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Abstract

Recent evidence highlights the usefulness of DNA methylation (DNAm)
biomarkers as surrogates for exposure to risk factors for non-communicable
diseases in epidemiological studies and randomized trials. DNAm vari-
ability has been demonstrated to be tightly related to lifestyle behavior
and exposure to environmental risk factors, ultimately providing an un-
biased proxy of an individual state of health. At present, the creation of
DNAm surrogates relies on univariate penalized regression models, with
elastic-net regularizer being the gold standard when accomplishing the
task. Nonetheless, more advanced modeling procedures are required in the
presence of multivariate outcomes with a structured dependence pattern
among the study samples. In this work we propose a general framework for
mixed-effects multitask learning in presence of high-dimensional predic-
tors to develop a multivariate DNAm biomarker from a multi-center study.
A penalized estimation scheme based on an expectation-maximization
(EM) algorithm is devised, in which any penalty criteria for fixed-effects
models can be conveniently incorporated in the fitting process. We apply
the proposed methodology to create novel DNAm surrogate biomarkers
for multiple correlated risk factors for cardiovascular diseases and comor-
bidities. We show that the proposed approach, modeling multiple out-
comes together, outperforms state-of-the-art alternatives, both in predic-
tive power and bio-molecular interpretation of the results.

1 Introduction

DNA methylation (DNAm) is an epigenetic process that regulates gene ex-
pression, typically occurring in cytosine within CpG sites (CpGs) in the DNA
sequence (Singal and Ginder, 1999). The development of surrogate scores based
on blood DNA methylation has received thriving attention in recent years: im-
pressive epidemiological evidence has been established between DNAm and long-
term exposure to lifestyle and environmental risk factors (Zhong et al., 2016;
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Guida et al., 2015; Fiorito et al., 2018). To this extent, multi-CpG DNAm
biomarkers have been devised to predict patient-specific state of health indi-
cators; and relevant examples include epigenetic clocks to measure “biological
age” (Lu et al., 2019), smoking habits (Guida et al., 2015) and proxies for in-
flammatory proteins (Stevenson et al., 2020). Remarkably, DNAm based scores
have been demonstrated to outperform surveyed exposure measurements when
predicting diseases (Zhang et al., 2016; Conole et al., 2020). A possible explana-
tion for this somewhat counter-intuitive behavior being that DNA methylation
intrinsically accounts for biases in self-reported exposure (e.g., underestimation
of smoked cigarettes) as well as individual responses to risk factors (e.g., the
same amount of tobacco may produce different effects in dissimilar patients).

From a modeling perspective, state-of-the-art methods for DNAm biomark-
ers creation generally rely on standard univariate penalized regression models,
with elastic-net (Zou and Hastie, 2005) being the routinely employed technique
when accomplishing the task. Indeed, the associated learning problem entirely
falls within the “p bigger than N” framework: DNA methylation levels are mea-
sured at approximately half million CpG sites for each sample, with the dimen-
sion of the latter generally not exceeding the order of thousands in most studies.
The afore-described procedure is shown to be widely effective in building DNAm
biomarkers, with three very recent contributions including a surrogate score for
cumulative lead exposure (Colicino et al., 2021), DNAm surrogate for alco-
hol consumption, obesity indexes, and blood measured inflammatory proteins
(Hillary and Marioni, 2021) and the identification of CpG sites associated with
clinical severity of COVID-19 disease (Castro de Moura et al., 2021). Nonethe-
less, elastic-net penalties may be too restrictive when dealing with complex
learning problems involving multivariate responses and distinctive dependence
patterns across statistical units.

The aforesaid first layer of complexity is encountered when a multi-dimensional
DNAm biomarker needs to be created, to jointly model multiple risk factors and
to coherently account for the correlation structure among the response vari-
ables. Such a multivariate problem, also known as multi-task regression in the
machine learning literature (Caruana, 1997), can be fruitfully untangled only if
dedicated care is devoted in choosing the most appropriate penalty required for
the analysis. For instance, one may opt for the incorporation of ¢1/£2 type of
regularizers (Obozinski et al., 2010, 2011; Li et al., 2015), that extend the lasso
(Tibshirani, 1996), group-lasso (Yuan and Lin, 2006) and sparse group-lasso
(Simon et al., 2013; Laria et al., 2019) to the multiple response framework. An-
other option could contemplate the inclusion, within the estimation procedure,
of prior information related to the association structure among CpG sites: this
is effectively achieved by means of graph-based penalties (Li and Li, 2010; Kim
et al., 2013; Cheng et al., 2014; Dirmeier et al., 2018). Furthermore, tree-based
regularization methods have also been recently introduced in the literature, to
account for hierarchical structure over the responses in a single study (Kim and
Xing, 2012) as well as when multiple data sources are at our disposal (Zhao
and Zucknick, 2020). For a thorough and up-to-date survey on the analysis of
high-dimensional omics data via structured regularization we refer the interested



reader to Vinga (2021), while the monograph of Hastie et al. (2015) provides a
general introduction to statistical learning with sparsity.

A second layer of complexity is introduced when DNA samples and related
blood measured biomarkers are collected in a study comprising multiple cohorts.
In such a situation, an unknown degree of heterogeneity may be included in the
data, with patients coming from the same cohort sharing some degree of com-
monality. Observations in the dataset are thus no longer independent and the
cohort-wise covariance structure needs to be properly estimated. Linear Mixed-
Effects Models (LMM) provide a convenient solution to this problem by adding
a random component to the model specification (see, e.g., Pinheiro and Bates,
2006; Gatecki and Burzykowski, 2013; Demidenko, 2013, for an introduction on
the topic). Whilst being able to capture unobserved heterogeneity, standard
mixed models, very much like their fixed counterpart, cannot directly handle
situations in which the number of predictors exceeds the sample size. In or-
der to overcome this issue Schelldorfer et al. (2011) introduced a procedure for
estimating high-dimensional LMM via an ¢;-penalization . More recently, Ro-
hart et al. (2014) devised a general-purpose ECM algorithm (Meng and Rubin,
1993) for solving the same issue, but achieving greater flexibility as the proposed
framework can be combined with any penalty structure previously developed for
linear fixed-effects models.

A Multivariate Mixed-Effects Model (MLMM) is an LMM in which multiple
characteristics (response variables) are measured for the statistical units com-
prising the study. Despite being quite a long-established methodology (Reinsel,
1984; Shah et al., 1997), its further development has not received much attention
in the recent literature. Relevant exceptions include the computational strate-
gies for handling missing values proposed in Schafer and Yucel (2002), and the
estimation theory based on hierarchical likelihood developed in Chipperfield and
Steel (2012). On this account, to the best of our knowledge, a unified approach
for penalized MLMM estimation is still missing in the literature and it could
thus be a relevant contribution to the statistics and machine learning fields.

Motivated by the problem of creating a DNAm biomarker for hyperten-
sion and hyperlipidemia from a multi-center study, we propose in this article
a general framework for high-dimensional multitask learning with random ef-
fects. Leveraging from the algorithm developed in Rohart et al. (2014) for the
univariate response case, the learning mechanism is effectively constructed to
accommodate custom penalty types, building upon existing routines developed
for regression with fixed-effects only.

The remainder of the paper is structured as follows. Section 2 describes
the EPIC Italy dataset, which gave the motivation for the development of the
methodology proposed in this manuscript. In Section 3 we introduce the pe-
nalized mixed-effects model for multitask learning, covering its formulation, in-
ference and model selection. Section 4 outlines the results of the novel method
applied to the EPIC Italy data for creating DNAm surrogates for cardiovascular
risk factors and comorbidities, comparing it with state-of-the-art alternatives.
Section 5 presents a simulation study on synthetic data for two different scenar-
ios. Section 6 concludes the paper with a discussion and directions for future
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Figure 1: Boxplots of log-transformed Diastolic Blood Pressure (DBP), High
Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Systolic Blood
Pressure (SBP) and Triglycerides (TG) for different Center, Italy EPIC dataset.

research. The R package emlmm implementing the proposed method accompanies
the article and it is freely available at https://github. com/AndreaCappozzo/emlmm.

2 EPIC Italy data and study design

The considered dataset belongs to the Italian component of the European Prospec-
tive Investigation into Cancer and Nutrition (EPIC) study, one of the largest
cohort study in the world, with participants recruited across 10 European coun-
tries and followed for almost 15 years (Riboli et al., 2002). For each participant,
lifestyle and personal history questionnaires were recorded, together with an-
thropomorphic measures and blood samples for DNA extraction. The EPIC
Italy dataset is comprised of four geographical sub-cohorts identified by the
center of recruitment: the provinces of Ragusa and Varese and the cities of
Turin and Naples. The latter center became associated with EPIC in later
times through the Progetto ATENA study (Panico et al., 1992). By profiting
from the information recorded in the aforementioned sub-cohorts, we aim at cre-
ating a multi-dimensional DNAm biomarker for cardiovascular risk factors and
comorbidities. To this extent, we consider a multivariate response comprised of
r = 5 measures, namely Diastolic Blood Pressure (DBP), Systolic Blood Pres-
sure (SBP), High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL)
and Triglycerides (TG). These characteristics were chosen as they represent the
major risk factors for cardiovascular diseases (Wu et al., 2015). In building
a DNAm biomarker, the response variables are regressed on DNA methylation
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Figure 2: Sample correlation matrix of log-transformed Diastolic Blood Pres-
sure (DBP), High Density Lipoprotein (HDL), Low Deunsity Lipoprotein (LDL),
Systolic Blood Pressure (SBP) and Triglycerides (TG), Italy EPIC dataset.

values for each CpG site, adjusted for sex and age. A total of N = 574 individu-
als in the J = 4 cohorts showcase non-missing values for every response variable:
they comprise the sample onto which all subsequent analyses will be performed.
An epigenome-wide association study (EWAS, Campagna et al., 2021) was per-
formed as a pre-screening procedure. Whilst variable screening in ultra-high
feature space is itself an ongoing research field (see, e.g., Fan and Lv, 2008; Fan
et al., 2009; Zhong et al., 2021, and references therein), we decided to rely on
the EWAS technique as it is the standard approach employed in epigenomics
(Fazzari and Greally, 2010). In so doing, out of the whole set of CpG sites,
13449 DNA methylation features have been retained for subsequent modeling.
Together with sex and age, this amounts to a total of p = 13451 predictors and
a 5-dimensional response. Furthermore, as previously mentioned, the consid-
ered samples belong to four different centers distributed across Italy, with data
for 128, 334, 68 and 44 units respectively collected in Turin, Varese, Ragusa
and Naples provinces. The boxplots in Figure 1 emphasize the differences in
the five response variables by center. To capture the center-wise variability and
to maintain generalizability of the devised DNAm biomarker outside the Italy
EPIC cohorts, a partial pooling random-intercept model must be adopted. That
is, a ¢ = 1 random effect component is included in the model specification. Fur-
thermore, the biomarkers comprising the response vector showcase some degree
of relations, as displayed by the sample correlation matrix of Figure 2, so much
so that it is sensible to regress them jointly to take advantage of their associa-
tion structure in the model formulation. This challenging learning task requires



an ad-hoc formulation for a multivariate mixed-effects framework applicable to
high-dimensional predictors.

3 Penalized mixed-effects models for multitask
learning

In this section, a novel approach for multivariate mixed-effects modeling based
on penalized estimation is proposed.

3.1 Model definition

The multivariate linear mixed-effects model (Shah et al., 1997) expresses the
n; X r response matrix Y; for the j-th group as:

Y; = X;B+ Z;jA; + E; (1)

where, for each of the n; units in group j and ijl n; = N, r response variables
have been measured. The remainder terms define the following quantities:

e B is the p x r matrix of fixed-effects (including the intercept)

A, is the ¢ X r matrix of random-effects

X; is the n; x p fixed-effects design matrix

Z; is the n; x ¢ random-effects design matrix

E; is the n; x r within-group error matrix
e j=1,...,J, with J total number of groups.

By employing the vec operator, we assume that:
vec (A;) ~ N(0,%),

where W is a gr X gr positive semidefinite matrix, incorporating variations and
covariations between the r responses and the ¢ random effects. We further
assume that the error term is distributed as follows:

vec (EJ) NN(032®I7LJ')¢ (2)

where 3 is a r X r covariance matrix, capturing dependence among responses,
and I, is the identity matrix of dimension n; xn;. Formulation in (2) explicitly
induces independence between the row vectors of E;. Therefore, the entire
model can be rewritten in vec form:

vec (Y;) ~ N ((IT ® X;)vee(B), (I, ® Z)) ¥ (I, ® Z;) +X @ Inj) .



Given a sample of N = ijl nj, the log-likelihood of model (1) reads:

J
mn; 1 ’
o) = Z—?JlogZﬂ' —5log|(I © Z)) ¥ (I, © Z)) +Z@I[+
j=1

1 (vec (Y;) — (I, @ X;) vec (B))/ ((IT ®Z;)¥ (I, ® Zj)l +Y® Inj)_l (vec (Y;) — (I, ® X;) vec (B))

2
(3)

Where 8 = {B,X, ¥} is the set of parameters to be estimated. When the
framework outlined in (1) is employed for DNAm biomarker creation, the num-
ber of regressors p is most certainly much larger than the sample size N. We are
thus not directly interested in maximizing (3), but rather a penalized version of
it, generically defined as follows:

Epen(9> = f(@) - p(B; )‘)a (4)

with p(Bj; A) being a penalty term employed to regularize the fixed-effects B as
a function of the complexity parameter A > 0. Notice that, depending on the
chosen penalty, more than one complexity parameter could be involved in the
definition of p(B; A) (see Section 3.3 for further details).

A general-purpose algorithm for maximizing (4) can be devised, as described
in the next subsection.

3.2 Model estimation

Direct maximization of (4) is unfeasible, as the terms vec(A;), j =1,...,J,
are unknown. We therefore devise an EM algorithm (Dempster et al., 1977)
in which the E-step computes the conditional expectations for the unobserved
quantities, while a complete penalized log-likelihood is maximized in the M-step.

3.2.1 E-step

The E-step requires the computation of E(vec (A;) |Y;; 0) and E(vec (A;) vec (Aj)/ Y;;0).
This is achieved by noticing that the conditional density p(vec (A;)|Y;;0) is

Normal. Updating formulae for the quantities of interest are thus derived as

follows:

A

I = V(vee (M) [Y;:0) = (L © Z)) (S L) (Lo z)+e'] ()
vec (A;) = E(vec (A;) [Y;;0) =T, (I,  Z;) (Z® I,,) " (vec(¥;) — (I, ® )(cj)) vec (B)).
6

Consequently, the second moment R; = E(vec (A;) vec (Aj)’ |Y;; 0) reads:

’
~ o — e

R; =T + vec (Aj)vec (A;) . (7)



At the t-th iteration of the EM algorithm, the E-step requires the computation
of (5)-(7) conditioning on the parameter values estimated at iteration ¢ — 1.
Notice that we can directly define the conditional density of Y;|A; by means of
the matrix normal distribution

Y;|AJ ~ m./\/ (XjB + ZjAj,Inj,E) N (8)

where X; B + Z;A; is the n; x r mean matrix, and I,;, X respectively identify
the row and column covariance matrices (Dawid, 1981). Such a representation
will be useful in specifying the update for B in the devised M-step: details are
provided in the next subsection.

3.2.2 M-step

In the M-step we maximize the complete penalized log-likelihood:
EC pen Z log VeC | vec (A]) 5 Ba E))—Hog(p(vec (AJ) ) ‘I’))_p(B7 )‘) =

J
1 ’ 71
Z*?Jlog (27) **10g|2®In | = 5E(e; (e l,)  elY;0)+

1 ’
" log(2n) — 3 log [ @] — JE (vec (A;) ¥ vee (A,)[Y;,0) ~ p(B;A), (9

where e; = vec (Y;)—(I,®X;) vec (B)—(I,®Z;) vec (A;) and the maximization
is performed with respect to 8§ = {B, X, ¥}.

The updating formula for B clearly depends on the considered p(B;\)
penalty. All the same, it is convenient to work with the matrix-variate rep-
resentation defined in (8). In so doing, the objective function to be maximized
wrt B reads:

1< . e
B) = 72& <21 (Yj - XjB) (Yj - XjB)> —p(B;)),  (10)

where Y =Y, - Z A and AJ is vec(A ), previously computed in the E-
step, rearranged in rnatrlx form. Start by noticing that, when no penalty is
considered, maximization of (10) agrees with the generalized least squares (GLS)
estimator assuming ¥ and ¥ known (Shah et al., 1997). By exploiting properties
of the trace operator, we can rewrite (10) defining the following minimization
problem:

J

1
minimize gcgpxr 3 E
j=1

+p(B;A) (11)
F

’

=-12(¥; - X;B)




where || - ||% denotes the squared Frobenius norm and ¥71/2 is the symmetric
positive definite square root of 3!, such that 3~! = £~1/2%-1/2, The repre-
sentation in (11) allows to employ standard routines for multivariate penalized

fixed-effect models for estimating B. In details, we start by computing;:

1/2

J
N 1 . 2
B-— in= > HE-WY-—X-BH B: ). 12
arg}sr,anj:l f j F+p( ) (12)

Notice that (12) is a fixed-effects penalized regression problem in which the
response variable is 71/2Y}, j = 1,...,J. The final update for (10) is obtained
by post multiplying B by £1/2: that is, at each iteration of the EM-algorithm,
we firstly compute B via fixed-effects routines for penalized estimation and then
we set:

B = Bx'Y? (13)

where B maximizes (10). This procedure stems from the rationale outlined in
Rohart et al. (2014), where, contrarily to their original solution, in our context
the updating steps are made more complex by the multidimensional nature of Y.
The devised updating scheme allows to easily incorporate any p(B; ) that has
been previously defined for the fixed-effects framework, and whose estimating
routines are available. A list of possible penalties is proposed in Section 3.3.

Updating formulae for the covariance matrices ¥ and X agree with those of
the unpenalized framework, namely

J
> R, (14)

Jj=1

k\'—*

and for the (h, k)-th element of matrix X
J
1
B = 2 [E(BulY) B (Bl¥))] +x fcov(Byn, Bal¥))], bk =1,

where Ejj, denotes the h-th column of matrix E; = Y; — ij&j - X;B, h =
1 r.

geeey

3.3 On the choice of p(B;\)

The EM algorithm devised in the previous section defines a general-purpose
optimization strategy for penalized mixed-effects multitask learning. Nonethe-
less, in practice, a functional form for p(B; A) must be chosen when performing
the analysis. While any penalty type can in principle be defined, three notable
examples, commonly used in this context, are the elastic net penalty (Zou and
Hastie, 2005), the group-lasso penalty for multivariate regression (Hastie et al.,
2015) and the netReg routines for Network-regularized linear models (Dirmeier
et al., 2018): each of them is briefly described in the next subsections, high-
lighting pros and cons wrt a mixed-effects multitask learning setting.



3.3.1 Elastic-net penalty

The first penalty type we consider is the renowned convex combination of lasso
and ridge regularizers, whose magnitude of the former over the latter is con-
trolled by the mixing parameter o, 0 < a < 1. In details, the penalty expression

reads: . b .
p(B; A, ) = A (1—a)ZZblgc+aZZ|blc| , (16)

c=11=2 c=1 =2

where b;. denotes the element in the [-th row and ¢-th column of matrix B. No-
tice that the first row of B contains the r intercepts and it is thus not penalized.
The penalty in (16) does not take into account the multivariate nature of the
problem in (4), as the shrinkage is applied directly to vec(B). This behavior al-
lows for capturing a wide variety of sparsity patterns that may be present in B,
but does not impose any specific structure that may be desirable in a multivari-
ate context (see next subsection). Algorithmically, penalty (16) can be enforced
employing standard and widely available routines for univariate penalized esti-
mation, like the glmnet software (Tay et al., 2021). The only computational
detail that shall be examined is how to prevent the default shrinkage of the
r intercepts: the penalty.factor argument of the glmnet function effectively
serves the purpose.

3.3.2 Group-lasso penalty

This type of penalty imposes a group structure on the coefficients, forcing the
same subset of predictors to be preserved across all r components of the response
matrix. This feature is particularly desirable when building multivariate DNAm
biomarkers, since it automatically identifies the CpG sites that are jointly re-
lated to the considered risk factors. Such a penalty is defined as follows:

T P P
pB:X ) =A|(L=a)Y D b t+a) [bull|, (17)
e=11=2 1=2

where b; identifies the I-th row of the matrix B, such that each b;, [ =2,...,p
is an r-dimensional vector. Likewise Section 3.3.1, summations over rows in
(17) start at 2 since we do not penalize the vector of intercepts. This penalty
behaves like the lasso, but on the whole group of predictors for each of the r
variables: they are either all zero, or else none are zero, but are shrunk by an
amount depending on A. Similarly to (16), the mixing parameter « controls the
weight associated to ridge and group-lasso regularizers. The glmnet software,
with family = "mgaussian" is again at our disposal for efficiently incorporating
(17) in the framework outlined in the present paper.

3.3.3 Network-Regularized penalty

The last penalty we consider allows for the inclusion of biological graph-prior
knowledge in the estimation by accounting for the contribution of two non-

10



negative adjacency matrices Gx € Rffl)x(p Y and Gy € R", respectively

related to X and Y. In this case, p(B; \) assumes the following functional form:

p(B; M\ Ax, Ay) = A|[Bol|1+-Ax tr (B(’)(DGX - GX)BO)—i—)\y tr (BO(DGY - GY)B;)
(18)

where By is the (p — 1) x r matrix of coefficients without the intercepts and

D¢, D¢, indicate the degree matrices of Gx and Gy, respectively (Chung

and Graham, 1997). Gx and Gy encode a biological similarity, forcing rows

and columns of By to be similar. Such a penalty is particularly useful when the

interaction among features and/or responses is, at least partially, known, such

that it can be profited from within the learning mechanism (Cheng et al., 2014).

The netReg R package provides a convenient implementation of (18) (Dirmeier

et al., 2018).

3.4 Further aspects

Hereafter, we discuss some practical considerations related to the presented
methodology.

e Initialization: we start the algorithm with an M-step, setting 60 =
{3(0)7 (0) ‘i,(o)}. In details, both 2@ and ¥© are initialized with
identity matrices of dimension r x r and ¢r X ¢r respectively, while BO g
estimated from a penalized linear model (without the random-effects) em-
ploying the chosen penalty function with the associated hyper-parameters.

e Convergence: the EM algorithm is considered to have converged once
the relative difference in the objective function for two subsequent itera-
tions is smaller than ¢, for a given € > 0:

|€pen(é(t+1)) — Epen(é(t) ) |
[pen (0)]

<g,

where ) = {B®) 550 W®} is the set of estimated values at the end of
the t-th iteration. In our analyses, ¢ is set equal to 1076, The procedure
described in Section 3.2 falls within the class of Expectation Conditional
Maximization (ECM) algorithms, whose convergence properties have been
proved in Meng and Rubin (1993) and in Section 5.2.3 of McLachlan and
Krishnan (2008).

e Model selection: a standard 10-fold cross validation (CV) strategy is
employed for selecting the tuning factors. Alternatively, as suggested in
Rohart et al. (2014), one could employ a modified version of the Bayesian
Information Criterion (BIC, Schwarz, 1978):

BIC = 20(6) — dglog(N), (19)

11



where £(6) is the log-likelihood evaluated at @, obtained maximizing (4),
and dp is the number of non-zero parameters resulting from the penal-
ized estimation. Another option would be to rely on an interval search
algorithm, like the efficient parameter selection via global optimization
(Frohlich and Zell, 2005): an implementation is available in the c060 R
package (Sill et al., 2014).

e Scalability: the devised methodology provides a framework for incorpo-
rating any penalty in a high-dimensional mixed-effects multitask learning
framework. To this extent, the data dimensionality our procedure can
cope with very much depends on the scalability associated to the chosen
shrinkage term. Typically nevertheless, penalized likelihood approaches
fail to be directly applied to ultrahigh-dimensional problems (Fan et al.,
2009), and pre-processing procedures such as variable screening are thus
required prior to modeling. The epigenetic application that motivated
the procedure naturally called for an EWAS pre-screening strategy (see
Section 2), but clearly other dimensionality reduction techniques could
be considered when dealing with massive datasets. The interested reader
is referred to Jordan (2013) for a thought-provoking investigation on the
topic.

e Implementation: routines for fitting the penalized mixed-effects multi-
task learning method have been implemented in R (R Core Team, 2021),
and the source code is freely available at https://github. com/AndreaCappozzo/emlmm
in the form of an R package. The three penalties described in Section 3.3
are included in the software, and can be selected via the penalty_type
argument of the ecm mlmm penalized function. As described in Section
3.3, the M-step heavily relies on previously developed fast and stable sub-
routines, while the E-step and the objective function evaluation have been
implemented in c++ to reduce the overall computing time.

¢ Response-specific random-effects: model in (1) assumes that each
and every response requires a random-effects component. Whilst in prin-
ciple reasonable, it may happen in specific applications that only a subset
of the r characteristics in Y enjoys group-dependent heterogeneity. The
occurrence of such a scenario can be unveiled by looking at the r diago-
nal elements of dimension ¢ in ¥: a response may be considered group-
independent when the magnitude of the associated elements in diag(®) is
significantly lower than the remaining ones. Doing this way, the impact
a given random-effect has on the different characteristics is retrieved as a
by-product of the modeling procedure.

4 DNAm biomarkers creation from EPIC dataset

The methodology described in the previous section is employed to build a 5-
dimensional DNAm biomarker of hypertension and hyperlipidemia. As men-

12



Table 1: Root Mean Squared Error (RMSE) and active number of CpG sites
for different penalized regression models, EPIC Italy test set. Bold numbers
indicate lowest RMSE for each of the r = 5 dimension of the response matrix.

Framework Root Mean Squared Error Active #
Model Penalty type  Response DBP HDL LDL SBP TG CpG sites
Random-effects  Group-lasso Multivariate 0.1024 0.2065 0.2887 0.1187 0.3958 1824
Random-effects  Elastic-net Multivariate  0.1089 0.2103 0.2844 0.1263 0.4138 1468
Fixed-effects Group-lasso Multivariate  0.1098 0.2141 0.2838 0.126 0.4036 874
Fixed-effects Elastic-net Multivariate  0.1162 0.2298 0.2988 0.1329 0.4227 441
Fixed-effects Elastic-net Univariate 0.1043 0.2106 0.2781 0.1226 0.4002 1933
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Figure 3: Residual plots of log-transformed Diastolic Blood Pressure (DBP),
High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Systolic
Blood Pressure (SBP) and Triglycerides (TG) for group-lasso mixed-effects
model for multitask learning. Residuals are colored by Center, Italy EPIC test
set.

tioned in the introduction, DNAm surrogates possess extensive advantages over
their blood-measured counterparts, since they directly account for genetic sus-
ceptibility and subject specific response to risk factors. Furthermore, once the
DNAm biomarkers have been created (i.e., model parameters have been esti-
mated), their values can immediately be predicted for patients not directly in-
volved in the study, even coming from an external cohort with available DNAm
data. This is particularly interesting when the risk factor or exposure has not
been directly measured in the external cohort. In addition to the epidemiolog-
ical usefulness of DNAm surrogates, further understanding of the biomolecular
mechanisms associated with complex phenotypes can be acquired through a
pathway enrichment analysis (Reimand et al., 2019). The latter allows to iden-
tify molecular pathways overrepresented among the regressors involved in the
surrogate construction (i.e., the CpG sites whose associated parameters are not
shrunk to 0).

To reconstruct the process of DNAm surrogates creation and validation, the
EPIC Ttaly data is randomly split into two sets: 70% (N = 401 ) of it is em-
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Figure 4: Estimated covariance matrix W of the random-effects and covariance

matrix ¥ of the error term for group-lasso mixed-effects model for multitask
learning, Italy EPIC dataset.

ployed for model fitting, while the remaining 30% (N;. = 173 ) acts as test set
for assessing predictive performance. Several estimation strategies are contem-
plated varying penalty and modeling type. For each model, the penalty factor
A was tuned via 10-fold CV on the training set, while the mixing parameter «
was kept fixed and equal to 0.5. As mentioned in Section 2, the design matrix
comprises of p = 13451 variables and redundancies are likely to occur as the
feature space is constituted by the union of CpG sites pre-screened by univariate
epigenome-wide analyses. Results are summarized in Table 1, where the Root
Mean Squared Error (RMSE) and the number of active CpG sites are reported.
The first two rows are related to the novel penalized MLMM methodology with
a random-effects design matrix that includes a ¢ = 1 random intercept, cou-
pled with elastic-net (Section 3.3.1) and group-lasso (Section 3.3.2) penalties,
respectively. The corresponding fixed-effects counterparts are reported in the
third and fourth rows, while univariate elastic-net metrics, obtained fitting r = 5
separate models, one for each response, are detailed in the last row of Table 1.
Notice that our proposal outperforms the state-of-the-art approach (univariate
elastic-net) for 4 out of 5 dimensions of the response variable. The reason being
that our method takes advantage of the borrowing information asset typical of
multivariate models (the correlation between SBP and DBP is equal to 0.77
in the training set), whilst allowing for center-wise difference to be captured
by the random intercept. Furthermore, thanks to the group-lasso penalty, our
penalized MLMM approach directly identifies the CpG sites that are jointly re-
lated to hypertension and hyperlipidemia, with a total number of features that
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is lower with respect to univariate elastic-nets. Figure 4 displays the estimated
covariance matrix ¥ of the random-effects (left panel) and covariance matrix
3 (right panel) for the penalized MLMM model with group-lasso penalty. By
taking the ratio between the diagonal elements of ¥ and the sum of the diago-
nals of ¥ and ¥ it is possible to compute, for each component of the response
matrix Y, the analogue of the Percentage of Variation due to Random Effects
(PVRE) index. For the EPIC Italy dataset, the estimated PVRE amounts to
56.07%, 83.35%, 58.4%, 67.66% and 62.59% for DBP, HDL, LDL, SBP and TG,
respectively. Notice that DBP and LDL possess lower PVREs than the other
biomarkers.

The employment of the group-lasso penalty within a mixed-effects multi-
task learning framework is also supported by biological reasons. In fact, it
is more likely that multiple correlated phenotypes affect (or are affected by,
depending on the causal relationship between DNAm and the exposure vari-
able) the same set of CpG sites. This mechanism is known as pleiotropic effect
(Tyler et al., 2013; Richard et al., 2017). In addition, the incorporation of a
random intercept in the model is further motivated by the intrinsic rationale
of DNAm biomarkers creation: the compelling necessity of developing study-
invariant DNAm biomarkers, whilst still being able to capture the center effect,
can be properly achieved by modeling the latter with a random component.
The network regularized penalty has not been included in the comparison as
the incorporation of prior knowledge through graph-based regularizers does not
seem to be suited for this context, with predictive metrics being much worse for
both random-effects and fixed-effects models. Figure 3 reports the residuals vs
fitted plots for the model in the first row of Table 1: each dimension displays
a satisfactory diagnostic pattern, also supported by normality checks on the
residuals.

In addition to the higher prediction performance and epidemiological ratio-
nale of our approach compared to the univariate elastic-nets, we investigated the
biological reliability of the selected features (CpG sites). The univariate elastic-
nets extracted 492, 325, 469, 481, 489 CpG sites for diastolic blood pressure,
systolic blood pressure, HDL cholesterol, LDL cholesterol, and triglycerides,
respectively. The total number of unique CpGs was 1933. However, despite
the high degree of correlation among the multivariate outcomes, no CpGs were
in common in the five sets, and only a minor percentage of CpGs was shared
among two or more responses, as it is represented in Figure 5. Instead, as previ-
ously described , our MLMM procedure regularized with a group-lasso penalty
extracts features that are associated with the five outcomes at the same time, a
biological mechanism known as pleiotropy (Atchley and Hall, 1991a,b), increas-
ing the biological reliability of our findings. On this wise, we extracted all the
CpGs previously associated with blood pressure, HDL cholesterol, LDL choles-
terol, and triglycerides from the EWAS catalogue (Battram et al., 2021), and we
investigated the overlap with the CpGs extracted in the EPIC Italy dataset by
the two approaches (univariate elastic-nets and penalized MLMM with group-
lasso penalty). The EWAS catalogue collects the results from epigenome-wide
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Figure 5: Venn diagram highlighting the number of CpG sites in common among
those extracted by univariate elastic-nets for Diastolic Blood Pressure (DBP),
High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Systolic
Blood Pressure (SBP) and Triglycerides (T'G) biomarkers.

association studies (EWAS) satisfying stringent inclusion parameters (Battram
et al., 2021). For the comparison, we selected the CpGs associated with (at least
one) of the outcomes considered in this study, with p-value of the association
test lower than 10~8, which is considered the optimal threshold of significance
to avoid false positives in EWAS studies.

Despite the low number of CpG sites selected by penalized MLMM compared
with univariate elastic-nets, the former systematically identifies a higher number
of CpG sites in common with the EWAS catalogue. In fact, out of 52 CpGs
associated with systolic blood pressure, 8 (15.3%) are retained by our approach,
whereas only 6 (11.5%) were identified as relevant by the univariate elastic-net.
Interestingly, only one out of six common CpGs resulted from the systolic blood
pressure specific analysis. Further, out of 32 CpGs associated with diastolic
blood pressure, 7(21.9%) were in the MLMM list, whereas 5(15.6%) were in the
univariate elastic-nets set. Of those, two out of five came out from the diastolic
blood pressure specific analysis. Similarly, out of 12 CpGs associated with
triglycerides, 5 (41.7%) were in the MLMM list and 4 (33.3%) in the univariate
elastic-net set. No CpGs associated with LDL and HDL cholesterol were found
in the EWAS catalogue. These results further support the higher reliability
and reproducibility in independent datasets of a multitask learning framework
compared to the current state-of-the-art methods.

All in all, the proposed approach exhibits promising results when it comes
to multivariate DNAm biomarker creation, outperforming the current employed
procedure, both in terms of predictive power and epidemiological interpretation.
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Figure 6: Boxplots of the Root Mean Squared Error (RMSE) for MC = 100
repetitions of the simulated experiment. RMSE is computed on 200 test points
for different methods and two scenarios varying sparsity pattern for B.

5 Simulation study

In this section, we evaluate the model introduced in Section 3 on synthetic
data. The aim of the analyses reported hereafter is twofold. On the one hand,
we would like to validate the predictive power of the proposed procedure against
its fixed-effects counterpart when the random-effects vary across dimensions in
the multivariate response. On the other hand, we assess the estimated model
parameters and the recovery of the underlying sparsity structure for different
values of the shrinkage factor .

5.1 Experimental setup

We generate N = 600 data points according to model (1) with the following
parameters:

50.00 -1.59 -0.60 -0.22 2.38 3.56 —2.17 1.15 2.52
-1.59 40.00 -0.96 -0.91 0.37 —-2.17 9.04 0.20 0.59
¥=|-060 —-096 30.00 -043 050, X=| 115 020 435 285
-0.22 -091 -0.43 20.00 0.80 252 059 285 5.34
238 037 050 080 0.16 0 0 0.02 0.03
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implying that r = 5 and ¢ = 1. Notice that ¥ is purposely constructed for the
random-effects to differently affect the five dimensional response: while the first
component showcases high variance (first entry in the main diagonal) the last
one is very small and close to 0. The data generating process further assumes
ten equally-sized subpopulations, resulting in J = 10. The matrix of fixed-
effects B is of dimension 101 x 5, with distinct sparsity pattern according to
two scenarios:

e B row-wise sparse: B has entries equal to 0.5 for the first 21 rows, while
all the other entries are equal to 0,

e B sparse at random: B is equal to 0.5 for approximately 70% of its entries,
while all the others are equal to 0.

A graphical representation of the resulting structures can be found in the top
panels of Figure 10. Lastly, Z; is an all-one column vector Vj = 1, ..., 10, while
X; has the first column equal to 1, meaning that the intercept is included in
X in our model specification, and the remaining 100 dimensions are generated
according to a standard normal random vector.

Taking a cue from the Monte Carlo simulations of Li and Li (2010), for each
replication of our experiment the learning framework is structured as follows:
we equally divide the N = 600 units in a training set, an independent validation
set and an independent test set, retrieving a sample size of 200 for each. Six
different models, varying A within a grid, are fitted on the training data:

e FElastic-net Fized-effects: a penalized multitask learning model with elastic-
net regularization. The considered penalty is described in Section 3.3.1,

e Group-lasso Fized-effects: a penalized multitask learning model with group-
lasso regularization. The considered penalty is described in Section 3.3.2,

e Network-Regularized Fized-effects: graph-regularized multitask learning
model with edge-based regularization. The considered penalty is described
in Section 3.3.3,

e Flastic-net Random-effects: the penalized mixed-effects multitask learn-
ing model introduced in the paper with elastic-net regularization (Section
3.3.1),

o Group-lasso Random-effects: the penalized mixed-effects multitask learn-
ing model introduced in the paper, with group-lasso regularization (Sec-
tion 3.3.2),

e Network-Regularized Random-effects: the penalized mixed-effects multi-
task learning model introduced in the paper, with edge-based regulariza-
tion (Section 3.3.3).

The mixing parameter o was set equal to 0.5 for methods with elastic-net and
group-lasso regularizers, while for the Network-Regularized penalty we employ
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Figure 7: True covariance matrix of the random-effects and estimated ¥, av-
eraged over MC = 100 replication of the simulated experiment, for different
methods and scenarios.

5-fold CV to tune Ax and Ay on the training set. For the latter penalty, the
adjacency matrices Gx and Gy are computed via a thresholding procedure on
the correlation matrices of X and Y, respectively, with a threshold equal to 0.1
(Langfelder and Horvath, 2008). Subsequently, the validation dataset is used to
select the best shrinkage parameter A minimizing the RMSE for every model.
Lastly, the predictive performance is assessed on the test set. The devised
simulated experiment is replicated M C' = 100 times: results are reported in the
next subsection.

5.2 Simulation results

Figure 6 displays boxplots of the Root Mean Squared Error, computed for each
component of the 5-dimensional response on the test set. For both scenarios (
B row-wise sparse and B sparse at random) we observe that the component-
wise predictive performance is heavily affected by the magnitude of the related
diagonal entry in the ¥ matrix. When the grouping effect is negligible (fifth
dimension Y5), all methods showcase comparable predictive performance under
both scenarios. Contrarily, the RMSE deteriorates for fixed-effects models in
those response components for which the grouping impact is more relevant.
The same does not happen for the mixed-effects counterparts, as the random
intercept effectively captures baseline differences across groups. Interestingly,
the penalty type does not seem to influence the RMSE metric, with our proposal
displaying excellent results irrespective of the chosen shrinkage functional.

The same holds true when we look at the estimated covariance matrix of
the random-effects: Figure 7 and 8 respectively report the average estimated ¥
and boxplots of the Frobenius distance between ¥ and W for different methods
and scenarios. Particularly, the different sparsity patterns of B do not alter
the recovery of the underlying random component, which is effectively attained
by the three considered penalties. This also happens for the analogue of the
Percentage of Variation due to Random Effects (PVRE) metric, displayed in
Figure 9, in which it clearly emerges how the grouping impact differently affects
the five response components.
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As it may be expected, estimates for the fixed-effects matrix B differ in the
two scenarios and markedly depend on the chosen penalty: Figure 10 and 11
report the average estimated B and boxplots of the Frobenius distance between
B and B , respectively. First off, it is immediately noticed that methods without
a random intercept showcase poorer performances than our proposals, regardless
of the selected penalty and under both scenarios. Secondly, B sparse at random
structure results in an on average higher Frobenius distance between the true
and estimated B with respect to the B row-wise sparse case. Intuitively, the
former scenario is more challenging than the latter and, while all penalty types
can potentially accommodate a row-wise sparse B, group-lasso regularizers only
force entire rows of B to be shrunk to 0. It thus may seem surprising that the
||B — B || metric displays lowest median values for the Group-lasso Random-
effects model for both scenarios.

An explanation for this somewhat counterintuitive behavior is unraveled by
looking at the recovery of the true underlying sparsity structure for B vary-
ing shrinkage factor A. Figure 12 displays the receiver operating characteristic
(ROC) curves of the different procedures for the two scenarios. In details, Sen-
sitivity computes the proportion of zero entries in B correctly estimated as such
over the total number of zeros in B. Conversely, the Specificity of a solution
amounts to the proportion of correctly recovered non-zero in B over its total
number of non-zeros entries. By increasing the shrinkage factor A penalized
models gain in Sensitivity but lose Specificity, as it is demonstrated in the ROC
curves of Figure 12. For the B row-wise sparse scenario (left panel) we notice
that the Group-lasso Random-effects procedure outperforms all the other meth-
ods. While such an outcome seems logical given the sparsity structure sought
by a group-lasso regularizer, it is interesting to observe that both FElastic-net
Random-effects and Network-Reqularized Random-effects ROC curves dominate
the one associated to the Group-lasso Fized-effects method; highlighting that a
penalized mixed-effects modeling strategy, in presence of grouped data, not only
increases the predictive accuracy but also improves the recovery of the sparse
structure in the fixed-effects matrix. The zero entries of the B sparse at ran-
dom structure are more difficult to be recovered, and all methods display lower
values of both sensitivity and specificity (right panel of Figure 12). Flastic-net
Random-effects and Network-Regularized Random-effects models perform bet-
ter than their fixed-effects counterparts when higher values of \ are considered,
while they tend to underestimate the number of zeros for moderate values of the
shrinkage factor. As expected, methods coupled with a group-lasso penalty per-
form poorly under this scenario. Nonetheless, even though the sparsity pattern
of B is not well-recovered the distance, in terms of Frobenius norm, between the
estimated and the true matrix of fixed-effects does not suffer from the ill-posed
penalty type, as featured in the boxplots of Figure 11.
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6 Discussion and further work

In the present paper we have proposed a novel framework for mixed-effects mul-
titask learning suitable for high-dimensional data. The ubiquitous presence in
modern applications of “p bigger than N” problems asks for the development
of ad-hoc statistical tools able to cope with such scenarios. By resorting to pe-
nalized likelihood estimation, we have devised a general purpose EM algorithm
capable of accommodating any penalty type that has been previously defined for
fixed-effects models. We have examined three functional forms for the penalty
term, discussing pros and cons of each and providing convenient routines for
model fitting. The proposal has been accompanied by some considerations on
distinguishing features, like how to quantify response specific random-effects,
and other more general issues concerning initialization, convergence and model
selection.

The work has been motivated by the problem of developing a multivariate
DNAm biomarker of cardiovascular and high blood pressure comorbidities from
a multi-center sample. The EPIC Italy dataset has been analyzed using Dias-
tolic Blood Pressure, Systolic Blood Pressure, High Density Lipoprotein, Low
Density Lipoprotein and Triglycerides as response variables, regressing them on
13449 CpG sites and accounting for between-center heterogeneity. Our modeling
framework, coupled with a group-lasso penalty, has demonstrated to outperform
the state-of-the-art alternative, both in terms of predictive power and biomed-
ical interpretation. Remarkably, the number of CpG sites deemed as relevant
in the multi-dimensional surrogate creation was found to be lower than those
identified by separately fitting penalized models for each risk factor. Decreasing
the amount of relevant CpG sites is crucial to reduce sequencing costs for future
studies, with the final aim of querying only a limited number of targeted genomic
regions. Such a result may thereupon favor the adoption of our methodological
approach for building DNAm surrogates.

A direction for future research concerns promoting the application of the
proposed procedure in creating additional multi-dimensional DNAm biomark-
ers, conveniently embedding mixed-effects and customized penalty types. In
addition, having assumed random intercepts for each and every component in a
low-dimensional response framework was only motivated by the application at
hand, and it may not be valid in general. Thus, a two-fold methodological devel-
opment naturally arises: a first one concerning the definition of response-specific
random-effects in multitask learning and another accounting for the inclusion of
custom penalties when dealing with high-dimensional response variables. Fur-
thermore, the latter may also possess a mixed-type structure, with components
simultaneously be nominal, ordinal, discrete and/or continuous. Some proposals
are currently under study and they will be the object of future work.
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