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Abstract

We consider the fluid-structure interaction problem arising in haemody-
namic applications. The finite elasticity equations for the vessel are writ-
ten in Lagrangian form, while the Navier-Stokes equations for the blood
in Arbitrary Lagrangian Eulerian form. The resulting three fields problem
(fluid/ structure/ fluid domain) is formalized via the introduction of three
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Lagrange multipliers and consistently discretized by p-th order backward
differentiation formulae (BDFp).

We focus on partitioned algorithms for its numerical solution, which
consist in the successive solution of the three subproblems. We review
several strategies that all rely on the exchange of Robin interface conditions
and review their performances reported recently in the literature.

We also analyze the stability of explicit partitioned procedures and con-
vergence of iterative implicit partitioned procedures on a simple linear FSI
problem for a general BDFp temporal discretizations.

1 Introduction

The fluid-structure interaction (FSI) problem in large vessels haemodynamics
is characterized by a considerable amount of energy exchanged between blood
and arterial wall in each cardiac beat [36, 6, 13, 39, 12, 2, 14]. This makes its
numerical simulation particularly challenging. Due to the relatively large de-
formations involved, the structure dynamics is correctly described by non-linear
finite elasticity equations. On the other hand, the fluid-dynamics equations to
describe blood flow have to be solved in a moving domain. A quite popular ap-
proach consists in introducing a so-called Arbitrary Lagrangian Eulerian (ALE)
formulation [25, 11] that allows to track the moving interface between fluid and
solid in a Lagrangian way, while keeping the rest of the domain boundary fixed,
by introducing a reference configuration and an arbitrary ALE mapping.

The overall FSI problem consists then in three subproblems: the non-linear
fluid equations written in ALE formulation in the current moving configuration;
the non-linear solid equations written in the reference configuration (Lagrangian
formulation); the fluid domain problem to reconstruct the ALE map at each time
written in the reference configuration. Such problems are coupled through the
physical interface conditions, which guarantee the continuity of the velocity and
of the normal stresses between fluid and structure, and the geometrical interface

condition, which guarantees the continuity of displacements between the fluid
and the structure domains.

We are here interested in partitioned algorithms for the numerical solution
of the FSI problem, which consist in the successive solution of the three sub-
problems [37, 7, 9, 2, 3, 1]. This allows to use separate (pre-existing) solvers
for the three subproblems, a feature that is very appealing, since one avoids to
construct ex-novo a FSI solver and exploits the best solvers available for the
ALE-Navier-Stokes and non-linear elasticity equations.

The first aim of this work is to review some recent partitioned algorithms
developed in the framework of haemodynamic applications. In particular, we
first describe a naive approach, based on the successive solution of non-linear
fluid and structure problems, until satisfaction of the interface conditions [27, 29,
26]. We then report two schemes based on the application of the quasi-Newton
method to the monolithic FSI system. The first one leads to the Single-Loop
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algorithm where both the interface conditions and the constitutive (fluid and
structure) non-linearities are treated in the same loop [31, 22, 28, 10, 40, 35].
The second one, introduced in [35], in based on two nested loops, an external one
that iterates on the geometrical interface conditions and the constitutive non-
linearities, and an internal one that iterates of the physical interface conditions.
All these three strategies are presented with Robin interface conditions both
for the fluid and for the structure subproblems, leading to the so-called Robin-

Robin procedures, which generalize the classical Dirichlet-Neumann (DN) ones
and have been shown to deliver more efficient algorithms [2, 35] with respect
to DN approaches. In the case of the double loop algorithm, we review also a
strategy to solve the internal linearized FSI problem, by reformulating it as an
interface equation [3, 9].

The second aim of this work is to discuss the so called added mass effect,
which is responsible for the instability of classical explicit DN schemes and for the
slow convergence of implicit DN schemes in typical haemodynamic applications.
To highlight this phenomenon, we present a stability analysis of the explicit
scheme and a convergence analysis of the implicit scheme carried out on a model
problem describing the interaction between a potential fluid and a rigid piston
with only one degree of freedom. In particular, we extend here the results
presented in [7] to a general p-th order temporal discretization of fluid and
structure equations, based on Backward Differentiation Formulae (BDF).

The outline of the paper is as follows. In Section 2 we describe the fluid and
structure subproblems appearing in haemodynamic applications, while in Section
3 we present the coupled problem, its time discretization and a formulation based
on Lagrange multipliers. In Section 4 we review the three partitioned algorithms
and in Section 4.3 we present the FS interface problem. In Section 5 we discuss
the added mass effect and present the stability and convergence analysis. Finally,
in Section 6 we discuss and collect recent results on the numerical performances
of the presented schemes.

2 Mathematical models for vascular dynamics

2.1 The fluid subproblem in a moving domain

Blood is a concentrated suspension of cellular elements (red blood cells, white
blood cells, leukocytes and platelets) in an aqueous polymer solution, the plasma.
The latter represents 55% of the blood volume, 92% of which is water with the
rest being made up of proteins, small molecules and ions.

While plasma is nearly Newtonian in behavior, whole blood exhibits marked
non-Newtonian characteristics at low shear rates due to the deformability of
red blood cells and their tendency to form aggregates. In large vessels, however,
where shear rate is usually high, the Newtonian rheology is considered acceptable
[14] and will be assumed hereafter.
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We describe blood dynamics by the Navier-Stokes equations for incompress-
ible, Newtonian fluids, which in Eulerian form read:





ρf
∂uf

∂t
+ ρf (uf · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f .

(1)

Here uf and pf represent the fluid velocity and pressure, respectively, ρf is the
fluid density, ff some external forces and T f is the Cauchy stress tensor, which

for Newtonian fluids reads T f (uf , pf ) = ν(∇uf + ∇T uf ) − pfI.
Since the domain Ωt

f changes with time due to the interaction with the
arterial wall, from the computational point of view it is convenient to introduce
a reference configuration Ω0

f , typically the diastolic configuration, which can be

reconstructed more easily from medical images, and an arbitrary mapping At :
Ω0

f → Ωt
f , called Arbitrary Lagrangian Eulerian map. In particular, referring

to Figure 1, the inflow and outflow sections Σt
f,i will remain unchanged by the

mapping, while the reference interface Σ0 will be tracked in a Lagrangian way
and mapped into the deformed interface Σt. For any function gf defined in the
current domain Ωt

f , we denote by g̃f = gf ◦ At its counterpart in the reference

domain Ω0
f . We also introduce the domain velocity ũm = ∂At

∂t and its counterpart

um = ũm ◦ (At)−1. Then, the Navier-Stokes equations written in ALE form in
the current configuration read:




ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

(2)

where we have used the ALE time derivative
DAuf

Dt =
∂euf

∂t ◦ (At)−1. Several
strategies can be adopted to practically compute the ALE map for a given dis-
placement of the moving interface Σt. In what follows, we consider a simple
procedure based on the computation of a harmonic extension of the boundary
displacement inside the fluid domain. Although this procedure does not guaran-
tee the map to be invertible, numerical evidence shows that it is robust enough
for the applications at hand.

2.2 The structure subproblem

Arterial walls are made of three circumferential layers: intima, media and adven-
titia. From the mechanical perspective, the media is the most significant layer
in healthy arteries and is made primarily by elastin and collagen fibers. The
elastic tissue can make up more than 50% of the dry weight of the large arteries.
The collagen fibres are oriented in a roughly helical form around the artery and
are generally tortuous under normal conditions. As the artery is distended, the
collagen fibres straighten and, because of their large tensile strength, bear more
and more of the load.
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Since the deformation of large arteries during a cardiac beat is quite large,
the correct framework to describe its dynamics is given by the finite elastic-
ity equations. Let Ω0

s be the reference configuration for the arterial wall. We
describe the arterial motion by the displacement field η̃s = η̃s(x

0
s, t) of each

material x0
s ∈ Ω0

s in time. The deformed configuration is denoted by Ωt
s and the

current position on each material point is individuated by the Lagrangian map
xt

s = Lt(x0
s) = x0

s + η̃0
s(x

0
s, t). For each function f : Ωt

s → R defined on the
current configuration we denote by f̃ = f ◦ Lt its counterpart in the reference
configuration.

The deformation of the tissue is measured in terms of the deformation gra-
dient tensor F = I + ∇η̃s and the right Cauchy-Green tensor C = F T F . The
Cauchy stress tensor is denoted by T s in the current configuration whereas the
corresponding stress tensor in the reference configuration (first Piola-Kirchhoff
tensor) is denoted by T̃ s = JT sF

−T , with J = det(F ).
Then, the dynamics of the arterial tissue is governed, in Lagrangian form,

by the equation

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃ s in Ω0

s, t > 0,

where ρs is the tissue density and f̃ s external forces acting on the system.
Soft biological tissues can be regarded as elastic under relatively large de-

formations, so it is common to derive the Cauchy stress tensor from a strain
energy function W = W(C), i.e. T̃ s = 2F ∂W

∂C
. Several models have been pro-

posed for the strain energy function. We point to [24] for a recent review. We
consider here nearly incompressible models where the strain energy function is
decomposed into an isochoric and a volumetric part

W = Wiso(C̄) + Wvol(J), with C̄ = J− 2

3 C.

The volumetric part penalizes the changes of volume. A possible expression is
given by Wvol = κ

4 [(J − 1)2 + (log J)2]. For the isochoric strain energy function,
a widely used model is the exponential one [17, 23, 42]

Wiso =
α

2γ

(
exp{γ(tr(C̄) − 3)} − 1

)

which describes the strong stiffening effect of the tissue observed at higher load-
ings due to collagen fibres. More sophisticated models [24] take into account
the preferential direction of the collagen fibers, characterized by a unit vector
field M in the reference configuration. They combine a neo-Hookean model to
describe elastin behavior, with an exponential model along the preferential di-
rection (or multiple directions) of the collagen fibers. For a single direction the
strain energy function proposed in [23] reads:

Wiso =
µ

2
(tr(C̄) − 3) +

α

2γ

(
exp{γ(MT C̄M − 3)2} − 1

)
.
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We point out, however, that in patient specific simulations and geometries
reconstructed from medical images, it is very difficult to date to extract the
information on the fibers direction.

3 The coupled fluid-structure interaction problem

3.1 Continuous formulation

We consider a coupled system obtained by the interaction between a fluid and
a structure, whose separate description has been given in the previous section.
Again, Ωt

f and Ωt
s represent the current fluid and structure domains, respectively,

while Σt indicates the fluid-structure interface, see Figure 1. The same quantities
with superscript 0 refer instead to the reference configuration and functions
defined therein are denoted with a tilde. Moreover, by nf (resp. ns) we denote
the unit outward normal vector to ∂Ωt

f (resp. ∂Ωt
s). The strong formulation

Figure 1: Representation of the domain of the FSI problem: fluid domain on the
left, structure domain on the right.

of the FSI problem, including the computation of the ALE map reads then as
follows

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity um

and fluid domain Ωt
f , find, at each time t ∈ (0, T ], the fluid velocity uf ,
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pressure pf and structure displacement ηs such that





ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃ s in Ω0

s,

uf =
∂ηs

∂t
on Σt,

T s(ηs)ns + T f (uf , pf )nf = 0 on Σt,

αeη̃s + T̃ s(η̃s) ñs = Pextñ, on Σ0
out.
(3)

2. Geometry problem. Given the (unknown) interface structure displacement
η̃s|Σ0 , find the displacement of the points of the fluid domain ηm such that

{
−△η̃m = 0 on Ω0

f ,

η̃m = η̃s on Σ0,
(4)

and then find accordingly the fluid domain velocity ũm := ∂eηm

∂t , and the
new points xt

f of the fluid domain by moving the points x0
f of the reference

domain Ω0
f : xt

f = x0
f + η̃m.

The two matching conditions enforced at the FS interface are the continuity
of velocities (3)4 and the continuity of normal stresses (3)5 (physical interface
conditions), while condition (4)2 enforces that the fluid domain remains at all
time in contact with the solid (geometrical interface condition). Equations (3)
and (4) have to be endowed with suitable boundary conditions on Ωt

f \ Σt and

Ω0
s \ (Σ0 ∪ Σ0

out), and with suitable initial conditions. The Robin boundary
condition (3)6 on Σ0

out models the presence of a surrounding tissue around the
vessel. This choice corresponds to model the tissue as a perfectly elastic body,
with αe the corresponding elastic coefficient (see [33, 30]).

3.2 Temporal discretization

For the temporal discretization we consider here BDF schemes (see e.g. [20])
applied to both the fluid and the structure subproblems. In particular, let ∆t
be the time discretization parameter and tn := n ∆t, n = 0, 1, . . .. For a generic
function z, we denote with zn the approximation of z(tn). We consider general
discretizations of order p (BDFp) of the form

Dpv
n+1

∆t
:=

1

∆t

(
β0 vn+1 −

p∑

i=1

βi v
n+1−i

)
=

∂v

∂t
(tn+1) + O(∆tp),

D2
pv

n+1

∆t2
:=

1

∆t2

(
ξ0 vn+1 −

p+1∑

i=1

ξi v
n+1−i

)
=

∂2v

∂t2
(tn+1) + O(∆tp),

(5)
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for suitable coefficients βi and ξi. In Table 1 we report the values of such
parameters for p = 1, 2, 3, 4.

β0 β1 β2 β3 β4 ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

1 1 1 – – – 1 2 -1 – – –
2 3/2 2 -1/2 – – 2 5 -4 1 – –
3 11/6 3 -3/2 1/3 – 35/12 26/3 -19/2 14/3 -11/12 –
4 25/12 4 -3 4/3 -1/4 15/4 77/6 -107/6 13 -61/12 5/6

Table 1: Values of parameters βi and ξi for BDFp schemes involved in the
discretization of first (left) and second (right) derivatives - p = 1, 2, 3, 4.

For the sake of notation in what follows we will omit the index of the cur-
rent time step n+1. Then, the discretized-in-time FSI problems at time tn+1

is obtained by (3) − (4) where the time derivative operators are replaced by
approximations (5).

3.3 A three field formulation by Lagrange multipliers

The FSI monolithic system (3) − (4) and its discretized-in-time version consist
of three partial differential equations coupled through three interface conditions:
the fluid and the structure subproblems share the same velocity and the same
normal stress (physical conditions), while the fluid domain and the structure
domain share the same displacement (geometrical condition).

In order to highlight the coupled structure of the problem, we report here
an equivalent formulation introduced in [35] based on the introduction of three
Lagrange multipliers defined on the FS interface, representing the fluid and
structure normal stresses λf = −T f nf and λs = −T s ns, and the normal
derivative of the fluid mesh displacement λm = −∇ηm · nf . This will be useful
also for the derivation of partitioned algorithms for the numerical solution of the
coupled problem. In particular, with ΣD

f , ΣD,0
s and ΣD

m we denote the parts of
the boundary where Dirichlet boundary conditions are prescribed. To lighten
the notation, we drop hereafter the superscript n+1 also for domains and spaces,
so that, if not otherwise specified, they have to be intended at time tn+1. Then,
we define the following functional spaces

Vf := {v ∈ H1(Ωf ) : v|ΣD
f

= 0}, Q := L2(Ωf )

Vs := {v ∈ H1(Ω0
s) : v|

ΣD,0
s

= 0}, Vm := {v ∈ H1(Ω0
f ) : v|

ΣD,0
m

= 0},

where the conditions imposed on the boundaries have to be intended in the
sense of traces. Let vf := (uf , pf ) collect the fluid unknowns and F : V f ×Q×
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V m → (V f ×Q)′ be the discretized-in-time fluid operator. Analogously, for the
structure subproblem we define the discretized-in-time operator S : V s → (V s)

′,
and for the harmonic extension we introduce the operator H : V m → (V m)′.
We also define the following trace operators

γ̃f : V f × Q → H1/2(Σ0), γ̃f (v, q) := ṽ|Σ0 ,

γf : V f × Q → H1/2(Σ), γf (v, q) := v|Σ ,

γ̃s : V s → H1/2(Σ0), γ̃sµ̃ := µ̃|Σ0 ,

γs : V s → H1/2(Σ), γsµ̃ := µ|Σ ,

γ̃m : V m → H1/2(Σ0), γ̃mz̃ := z̃|Σ0 .

We then rewrite the time discrete version of problem (3)-(4) as follows





H η̃m + γ̃∗
mλ̃m = 0 in (V m)′ ,

γ̃mη̃m = γ̃sη̃s on Σ0,
F(vf , um) + γ∗

fλf = Gf in (V f × Q)′ ,

γ̃fvf = γ̃s
Dpeηs

∆t on Σ0,

λ̃s = −λ̃f on Σ0,

S(η̃s) + γ̃∗
s λ̃s = Gs in (V s)

′ ,

(6)

where um =
Dpηm

∆t and where γ∗ denotes the adjoint of the trace operator, Gs

and Gf accounting for the right hand sides. See [35] for more details.

4 Partitioned algorithms based on Robin interface

conditions

Among the strategies which could be considered for the numerical solution of the
FSI problem, a particular attention has been devoted to partitioned algorithms.
These strategies are based on the successive solution of the three subproblems
and allows one to reuse existing codes. They could be explicit (staggered), in
which case the fluid and structure subproblems are solved only once (or few
times) for time steps, or implicit, in which case the subproblems are solved iter-
atively until the interface conditions are satisfied [37, 7, 9, 12, 5, 2]. Recently, also
semi-implicit algorithms have been proposed, in which the ALE-geometry prob-
lem is solved only once per time step, whereas the fluid and structure problems
are iterated [12, 5, 35]. In this case, the interface physical conditions (6)4−5 are
enforced exactly at each time step, whereas the interface geometrical condition
(6)2 is enforced only in an approximate way.

In haemodynamics, the use of explicit partitioned algorithms turns out to be
extremely problematic for stability reasons, because of the large added-mass of
the fluid on the structure. This issue is discussed thoroughly in Section 5 (see
also [7, 16]). Implicit partitioned algorithms are also affected by the added mass
effect as they feature very slow convergence, unless special treatments of the
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interface conditions are considered. We focus here on procedures in which the
fluid and structure subproblems are solved enforcing Robin interface conditions
[2, 3, 1, 8, 43]. The use of Robin-Robin interface conditions can significantly
alleviate the added mass effect if the coefficients in the Robin conditions are
properly chosen, as shown in [2, 19].

To derive such algorithms in a general framework, we consider system (6)
where the two physical interface conditions (6)4−5 are replaced by linear combi-
nations of them:





αf γ̃fvf + λ̃f = αf γ̃s
Dpeηs

∆t − λ̃s on Σ0,

αsγ̃s
Dpη̃s

∆t
+ λ̃s = αsγ̃fvf − λ̃f on Σ0.

(7)

If αf 6= αs then these new physical interface conditions are equivalent to (6)4−5.
In the following sections, we present some Robin-Robin formulations adapted
to the case of the finite elasticity. In any case, the Lagrange multipliers have
been introduced just to simplify the expression of the three interface continuity
conditions and the derivation of the partitioned algorithms. However, there is
no actual need to introduce them in practical implementations of the algorithms
to avoid extra costs. We also observe that the classical Dirichlet-Neumann (DN)
formulations are recovered from the Robin-Robin ones by setting αf → ∞ and
αs = 0.

4.1 Robin-Robin standard iterations

The first strategy corresponds to simple iterations at each time step between
the fluid and the structure subproblems with Robin boundary conditions (see
[27, 29, 26] for the DN case). It corresponds to a block-Gauss-Seidel method
applied to system (6) where conditions (6)4−5 are replaced by (7). We have the
following

Algorithm 1

Given the solution at iteration k, solve until convergence

1. The (non-linear) fluid problem in ALE configuration with Robin interface
condition and the geometry problem





H η̃k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)′ ,
γ̃mη̃k+1

m = γ̃sη̃
k
s on Σ0,

F(vk+1
f , uk+1

m ) + γ̃∗
f λ̃

k+1

f = Gf in
(
V f (ηk

s) × Q(ηk
s)
)′

,

αf γfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1;

(8)
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2. The (non-linear) structure problem with Robin interface condition

{
S(η̃k+1

s ) + γ̃∗
s λ̃

k+1

s = Gs in (V s)
′ ,

αs γ̃s
Dpeηk+1

s

∆t + λ̃
k+1

s = αsγ̃fvk+1
f − λ̃

k+1

f on Σ0.

We monitor the residuals of equations (8)2 and (8)4 and stop the iterations
when such residuals are below a prescribed tolerance. In problem (8), we have
denoted by V f (ξ) and Q(ξ) the spaces defined on the domain Ωf obtained by
the harmonic extension of the datum ξ. We also observe that the solution of
the geometry problem does not depend on the fluid solution, therefore at each
Robin-Robin iteration the harmonic extension could be solved separately. Then,
Algorithm 1 consists in the successive solution of a harmonic extension, a non-
linear fluid problem in a known domain and a non-linear structure problem. The
last two subproblems have to be solved with a proper strategy to handle the non-
linearities, such as with Picard iterations for the fluid and Newton iterations for
the structure.

Algorithm 1 is particularly suited when one has at disposal two black-box

solvers for the fluid problem in ALE formulation and for the structure, since
it needs just to implement suitable routines for the transfer of the interface
conditions between the two codes.

4.2 Quasi-Newton methods

We rewrite system (6) where conditions (6)4−5 are replaced by (7) in a compact

form as G(y) = 0, where y := [η̃m, λ̃m, vf , λ̃f , λ̃s, η̃s] denotes the FSI solution.
A second strategy to solve the FSI problem with partitioned algorithms consists
in writing quasi-Newton iterations applied to G(y) = 0, that is

Ĵ(yk) δyk+1 = −G(yk), (9)

where Ĵ is a suitable approximation of the Jacobian [21, 31, 28, 35]

∇G =




H γ̃∗
m

γ̃m −γ̃s

∇ηmF ∇vf
F γ̃∗

f

αf γ̃f I I −αf
β0eγs

∆t

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗

s ∇ηsS




.

The partitioned algorithms we investigate in this work are all derived by (9)
by a proper choice of Ĵ . In all cases, the approximation of the Jacobian is chosen
such that

1. The term ∇ηmF representing the shape derivative is neglected;
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2. The tangent fluid problem ∇vf
F is replaced by an Oseen problem

∇̂vf
F δvf :=

{
ρf

β0

∆t
δuf + ρf ((uf − um) · ∇)δuf −∇ · T f (δuf , δpf )

∇ · δuf ,

with a known convective term extrapolated from previous time steps. In
order to make clearer its expression, we will indicate explicitly the convec-
tive term in the Oseen operator as ∇̂vf

F(w).

The residual Ĵ(yk) δyk+1 + G(yk+1) is used to monitor the convergence of
the iterations, leading case by case to different stopping criteria [35].

4.2.1 Single-loop algorithm

We consider a three blocks diagonal approximation of the Jacobian [31, 22, 28,
10, 40, 35], that is

ĴSL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗

s ∇ηsS




,

which leads to the following

Algorithm 2

Given the solution at iteration k, solve until convergence

1. The harmonic extension
{

H η̃k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)′ ,
γ̃mη̃k+1

m = γ̃sη̃
k
s on Σ0,

obtaining the new fluid domain Ωk+1
f and the domain velocity uk+1

m .

2. The fluid subproblem with a Robin condition at the FS interface

{
∇̂vf

F(uk
f − uk+1

m )vk+1
f + γ̃∗

f λ̃
k+1

f = Gf in
(
V f (ηk

s) × Q(ηk
s)
)′

,

αfγfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1,

(10)

3. The structure subproblem with a Robin condition at the FS interface
{

∇ηsS(η̃k
s) δη̃k+1

s + γ̃∗
sδλ̃

k+1

s = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′ ,

αsγ̃s
Dpeηk+1

s

∆t − λ̃
k+1

s = αsγ̃f ṽk+1
f − λ̃

k+1

f on Σ0.
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We observe that with this choice we obtain again a partitioned algorithm corre-
sponding to the sequential solution of the harmonic extension, fluid subproblem
and structure subproblem. However, in this case, differently from Algorithm 1,
the fluid and the structure subproblems are linear at each iteration. Indeed, in
this case, the geometrical and physical interface conditions and the constitutive
non-linearities are all treated in the same loop.

This algorithm can be implemented in a modular way provided one has
access to an Oseen-ALE solver and to a tangent structure solver, both with the
possibility of prescribing Robin boundary conditions.

4.2.2 Double-loop algorithm

We consider here a two blocks diagonal approximation of the Jacobian [35], that
is

ĴDL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I I −αf
β0eγs

∆t

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗

s ∇ηsS




,

which corresponds to the sequential solution of the harmonic extension and of a
linearized FSI problem. For the solution of the latter, since we are interested in
partitioned algorithms, we use the following RR preconditioner

P̂RR =




∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
β0

∆t γ̃s

γ̃∗
s ∇ηsS


 .

We obtain the following:

Algorithm 3

Given the solution at iteration k, solve until convergence

1. The harmonic extension
{

H η̃k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)′ ,
γ̃mη̃k+1

m = γ̃sη̃
k
s on Σ0,

obtaining the new fluid domain and fluid domain velocity.

2. The linearized FSI problem. For its solution, we consider the following
partitioned algorithm: Given the solution at subiteration l − 1, solve at
the current subiteration l until convergence

13



(a) The fluid subproblem with Robin condition at the FS interface





∇̂vf
F(uk

f,l − uk+1
m )vk+1

f,l + γ̃∗
f λ̃

k+1

f,l = Gf in
(
V f (ηk

s) × Q(ηk
s)
)′

,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dpηk

s,l−1

∆t − λk
s,l−1 on Σk+1,

(b) The structure subproblem with Robin condition at the FS interface





∇ηS(η̃k
s,l) δη̃k+1

s,l + γ̃∗
sδλ̃

k+1

s,l = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′ ,

αsγ̃s
Dpeηk+1

s,l

∆t − λ̃
k+1

s,l = αsγ̃f ṽk+1
f,l − λ̃

k+1

f,l on Σ0.

This algorithm contains two nested loops, an external one for the prescription
of the geometrical continuity condition and for the treatment of the constitutive
non-linearities, and an internal one for the prescription of the physical interface
continuity conditions.

4.3 Interface equation and Robin-Robin-GMRes algorithm.

Consider the Double-Loop algorithm. At each external iteration, we have to solve
a fully-linearized FSI problem, in a given fluid geometry. The strategy considered
in the previous section to solve this problem, can also be seen as a Richardson
method applied to a preconditioned interface problem [3]. To illustrate this, first
consider the linearized problem with Dirichlet-Neumann interface conditions (i.e.
αf → ∞ and αs = 0). After spatial discretization, e.g. by finite elements [38],
this problem reads




Cff CfΣ 0 0 0 0
0 MΣ 0 0 −MΣ 0

CΣf CΣΣ M̂Σ 0 0 0

0 0 0 M̂Σ NΣΣ NΣs

0 0 M̂Σ M̂Σ 0 0
0 0 0 0 NsΣ Nss







Vf

VΣ

Λf

Λs

UΣ

Us




=




bf

0

bfΣ

bsΣ

0

bs




, (11)

where we have split the degrees of freedom associated to nodes interior to the
fluid and structure domains from those associated to the FSI interface (denoted
with the subscript Σ). Moreover, we have written the linearized structure prob-
lem in terms of velocities instead of displacements. The vector Vf contains
interior velocity values and all the pressure values for the fluid, Us contains in-
terior velocity values for the structure problem, whereas VΣ and UΣ contain the
interface velocity values for the fluid and for the structure, respectively, while
Λf and Λs are the approximations of the Lagrange multipliers. Matrices C and

N represent the algebraic counterpart of the linearized Oseen operator ∇̂vf
F

and of the linearized structure operator ∇ηsS, respectively. MΣ is the interface
mass matrix, which is invertible, so that the second equation is equivalent to
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the physical interface condition VΣ = UΣ. M̂Σ could be different from the in-
terface mass matrix MΣ, depending on the discretization used for the Lagrange
multipliers. We assume here this matrix to be invertible. This is guaranteed,
for instance, if one discretizes the Lagrange multipliers in the space of traces of
velocity functions. The 5-th equation enforces the continuity of normal stresses
at the FS interface. The right hand sides follow accordingly to (6).

As suggested in [9, 32] the linearized FSI problem can also be understood
as an interface problem in which the only unknown is the velocity at the fluid-
structure interface. At the continuous level, the interface problem makes use
of the fluid and structure Steklov-Poincaré operators (see e.g. [9]). Its fully
discrete counterpart makes use of the fluid and structure Schur complement
matrices (discrete versions of the Steklov-Poincaré operators, see [4]). System
(11) is equivalent to

(C̃Σ + ÑΣ)UΣ = b̃Σ (12)

where

C̃Σ = CΣΣ − CΣfC−1
ff CfΣ, (13a)

ÑΣ = NΣΣ − NΣsN
−1
ss NsΣ (13b)

are the fluid and structure Schur complement matrices and

b̃Σ = bΣ − CΣfC−1
ff bf − NΣsN

−1
ss bs

is the corresponding right hand side.
It has been shown in [3] that the Robin-Robin partitioned procedure de-

scribed in Algorithm 3, point 2, can be interpreted as a Richardson method over
the preconditioned system (RR-Richardson)

P̃−1
RR(C̃Σ + ÑΣ)UΣ = P̃−1

RRb̃Σ, (14)

the preconditioner being

P̃RR =
1

αf + αs

(
C̃Σ + αfMΣ

)
M−1

Σ

(
ÑΣ + αsMΣ

)
. (15)

Instead of a Richardson method, it is then possible to apply more performing
Krylov methods to (14)-(15), such as GMRes. In this way, we obtain again a par-
titioned procedure, composed of successive solutions of Dirichlet-structure prob-
lems, Robin-structure problems and Robin-fluid problems [3]. These procedures
could be used alternatively to the RR-Richardson one at step 2 in Algorithm 3.

5 The added mass effect

In this section we recall the concept of added mass and its role in the stabil-
ity of explicit (staggered) partitioned algorithms as well as in the convergence
properties of fixed point type iterations for implicit partitioned algorithms.
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We study a very simple problem of an inviscid incompressible fluid in a pipe
pushed against an elastically supported rigid plate, with the eventual introduc-
tion of a dumper (piston problem). The dynamics of the plate is governed by
a simple second order ordinary differential equation, whereas the dynamics of
the fluid can be described as a potential flow. Figure 2 illustrates the set up
of the problem. We also assume small displacements, so that the fluid domain
is considered fixed, and small velocities, so that the fluid equations could be
linearized around the rest state uf = 0. In particular, we have the following

Figure 2: Schematic representation of the piston problem.

coupled problem





ρf
∂uf

∂t
+ ∇pf = 0 in Ωf ,

∇ · uf = 0 in Ωf ,
uf · n = 0 on Γwall,
pf = g on Γin,
uf · n = η̇s on Γp,
mη̈s + cη̇s + kηs =

∫
Γp

pf dγ on Γp,

(16)

where g is a given datum and m, c, k are the mass, dumping and stiffness pa-
rameters representing the piston system. The last two conditions represent the
continuity of the velocity and of the stress at the interface Γp.

By applying the divergence operator to the fluid momentum equation, it is
possible to write an equivalent coupled problem involving just the fluid pressure
and the piston displacement, as follows





△pf = 0 in Ωf ,
∂pf

∂n
= 0 on Γwall,

pf = g on Γin,
∂pf

∂n
= −ρf η̈s on Γp,

mη̈s + cη̇s + kηs =
∫
Γp

pf dγ on Γp,

16



where the velocity interface condition has been written in terms of normal deriva-
tive of the pressure, since from the momentum equation projected in the normal
direction we have

n ·

(
ρf

∂uf

∂t
+ ∇pf

)
= 0 →

∂pf

∂n
= −ρf

∂(uf · n)

∂t
on Γp ∪ Γwall.

Given ξ ∈ R, consider now the following problem in the unknown w





△w = 0 in Ωf ,
∂w

∂n
= 0 on Γwall,

w = 0 on Γin,
∂w

∂n
= ξ on Γp.

We introduce the added mass operator MA : R → R defined as follows

MA ξ := ρf

∫

Γp

w dγ.

In the specific setting considered here, the operator MA is just a positive number
with the units of a mass. It is easy to show that, for this example, MA = ρf |Ωf |,
and coincides with the total mass of the fluid contained in the pipe. In the
general case of a deformable structure, the added mass operator is nothing but
the Neumann-to-Dirichlet map related to the interface Γp multiplied by the
factor ρf (see [7] for a precise definition).

By exploiting the linearity of the fluid problem, we have that the force exerted
by the fluid on the piston can be written as

∫

Γp

pf dγ =

∫

Γp

pg dγ −MA η̈, (17)

for a suitable function pg which takes into account the non-homogeneous bound-
ary conditions on Γin and does not depend on the coupling with the piston.
Then, the effective piston dynamics reads

(m + MA)η̈s + cη̇s + kηs =

∫

Γp

pg dγ on Γp. (18)

This modified equation highlights that the effective mass of the piston includes
the mass MA of the fluid that has to be displaced. We also observe that the
presence of the fluid alters the natural frequency of oscillation of the piston,
which decreases from ω =

√
k/m in air to ω =

√
k/(m + MA) in the fluid.

We now focus on a BDFp discretization of equation (16). To lighten the
presentation, we omit to detail the boundary conditions on the fixed boundaries
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of the pipe (inflow and wall). The discretized problem reads:




ρf
Dpun+1

f

∆t + ∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,

un+1
f · n =

Dpηn+1
s

∆t on Γp,

m
D2

pηn+1
s

∆t2
+ c

Dpηn+1
s

∆t + kηn+1
s =

∫
Γp

pn+1
f dγ on Γp.

(19)

In the next sections we analyze several explicit and implicit partitioned proce-
dures to solve numerically the coupled problem (19).

5.1 Staggered Dirichlet-Neumann scheme

The first strategy we consider consists in extrapolating the force on the piston∫
Γp

pn+1
f in (19)4 with a q-th (q ≥ 1) order extrapolation formula that uses the

q previous evaluations (pn
f , pn−1

f , . . . , pn−q+1
f ), namely

Eq(p
n+1
f ) =

q∑

i=1

(−1)i+1

(
q

i

)
pn+1−i

f .

The scheme reads:

m
D2

pη
n+1
s

∆t2
+ c

Dpη
n+1
s

∆t
+ kηn+1

s = Eq

(∫

Γp

pn+1
f dγ

)
on Γp,





ρf
Dpun+1

f

∆t + ∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,

un+1
f · n =

Dpηn+1
s

∆t on Γp.

(20)

This strategy leads to a staggered Dirichlet-Neumann algorithm where, at each
time step, we can first solve the piston equation, using previous evaluations
of the fluid pressure (“Neumann datum”), and then solve the fluid equations
once the piston displacement is know (“Dirichlet datum”). The following result
generalizes to BDFp schemes the one given in [7].

Lemma 5.1 Let β̄p = 2
∑⌊p/2⌋

i=0 β2i+1 and ξ̄p = 2
∑⌊(p+1)/2⌋

i=0 ξ2i+1. The staggered
Dirichlet-Neumann algorithm (20) is unstable if

MA >
1

(2q − 1)β̄2
p

(
mξ̄p + ∆tcβ̄p + ∆t2k

)
. (21)

Proof. The pressure equation corresponding to (20) is





△pn+1
f = 0 in Ωf ,

∂pn+1
f

∂n
= −ρf

DpDpη
n+1
s

∆t2
on Γp,

(22)
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so the equivalent discretized scheme for the effective piston dynamics reads:

m
D2

pη
n+1
s

∆t2
+ c

Dpη
n+1
s

∆t
+ kηn+1

s = −
MA

∆t2
Eq

(
DpDpη

n+1
s

)
+ Eq

(∫

Γp

pn+1
g dγ

)
.

(23)
The latter is a difference equation of order 2p + q of the form

α0η
n+1
s + α1η

n
s + . . . + α2p+qη

n−(2p+q−1)
s =

q∑

j=1

(−1)j+1

(
q

j

)∫

Γp

pn−j+1
g , (24)

with α0 = mβ0

∆t2
+ cξ0

∆t +k > 0. Let us denote by r(s) its characteristic polynomial
of degree 2p + q and evaluate it in s = −1. Observe that this corresponds to
evaluating the left hand side of (24) for the sequence η̄k

s = (−1)k, k = 0, 1, . . ., i.e.
r(−1) =

∑2p+q
i=0 αiη̄

2p+q−i
s . Recalling that by consistency of the BDFp formulae

it holds β0 =
∑p

i=1 βi and ξ0 =
∑p+1

i=1 ξi, we have:

Dpη̄
k
s = β0η̄

k
s −

p∑

i=1

βiη̄
k−i
s = (−1)k

(
β0 −

p∑

i=1

(−1)iβi

)
= β̄pη̄

k
s ,

Eq(η̄
k
s ) =

q∑

i=1

(−1)i+1

(
q

i

)
η̄k−i

s = (−1)k+1(2q − 1) = −(2q − 1)η̄k
s ,

D2
pη̄

k
s = ξ0η̄

k
s −

p+1∑

i=1

ξiη̄
k−i
s = (−1)k

(
ξ0 −

p+1∑

i=1

(−1)iξi

)
= ξ̄pη̄

k
s .

Then, (23) with pn
g = 0, n = 0, 1, . . . , becomes

mξ̄p

∆t2
η̄n+1

s +
cβ̄p

∆t
η̄n+1

s + kη̄n+1
s =

MA(2q − 1)β̄2
p

∆t2
η̄n+1

s

and

r(−1) = (−1)2p+q

[
mξ̄p −MA(2q − 1)β̄2

p

∆t2
+

cβ̄p

∆t
+ k

]
.

We therefore see that for q even, r(−∞) = +∞ and under condition (21) r(−1) <
0. Therefore the characteristic polynomial has a root s∗ < −1 which shows that
the scheme is unstable. An analogous argument holds for q odd. �

Remark 5.1 Observe that under the condition

MA >
mξ̄p

(2q − 1)β̄2
p

even if the difference equation (23) might be stable for some ∆t large enough,
it becomes unstable in the limit ∆t → 0. Hence, the scheme is asymptotically
unstable and therefore not convergent.
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If we take q = p in (23) the value of the added mass MA beyond which the
scheme is unstable becomes smaller and smaller as p increases. In particular,
for p = 1, . . . , 4 we have

p=1 p=2 p=3 p=4

MA/m > 1 1/4 3/35 1/32

Remark 5.2 The intuitive reason why algorithm (20) fails to be stable for large
added mass is that the presence of the fluid on the structure appears as an extra
inertia term. Any staggered procedure will treat that inertia term explicitly in the
effective structure equation. If the fluid inertia term turns out to be larger than
the structure inertia term, the staggered scheme is unstable and there is no way
to stabilize it by reducing the time step ∆t as both inertia terms are multiplied
by the same power of ∆t.

5.2 Implicit scheme with Dirichlet-Neumann subiterations

If no extrapolation of the forcing term on the structure is performed, we have
to solve the coupled problem (19). For this, we consider Dirichlet-Neumann
subiterations. For a given quantity x, at time step n + 1 let {xn+1

k } be the
sequence {x0, x1, . . . , xn, xn+1,k} with xi, i = 0 . . . , n known from previous time
iterations and xn+1,k unknown, k denoting the subiteration counter. Then, the
Dirichlet-Neumann subiterations with relaxation read: given ηn+1

s,0 , compute for
k = 1, . . .





ρf
Dpun+1

f,k

∆t + ∇pn+1,k
f = 0 in Ωf ,

∇ · un+1,k
f = 0 in Ωf ,

u
n+1,k
f · n =

Dpηn+1

s,k−1

∆t on Γp,

m
D2

pη̃
n+1
s,k

∆t2
+ c

Dpη̃
n+1
s,k

∆t
+ kη̃n+1,k

s =

∫

Γp

pn+1,k
f dγ on Γp,

ηn+1,k
s = ωη̃n+1,k

s + (1 − ω)ηn+1,k−1
s .

(25)

The convergence of this fixed point algorithm can be easily analyzed by
looking at the equivalent fixed point algorithm on the effective piston equation,
and characterized by means of the asymptotic convergence factor σ(ω) defined
as the smallest positive number for which

|ηn+1,k
s − ηn+1

s | ≤ σ(ω)|ηn+1,k−1
s − ηn+1

s | ∀k = 1, 2, . . . ,

where ηn+1
s is the solution of the coupled problem (19). The result is summarized

in the following Lemma, which generalizes to BDFp discretizations the result in
[2].
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Lemma 5.2 The algorithm (20) converges to the solution of (19) if the relax-
ation parameter satisfies

ω ≤
2

1 +
MAβ2

0

mξ0+∆tcβ0+∆t2k

.

Moreover, the best choice of ω leads to an asymptotic convergence factor

σ(ωopt) =
1

1 +
MAβ2

0

mξ0+∆tcβ0+∆t2k

.

We see from this lemma that if the added mass of the fluid is large, i.e. MA ≫
mξ0/β2

0 , then a very strong relaxation is needed (ω ≪ 1) and even with optimal
choice of the relaxation parameter, the convergence will be very slow.

5.3 Robin-Robin procedures and optimal choices of the Robin

coefficients

We now turn to Robin-Robin algorithms, either explicit or implicit applied to the
coupled problem (19). Recalling the formulae (5) for the BDFp approximation
of time derivatives, we can write:

un+1
f · n =

Dpη
n+1
s

∆t
=

β0

∆t
ηn+1

s − fn
s , (26)

D2
pη

n+1
s

∆t2
=

ξ0

∆t2
ηn+1

s − gn
s =

ξ0

∆tβ0
un+1

f · n +
ξ0

∆tβ0
fn

s − gn
s , (27)

with fn
s = 1

∆t

∑p
i=1 βiη

n+1−i and gn
s = 1

∆t2
∑p+1

i=1 ξiη
n+1−i, known from previous

time steps. Therefore, the coupled FSI problem (19) can be written in the only
unknowns un+1

f and pn+1
f as





ρf
Dpun+1

f

∆t + ∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,(

mξ0
∆tβ0

+ c + k∆t
β0

)
un+1

f · n −
∫
Γp

pn+1
f dγ = f̃n

s on Γp,

un+1
f · n = const on Γp,

(28)

for a suitable right hand side f̃n
s and where with (28)4 we have highlighted that

in condition (28)3 the term un+1
f ·n has to be constant over Γp. Once this fluid

problem has been solved, the structure displacement is recovered thanks to (26)1,
that is ηn+1

s = ∆t
β0

(un+1
f · n + fn

s ). Equation (28)3−4 can be seen as a defective
Robin boundary condition and could be treated as suggested in [41, 35, 15].

This derivation shows that the coupled FSI piston problem (19) can be rein-
terpreted as just a fluid problem with a (defective) Robin boundary condition.
Therefore, the use of Robin boundary conditions allows us to incorporate the
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structure equation as a boundary condition for the fluid and solve exactly the
coupled problem without the need of extrapolating any term. Equivalently, an
iterative procedure as (25) that uses the Robin boundary condition (28)3−4 in-
stead of a Dirichlet one, will converge in just one iteration.

This nice behavior is actually possible thanks to the very simple nature of the
structure problem. For more complex structural models, it will not be possible
to reduce exactly the FSI problem to just a fluid problem with a Robin boundary
condition. However, the argument used to derive (28) suggests that a good Robin
boundary condition for the fluid is given by

αf γ̃fvf + λ̃f = αf γ̃s
Dpη̃s

∆t
− λ̃s on Σ0, (29)

with

αf ≈
mξ0

∆tβ0
+ c +

k∆t

β0
, (30)

m, c, k being indicative mass, damping and elastic coefficients per unit area
of the structure. In the case of a thin linear elastic structure with membrane
deformation a quantitative formula for αf has been proposed in [2, 35]. Then, an
iterative procedure at each time step can be set up, in which the fluid subproblem
is solved with suitable Robin boundary conditions whereas the structure problem
is solved with Neumann boundary conditions. We name this strategy Robin-
Neumann (RN) algorithm.

The good convergence property of the RN scheme with (30) for FSI problems
has been confirmed by the analysis provided in [2], which highlights that for a
model problem as the one presented in (16), but with a one-dimensional elastic
structure described by the generalized string model, convergence is achieved
without any relaxation (ω = 1) and with asymptotic convergence factor σ(1) ≪ 1
very insensitive to the ratio ρf/ρs (i.e. to the added mass effect).

It is now possible to ask whether a Robin interface condition also for the
structure side could improve the convergence properties (Robin-Robin scheme).
Turning then our attention to Robin boundary conditions for the structure prob-
lem and the choice of the parameter αs, a way to partially include the fluid model
as a boundary condition for the structure is provided by equation (17). Indeed,
from this relation and assuming negligible the viscous fluid forces in the normal
direction with respect to the pressure, we obtain

T n+1
s ns · ns = −T n+1

f nf · ns ≃ −pn+1
f

≃ MA
DpDp

∆t2
ηn+1

s − pg = MA
β2

0

∆t
ηn+1

s −MAgn
s − pg,

which leads to the heuristic value αs =
β2
0

∆tMA.
However, this choice is not directly usable for complex FSI problems, since

MA is, in general, an operator and not just a number as in the piston model
problem. For this reason, a different strategy based on the minimization of a

22



reduction factor has been considered in [19]. In particular, in this work the
authors considered a two-dimensional coupled Stokes - Incompressible Linear
Elasticity problem defined in the whole plane and used Fourier analysis to derive
an optimized coefficient, in the spirit of the Optimized Schwartz Methods [18].
The optimization leads to the following value

αs =
2

∆t k∗

√
ρf + µ∆t (k∗)2

(√
µ∆t k∗ +

√
ρf + µ∆t (k∗)2

)
, (31)

with k∗ =

√
β0ρf (

√
5−1)

2µ∆t .

6 Summary of the performances in numerical exper-

iments

In this section, we review the performance featured by the partitioned procedures
presented in this work in numerical experiments developed in some recent works
[9, 4, 2, 3, 19, 35, 34].

The naive approach presented in Algorithm 1 has shown to be slower than
the quasi-Newton methods of about 3 times [34]. However, it has shown to be
the easiest to implement in a modular way.

The Dirichlet-Neumann Richardson procedure has been usually implemented
with an Aitken procedure to estimate in itinere an optimal value for the relax-
ation parameter ω [9]. Experience shows that with this strategy the convergence
is always achieved both in 2D and in 3D applications. In typical haemodynamic
applications, where the density of the fluid and the structure are comparable
and the added mass of the fluid on the structure is large, the convergence is
however very slow even with the Aitken extrapolation procedure. In 3D applica-
tions with real geometries, the DN-Richardson procedure needs approximately
70 iterations per time step.

The DN-GMRes procedure introduced in [4] features a weaker sensitivity
on the added mass effect than DN-Richardson iterations, and convergence is
achieved without any relaxation also in test cases on real geometries, with about
20 iterations per time step.

Concerning the RN-Richardson procedure, 2D numerical results have been
presented in [2], where it has been highlighted that convergence is always achieved
without any relaxation, independently of the ratio between the fluid and struc-
ture densities. This performance has also been confirmed in real 3D applications
[35]. In this case, the number of coupling iterations is approximately 10 per time
step.

As for the RR-Richardson method, in [19] it has been shown that in 2D cases
the use of (31) improves the numerical performance of about 50% with respect
to RN-Richardson (αs = 0). This procedure with such a value of αs has shown
better convergence properties also in 3D real cases [35].
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The numerical results presented in [3] showed that the convergence of the
RR-GMRes strategy seems to be much less sensitive to the choice of the Robin
parameters αf and αs, than the corresponding RR-Richardson iterations, where
such parameters have to be properly tuned to obtain fast convergence. This is a
nice feature when real geometries are considered, since the optimal value of αf

for RR-Richardson should take into account the curvature of the vessel, while
with RR-GMRes a constant value obtained by considering average quantities is
enough to achieve good convergence properties.

Another nice feature of RR procedures is that they allow to solve without any
complication an enclosed fluid problem, that is a FSI problem where Dirichlet
or flow rate boundary conditions are enforced on all portions of the fluid domain
except the FS interface. Indeed, in this case, DN procedures fail to produce an
accurate solution, since the conservation of mass is not guaranteed at each itera-
tion. Specific treatment, such as Lagrange multipliers, have to be considered to
solve such problems. On the contrary, with RR procedures this kind of problems
could be solved without any modification of the standard partitioned algorithms
[3].
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