; on the contrary, if the valve is closing the
quantity —0@ /0t is negative and the velocity ur takes the opposite verse of the
surface normal nr. Finally, by using the definition (16) of the distance function

11
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Table 1: Parameters of the AV-OD model for the aortic valve angle
from Korakianitis and Shi (2006).

©, we express ur through the function K(t) as:

ur(z. (1) = T (@) - opla)

(Kt Veop(x) + (1 = K(t))Vea()).

Egs. (15), (16), and (18) determine our approach to apply the general RIIS
model to the Aortic Valve (AV-RIIS). In summary, we describe explicitly the
aortic valve in the open and closed configurations through ¢, and ¢, while
we obtain the intermediate configurations and the valve velocity upr through the
choice of a suitable function K(t); we outline our approach to determine IC(¢) in
Section 2.4.

(18)

2.3 The OD Model for the Aortic Valve Angle (AV-0D)

We exploit the 0D model proposed by Korakianitis and Shi (2006) for the aortic
valve (AV-0D model) to model in a realistic way its behavior during the cardiac
cycle. The AV-0D model consists in a ODE with the opening angle ¥(t) of the
valve as dependent variable, for which the forces acting on the valve are modeled
by using the pressure in the left ventricle P, the pressure in the first section of
the ascending aorta P,,, and the flow rate in the ascending aorta (g, as:

d?9(t) L di(t)

dt? ara
= ky (P (t) = Pao(t)) cos (9(1))

— ky 5810(Quao(t)) Quo(t) sin (20(t))

(19)
+ Ky Qao(t) cos (V() vt € (0,7),
19(0) = Q9m2n7
d9(0)
O

where sgn(-) is the sign function; k¢, kp, ky, and ky are suitable valve parameters.
Since the aortic valve yields a fixed angle when totally open or closed, the model
also defines minimum ¥,,,;;, and maximum ¥,,,, angles leading to the constraint
Ht) € [Dmins Imaz), for all t. The values of the parameters originally proposed in
(Korakianitis and Shi, 2006) for a physiological aortic valve are shown in Table
1.
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2.4 Coupling the AV-0D and the AV-RIIS Models

We now couple the (3D) AV-RIIS fluid dynamics model with the AV-0D valve
model. First, we define the relations between the pressure values P}, and P,,
and the flow rate @), involved in the AV-0D model (19) and the pressure p and
the velocity u in the AV-RIIS 3D model as:

Pot) = 0] / p(@,t) da,

lv

Pao(t) = || ! / p(a, 1) dm, (20)

ao

Qult) == | ulw.t) m(@)

where y, and 24, are two suitable control volumes taken upstream the aortic
valve (i.e. in the proximity of the left ventricle base) and downstream (at the
initial section of the ascending aorta), respectively.

We now link the AV-RIIS model to the AV-0D model through the interpola-
tion function /C(t) of Eq. (16). We introduce for this reason the concept of the
valvular plane I',,, a fixed plane parallel to the annulus (Charitos and Sievers,
2013) used in radiology to track the dynamics of the valve and of its orifice. In
the AV-RIIS model, exploiting I',, and the negative part of the distance function
¢ of Eq. (16), we express the Orifice Area (OA) of the valve in terms of K as:

OA(K) = /F Xt o(osr<op 7, (21)

where Yy is the characteristic function. Equivalently, we can define the orifice area
corresponding to the fully open valve, say OA; 4., using the level set function

Pop*
OApaz = /F X{x: pop(x)<0} d’}/ (22)
vp

Korakianitis and Shi (2006) introduced the Area Resistance (ARg,) coefficient
representing the resistance to the blood flow through the orifice; in this AV-0D
model, AR, is dependent on the 