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Abstract

In this paper we will present some recent advances in the numerical approximation
of two classical problems: shape optimization and optimal control for evolutive partial
differential equations. For shape optimization we present two novel techniques which have
shown to be rather efficient on some applications. The first technique is based on multigrid
methods whereas the second relies on an adaptive sequential quadratic programming.
With respect to the optimal control of evolutive problems, the approximation is based
on the coupling between a POD representation of the dynamical system and the classical
Dynamic Programming approach. We look for an approximation of the value function
characterized as the weak solution (in the viscosity sense) of the corresponding Hamilton-
Jacobi equation. Several tests illustrate the main features of the above methods.

1 Introduction

In this survey we will present some recent advances in the numerical approximation of two
classical problems: shape optimization and optimal control for evolutive partial differential
equations. These results have been achieved with the contributions of the researcher working
in the teams at Milano Politecnico and Roma ”La Sapienza” within the ESF OPTPDE project.

Shape optimization problems are ubiquitous in science, engineering and industrial appli-
cations. Indeed, starting with the foundation of PDE-based optimization [30], shape design
has became one of the most frequent application in technologies and it is nowadays one main
focus of aerodynamics simulation (see, e.g., [31, 42]).

A central role in the formulation and development of computational frameworks for shape
optimization has been played by elliptic shape optimization problems [36] that correspond
to cases of potential flow allowing simpler investigation. Nevertheless, these problems arise
in many important applications as nozzle and airfoil design, and in the design of beams
and plates. Along this development, one of the most remarkable advances in shape design
has been to replace the approach of parametric optimization with the concept of continuous

1



shape design (see, e.g., the books [17, 22, 31, 36, 38, 28]). In fact, in the former approach the
control variable (i.e., the shape) is restricted to belong to a finite dimensional space spanned
by suitable basis functions, while in the latter case it is an element of an infinite-dimensional
space. This second approach opens enormous perspective in the formulation of more accurate
and sophisticated shape optimization problems.

The possibility of formulating the shape optimization problems at the infinite-dimensional
level poses new challenges to the design and implementation of numerical optimization schemes
that properly accommodate the infinite dimensionality of the control function. In particular,
a successful and effective algorithm must allow the control function to be adaptively approxi-
mated and optimized to any desired degree of accuracy.

With respect to shape optimization, the purpose of this paper is twofold. We first formulate
and analyze a multigrid shape optimization framework that extends principles and techniques
of the multigrid strategy for PDE solvers and accommodates the infinite-dimensionality of the
control variables; then we introduce an adaptive strategy able to automatically deal with the
approximation of the optimal geometry combined with the approximation of the underlying
PDE. As we said, our second problem will be the approximation of a finite horizon optimal
control problem for an evolutive partial differential equation, e.g. the advection–diffusion
equation. The basic ingredient of the method is the coupling between an adaptive reduced
basis representation of the solution and a Dynamic Programming scheme for the evolutive
Hamilton-Jacobi equation characterizing the value function. Since the theory of weak solutions
for Hamilton-Jacobi equation is rather complete in any dimension, the method can in principle
solve a rather general class of optimal control problems. The approach described here is clearly
different from the more classical approach based on the solution of the system of necessary
conditions obtained via the Pontryagin maximum principle. The main advantage is that we
naturally obtain optimal control in feedback form but the price we pay is related to the well
know curse of dimensionality of Dynamic Programming. We try to circumvent this problem
using new tools which have emerged in recent years to deal with optimal control problems
in infinite dimension. In particular, we will use new techniques to reduce the number of
dimensions in the description of the dynamical system or, more in general, of the solution of
the problem that one is trying to optimize. These methods are generally called reduced-order
methods and include for example the POD (Proper Orthogonal Decomposition) method and
reduced basis approximation (see [35]). In some particular case, as for the heat equation, even
5 basis functions will suffice to have a rather accurate POD representation of the solution.
Having this in mind, it is reasonable to start thinking to a different approach based on Dynamic
Programming (DP) and Hamilton-Jacobi-Bellman equations (HJB). In this new approach we
will first develop a reduced basis representation of the solution along a reference trajectory
and then use this basis to set-up a control problem in the new space of coordinates. Then, the
corresponding Hamilton-Jacobi equation will just need 3-5 variables to represent the state of
the system. It is well known that the solution of HJB equation is not an easy task from the
numerical point of view since viscosity solutions of the HJB equation are typically non regular
(typically, just Lipschitz continuous). Optimal control problems for ODEs were solved by
Dynamic Programming, both analytically and numerically (see [4] for a general presentation
of this theory). From the numerical point of view, this approach has been developed for many
classical control problems obtaining convergence results and a-priori error estimates ([19], [21]
and the book [20]). We should mention that a first tentative in this direction has been made
by Kunisch and co-authors in a series of papers [23, 24] for diffusion dominated equations.
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In particular, in the paper by Kunisch, Volkwein and Xie [26] one can see a feedback control
approach based on coupling between POD basis approximation and HJB equations for the
viscous Burgers equation.

Note that restricting the dimension to a rather low number of basis functions (typically
4) naturally affects the accuracy of the POD approximation. In fact, under this restriction,
the POD method does not always have enough informations to follow correctly the solution
of the evolutive problem. We circumvent this problem updating our POD basis during the
evolution and splitting the problem into subproblems. Every sub-problem is set in an interval
Ij = [tj , tj+1] where we recompute the POD basis. Behind the adaptive method and the
choice of the tj there are two important a-posteriori estimators: the first is related to the
computation of the POD basis function while the second takes into account the residual of
the dynamic.

2 Two approaches for Shape Optimization: Multigrid and

Adaptivity

Shape optimization problems governed by partial differential equations (PDE) can be formu-
lated as constrained minimization problems with respect to the shape of a domain Ω in R

d.
If u = u(Ω) is the solution of a PDE in Ω, the state equation,

Au(Ω) = f, (1)

and J(Ω, u(Ω)) is a cost functional, then we consider the minimization problem

Ω∗ ∈ Uad : J(Ω∗, u(Ω∗)) = inf
Ω∈Uad

J(Ω, u(Ω)), (2)

where Uad is a set of admissible domains in R
d. This is a constrained minimization problem

for J .
In this Section we review two different shape optimization algorithms, namely the Multi-

grid Sequential Quadratic Programming (MSQP) presented in [3] and the Adaptive Sequential
Quadratic Programming algorithm (ASQP) introduced in [32]. Such algorithms build a se-
quence of domains {Ω(ℓ)}ℓ≥0 converging to a local minimizer of the shape optimization prob-
lem (1)-(2). To motivate and briefly describe the ideas underlying MSQP and ASQP, we need
the concept of shape derivative ∇J(Ω;w) of J(Ω) in the direction of a normal velocity w. By
resorting to the celebrated Hadamard-Zolésio structure theorem (see, e.g., [38, 17]), it is well
known that the shape derivative ∇J(Ω;w) can be always written as

∇J(Ω;w) =

∫

Γ
G(Ω)w, (3)

for a proper choice of the function G(Ω), named the Riesz representation of the shape deriva-
tive, that in general depends on the solution u(Ω) of the state equation (1). To review
MSQP and ASQP, we preliminary introduce an infinite dimensional Sequential Quadratic Pro-
gramming (∞-ASQP) algorithm. Let Ω(ℓ) be the current iterate and Ω(ℓ+1) be the new one.
We let Γ(ℓ) := ∂Ω(ℓ) and V(Γ(ℓ)) be a Hilbert space defined on Γ(ℓ), with norm ∥ · ∥

V(Γ(ℓ)).

We further let bΓ(ℓ)(·, ·) : V(Γ(ℓ)) × V(Γ(ℓ)) → R be a continuous and coercive bilinear form

3



with respect to the norm ∥ · ∥
V(Γ(ℓ)), which gives rise to the elliptic selfadjoint operator B(ℓ)

on Γ(ℓ) defined by ⟨B(ℓ)v,w⟩Γ(ℓ) = bΓ(ℓ)(v,w). We then consider the following quadratic model
Q(ℓ) : V(Γ(ℓ))→ R of J at Ω(ℓ)

Q(ℓ)(w) := J(Ω(ℓ)) +∇J(Ω(ℓ); w) +
1

2
⟨B(ℓ)w,w⟩. (4)

We denote by v(ℓ) the minimizer of Q(ℓ)(w), namely v(ℓ) satisfies

v(ℓ) ∈ V(Γ(ℓ)) : bΓ(ℓ)(v(ℓ),w) = −⟨G(ℓ),w⟩Γ(ℓ) ∀w ∈ V(Γ(ℓ)), (5)

with g(ℓ) := g(Ω(ℓ)). It is easy to check that v(ℓ) is the unique minimizer of Q(ℓ)(w) and that
the coercivity of the form bΓ(ℓ)(·, ·) implies that v(ℓ) is an admissible descent direction; i.e.
∇J(Ω(ℓ); v(ℓ)) < 0.

Once v(ℓ) has been found, we need to determine a stepsize that is not too small and
guarantees sufficient decrease of the functional J . To accomplish this goal we identify a
range of admissible stepsizes by adapting the classical Armijo-Wolfe conditions in R

n: given
constants 0 < α < β < 1, we seek a stepsize µ ∈ R

+ satisfying

J(Ω(ℓ) + µv(ℓ)) ≤ J(Ω(ℓ)) + αµ ∇J(Ω(ℓ); v(ℓ)), (6)

∇J(Ω(ℓ) + µv(ℓ); v(ℓ)) ≥ β ∇J(Ω(ℓ); v(ℓ)), (7)

where Ω(ℓ) + µv(ℓ) := {y ∈ R
d : y = x + µv(ℓ)(x), x ∈ Ω(ℓ)} is the updated domain and

v(ℓ) = v(ℓ)ν(ℓ) is a normal vector field.
We are now ready to introduce the infinite dimensional Sequential Quadratic Programming

algorithm (∞-ASQP) for solving the constrained optimization problem (1)-(2):

∞-SQP Algorithm

Given the initial domain Ω(0), set ℓ = 0 and iterate:

(a) Compute u(ℓ) = u(Ω(ℓ)) by solving (1)

(b) Compute the Riesz representation G(ℓ) = G(Ω(ℓ)) of (3)

(c) Compute the search direction v(ℓ) by solving (5)

(d) Determine an admissible stepsize µ(ℓ) satisfying

(6)-(7)

(e) Update: Ω(ℓ+1) = Ω(ℓ) + µ(ℓ)v(ℓ); ℓ := ℓ+ 1

It is important to note that, the ∞-SQP algorithm is not feasible as it stands, because it
requires the exact computation of the following quantities at each iteration: the solution u(ℓ)

to the state equation (1); the solution v(ℓ) to the linear subproblem (5); the values of the
functional J and of its derivative dJ in the line search routine. In the following, we review
the Adaptive Sequential Quadratic Programming algorithm (ASQP) (see Section 2.1) and the
Multigrid Sequential Quadratic Programming (MSQP) (see Section 2.2) as possible feasible
variants of the ∞-SQP algorithm.
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2.1 MSQP: a multgrid shape optimization algorithm

In this Section we sketch the ideas underlying the construction of MSQP, we present the algo-
rithm and we report some enlightening numerical results (see [3] for more details). Generally
speaking, in MSQP the boundary of the domain, i.e., the control variable, is represented at
various levels k of discretization and the resulting multigrid shape optimization scheme acts
directly on the geometry of the domain combining a single-grid shape gradient optimizer with
a coarse-grid correction (minimization) step, recursively within a hierarchy of levels.

As we focus on multigrid concepts, we need to define an iterative optimization process that
can be applied at every level of discretization with the aim of improving the shape towards
the optimum. In our case, this is a shape-gradient optimizer, denoted by SQPk, that acts
similarly to a Jacobi smoother in a classical multigrid scheme. In practice, SQPk is a feasible
variant of the ∞-SQP stated at the level k of discretization (see e.g. [16, 18]).

In addition to the iterative scheme mentioned above, the formulation of a multigrid scheme
requires to define a coarse-grid correction step that complements the action of the single-
grid optimization procedure. To construct this step, suitable intergrid transfer operators
are required together with the formulation of a coarse optimization problem that correctly
approximates the fine-level shape optimization problem. On the other hand, to define the
coarse shape optimization problem, the multigrid optimization framework introduced in [29,
33] is extended to the present case where the optimization variable is a geometrical object.

The approach presented in [3] is in contrast to previous attempts [7, 12, 13, 14, 15, 11]
to define a consistent multigrid framework for shape optimization where the computational
domain is discretized by finite elements and the control boundary is represented through
parameterized shape functions. Therefore, within the hierarchy of levels defined by the multi-
grid strategy, the approach of MSQP allows to construct a coarse-grid correction step that can
be understood from the geometrical [40] and optimization [5, 6, 29, 33, 41] point of views,
whereas the idea in [7, 12] of coarsening by taking a subset of shape parameters appears based
on heuristic consideration.

To prepare the description of the MSQP algorithm, we first introduce the hierarchy of spaces
Uk
ad of discrete admissible configurations. According to this, we denote by Ωk an element of
Uk
ad and by Γk the corresponding boundary (see Figure 1 for an example where the deformable

part of the domain is the graph of a function). Then we introduce the finite element space to
approximate the solution of the PDE on Ωk: let Tk(Ωk) be a conforming and shape-regular
triangulation of Ωk and V(Ωk) denote the associated space of finite elements. If we define the
discrete reduced functional Ĵk(Γk) at k-level as

Ĵk(Γk) := J(Ωk, yk(Ωk)) (8)

then the reduced discrete shape optimization problem at level k reads as follows:

Γ∗
k = argminΓk∈U

k

ad

Ĵk(Γk) . (9)

Finally, for multigrid purpose, we need to define intergrid transfer operators acting on:
functions in Uk

ad; geometric boundaries Γk; and functions defined on geometric boundaries
(i.e., shape gradients). To simplify the exposition (see [3] for more rigorous definitions) we
will not use different symbols to distinguish among the above operators: we will always denote
by Ik−1

k the restriction operators and by Ikk−1 the corresponding prolongation operators, the
difference being clear from the context (see Figure 1).
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Figure 1: An example of discrete control boundary represented at different levels of discretiza-
tion: Γk (dotted) and Γk−1 = Ik−1

k Γk (solid).

Finally, we introduce a hierarchy of nested shape optimization problems that will be solved
at different levels of discretization. At k-level of discretization, we consider a function gk to
be defined iteratively in terms of gk+1, where we set gK = 0, being K the finest level of
discretization (see below, Step 4 of the MSQP algorithm, for the precise recursive definition of
gk). The corresponding shape optimization problem at k-level reads as follows:

min
Γk∈U

k

ad

Fk(Γk) := Ĵk(Γk)−

∫

Ωk

gk dΩ . (10)

It is clear that at the finest level K, the problem (10) corresponds to the original discrete
shape optimization problem. Our aim is to formulate a multigrid shape optimization scheme
for solving the minimization problem (10) for all levels k.

Let Γ
(0)
k be the initial optimization boundary at level k and gk be given. The following

steps define one multigrid V -cycle that will be denoted by Γ
(new)
k = MSQP(Γ

(old)
k , k, gk).
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MSQP Algorithm

If k = 1 (coarsest resolution) then the minimization problem (10) is

solved exactly. Else if k > 1:

(1) Apply one-grid optimization

Γ
(ℓ+1)
k = SQPk(Γ

(ℓ)
k ), ℓ = 0, 1, . . . ,m1 − 1.

(2) Compute the gradient residual

rk = gk −∇Ĵk(Γ
(m1)
k ).

(3) Restrict the residual and the approximate solution to coarse

levels

rk−1 = Ik−1
k rk, Γ̂k−1 = Ik−1

k Γ
(m1)
k .

(4) Setup the coarse-grid problem

gk−1 = ∇Ĵk−1(Γ̂k−1) + rk−1.

(5) Call the MSQP scheme to compute the coarse-grid minimizer for

minFk−1(Γk−1): Γ̃k−1 = MSQP(Γ̂k−1, k − 1, gk−1) such that

Γ̃k−1 ≈ argminFk−1(Γk−1).

(6) Construct the multigrid coarse-to-fine descent direction

γk = Ikk−1

(
Γ̃k−1 − Γ̂k−1

)
.

(7) Optimize along γk with α-linesearch

Γm1+1
k = Γ

(m1)
k + αγk

(8) Apply one-grid optimization

Γ
(ℓ+1)
k = SQPk(Γ

(ℓ)
k ), ℓ = m1 + 1, . . . ,m1 +m2.

(9) End.

In [3] it is proved that the multigrid coarse-to-fine direction γk built in Step 6 is indeed a
descent direction. Moreover, it should be clear that the MSQP scheme given above will be
applied iteratively, thus resulting in a sequence of V -cycles with finest level K and gK = 0.
Therefore, we also refer to the following algorithm as the MSQP scheme.
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MSQP Algorithm

Input finest level K, initial Γ0
K, gK = 0, Tolerance ϵ, iteration

counter ℓ = 0, max number iterations ℓmax and iterate:

(1) Compute Γℓ+1
K = MSQP(Γℓ

K ,K, gK)

(2) Check convergence: if ∥∇Ĵ(Γℓ
K)∥ > ϵ and ℓ < ℓmax then ℓ := ℓ+1 and

go to Step 1.

(3) End

In the following, we report some numerical results, originally presented in [3], where a shape
optimization problem governed by an elliptic PDE has to be solved. In particular, let y = y(Ω)
be the unique solution to the following elliptic partial differential equation

−∆y = f in Ω (11)

y = yb on ∂Ω , (12)

where yb is a given function defined in R
2. Let r be a given function and λ1, λ2, A, P > 0 be

given positive parameters. We consider the following cost functional

J(y,Ω) :=

∫

Ω

r(y) dΩ+
λ1
2

(∫

∂Ω
dΓ− P

)2

+
λ2
2

(∫

Ω
dΩ−A

)2

, (13)

which depends on the solution y of the problem (11)-(12), on the difference between the
perimeter of ∂Ω and a given target value P and on the difference between the area of Ω and
a given target value A.

The set Uk
ad of the admissible configurations is obtained by deforming the upper part of

the domain, which is described by the graph of a piecewise linear function defined on a one
dimensional grid. Increasing k amounts to decrease the mesh-size of the grid. As shown in
Figure 2, the MSQP algorithm, for different values of the finest level K of discretization, is
able to efficiently approximate the optimal domain (in this case represented by the unitary
square).
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(a) Finest level of discretization K = 1. Initial configuration (left), after 1
iteration (middle) and 12 iterations (right).
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(b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 9 iterations (right).
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Figure 2: Performance of the MSQP scheme for different values of the finest level K of dis-
cretization. The algorithm converges towards the optimal shape represented by the unitary
square.

2.2 ASQP: an adaptive shape optimization algorithm

An alternative feasible variant of the∞-SQP is represented by the Adaptive Sequential Quadratic
Programming (ASQP) algorithm originally introduced in [32]. The ASQP scheme replaces all
the non-computable operations of ∞-SQP (the solution to the state equation (1), the solution
to the linear subproblem (5), the values of the functional J and of its derivative dJ in the
line search routine) by adaptive finite dimensional approximations, whose accuracies are ad-
justed relative to the energy decrease for each iteration. It is worth noticing that the adaptive
procedure driving ASQP has to deal with two distinct sources of error:

• PDE Error : this hinges on the approximation of (1), the values of the functional J and
its derivative (3);

• Geometric Error : this relates to the approximation of (5) which yields the new domain.

Since it is wasteful to impose a PDE error finer than the expected geometric error, we
have a natural mechanism to balance the computational effort.

In the following, we briefly describe the ASQP algorithm (see [32] for more details). Recall
that ℓ ≥ 1 stands for the adaptive counter and Ω(ℓ) is the current domain produced by
ASQP with deformable boundary Γ(ℓ). Let S

(ℓ) = ST (ℓ)(Ω(ℓ)) and V
(ℓ) = VT (ℓ)(Γ(ℓ)) be the

finite element spaces on the bulk and boundary, which are compatible and fully determined
by one underlying mesh T (ℓ) of Ω(ℓ). We define ASQP as follows:
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Adaptive Sequential Quadratic Programming Algorithm (ASQP)

Given the initial domain Ω(0), a triangulation T (0) of Ω(0), and the

parameters 0 < θ ≤ 1
5, set γ = 1

2 − θ(1 + θ), k = 0, ε(0) = +∞, µ(0) = 1,
repeat the following steps:

(1) [T (ℓ), U (ℓ), Z(ℓ), J (ℓ), G(ℓ)] = APPROXJ(Ω(ℓ), T (ℓ), ε(ℓ))

(2) [V(ℓ), T (ℓ)] = DIRECTION(Ω(ℓ), T (ℓ), G(ℓ), θ)

(3) [Ω(ℓ+1), T (ℓ+1), µ(ℓ+1)] = LINESEARCH(Ω(ℓ), T (ℓ),V(ℓ), J (ℓ), µ(ℓ))

(4) ε(ℓ+1) := γµ(ℓ+1)∥V(ℓ+1)∥2
Γ(ℓ); ℓ← ℓ+ 1.

In theory this algorithm is an infinite loop giving a more acurate approximation as the itera-
tions progress, but in practice we implement a stopping criteria in LINESEARCH.

The modules APPROXJ and DIRECTION are driven by different adaptive strategies and
corresponding different tolerances, say a PDE tolerance γ and a geometric tolerance θ. Their
relative values allow for different distributions of the computational effort in dealing with the
PDE and the geometry.

The routine DIRECTION enriches/coarsens the space V
(ℓ) to control the quality of the

descent direction, guaranteeing a geometric error proportional to µ(ℓ)∥V (ℓ)∥2
Γ(ℓ) , namely

∣∣J(Ω(ℓ) + µ(ℓ)V(ℓ))− J(Ω(ℓ) + µ(ℓ)v(ℓ))
∣∣ ≤ δµ(ℓ)∥V (ℓ)∥2

Γ(ℓ) , (14)

with δ := θ(1 + θ) ≤ 3
2θ. On the other hand, the module APPROXJ enriches/coarsens the

space S
(ℓ) to control the error in the approximate functional value J (ℓ)(Ω(ℓ) +µ(ℓ)V(ℓ)) to the

prescribed tolerance γµ(ℓ)∥V (ℓ)∥2
Γ(ℓ) ,

∣∣J(Ω(ℓ) + µ(ℓ)V(ℓ))− J (ℓ)(Ω(ℓ) + µ(ℓ)V(ℓ)))
∣∣ ≤ γµ(ℓ)∥V (ℓ)∥2

Γ(ℓ) , (15)

where γ = 1
2 − δ ≥ δ prevents excessive numerical resolution relative to the geometric one.

This is achieved within the module APPROXJ via the Dual Weighted Residual method (DWR)
[8], taylored to the approximation of the functional value J . The remaining modules perform
the following tasks. The module SOLVE finds approximate solutions U (ℓ) ∈ S

(ℓ) of (1) and
Z(ℓ) ∈ S

(ℓ) of an adjoint equation (necessary for the computation of the shape derivative)
while RIESZ builds on S

(ℓ) an approximation G(ℓ) to the shape derivative. Finally, the module
LINESEARCH enforces an inexact version of Wolfe’s conditions.

We observe that the test (15) is not very demanding for DWR. So we expect coarse
meshes at the beginning, and a combination of refinement and coarsening later as DWR
detects geometric singularities, such as corners, and sorts out whether they are genuine to the
problem or just due to lack of numerical resolution. This aspect of ASQP is a novel paradigm
in adaptivity and is detailed in [32].

In the following, we report some numerical examples originally presented in [32] to high-
light the main features of the adaptive algorithm. In particular, we consider the drag reduction
shape optimization problem governed by Stokes equation (see e.g. [37]). Let Ω ⊂ R

2 be a
bounded domain with its boundary subdivided into an inflow part Γin, an outflow part Γout, a
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part considered as walls Γw, and an obstacle Γs which is the deformable part to be optimized.
The velocity u := u(Ω) and the pressure p := p(Ω) solve the following problem:

−div(T(u, p)) = 0 in Ω

divu = 0 in Ω

u = ud on Γin ∪ Γs ∪ Γw

T(u, p)ν = 0 on Γout

(16)

where T(u, p) := 2µϵ(u)−pI is the Cauchy tensor with ϵ(u) = ∇u+∇u
T

2 , µ > 0 is the viscosity,
and

ud =
{ v∞ on Γin

0 on Γw ∪ Γs,

with v∞ = V∞v̂∞, v̂∞ being the unit vector pointing in the direction of the incoming flow
and V∞ a scalar function.

We let the cost functional measuring the obstacle drag be

J [Ω, (u, p)] := −

∫

Γs

(T(u, p)ν) · v̂∞ dS, (17)

where (u, p) solves (16). We would like to minimize the linear boundary functional J subject
to the state constraint (16) among all admissible configurations with fixed volume that can
be obtained by piecewise smooth perturbations of the obstacle boundary Γs.

In Figure 3 we report the initial and final optimal configuration. As an effect of the DWR
error indicator, the mesh refinement takes place mostly around the deformable shape, whereas
in the rest of the domain Ω the mesh is rather coarse.

Figure 3: Initial (top) and final (bottom) configuration. The ASQP algorithm obtains the
optimal ”rugby ball” shape [37]. The mesh refinement takes place mostly around the de-
formable shape, whereas in the rest of Ω the mesh is rather coarse: this is related to DWR
mesh refinement (and coarsening).
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In Figures 4-6, we show the efficacy of the adaptive ASQP method to sort out whether a
geometric singularity is genuine to the problem or just due to the lack of numerical resolution.
In the first case (genuine singularities) the method preserves the singularities and further
refine them, whereas in the latter case (non-genuine singularities) the algorithm coarsens the
(unnecessarily) over refined regions.

Figure 4: Zoom of the evolution of the deformable shape. The initially refined corners (top)
are subsequently smoothed out and coarsened (see Figure 5). The new corners of the rugby
ball, instead, are genuine singularities and are preserved and further refined by ASQP (bottom).

Figure 5: Detection of genuine geometric singularities. Evolution of the initial upper-left
corner of the deformable shape (see top of Figures 3 and 4). The adaptive ASQP method is
able to sort out whether geometric singularities are genuine to the problem or just due to lack
of numerical resolution and to coarsen overrefined regions of the computational grid.

3 Optimal control for evolutive pdes

Let us now turn our attention to optimal control problems for evolutive partial differential
equations. The classical approach is based on open-loop controls and on the Pontryagin max-
imum principle which leads to a badkward-forward system characterizing the optimal couple
state-control. We have followed a different idea, trying to apply the Dynamic Programming
approach. The results presented here are illustrated in [1, 2].
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Figure 6: Detection of genuine geometric singularities. Zoom on the evolution of the left-
hand part of the deformable shape (see top of Figure 3 and botton of Figure 4). The adaptive
ASQP method is able to recognize the corner of the rugby ball as genuine singularity of the
problem and to refine the mesh to improve both the PDE and the Geometric approximation.

3.1 The POD approximation method for evolutive PDEs

We briefly describe some important features of the POD approximation, more details as well
as precise results can be found in the notes by Volkwein [43]. Let us consider a matrix
Y ∈ R

m×n, with rank d ≤ min{m,n}. We will call yj the j−th column of the matrix Y. We
are looking for an orthonormal basis {ψi}

ℓ
i=1 ∈ R

m with ℓ ≤ n such that the minimum of the
following functional is reached:

J(ψ1, . . . , ψℓ) =
n∑

j=1

∥∥∥∥∥yj −
ℓ∑

i=1

⟨yj , ψi⟩ψi

∥∥∥∥∥

2

. (18)

The solution of this minimization problem is given in the following theorem

Theorem 3.1 Let Y = [y1, . . . , yn] ∈ R
m×n be a given matrix with rank d ≤ min{m,n}.

Further, let Y = ΨΣV T be the Singular Value Decomposition (SVD) of Y , where Ψ =
[ψ1, . . . , ψm] ∈ R

m×m, V = [v1, . . . , vn] ∈ R
n×n are orthogonal matrices and the matrix

Σ ∈ R
m×n is diagonal, Σ = diag{σ1, . . . , σm}. Then, for any ℓ ∈ {1, . . . , d} the solution

to (18) is given by the left singular vectors {ψi}
ℓ
i=1, i.e, by the first ℓ columns of Ψ.

The vectors {ψi}
ℓ
i=1 will be indicated as the POD basis of rank ℓ.. This idea is really useful,

in fact we get a representation of a solution for the original dinamics solving an equation of
lower dimension. Whenever it is possible to compute a POD basis of rank ℓ, we get a problem
of lower dimension ℓ which will be of manageable size provided ℓ is very small.
Let us consider the following ODEs system





ẏ(s) = Ay(s) + f(s, y(s)), s ∈ (0, T ]

y(0) = y0

(19)

where y0 ∈ R
m, A ∈ R

m×m and f : [0, T ] × R
m → R

m is continuous and locally Lipschitz to
ensure uniqueness.
The system (19) can be also interpreted as a semidiscrete problem, where the matrix A
represents the discretization in space of an elliptic operator, e.g. the Laplace operator. To
compute the POD basis functions, first of all we have to construct a time grid 0 ≤ t1 ≤ . . . ≤
tn = T and we assume to know the solution of (19) at given time tj , j = 1, . . . , N . We call
snapshots the solution at those fixed times, they will be used to find a proper POD basis.
For the moment, let us skip the problem of selecting the snapshots sequence to obtain an
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efficient POD basis since this is a rather difficult problem, we refer the interested reader to
[25]). Given a snapshots sequence, Theorem 3.1 allows to compute our POD basis, namely,
{ψj}

ℓ
j=1.

Assume we can write the solution in reduced form as

yℓ(s) =
ℓ∑

j=1

yℓj(s)ψj =
ℓ∑

j=1

⟨yℓ(s), ψj⟩ψj , ∀s ∈ [0, T ]

substituting this formula into (19) we obtain the equivalent dynamics in the reduced coordi-
nate space 




ℓ∑
j=1

ẏℓj(s)ψj =
ℓ∑

j=1
yℓj(s)Aψj + f(s, yℓ(s)), s ∈ (0, T ]

ℓ∑
j=1

yℓj(0)ψj = y0.

(20)

Our new problem (20) has ℓ ≤ m unknown coefficient functions which are indicated by
yℓj(s), j = 1, . . . , ℓ. The problem is now in low dimension, using a compact notation we get:





ẏℓ(s) = Aℓyℓ(s) + F (s, yℓ(s))

yℓ(0) = yℓ0

where
Aℓ ∈ R

ℓ×ℓ with (Aℓ)ij = ⟨Aψi, ψj⟩,

yℓ =




yℓ1
...
yℓℓ


 : [0, T ]→ R

ℓ

F = (F1, . . . , Fℓ)
T : [0, T ]× R

ℓ → R
ℓ,

Fi(s, y) =

⟨
f


s,

ℓ∑

j=1

yjψj


 , ψi

⟩
for s ∈ [0, T ] y = (y1, . . . yℓ) ∈ R

ℓ,

finally obtaining the representation of y0 in R
ℓ

yℓ0 =



⟨y0, ψ1⟩

...
⟨y0, ψℓ⟩


 ∈ R

ℓ.

In order to apply the POD method to our optimal control problem, the number ℓ of POD
basis functions plays a crucial role. In fact, we would like to keep ℓ as low as possible still
capturing the behavior of the original dynamics. Then, the main question is: how can we
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measure the accuracy of our POD approximation? We need to define an accuracy parameter
and a good choice is given by the following ratio

E(ℓ) =

ℓ∑
i=1

σi

d∑
i=1

σi

. (21)

where the σi are the the singular value obtained by the SVD. Clearly, when E(ℓ) is close to one
this means that the approximation is rather accurate because it keeps the main features of the
original dynamics. This is also strictly related to the truncation error due to the projection
of yj onto the space generated by the orthonormal basis {ψ}ℓi=1, in fact:

J(ψ1, . . . , ψℓ) =

n∑

j=1

∥∥∥∥∥yj −
ℓ∑

i=1

⟨yj , ψi⟩ψi

∥∥∥∥∥

2

=

d∑

i=ℓ+1

σ2i

3.2 An optimal control problem via POD approximation

Following [1] we present this approach for the finite horizon control problem. Consider the
controlled system {

ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ]
y(t) = x ∈ R

n,
(22)

with f : Rn × R
m → R

n, we will denote by y : [t, T ] → R
n its solution, by u the control

u : [t, T ]→ R
m, and by

U = {u : [0, T ]→ U}

the set of admissible controls where U ⊂ R
m is a compact set. Whenever we want to emphasize

the dependency of the solution on the control u we will write y(t;u). Assume that there exists
a unique solution trajectory for (22) provided the controls are measurable (a precise statement
can be found in [4]). For the finite horizon optimal control problem the cost functional will
be given by

min
u∈U

Jx,t(u) :=

∫ T

t

L(y(s, u), u(s), s)e−λs ds+ g(y(T )) (23)

where L : Rn × R
m → R is the running cost, (x, t) is the initial condition and λ ≥ 0 is the

discount factor.
The goal is to find a state-feedback control law u(t) = Φ(y(t), t), in terms of the state equation
y(t), where Φ is the feedback map. To derive optimality conditions we use the well-known
dynamic programming principle due to Bellman (see [4]). We first define the value function:

v(x, t) := inf
u∈U

Jx,t(u) (24)

Proposition 3.1 (DPP) For all x ∈ R
nand t ≤ τ ≤ T then:

v(x, t) = min
u∈U

{∫ τ

t

L(y(s), u(s), s)e−λs ds+ v(y(τ), T − τ)

}
. (25)
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Due to (25) we can derive the Hamilton-Jacobi-Bellman equations (HJB):

−
∂v

∂t
(y, t) = min

u∈U
{L(y, u, t) +∇v(y, t) · f(y, u, t)} . (26)

complemented by the terminal condition v(x, T ) = g(x). This is a nonlinear partial differential
equation of the first order which is hard to solve analitically although a general theory of weak
solutions is available [4]. Rather we can solve it numerically by means of a finite differences
or semi-Lagrangian schemes (see the book [20] for a comprehensive analysis of approximation
schemes for Hamilton-Jacobi equations). For a semi-Lagrangian discretization one starts by
a discrete version of (HJB) by discretizing the underlined control problem and then project
the semi-discrete scheme on a grid obtaining the fully discrete scheme





vn+1
i = min

u∈U
[∆t L(xi, n∆t, u) + I[vn](xi +∆t F (xi, tn, u))]

v0i = g(xi).

with xi = i∆x, tn = n∆t, vni := v(xi, tn) and I[·] is an interpolation operator which is
necessary to compute the value of vn at the point xi +∆t F (xi, tn, u) (in general, this point
will not be a node of the grid). The interested reader will find in [21] a detailed presentation
of the scheme and a priori error estimates for its numerical approximation.

It is also important to note that we need to compute the minimum in order to get the
value vn+1

i . Since, in general, vn is not a smooth function, we compute the minimum by
means of a minimization method which does not use derivatives (this can be done by the
Brent algorithm as in [10]).

The main advantage of this approach is that it allows to compute the optimal feedback
via the value function. However, there are two major difficulties: our weak solutions (in
the viscosity sense) are in general non-smooth and the approximation in high dimension is
not feasible due to the huge amount of data required. The request to solve an HJB in high
dimension comes up naturally whenever we want to control evolutive PDEs. Just to give an
idea, if we build a grid in [0, 1]× [0, 1] with a discrete step ∆x = 0.01 we have 104 nodes: to
solve an HJB in that dimension is simply impossible. The POD method allows us to obtain
reduced models even for rather complicated dynamics opening the way to a feasible solution
of the HJB equation.
Consider the following abstract problem:





d

ds
⟨y(s), φ⟩H + a(y(s), φ) = ⟨B(u(s), φ⟩V ′,V ∀φ ∈ V

y(t) = y0 ∈ H,

(27)

where B : U → V ′ is a linear and continuous operator. We assume that a space of admissible
controls Uad is given in such a way that for each u ∈ Uad and y0 ∈ H there exists a unique
solution y of (27). V and H are two Hilbert spaces, with ⟨·, ·⟩H we denote the scalar product
in H; a : V × V → R : is symmetric coercive and bilinear. Then, we introduce the cost
functional of the finite horizon problem

Jy0,t(u) :=

∫ T

t

L(y(s), u(s), s)e−λs ds+ g(y(T )),
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where L : V × U × [0, T ]→R. The optimal control problem is

min
u∈U
Jy0,t(u) (28)

subject to the constraint: y ∈Wloc(0, T ;V )× U solves (27)

with Wloc(0, T ) =
∩

T>0W (0, T ), where W (0, T ) is the standard Sobolev space:

W (0, T ) = {φ ∈ L2(0, T ;V ), φt ∈ L
2(0, T ;V ′)}.

The model reduction approach for an optimal control problem (28) is based on the Galerkin
approximation of dynamic with some informations on the controlled dynamic (snapshots). To
compute a POD solution for (28) we make the following ansatz

yℓ(x, s) =

ℓ∑

i=1

wi(s)ψi(x). (29)

where {ψ}ℓi=1 is the POD basis. The computation of the POD basis functions follows three
easy steps:

1. Computation of the snapshots for the solution at given times, y(sj).

2. Collect the snapshots into a matrix Y and compute the singular value decomposition of
Y = UΣV T

3. Take the first ℓ columns of U , they will be the POD basis of rank ℓ.

Now let us introduce mass and stiffness matrix:

M = ((mij)) ∈ R
ℓ×ℓ with mij = ⟨ψj , ψi⟩H ,

S = ((sij)) ∈ R
ℓ×ℓ with mij = a(ψj , ψi),

and the control map b : U → R
ℓ is defined by:

u→ b(u) = (b(u)i) ∈ R
ℓ with b(u)i = ⟨Bu,ψi⟩H .

The coefficients of the initial condition yℓ(0) ∈ R
ℓ are determined by wi(0) = (w0)i =

⟨y0, ψ⟩X , 1 ≤ i ≤ ℓ, and the solution of the reduced dynamic problem is denoted by
wℓ(s) ∈ R

ℓ. Then, the Galerkin approximation is given by

min J ℓ
wℓ

0,t
(u) (30)

with u ∈ U and w solves the following equation:





ẇℓ(s) = F (wℓ(s), u(s), s) s > 0,

wℓ(0) = wℓ
0.

(31)
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The cost functional is defined as:

J ℓ
wℓ

0,t
(u) =

∫ T

0
L(wℓ(s), u(s), s)e−λs dt+ g(wℓ(T )),

with wℓ and yℓ linked to (29) and the nonlinear map F : Rℓ × U → R
ℓ is given by

F (wℓ, u, s) =M−1(−Swℓ(s) + b(u(s))).

The value function vℓ, defined for the initial state w0 ∈ R
ℓ, reads as

vℓ(wℓ
0, t) = inf

u∈U
J ℓ
wℓ

0,t
(u)

and wℓ solves (30) with the control u and initial condition w0.
To complete the secenario, let us explain how we have computed the intervals defining the
domain where we are going to solve the HJB equation in reduced coordinate. Clearly we need
to restrict the computation to a bounded domain Υh in R

ℓ. We would like to find an invariant
domain for the discrete dynamics, i.e. a domain Υh such that y + ∆tF (y, u) ∈ Υh for each
y ∈ Υh and u ∈ U . We can choose Υh = [a1, b1]× [a2, b2]× . . . [aℓ, bℓ] with a1 ≥ a2 ≥ . . . ≥ aℓ.
How should we compute the intervals [ai, bi]?
Ideally the intervals should be chosen so that the dynamics contains all the components of the
controlled trajectory. Moreover, they should be encapsulated because we expect that their
importance should decrease monotonically with their index and that our interval lengths
decrease quickly.
Let us suppose to discretize the space control U = {u1, . . . , uM} where U is symmetric with
respect to the origin, i.e. ū ∈ U implies −ū ∈ U.

Hence, if yℓ(s) =
ℓ∑

i=1
⟨y(s), ψi⟩ψi =

∑ℓ
i=1wi(s)ψi, as a consequence, the coefficients wi(s) ∈

[ai, bi].We consider the trajectories solution y(s, uj) such that the control is constant u(s) ≡ uj
for each tj , j = 1, . . . ,M. Then, we have

yℓ(s, uj) =

ℓ∑

i=1

⟨y(s, uj), ψi⟩ψi.

We write yℓ(s, uj) to stress the dependence on the constant control uj . Each trajectory yℓ(s, uj)

corresponds to a set of coefficients w
(j)
i (t) for i = 1, . . . , ℓ, j = 1, . . . ,M. Every coefficient

w
(j)
i (s) belongs to an interval [w

(j)
i ,w

(j)
i ] so, for i = 1, . . . , ℓ,, we define:

ai ≡ min{w
(1)
i , . . . ,w

(M)
i }

bi ≡ max{w
(1)
i , . . . ,w

(M)
i }.

Note that when we do not find an invariant domain to set up our computation we must
introduce appropriate boundary conditions to manage the trajectories leaving the domain
(see [19, 20] for more details on this technical problem).
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3.3 Numerical experiments

In this section we present some numerical tests for the controlled heat equation and for
the advection-diffusion equation with a quadratic cost functional. Consider the following
advection-diffusion equation:

{
ys(x, s)− εyxx(x, s) + cyx(x, s) = u(s)
y(x, 0) = y0(x),

(32)

with x ∈ [a, b], s ∈ [0, T ], ε ∈ R+ and c ∈ R.
Note that changing the parameters c and ε we can obtain the heat equation (c = 0) and the
advection equation (ε = 0). The functional to be minimized is

Jy0,t(u(·)) =

∫ T

0
||y(x, s)− ŷ(x, s)||2 +R||u(s)||2 ds, (33)

i.e. we want to stay close to a reference trajectory ŷ while minimizing the norm of u. Note that
we dropped the discount factor setting λ = 0. Typically in our test problems ŷ is obtained
by applying a particular control û to the dynamics. The numerical simulations reported here
have been made on a server SUPERMICRO 8045C-3RB with 2 cpu INTEL Xeon Quad-Core
2.4 Ghz and 32 GB RAM under SLURM (https://computing.llnl.gov/linux/slurm/).

Test 1: Heat equation with smooth initial data We compute the snapshots with
a centered/forward Euler scheme with space step ∆x = 0.02, and time step ∆t = 0.012,
ε = 1/60, c = 0, R = 0.01 and T = 5. The initial condition is y0(x) = 5x−5x2, and ŷ(x, s) = 0.
In Figure 7 we compare four different approximations concerning the heat equation: (a) is the
solution for û(t) = 0, (b) is its approximation via POD (non-adaptive), (c) is the direct LQR
solution computed by MATLAB without POD and, finally, the approximate optimal solution
obtained coupling POD and HJB. The approximate value function is computed for ∆t = 0.1
∆x = 0.1 whereas the optimal trajectory as been obtained with ∆t = 0.01. Test 1, and even
Test 2, have been solved in about half an hour of CPU time.
Note that in this example the approximate solution is rather accurate because the regularity
of the solution is high due to the diffusion term. Since in the limit the solution tends to the
average value, the choice of the snapshots will not affect too much the solution, i.e. even
a rough choice of the snapshots will give us a good approximation. The difference between
Figure 2c and Figure 2d is due to the fact that the control space is continuous for 2c and
discrete for 2d.

Test 2: Heat equation with no-smooth intial data In this section we change the initial
condition with a function which is only Lipschitz continuos: y0(x) = 1 − |x|. According to
Test 1, we consider the same parameters. (see Figure 8).
Riccati’s equation has been solved by a MATLAB LQR routine. Thus, we have used the
solution given by this routine as the correct solution in order to compare the errors in L1 and
L2 norm between the reduced Riccati’s equation and our approach based on the reduced HJB
equation. Since we do not have any information, the snapshots are computed for û = 0. This
is only a guess, but in the parabolic case it fits well due to the diffusion term.
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(a) (b)

(c) (d)

Figure 7: Test 1:(a) Heat Equation without control; (b) Heat Equation without control, 3
POD basis; (c) Controlled solution with LQR-MATLAB; (d) Approximate solution POD (3
basis functions) + HJB.

L1 L2

yLQR − yPOD+LQR 0.0221 0.0172

yLQR − yPOD+HJB 0.0204 0.0171

Table 1: Test 2: L1 and L2 errors at time T for the optimal approximate solution.
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(a) (b)

(c) (d)

Figure 8: Test 2: (a) exact solution for û = 0; (b) Exact solution for û = 0 POD (3 basis
functions); (c) Approximate optimal solution for LQR-MATLAB; (d) Approximate solution
POD (3 basis functions)+ HJB.
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As in Test 1, the choice of the snapshots does not affect strongly the approximation due
to the asymptotic behavior of the solution. The presence of a Lipschitz continuous initial
condition has almost no influence on the global error (see Table 1).

4 The adaptive POD approximation method

We now present an adaptive method to compute POD basis. As we have seen in Section 3
we have a big constraint on the number of variables in the state space for numerical solution
of an HJB.
For a parabolic equation, one can try to solve the problem with only three/four POD basis
functions; they are enough to describe the solution in a rather accurate way. In fact the singu-
lar values decay pretty soon and it is rather easy to work with a really low-rank dimensional
problem.
On the contrary, hyperbolic equations do not have this nice property and they will need more
POD basis functions to get accurate results. Then, it is quite natural to split the problem into
subproblems having different POD basis functions. The crucial point is to decide the splitting
in order to have the same number of basis functions in each subdomain with a guaranteed
accuracy in the approximation.

4.1 Numerical experiments for the adaptive POD approximation method

Let us first give an illustrative example for the parabolic case, considering a 1D advection-
diffusion equation: {

ys(x, s)− εyxx(x, s) + cyx(x, s) = 0
y(x, 0) = y0(x),

(34)

with x ∈ [a, b], s ∈ [0, T ], ε, c ∈ R.
We use a finite difference approximation for this equation based on an explicit Euler method
in time combined with the standard centered approximation of the second order term and
with an up-wind correction for the advection term. The snapshots will be taken from the se-
quence generated by the finite difference method. The final time is T = 5, moreover a = −1,
b = 4. The initial condition is y0(x) = 5x− 5x2, when 0 ≤ x ≤ 1, 0 otherwise.
For ε = 0.05 and c = 1 with only 3 POD basis functions, the approximation fails (see Figure
9). Note that in this case the advection is dominating the diffusion, a low number of POD
basis functions will not suffice to get an accurate approximation (Figure 9.b). However, the
adaptive method which only uses 3 POD basis functions will give accurate results (Figure 9.d).

The idea which is behind the adaptive method is rather simple and easy to implement.
Instead of taking into account the whole interval [0, T ], we prefer to split it in sub-intervals

[0, T ] = ∪Kk=0[Tk, Tk+1]

where K is a-priori unknown, T0 = 0, TK = T and Tk = ti for some i. In this way, choosing
properly the length of the k−th interval [Tk, Tk+1], we consider only the snapshots falling in
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(a) (b)

(c) (d)

Figure 9: Equation (34):(a) solved with finite difference; (b) POD-Galerkin approximation
with 3 basis functions; (c) solved via POD-Galerkin approximation with 5 basis functions; (d)
Adaptive POD 3 basis functions.
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that sub-interval, typically there will be at least three snapshots in every sub-interval. In this
way we will have enough informations in every sub-interval and we can apply the standard
routines (explained in Section 3) to get a ”local” POD basis.
Now let us explain how to divide our time interval [0, T ]. We will choose a parameter to
check the accuracy of the POD approximation and define a threshold. Above that threshold
we loose in accuracy and we need to compute a new POD basis. A good parameter to check
the accuracy is E(ℓ) (see (21)), as it was suggested by several authors. The method to define
the splitting of [0, T ] and the size of every sub-interval works as follows. We start computing
the SVD of the matrix Y that gives us informations about our dynamics in the whole time
interval. We check the accuracy at every ti, i = 1, . . . N , and if at tk the indicator is above
the tolerance we set T1 = tk and we divide the interval in two parts, [0, T1) and (T1, T ]. Now
we just consider the snapshots related the solution up to the time T1. We iterate this idea
until the indicator is below the threshold. When the first interval is found, we restart the
procedure in the interval [T1, T ] and we stop when we reach the final time T . Note that the
extrema of every interval coincide by construction with one of our discrete times ti = i∆t so
that the global solution is easily obtained linking all the sub-problems which always have a
snapshot as initial condition. A low value for the threshold will also guarantee that we will
not have big jumps passing from one sub-interval to the next. Once we know we got nice
POD basis functions we compute the solution of the problem in each sub-intervals. Moreover,
in each intervals [Tk, Tk+1] we check the residual of the solution previously computed. If the
residual is not below a given threshold, we split again the problem into two subproblems.
This two subproblems need to update their own basis functions that will satisfy, of course,
the error estimator applied to the POD method, since we are considering only a subset of the
snapshots.
This idea can be applied also when we have a controlled dynamic (see [2]). First of all we have
to decide how to collect the snapshots, since the control u(t) is completely unknown. One can
make a guess and use the dynamics and the functional corresponding to that guess, by these
informations we can compute the POD basis. Once the POD basis is obtained we will get the
optimal feedback law after having solved a reduced HJB equation as we already explained.
Let us summarize the POD adaptive method in the following step-by-step presentation.

ALGORITHM
Start: Inizialization

Step 1: collect the snapshots in [0,T]

Step 2: divide [0, T ] according to E(ℓ)
For i=0 to N-1

Do

Step 3: apply SVD to get the POD basis in each sub-interval [ti, ti+1]
Step 4: discretize the space of controls

Step 5: project the dynamics onto the (reduced) POD space

Step 6: select the intervals for the POD reduced variables

Step 7: solve the corresponding HJB in the reduced space

for the interval [ti, ti+1]
Step 8: go back to the original coordinate space

End
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Test 3: controlled advection-diffusion equation The advection-diffusion equation needs
a different method. We can not use the same ŷ we had in the parabolic case, mainly because
in Riccati’s equation the control is free and is not bounded, on the contrary when we solve
an HJB we have to discretize the space of controls. We modified the problem in order to deal
with bang-bang controls. We get ŷ in (33) just plugging in the control û ≡ 0. We have consid-
ered the control space corresponding only to three values in [−1, 1], then U = {−1, 0, 1}. We
first have tried to get a controlled solution, without any adaptive method and, as expected,
we obtained a bad approximation (see Figure 10). From Figure 10 it is clear that POD with

Figure 10: Test 3: Solution ŷ (left), approximate solution with POD (4 basis functions)
(right).

four basis functions is not able to catch the behavior of the dynamics, so we have applied our
adaptive method.
We have consider: T = 3,∆x = 0.1,∆t = 0.008, a = −1, b = 4, R = 0.01. According to

our algorithm, the time interval [0, 3] was divided into [0, 0.744]∪ [0.744, 1.496]∪ [1.496, 3]. As
we can see our last interval is bigger than the others, this is due to the diffusion term (see
Figure 11). The L2−error is 0.0761, and the computation of the optimal solution via HJB
has required about six hours of CPU time. In Figure 4 we compare the exact solution with
the numerical solution based on a POD representation. Note that, in this case, the choice of
only 4 basis functions for the whole interval [0, T ] gives a very poor result due to the presence
of the advection term. Looking at Figure 5 one can see the improvement of our adaptive
technique which takes always 4 basis functions in each sub-interval.
In order to check the quality of our approximation we have computed the numerical residual,
defined as:

R(y) = ∥ys(x, s)− εyxx(x, s) + cyx(x, s)− u(s)∥.

Figure 11: Test 3: Solution for û ≡ 0 (left), approximate optimal solution (right).
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Figure 12: Test 4: Solution for û (left), approximate optimal solution (right).

The residual for the solution of the control problem computed without our adaptive technique
is 1.1, whereas the residual for the adaptive method is 2∗10−2. As expected from the pictures,
there is a big difference between these two value.

Test 4: controlled advection-diffusion equation In this test we take a different ŷ,
namely the solution of (32) corresponding to the control

û(t) =





−1 0 ≤ t < 1
0 1 ≤ t < 2
1 2 ≤ t ≤ 3.

We want to emphasize we can obtain nice results when the space of controls has few element.
The parameters were the same used in Test 3. The L2−error is 0.09, and the time was the
same we had in Test 3. In Figure 12 we can see our approximation. In Figure 6 one can see
that the adaptive technique can also deal with discontinuous controls.

In this test, the residual for the solution of the control problem without our adaptive
technique is 2, whereas the residual for the adaptive method is 3 ∗ 10−2. Again, the residual
shows the higher accuracy of the adaptive routine.

5 Conclusions

We presented some recent results concerning the numerical approximation of shape opti-
mization problems and optimal control problems governed by evolutive partial differential
equations. In particular, with respect to shape optimization problems, we introduced and
discussed two novel techniques, namely a fully geometric multigrid approach and an adaptive
sequential quadratic programming algorithm. Several numerical experiments assessed the ef-
ficacy of the proposed strategies. Concerning the optimal control of evolutive problems, we
detailed how a reasonable coupling between POD and HJB equation can produce feedback
controls for infinite dimensional problem. For advection dominated equations that simple
idea has to be implemented in a clever way to be successful. It particular, the application
of an adaptive technique is crucial to obtain accurate approximations with a low number of
POD basis functions. This is still an essential requirement when dealing with the Dynamic
Programming approach, which suffers from the curse-of-dimensionality although recent de-
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velopments in the methods used for HJB equations will allow to increase this bound in the
next future (for example by applying patchy techniques, see [9]).

Another important point is the discretization of the control space. In our examples, the
number of optimal control is rather limited and this will be enough for problems which have
a bang-bang structure for optimal controls. In general, we will need also an approximation of
the control space via reduced basis methods. This point as well as a more detailed analysis
of the procedure outlined in this paper will be addressed in our future work.
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