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Abstract

In this work we propose a novel estimation method for nonlinear nonpara-
metric mixed-effects models, aimed at unsupervised classification. The proposed
method is an iterative algorithm that alternates a nonparametric EM step and a
nonlinear Maximum Likelihood step. We perform simulation studies in order to
evaluate the algorithm performances and we apply this new procedure to a real
dataset.

1 Introduction

Nonlinear mixed-effects models (NLME models) are mixed-effects models in which
at least one of the fixed or random effects appears nonlinearly in the model function.
NLME models are increasingly used in several biomedical applications, especially in
population pharmacokinetics, pharmacodynamic, immune cells reconstruction and epi-
demiological studies (see Sheiner and Beal, 1980; Davidian and Gallant, 1993; De Lalla
et.al., 2011; Ieva et.al., 2010).

In these fields, statistical modeling based on NLME models takes advantage of tools
that allow to distinguish overall population effects from drugs effects or unit specific in-
fluence. Mixed-effects models include parameters associated with the entire population
(fixed effects) and subject/group specific parameters (random effects). For this reason,



mixed-effects models are able to describe the dynamics of the phenomenon under inves-
tigation, even in presence of high between subjects variability. When the random effects
represent a deviation from the common dynamic of the population, mixed-effects mod-
els provide both estimates for the entire population’s model and for each subject’s one.
In this work random effects have a different meaning, in fact they describe the common
dynamic of different groups of subjects. In this framework, mixed-effects models pro-
vide only estimates for each group-specific model. Thanks to this property, it will be
possible to consider mixed-effects models as an unsupervised clustering tool for lon-
gitudinal data and repeated measures. For this reason we focus our attention on the
estimation of the distribution of the random effects &7*.

A wide literature exists for parametric modeling of random effects distribution in
linear and non linear mixed-effects models. In this framework, Maximum Likelihood
(ML) estimators are generally preferred because of their consistency and efficiency.
However, due to the non linearity of the likelihood, we are not always able to provide
explicitly the parameter estimators. A general and complete overview of linear mul-
tilevel models is given in Hox (1995). An analogous overview for nonlinear case is
given in Gallant (1987). Fox (2002) shows how R and S—plus tools estimate linear
and generalized linear mixed-effects models with parametric, in particular Gaussian,
random effects. Concerning non linear models, in Goldstein (1991) a ML estimation of
Gaussian random effect is provided for peculiar nonlinear forms. A stochastic approx-
imation of traditional EM algorithm (SAEM) for estimating Gaussian random effects
is suggested in Kuhn and Lavielle (2005), whereas an exact EM algorithm is described
in Walker (1996). Finally, Wolfinger (1993) introduces a Laplace approximation for
nonlinear random effects marginal distributions. However, parametric assumption may
sometimes result too restrictive to describe very heterogeneous or grouped populations.
Moreover, when the number of measurements for unit is small, predictions for random
effects are strongly influenced by the parametric assumptions. For these reasons non-
parametric (NP) framework, which allow Z7* to live in an infinite dimensional space,
is attractive. Moreover, it provides in a very natural way a classification tool, as we will
highlight later.

Methods for the estimation of linear nonparametric random effects distribution in
linear and generalized linear mixed-effects models have been proposed in Aitkin (1996;
1999), whereas Lai and Shih (2003), Davidian and Gallant (1993), Vermut (2004),
Antic et al. (2009), among others, deal with nonparametric nonlinear models.

In this work we propose a novel estimation method for nonlinear nonparametric
mixed-effects models, aimed at unsupervised classification. The proposed method is an
iterative algorithm that alternates a nonparametric EM step and a nonlinear Maximum
Likelihood step. The present algorithm is implemented in R program (version 2.13.0,
R Development Core Team, 2009) and the R source code is available upon request. To
the best of our knowledge, this is the first example of free software for the estimation
of nonlinear nonparametric mixed-effects models.

In Section 2 the general framework of the work is sketched out and the algorithm
for the estimation of nonlinear nonparametric random effect (NLNPEM) is described.
In Section 3 some simulation studies are presented, both for the linear and nonlinear



case. We first test the performances of our procedure with already existing one in
the linear framework, comparing the Wasserstein distance between the true and the
estimated distribution of random effects and the goodness of fit index —2logL, then
we test NLNPEM on nonlinear case. Section 4 contains an application to real data.
Concluding remarks and further developments of the present work are finally discussed
in Section 5.

2 Methods

2.1 Model and framework
We consider the following NLME model for longitudinal data:

yi=f(B,bi,t)+€ i=1,...,N @
€~ (0,671, iid.

where y; € R” is the response variable evaluated at times t € R” and f is a general,
real-valued and differentiable function with p 4 g parameters. Each parameter of f is
treated either as fixed or as random. Fixed effects are parameters associated with the
entire population whereas random effects are subject-specific parameters that allow to
identify clusters of subjects. 3 € R” is a vector that contain all fixed effects and b; € RY
is the vector for the i-th subject random effects. The function f is non linear at least in
one component of the fixed or random effects. The errors €;; are associated with the j-th
measurement of the i-th longitudinal data. They are normally distributed, independent
between different subjects and independent within the same subject. In general, the
proposed method could also take account of a different number of observations, located
at different times, for different subjects. In (1) we chose not to consider this case in
order to ease the notation, but the generalization is straightforward.

Usually random effects are assumed to be Normal distributed, b; ~ .44(0,X), with
unknown parameters that, together with 3 and o, can be estimated through methods
based on the likelihood function (see Pinheiro and Bates, 2000). In this parametric
framework the maximum likelihood estimators are generally favored by their statistical
properties, i.e. consistency and efficiency. Nevertheless the parametric assumptions
could be too restrictive to describe highly heterogeneous or grouped data, so it might
be necessary to move to a non parametric approach. In our case, we assume b;, for
i=1,...,N, independent and identically distributed according to a probability measure
2*. Looking for the ML estimator &* of 2* in the space of all probability measures
on RY, the discreteness theorem proved in Lindsay (1983), states that P* is a discrete
measure with at most N support points. Therefore the ML estimator of the random
effects distribution can be expressed as a set of points (¢y,...,¢y), where M < N and
¢; € RY, and a set of weights (@, ..., @), where @, > 0and ¥, @ = 1.

As mentioned above, in this paper we propose an algorithm for the joint estimation
of 3, M, (cq,...,¢y) and (@y,. .., @) in the non linear framework of model (1). The
estimation of fixed effects 3 and variance 6 is performed through the maximization of



the restricted likelihood:

L(B.o3) = P31, = BB )
) yY)=pr\Y| o, _l:1 1(27_[62)("1\/)/2 .

Notice that the number of support points M is estimated by the algorithm as well and
we do not have to fix it a priori. Since we don’t have to specify a priori the number
of support points and in consequence the number of groups, the nonparametric mixed-
effects model could be interpreted as an unsupervised clustering tool for longitudinal
data. This tool could be very useful in order to identify the groups of subjects to be used
in the analysis.

2.2 NLNPEM algorithm

The algorithm proposed for the estimation of the parameters of model (1) arises from
the framework described in Schumitzky (1991), and alternates two steps. The first one
is a nonparametric EM step whereas the second one is a non linear maximum-likelihood
step. The nonparametric EM step estimates the discrete g-dimensional distribution
(c,w) of the random effects b;. The non linear maximum likelihood step provides
an estimation of the fixed effects 8 and the variance 62, given b;.

The nonparametric EM step consists in an update of the parameters of the discrete
distribution (¢,w) that increases the likelihood function. The property of increasing the
likelihood was proved in Schumitzky (1991). The update is the following:

.
o = Y wy
i=1
N (2)
¢, = argmax Y Wilnp(yi|8,6%¢)
i=1

where )
W,l_ wlp(yi|ﬁ7g ,Cl)
=
22/121 wkp(yi‘ﬁ7627ck)
and | i
: 2 b Ly (S Bet))
p(yl’ﬂ76 ,Cl) = (27[62>n/26 2 J .

The coefficients W;; represent the probability of b; being equal to ¢; conditionally to the
observation y; and given the fixed effects 3 and the variance 62, that is

‘/Vil :P(cl’)’im@762)
in fact,
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In order to estimate b; for i = 1,...,N we want to maximize the conditional proba-
bility of b; conditionally to the observations y; and given the fixed effects 3 and the
error variance 2. For this reason the estimation of the random effects, f),-, is obtained
maximizing W;; over [, that is

f)i = ¢y if [= argmlaxW,-l.

During the nonparametric EM step, we could also reduce the support of the discrete
distribution. The reduction of the support is performed in order to cluster the support
of random effects. This support reduction consists in both making points very close to
each other collapse and removing points with very low weight and not associated with
any subject. In particular if two points are too close, that is ||¢; —¢|| < D, where D
is a tuning tolerance parameter, than we replace ¢; and ¢, with a new point Cyin 4} =
(¢1+¢x)/2 with weight @ping 1y = O + 0. Otherwise, if @, < &, where @ is another
tuning tolerance parameter, and the subset {i by = cl} is empty, we remove the point
¢;. The thresholds D and @ are two complexity parameters that affect the estimation of
the nonparametric distribution; the higher D is set, the lower is the number of groups.
For this reason the two complexity parameters define a trade off between bias and high
number of groups. In this work we prefer setting D low in order to obtain an higher
number of groups and, in case, cluster them later.

The non linear maximum likelihood step provides the estimation of the fixed effects
3 and the errors variance 62, given b; = b;. In this step we maximize the non linear
log-likelihood:

. 1 Y .
g(ﬂadz‘y7b):_7ln(2n6 TZZ yl] ﬂvbiatj))Q
i=1j=1

where b, is the estimation of random effects for the i-th subject provided in the
nonparametric EM step.

The algorithm, given a starting discrete distribution with N support points for the
random effects and a starting estimate for the fixed effects, alternate the nonparametric
EM step and the non linear maximum likelihood step until convergence. Technical
details together with the sketch of the algorithm are reported in Appendix A.

3 Simulation studies

In order to validate the proposed estimation algorithm and to compare it with different
procedures, we perform two simulation studies. Since we are mainly interested in clas-
sifying curves in an unsupervised framework, we focus our attention on the estimation
of random effects distribution.

In the first simulation study (Section 3.2), we test our algorithm in a linear frame-
work, in order to compare results of our procedure with those obtained with the algo-
rithm introduced in Aitkin (1996) and implemented in the npmlreg R-package (see
Einbeck et al., 2009). In the second one (Section 3.3), we consider two classic non



linear functions f in (1): the exponential and the logistic growth curves. For each case
we design a test set of simulated curves (details are provided in Appendix B) and we
evaluate the algorithm performance in the estimation of the random effects computing
the Wasserstein distance (defined in Section 3.1) between the true and the estimated
distribution of the random effects.

3.1 Wasserstein Distance

Evaluating the goodness of the estimation of a discrete distribution is not a straightfor-
ward task. Indeed, ways of comparing the true and the estimated probability distribution
of the model effects have to take in account both support location and weights, for this
reason we adopt a multidimensional version of Wasserstein distance (see Gibbs and Su,
2002). The Wasserstein distance between two probability measures (t, vV on a subset Q
of the metric space R is defined as

0o

() = [ 1F() - G)lax, 3)
where F' and G are the cumulative distribution functions of it and v respectively. The
generalization to the g-dimensional case is straightforward. When the probability mea-
sures ( and v are discrete, the computation of the integral in (3) is very easy, even
in the g-dimensional case. It is known that the Wasserstein metric assumes values in
[0,]Q2]], where |Q] is the Euclidean measure of the support space Q. For this reason, the
Wasserstein distance divided by |Q] is a good performance index for the evaluation of
the estimates in the simulations study.

3.2 Linear cases

In this section, a simulation study for linear models is considered, therefore f in model
(1) is linear. The general model, fori = 1, ..., N, include three different cases, that are:

a+dit+¢; (random-slope case)
yi=1< a;+0t+e¢; (random-intercept case)
a;+dit+¢€; (fully random case)

where ¢€; are i.i.d. from .#(0,621,) and t is the vector of sampling times. Intercept
and slope are treated as fixed or random effects according to the different cases. In
the fully random case, both slope and intercept parameters are considered random, i.e.
b; = (d;,a;), whereas in the random-slope and random intercept case, b; = d; and b; = g;
respectively. The interest is focused on random effects estimation, because our main
goal is to test the performance of our algorithm in identifying the correct number of
groups in simulated data and in estimating properly location and weights of different
groups. Testing the linear case enables us to compare results of our algorithm with those
carried out by the R algorithm npmlreg, which implements Aitkin (1996) procedure
of non parametric random effect estimation. To be noticed is that our method is not
efficient in the linear case, since it doesn’t take advantage of the linearity of the problem.



However it doesn’t need any a priori specification of the number of support points of
the random effects. Even if we don’t specify the exact number of groups beforehand,
the proposed method is able of carrying out a good estimation of the random effects
distribution.

We simulated 8 datasets of linear growth curves each grouped in a different number
of balanced or unbalanced clusters (from 2 to 10 clusters). Some examples of simulated
data are shown in left panels of Figure 1. Parameters specification and details of each
set of curves are reported in Appendix B. All these datasets represent typical situations
in which fitting a parametric mixed-effects model could be wrong because random ef-
fects are not normally distributed. On these datasets, we fitted models with both the
NLNPEM method and the nonparametric maximum likelihood approach introduced in
Aitkin (1996).

The method introduced in Aitkin (1996) is a method for fitting overdispersed gen-
eralized linear models: the idea is to approximate the unknown and unspecified distri-
bution of the random effects by a discrete mixture of densities from exponential family.
This approximation leads to a simple expression of the marginal likelihood that can be
maximized using a standard EM algorithm. Once specified the model and the number
of random effects groups k, the R package npmlreg fits a linear mixed-effects model
using nonparametric maximum likelihood. Since we are testing the proposed method
in a simulation setting, when npml reg method is used we provide the correct number
of groups, whereas, when NLNPEM is used, we don’t have to. The N starting points
for random effects distribution are randomly chosen in a proper range and the starting
fixed effects are estimated through linear least squares. Finally, the tolerance D is set
equal to 0.05 and @ = 0.05. According to the dimension of the random effect (g = 1 for
random-slope or random-intercept case, ¢ = 2 when both effects are random), we prop-
erly define the model in npmlreg and NLNPEM algorithms. Notice that npmlreg
does not allow to select one dimensional random effect for slope only but provides a
random effects estimation for both intercept and slope parameters. In this case, in order
to correctly compare the two methods, we have set also in the NLNPEM method both
slope and intercept to be random in the random-slope case. Of course, in the NLNPEM
method, random effects only for the slope may be selected by the user, if necessary.

In Tables 4, 5 and 6, of Appendix C, results of npmlreg and NLNPEM algorithms
for three representative cases are compared, i.e the estimations of random effects in
terms of points and weights are reported and compared with the corresponding true dis-
tributions. Observing estimated values reported in Tables 4, 5 and 6, it can be argued
that both methods estimate well both the discrete random components of the model and
the fixed effects when a small number of groups is considered. Increasing the number
of groups, the two algorithms show different behaviors. In particular we notice that, for
large number of groups, npmlreg misses some points of the nonparametric distribu-
tion, whereas NLNPEM performs better, even ignoring the true number of groups. The
number of groups estimated by the NLNPEM algorithm depends in general on the tun-
ing tolerances D and @, introduced in Section 2.2. This algorithm tends to overestimate
the number of points of the discrete distribution. However, even if the number of points
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Figure 1: Simulated data (left panels), npmlreg (central panels) and NLNPEM classification (right
panels) in lin2I, 1in3S, 1in9SI, 1in10I and lin10S datasets respectively. Different colors are used to represent
real groups (left panels), groups identified by npmlreg and NLNPEM methods (central and right panels
respectively).



is greater than the real number, the points tend to cluster near the true ones. Moreover,
summing the weights of the points in each cluster, we obtain results similar to the exact
weights. The hints concerning the number of groups provided by NLNPEM algorithm
make this method a powerful tool in explorative analyses within an unsupervised frame-
work. The NLNPEM method is also capable of detecting outlier groups, whereas the
npmlreg method is able to detect them only in presence of small number of groups. In
general, we notice that sometimes npml reg method performs poorly in estimation or
even misses convergence, whereas NLNPEM doesn’t. These situations happen in par-
ticular when there are 9 different groups both for intercept and slope (“lin9SI” dataset)
and when there are 10 groups for slope or intercept(“lin10S” and “lin10I” dataset re-
spectively).

Model | Wasserstein distance —2logL
npmlreg | NLNPEM | npmlreg | NLNPEM
lin2S | 0.013572 | 0.013724 2861.2 942.0
lin2I | 0.004538 | 0.005187 2097.7 190.5
lin4SI | 0.008121 | 0.006298 5974.4 2017.7
lin3S | 0.003041 | 0.004651 2839.8 912.7

lin31 | 0.003454 | 0.003454 2938.3 1017.2
1in9SI | 0.017756 | 0.001565 16127.0 5376.7
lin10S | 0.033632 | 0.000410 | 76716.1 18025.9
lin10I | 0.023045 | 0.001649 12795.8 2947.3

Table 1: Normalized Wasserstein distances and —2log L index for npmlreg and NLNPEM algorithm
respectively in the simulated linear cases.

In order to resume the goodness of fit of NLNPEM method and the npmlreg

one, we finally compare the normalized Wasserstein distances between the true discrete
random effects distribution and the estimated one through the two methods, for each
simulated set of linear curves. Results are reported in Table 1, together with the good-
ness of fit index —2logL.
To be noticed is that, in the case of Wasserstein distance, results are similar for all
datasets where both algorithm perform well. On the other hand, significant differences
exist in cases with large number of groups, where NLNPEM performances are much
better both in terms of Wasserstein distance and —2logL.

3.3 Non linear cases

In this section we describe two nonlinear case studies: the exponential and the logistic
growth model. These two models are among the most used in nonlinear mixed-effects
framework because they find application in several areas like pharmacokinetics and
epidemiological studies.

Since other nonlinear nonparametric methods are not available for free software, we
are not able to compare the NLNPEM results with those obtained with other methods;
for this reason we will only test NLNPEM performances, providing the normalized



Wasserstein distance between the true distribution and the estimated one.

3.3.1 Exponential growth model

We first describe the exponential case, in which we consider the following nonlinear
function in model (1):

)=« (1 —e*’“)

which is nonlinear in A. The two parameters & and A represent respectively the asymp-
tote and the growth rate.

In this case study we consider only random effects for the asymptote, that means that
the mixed-effects model becomes

Y =aqa; (1 —eilt) +6,'

where €; ~ A4 (0, GZ]I,,) are i.i.d. errors, a; are the random effects for the asymptote
(b; = a;) and A is the fixed effect for the growth rate (f = A).
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Figure 2: NLNPEM classification in exp2A, exp3A and expl0A datasets respectively with exponential
model.

We simulated 3 datasets of exponential growth curves, described in Appendix B, in
which only asymptote varies. The starting random effects distribution has N support
points, randomly chosen in a proper range, and the starting fixed effects are estimated
through nonlinear least squares. The tuning tolerance parameter D is set equal to 0.01
and ® = 0.05. Figure 2 shows original datasets, where each curve is colored according
to the group estimated by NLNPEM method.

The estimated number of groups is larger than the real one in all the three cases; how-
ever the estimated random effects create the right number of clusters located close to
the correct points. In the exp3A case the NLNPEM method is also able to identify the
outlier group estimating well the location and the weight of the random effects.

The performance of NLNPEM method is evaluated in this case only in terms of nor-
malized Wasserstein distance, shown in Table 2.

10



Model | Wasserstein distance
exp2A 0.030048
exp3A 0.015025
expl0A 0.011524

Table 2: Normalized Wasserstein distances for NLNPEM algorithm in the simulated exponential cases.

3.3.2 Logistic growth model

The second nonlinear model tested is the logistic growth model. In this case, the non-

linear function is: o

ft)=——
1+e 7
where « represent the asymptote, 6 is the inflection point, which correspond to the time
at which the growth curve reaches the half of the asymptote, and v is the time elapsed
between O and the time at which the growth curve reaches 3/4 of the asymptote level.
The parameter y will always be treated as a fixed effect while the asymptote and the
inflection point will be treated either as fixed or as random effect according to different
cases. The general model, which is nonlinear in A and 7, include three different cases:

a;
j +€; (random-asymptote case)
l+e 7
o
yi={ & +¢€; (random-inflection case) 4)
l+e 7
a;
71%,— +€; (random-asymptote and inflection case)
l4+e 7

where €; ~ 4 (0, GZ]I,,) are i.i.d. errors, a; and d; represent the random effects for the
asymptote and the inflection point, while @, § and y represent the fixed effects. In
particular in the varying asymptote case b; = a; and 8 = (&, ¥), in the varying inflection
case b; =d; and B = (a,y) and in the varying asymptote and inflection case b; = (a;, d;)
and f =17.

We simulated 8 datasets of logistic growth curves that include all the cases resumed in
(4). Each dataset is composed by a different number of balanced or unbalanced groups
(from 2 to 10 clusters) similar to those presented in the linear framework. Details are
provided in Appendix B.

Since the NLNPEM method is able to fit all three models resumed in (4), we fit
the right model for each dataset. The starting random effects distribution has N support
points, randomly chosen in a proper range, and the starting fixed effects are estimated
through nonlinear least squares. We set the tolerance D equal to 0.05 and & = 0.05.
Figure 3 shows original datasets, where each curve is colored according to the group
estimated by NLNPEM method. We notice in Figure 3 that, even if we don’t specify a
priori the correct number of groups, we are able to cluster correctly the subjects both
when there are few groups and when there are many. The method is also able to capture
correctly outliers groups; in all the unbalanced cases the proposed method recognize the

11
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Figure 3: NLNPEM classification in logis2A, logis2l, logis4Al, logis3A, logis3I, logis9AL logis10A
and logis10I datasets respectively with logistic growth model.

outliers groups and estimate well both the location and the weight of random effects.

In order to test the NLNPEM method we can compare these results with those obtained
considering always both asymptote and inflection point as random effects. For the two
varying asymptote and inflection cases we have obviously fitted only the model with
two random effects. The normalized Wasserstein distances are shown in Table 3; the left
column represents the normalized Wasserstein distance for a model with one random
effect while the right one represent the same distance for models with two random
effects. We first notice that the normalized Wasserstein distances are always very low,
that means that the NLNPEM method is able to estimate well both random and fixed
effects even in presence of a high number of groups. We also notice, comparing results
for the same case study with one or two random effects, that the normalized Wasserstein
distances are always very close together. Both observing the Wasserstein distances and
the fitted curves obtained with the model with two random effects, we notice that in the
NLNPEM method we are allowed to consider more parameters as random effects than
needed, without damaging the parameter estimation. In particular this approach could

12



Model Wasserstein distance
g=1 q=2
logis2A | 0.000150 | 0.000450
logis2I | 0.003202 | 0.012171
logis4Al - 0.004869
logis3A | 0.000396 | 0.000629
logis31 | 0.007243 | 0.010250
logis9AI - 0.006477
logis10A | 0.001286 | 0.0.0015
logis10T | 0.004664 | 0.005207

Table 3: Normalized Wasserstein distances for NLNPEM algorithm in the simulated logistic cases.

be useful when we don’t know which are the parameters to be considered random.
For this purpose we could perform a first analysis considering all parameters as random
effects and then fit a second model fixing the parameters that show a very low variability.
This approach could be performed with the NLNPEM method because it can handle
both random and fixed effects whereas other previous methods cannot.

4 Application to NON STEMI data

In this section we study a dataset concerning Hospital Discharges of patients affected
by Acute Myocardial Infarction (AMI) without ST-segment elevation (NON-STEMI).
These data have already been studied in Ieva et al., 2010. Figure 4 represents the nor-
malized number of NON-STEMI diagnoses along the time period 2000-2007 grouped
by hospital and relative to the 30 largest clinical institutions of Regione Lombardia. For
each hospital the yearly number of diagnoses has been standardized by the hospital total
number of diagnoses in the time period 2000-2007.

As pointed out in Ieva et al., 2010, the random-inflection case in model (4) seems to
capture the common “S-shaped” growing pattern. The NLNPEM algorithm clusters
the hospitals in M = 2 different groups, according to the estimated discrete distribu-
tion of the random effect for the inflection point (see Figure 4). The estimated fixed
effects are & = 0.16 and ¥ = 1.31, the estimated discrete measure P* is concentrated
on (€;,&) = (—3.76,—2.43) with weights (@;, @) = (0.2,0.8) and the estimated vari-
ance is 6> = 7.7-10~*. This analysis, performed with D = 0.05 and & = 0.05, backs
up the presence of two groups of hospitals according to different inflection points and
automatically detects an unsupervised cluster structure. Even if clinical best practice
maintains that there is no evidence for a greater incidence of NON-STEMI in this pe-
riod it is known that since the early 2000s a new diagnostic procedure - the troponin
exam - has been introduced and this could have produced an increased number of pos-
itive diagnoses, by easing NON-STEMI detection. Hence, the presence of 2 clusters
could be a consequence of the different hospital timings in the introduction and adop-
tion of this practice. This hypothesis cannot be validated directly since the timings of

13



0
('\!7
o
)
(\!7
o

12}

o

@

S 1

— bl

o o

e

Q

£

5 9

zZ o
0
0.7
o

Centered Year

Figure 4: Standardized number of AMI without ST-segment elevation diagnoses in the period 2000 -
2007 in the 30 largest clinical institutions of Lombardia Region. The year has been centered and nor-
malization has been carried out standardizing the yearly number of diagnoses for each hospital by total
number of diagnoses in the time window 2000 — 2007. Real data are colored according to the NLNPEM
clusters and NLNPEM fitted models are superimposed.

adoption of the troponin exam by the 30 different hospitals included in the analysis are
not available.

The good agreement with previous results detailed in Ieva et al., 2010 together with the
great advantage of a non-parametric approach advocates the real profit in using this new
estimation algorithm.

5 Conclusions

In this work, we proposed a new estimation method for nonlinear nonparametric mixed
effect models, aimed at unsupervised classification.

The proposed method is based on an iterative algorithm (named NLNPEM) that al-
ternates a nonparametric EM step and a ML step for the maximization of a nonlinear
likelihood function. We first tested this procedure in a linear framework against the
already existing tool for nonparametric random effects estimation (the npmlreg R
package), in order to compare the performances of the new method in terms of ran-
dom effects distribution. Results show that our method performs well both in terms of
Wasserstein distance and —2log L, even ignoring the real number of groups, and that it
always converges, even in those cases where several groups are present. Then we tested
NLNPEM algorithm also in simulated test set within nonlinear frameworks of expo-
nential and logistic growth. In both these cases, the number of groups and distribution
of random effect are correctly and effectively identified. Finally, an application to real
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data of NON-STEMI is presented, where the potential of our method in unsupervised
clustering analysis is highlighted.

A Details on NLNPEM Algorithm

The NLNPEM is the following:

1. Define a starting discrete distribution for random effects with support on N points
(c(o),w(o)), a starting estimate for the fixed effects B9 and for 62 and the
tolerance parameters D and @;

2. given (¢ =1, wk=1) k=1 and g2*=1) perform the EM step (without the sup-
port reduction) in order to update the support points ¢(*) and the weights w®) of
the random effect distribution, according to equation (2);

3. given (c(k),w(k)), perform the nonlinear maximum likelihood step in order to
estimate the fixed effects ﬁ(k) and the error variance 62(%);

4. iterate steps 2 and 3 until convergence;

5. reduce the support of the discrete distribution, according with the tuning param-
eters D and @;

6. given (c(k_l),w(k_l)), B*-1D g2k-1) D and @, perform the EM step with the
support reduction in order to update the support points ¢*) and the weights w®)
of the random effect distribution, according to equation (2);

7. given (c(k),w(k)), perform the nonlinear maximum likelihood step in order to
estimate the fixed effects ﬁ(k) and the error variance 62();

8. iterate steps 6 and 7 until convergence.

The algorithm reaches convergence when parameters and discrete distribution stop
changing or when there is no variation in the log-likelihood function.

B Details on simulation study

B.1 The Linear case

We simulated 8 datasets of linear curves grouped in a number of clusters that vary form
2 to 10. Different values of the error variance 62 have been chosen for each test set, in
order to obtain noisy observations for each curve. Some examples of simulated data are
shown in left panels of Figure 1. Datasets addressed with the name “S” contain groups
in which only slopes is random, “I” datasets contain groups where only intercept is
random and “SI” datasets contain curves where both slope and intercept are random.
The simulated datasets are then:
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e 1in28S: 2 balanced groups, each one composed by 25 curves, with the same inter-
cept (equal to 4), 2 different slopes (¢ = (¢1,¢2) = (1,2)) and 6 = 1;

e lin2l: 2 balanced groups, each one composed by 25 curves with the same slope
(equal to 1), 2 different intercept (¢ = (c¢,c2) = (3,10)) and o = 0.65;

e 1in4SI: 4 balanced groups, each one composed by 25 curves, where location
points ¢ = (¢j,¢2,¢3,¢4) are obtained from all possible combinations of 2 dif-
ferent slopes (equal to 1 and 3) and 2 different intercepts (equal to 40 and 60),
ie. ¢; = (1,40), ¢, = (1,60), ¢3 = (3,40) and ¢4 = (3,60) with 6 = 1;

e 1in3S: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with
the same intercept (equal to 4), 3 different slopes (¢ = (cy,c2,¢3) = (1,2,3.5))
ando=1;

e lin3I: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with
the same slope (equal to 1), 3 different intercepts (¢ = (¢, ¢2,¢3) = (2,7,14)) and
o=1;

e 1in9SI: 9 unbalanced groups, 6 of whom containing 24 curves and 3 containing 2
curves, where location points ¢ = (¢, ¢z, ¢3,c¢4,¢s5,C6,€7,C8,C9) are obtained from
all possible combinations of 3 different slopes (equal to 1, 4 and 7) and 3 different
intercept (equal to 20, 35 and 60) with 6 = 1.5;

e 1in10S: 10 balanced groups, each one composed by 50 curves with the same
intercept (equal to 1), 10 different slopes (¢ = (c¢y, 2, ¢3,¢4,¢5,¢6,¢7,€8,C9,C10) =
(0.5,2,4,5.5,7.5,10,12, 13.5,16,20)) and 0 = 1.5;

e linl0L: 10 balanced groups, each one composed by 15 curves with the same
slope (equal to 1), 10 different intercepts (¢ = (c1,¢2,¢3,¢4,C5,C6,C7,€8,C9,C10) =
(1,5,10, 15,20,25,30,35,40,45)) and 6 = 1.

B.2 The Exponential case

We simulated 3 datasets of exponential growth curves where only asymptote varies and
is considered as random. All datasets are then addressed with the name “A”. They are:

e exp2A: 2 balanced groups, each one composed by 25 curves, with the same
growth rate (A = 0.5), 2 different asymptotes (¢ = (c¢1,c2) = (1,1.5)) and 6 =
0.04;

e exp3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with the same
growth rate (A = 0.5), 3 different asymptotes (¢ = (¢, c2,¢3) = (1,1.5,2.3)) and
o =0.04;

e explOA: 10 balanced groups, each one composed by 5 curves, with the same
growth rate (A = 0.5), 10 different asymptotes (¢ = (c1,c2,¢3,¢4,¢5,C6,C7,C8,
cg,c10) = (1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.25) and o = 0.04.
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B.3

The Logistic case

We simulated 8 datasets of logistic growth curves. Datasets addressed with the name
“A” represent random asymptote cases, “I”” datasets contain groups where only inflec-
tion point is random and “AI” ones contain curves where both asymptote and inflection
point are random. We then have:

logis2A: 2 balanced groups, each one composed by 25 curves, with 6 =6, y=1,
2 different asymptotes (¢ = (c1,¢2) = (1,2)) and 6 = 0.04;

logis2I: 2 balanced groups, each one composed by 25 curves, with x =1, y =1,
2 different inflection points (¢ = (c¢1,¢2) = (6,8)) and o = 0.04;

logis4Al: 4 balanced groups, each one composed by 25 curves, where location
points ¢ = (¢;,¢2,¢3,¢4) are obtained from all possible combinations of 2 differ-
ent asymptotes (equal to 1 and 2) and 2 different inflection points (equal to 6 and
10), i.e. ¢; = (1,6), ¢; = (1,10), ¢; = (2,6) and ¢4 = (2,10) with y =1 and
o =0.04;

logis3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with 6 = 6,
y = 1, 3 different asymptotes (¢ = (c1,¢2,¢3) = (1,2,3.5)) and ¢ = 0.04;

logis3I: 3 unbalanced groups of 24, 24 and 2 curves respectively, with & = 1,
v = 1, 3 different inflection points (¢ = (c1,c2,¢3) = (6,8,11.5)) and o = 0.04;

logis9AI: 9 unbalanced groups of curves (6 of whom containing 24 curves and 3
containing 2 curves), where location points ¢ = (cy,c¢2,¢3,¢4,¢5,C6,C7, C8,C9) are
obtained from all possible combinations of 3 different asymptotes (equal to 1, 2
and 4) and 3 different inflection points (equal to 6, 8 and 11.5) with y =1 and
o =0.04;

logis10A: 10 balanced groups, each one composed by 5 curves, with § =6, y =
1, 10 different asymptotes (¢ = (c1,¢2,¢3,c¢4,¢5,¢6,¢7, €8,C9,¢10) = (1,1.25,1.5,
1.75,2,2.25,2.5,2.75,3,3.25) and 6 = 0.04;

logis10I: 10 balanced groups, each one composed by 5 curves, with o =1,
v = 1, 10 different inflection points (¢ = (ci,c2,¢3,¢4,¢5,C6,C7, €8,€9,C10) =
(4.5,5.5,7,8,9.5,10.5,12,13,14.5,16) and ¢ = 0.04.

C Comparison of results

Comparison of estimates carried out by npmlreg and NLNPEM method are reported
here, for some cases of interest mentioned in the paper.

Linear case - Random-intercept case (Iin2I)
Linear case - Random-slope case (1in3S)

Linear case - Random-intercept case (1lin10I)
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effects True | npmlreg | NLNPEM
fixed slope 1 1.0021 1.0022
intercept 1 3 2.9382 2.9368
random | (weight 1) | (0.5) (0.5) 0.5)
intercept 2 | 10 10.0150 10.0136
(weight 2) | (0.5) (0.5) 0.5)

Table 4: Estimates carried out by npmlreg and NLNPEM method on lin2I dataset, where intercept is
considered as random, with 2 balanced groups.

effects True | npmlreg NLNPEM
slope 1 1 1.0107 1.0107
(weight 1) | (0.48) (0.48) (0.48)
random | slope 2 2 1.9982 2.0030 1.9637
(weight 2) | (0.48) (0.48) (0.4214) (0.0585)
slope 3 3.5 3.5250 3.5250
(weight 3) | (0.04) (0.04) (0.04)
intercept 4 3.9326 3.9326
random | intercept 4 4.0751 3.9954  4.6502
intercept 4 3.3717 3.7174

Table 5: Estimates carried out by npmlreg and NLNPEM method on 1in3S dataset, where slope is
considered as random, with 3 unbalanced groups.
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effects True npmlreg NLNPEM
fixed slope 1 1.001857 1.001232

intercept 1 1 09114 09114 0.9185

(weight 1) | (0.1) | (0.00050)  (0.09949) 0.1)

intercept 2 5 5.0257 5.0328

(weight2) | (0.1) 0.1) 0.1)

intercept 3 10 - 10.048

(weight 3) | (0.1) - (0.1)

intercept 4 15 12.5442 14.8397 15.1058
(weight4) | (0.1) 0.2) (0.0192)  (0.0807)
intercept 5 20 19.9818 19.9312  20.0026

random | (weight5) | (0.1) 0.1) (0.0368) (0.0631)

intercept 6 25 27.4750 249215 25.1181  25.1975
(weight 6) | (0.1) 0.2) (0.0325) (0.0371) (0.0302)
intercept 7 30 - 29.886

(weight7) | (0.1) - 0.1)

intercept 8 35 35.0050 349582  35.2459
(weight 8) | (0.1) (0.1) (0.0813)  (0.0186)
intercept 9 40 39.9516 39.6837 39.9624  40.4505
(weight 9) | (0.1) 0.1) (0.0186) (0.0714) (0.0098)
intercept 10 | 45 45.0017 45.0017 45.008

(weight 10) | (0.1) | (0.09949) (0.000507) 0.1)

Table 6: Estimates carried out by npml reg and NLNPEM method on lin10I dataset, where intercept is
considered as random, with 10 balanced groups.
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