
MOX-Report No. 21/2016

Mechanics and polarity in cell motility

Ambrosi, D.; Zanzottera, A.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Mechanics and polarity in cell motility

D. Ambrosi, A. Zanzottera

MOX-Dipartimento di Matematica, Politecnico di Milano,
and Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-

migrating and the migrating one. In both configurations the shape is fixed in time and, when

the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable

configuration to the other one can be produced by a mechanical or chemotactic perturbation.

In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin

dynamics inside the cell using a minimal mathematical model. While the protein diffusion,

recruitment and segregation govern the polarization process, we show that the free actin mass

balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active

stress, are sufficient ingredients to account for the motile bistability. The length and velocity of

the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The

key physical ingredient of the theory is the exchange among actin phases at the edges of the cell,

that plays a central role both in kinematics and in dynamics.

Introduction

The motility of eukariotic cells on flat substrates is conventionally described according to

four phases: leading edge protrusion, adhesion to the substrate, contraction at the trailing edge

and then retraction of the tail [6]. This scenario is however only stereotypical because for

some cells, like fish keratocytes, these phases follow each other so rapidly that they are actually5

undistinguishable: all the steps occur simultaneously and the translation process is continuous

in time. Moreover fish keratocytes exhibit two distinct motile regimes: in absence of external

stimuli, they typically stay at rest with a rounded shape. A sufficiently large mechanical or

chemotactical signal can trigger a destabilization that, in about 200 seconds, yields the cell to

travel with constant velocity (up to 1 micron per second) and shape [7]. The same kinematics10

even characterizes the motion of a fragment of cell lamellipodium, with a lower speed (' 2− 10
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micrometers per minute); as it lacks nucleus, microtubules and most organelles, the experiment

suggests that the key elements of cell crawling are well represented even in such a simple system.

The exhibited bistable behavior, signature of a nonlinear dynamics, is a fascinating challenge for

the mathematical modelling of an active living mechanical system.15

Both when the cell (or the lamellipodial fragment) is apparently at rest and when it is steadily

migrating, the inner equilibrium of the mechanical system is actually dynamical: at a subcell

level, the flow of free and polymerized actin follow patterns that have been unravelled during the

last decades [3, 8]. Oligomeric actin (G–actin) freely diffuses in the cytosol and attaches to the

barbed ends of the polymeric phase network (F–actin) that point outward the cell membrane;20

polymerized actin is backward transported by the myosin motors (retrograde flow). The vectorial

sum of material velocity and growth velocity (polymerization rate) at the cell boundary produces

the visible speed of the cell (which is possibly null). Free actin monomers detach from the actin

network in the body of the cell and are passively transported by Brownian motion from regions of

higher to regions of smaller concentration (namely the cell periphery, where the polymerization25

process acts as a sink for the G-actin) [9]. The free actin density correlates well with the high

stress regions inside the cell, inhibition of the stress due to myosin activity slows down the cell,

thus suggesting that the mechanical stress drives the depolymerization process [10, 23].

The shape of the boundary and the concentration patterns are very different between crawling

and non crawling fragments. The fragment at rest is rounded, the lamellipodium has a symmetric30

shape, the actin cytoskeleton near the membrane grows at a constant rate and is backtransported

from the boundary to the interior at the same velocity it is produced, so that the vectorial sum

of velocities is zero. In a travelling fragment, the lamellipodium takes instead a characteristic

canoe shape, the symmetry of actin and myosin concentration patterns is broken and the region

of strong actomyosin activity is concentrated in the rear of the lamellipodium.35

[Figure 1 about here.]

The polarization of the cell and the initiation of motility is strongly linked to the migration

of several proteins on the plasma membrane and their spatial segregation. In particular, Rho

GTPases are of crucial importance in regulating actin dynamics at the cell periphery [25]. Actin

nucleation is typically the rate-limiting step in actin polymerization in vivo, so cells regulate40

where and when polymerization occurs by controlling the localization and activation of actin-

nucleation promoting factors [27]. The polarity of the network is therefore instructed by the

polarization of the membrane.
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The mathematical modelling of cell migration has received an increasing attention over the

last years. The evidence of a bistable behaviour is the signature of a nonlinearity that has been45

encoded in the models in terms of nonlinear constitutive equations for the cellular material. Alt

and Dembo [1] and Kimpton et al [2] represent a cell as made of biphasic material, where the stress

of the network has a spherical component which is cubic in the volume fraction. The nonlinearity

of the constitutive equations determine the multiplicity of the stable regimes. According to Giomi

and De Simone [19] a cell described as an active nematic droplet undergoes spontaneous division50

and motility thanks the phase separation favoured by the Ginzburg–Landau energy density

and the nonlinearity of the Landau-deGennes free energy density. The theoretical aspects of cell

motility can be addressed after homogenization of equations that detail the dynamics of the actin

network, each filament being treated as an inextensible rod that resists to bending. Branching,

capping, cross links and friction of the filaments of the network can be very naturally included in55

such a modelling framework [13]. Other approaches focus on the contraction-driven motility in a

1D cell: recent theoretical works based on the theory of active gels show that crawling is possible

even without polymerization [11]. This particular mechanism of cell motility allows a precise

formulation of the condition of optimal trade-off between performance and metabolic cost, so that

the distribution of contractile elements can be recovered on the basis of an optimization argument60

[15]. The region at the leading edge, where the branched F-actin network is not stabilized by

cross links, is very narrow when compared with the typical length of the lamellipodium: a

few hundreds nanometers vs 10 micrometers [29]. An accurate mathematical modelling of such a

flexible region is needed to get rid of the force-velocity relationship observed when a cell migrates

on a flat substrate pushing a bending cantilever [30].65

The mathematical model illustrated in this paper is inspired by Mori et al [28] and Larripa

and Mogilner [14, 16], where the protein recruitment and segregation in the cytosol and on

the membrane, the mechanics of the cytoskeleton and the treadmilling of actin are separately

addressed. Here we formulate a minimal 1D theoretical model where the observed dynamics of

free and polymerized actin in the cell is coupled with the stress actively produced by the myosin70

motors. The polarization of the cell follows the “wave pinning” model; the linear diffusion

of proteins (namely Rho GTPases) on the plasma membrane and in cytosol and the nonlinear

exchange between active (membrane-bound) and inactive (cytosolic) forms explains the existence

of polar and non-polar stable states, while the (reversible) transitions among such states of the

system occurs by finite perturbations [28]. The formation of a stationary front (the “wave75

pinning”), sharply separating the cell into two regions, mechanically identifies the polarity of the
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F-actin network, where barbed ends do not point out of the cell in a radially symmetric way,

but mostly in the direction of the motion. The novelty of our work is the focus on the mass

conservation and momentum balance laws of the actin phases, supplemented by mass exchange

and boundary flow, that all the components of the system must satisfy. While bistability is80

governed by diffusion and exchanges of proteins, we mechanically enforce the polarity of the cell

in the boundary condition for the F-actin, relating its concentration to local amount of active

proteins. The linearity of the constitutive equations allows to analytically compute stress and

concentration fields, that are qualitatively in agreement with the observations. Our main result

is the quantitative prediction of the length and the migration velocity of the cell fragment in the85

two stable configurations (cell at rest and motile cell) as a function of the physical parameters

of the model.

1. The mathematical model

The lamellipodium of a fish keratocyte is a very thin structure, less than 1 micrometer thick

vs. a width and a length of about 10-20 micrometers [31]. The shape of a cell at rest is almost

cylindrical, while the shape of a steadily migrating cell exhibits a symmetry axis. Symmetry

arguments and the corresponding high aspect ratios suggest to represent the cell as a one–

dimensional strip, spanning the interval (x−(t), x+(t)) of the x axis, where the location of the

boundaries is to be determined. In the following, all the relevant physical fields are therefore to

be understood as averaged along the vertical and transverse direction.

The onset of polarity in a cell is due to membrane trafficking of a number of proteins. A minimal

mathematical model able to capture the essential dynamics is provided by two reaction diffusion

equations for a protein (Rho GTPases, for example) that diffuses with different rates on the

membrane and in cytosol [28]

ut −Duuxx = f(u,w),

wt −Dwwxx = −f(u,w),
(1)

where u(x, t) and w(x, t) represent the concentration on the membrane and in the cytosol, respec-

tively, Du � Dw, and f(u,w) is typically cubic in u. An elementary non–dimensional example

is

f(u,w) = (u− u0)(u− u1)(u− u2(w + 1)), (2)

where u2 > u1 > u0 > 0 are constants. Both phases cannot outflow the cell

−Duux
∣∣
x±

= −Dwwx
∣∣
x±

= 0. (3)
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As the cytosolic phase w diffuses much faster than the one attached to the membrane, on the time

scale of interest it has an homogeneous distribution, slaved to the dynamics of u by conservation90

arguments. The system has therefore two stable equilibrium states: a fully homogeneous one,

where u = u0, and a polarized one, when a steady front separates the two regions u = u0 and

u = u2(w̄ + 1), where w̄ depends on the total protein amount and on the physical parameters.

On the basis of this model, the onset of polarization is fully described in terms of active–inactive

protein diffusion and exchange, and the state of polarization of a cell is “measured” by the value95

of u on its boundary.

Following [14], after vertical and transverse integration the actin cytoskeleton is here approx-

imated as a one–dimensional viscous fluid with constant contractile active stress α,

σ = µvx + α, (4)

where σ is the stress, µ the shear viscosity, v(x, t) the vertically averaged horizontal velocity and

the subscript denotes differentiation. While the actual rheology of the cytoskeleton is much more

complex [21, 20], such a simple model is sufficient to point out some basic mechanisms of cell

locomotion. Notice that both σ and α have the dimension of a force, while µ is a force multiplied

by time. Moreover, in this simplified framework the myosin motors are supposed to be uniformly

distributed in the cell body, so that α is a constant.

The interaction of the cell with the substrate is the shear stress between the cell membrane and

the flat surface, here represented as a drag force proportional to the averaged velocity:

−σx = −βv, (5)

where β is a frictional parameter. The dynamic boundary conditions in x± account for the

tension of the cell membrane [27], assumed to be proportional to the cell length

σ± = −λL, (6)

where L(t) = x+(t) − x−(t) and we adopt the concise notation σ+ = σ(x+) and so on. The

parameter λ is a membrane elastic modulus (force per unit length) [4].

While the cell cytoskeleton is made of polymerized actin transported by the velocity v, the

monomeric free actin diffuses in the cytosol; the monomers attach to the polymeric filaments at

the cell leading edge, they detach in the body of the cell proportionally to the stress [23], so that

the concentration of G–actin obeys the following reaction–diffusion equation

at −Daxx = κσ, (7)
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where D is the monomeric actin diffusivity in cytosol and κ is a constant. We assume that

near the membrane the polymerization activity is regulated by the density of G-actin, which is

proportional to the amount of proteins segregated on the membrane u:

a± = χu±, (8)

where χ is a constant. According to the dynamics represented by equations (1) and (2), at

equilibrium two scenarios show up: the boundary conditions are symmetric (a+ = a−) or they

do not (a+ 6= a−), thus accounting for the polarity of the F-actin polymer [3]. We are therefore

assuming that membrane trafficking of proteins regulates the polarization of the cell without

mechanical feedback [26] and the polarity reflects in asymmetric boundary conditions for the

G-actin.

The polymerized actin is backtransported by the material velocity v

apt + (apv)x = −κσ. (9)

As the cell is a closed system, the total actin is conserved; in other words the F-actin field is

slaved to the G-actin one. Global conservation implies

d

dt

∫ x+

x−

(a+ ap) dx = [ẋ(a+ ap) +Dax − vap]x+

x−
= 0. (10)

The concentration of polymerized actin can be therefore determined a posteriori solving equations

(9) with boundary conditions (10) after that the free actin concentration a(x, t) and the velocity

field v(x, t) have been determined.

Assuming that the concentration of the polymeric actin at the edge is fixed, say a0, we get that

the polymerization velocity at the boundary is proportional to the outflux of free actin,

−ẋ+a+ −Dax
∣∣
x+

= vp+a0,

−ẋ−a− −Dax
∣∣
x−

= vp−a0.
(11)

The velocity of the cell boundaries ẋ±(t), the material velocity of the cell at the boundary v±(t)

and the actin polymerization rate vp± (the “growth velocity ”of the cell) are related by

ẋ± = vp± + v±, (12)

which are the kinematic boundary conditions.

[Figure 2 about here.]
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The differential system is now closed: the elliptic-parabolic equations (5) and (7) are supple-

mented by the 2+2 boundary conditions (6) and (8), whereas the position of the boundaries of100

the cell are fixed by the kinematic conditions (12) supplemented by the constitutive assumption

(11).

In the next sections we show that the above system of differential equations has one steady so-

lution and two (symmetric) solutions of travelling wave type, where the length and the migration

velocity of the cell satisfy algebraic equations that are explicitly stated.105

2. Symmetric solution: cell at rest

A steady solution of the differential problem is defined in a constant spatial domain where

all the physical fields are independent of time. The cell then spans the interval (−L/2, L/2) of

the x axis, fixed in time, where L is to be determined. The solution is expected to be symmetric

with respect to the origin, so that considering the boundary conditions in one boundary point

only (say x = L/2) is sufficient; as a matter of fact, L is the only boundary unknown as ẋ+ = 0.

Under these assumptions equation (5) can be readily integrated to give

v(x) = −α+ λL√
βµ

sinh
(√

β
µx
)

cosh
(√

β
µ
L
2

) , (13)

and

σ(x) = α− (α+ λL)
cosh

(√
β
µx
)

cosh
(√

β
µ
L
2

) . (14)

[Figure 3 about here.]

The plots of F-actin velocity and traction are shown in figures 3 and 4 for relevant sets of param-

eters, over corresponding lengths L (see below). The results compare well with the experimental

data reported for an interval spanning 8 micrometers from the leading edge of the lamellipodium

(see figure 2b in [18]).

The actin monomers density can be calculated by integrating equation (7), which reduces to

−Daxx = κσ. (15)

As σ(x) is an even function and a− = a+, it follows that a(x) is even, too.

[Figure 4 about here.]
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To determine the actin concentration at the boundary we integrate once equation (15)

−Dax = κg(x), (16)

where g(x) :=
∫ x
0
σ. Using the boundary condition (11) and the constitutive equation (16) we

get

κg+ = a0v
p
+. (17)

Using the known form of the stress (14), equation (17) explicitly rewrites as follows

a0v
p
+ = κ

(
α
L

2
− (α+ λL)

√
µ

β
tanh

(√
β

µ

L

2

))
. (18)

The kinematic condition (12) then provides an algebraic equation for the length of the cell at

rest

v+ +
κ

a0
g+ = 0, (19)

or explicitly,

α
L

2
− (λL+ α)

√
µ

β

(
1 +

a0
κµ

)
tanh

(√
β

µ

L

2

)
= 0. (20)

The physical meaning of equation (19) is the following: given v and g as functions of the cell110

length, the boundary of the cell is fixed at L/2 such that the retrograde flow exactly balances

the outflow of free actin (which rereads as elongation rate of the network polymerized actin).

The same argument has been enforced by Etienne et al.: a competition of retrograde flow and

protrusion, modulated by the stiffness of the environment, is the means by which cell area is

regulated [24]. Because of the symmetry of the problem, the result (17) is notably independent115

of the boundary conditions (11) that are instead expected to play a role when the cell migrates.

There exists a unique, positive solution L of equation (20) if λ is sufficiently small, i.e. if the

parameters satisfy the following inequality (see Appendix A)

λ <
ακ

2

√
βµ

(a0 + κµ)
. (21)

The existence condition (21) can be rewritten in a more perspicuous way(
1 +

a0
κµ

)
λ

√
µ

β
<
α

2
. (22)

The quantity a0/κµ represents the ratio between the material velocity v and the polymerization

velocity vp and it is known to be smaller than one. Therefore, neglecting the term in the bracket

at the left hand side, condition (22) requires that the membrane tension, evaluated using the
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representative viscous decay length
√
µ/β is much smaller than the active stress produced by120

the actomyosin machinery, a regime that definitely applies in a fish keratocyte.

A validation of the above theory comes from a comparison between the observed cell length

and the one predicted according to (20), where physical measured parameters are employed. The

values of the most relevant parameters used in the model are listed in Table 1, as extracted from

the literature. On the basis of the smallness argument a0/κµ < 1 illustrated above, the values125

of a0 and κ have minor relevance.

[Table 1 about here.]

Figure 5 describes how the cell length changes when the model parameters are varied.

By using the parameters value extracted from the literature and reported in Table 1 we nu-

merically compute L w 18µm which is consistent with the experimental results on fish keratocytes130

[32].

[Figure 5 about here.]

The G-actin density field can be obtained solving equation (15) with symmetric boundary

conditions (8) (say a± = χu1 = a1) thus giving

a(x) =
κ

D

µ

β
(λL+ α)

 cosh
(√

β
µx
)

cosh
(√

β
µ
L
2

) − 1

+
κ

D

α

2

(
L2

4
− x2

)
+ a1. (23)

Figure 6 shows the free actin profile for a cell at rest. It is symmetric and the free actin con-

centrates at the center of the cell in correspondence to the maximum stress concentration, in

agreement with observations.135

[Figure 6 about here.]

3. Non-symmetric solution: polarized migrating cell

In this section we look for travelling wave type solutions of the system illustrated in Section

1. Our conjecture is that the polarity of the cell can be represented by an asymmetry in the

boundary conditions for G-actin: the imbalance in actin polymerization at the boundaries drives

the motion. To fix the ideas, we assume that the steady state solution of equation (8) is a+ =

a1, a− = a2. All the fields are here supposed to depend on x and t in terms of the combination
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y = x− V t where V is a constant to be determined; if a solution V 6= 0 exists, it corresponds to

a motile cell. Then we assume

y− = x− − V t = −L/2, y+ = x+ − V t = L/2,

with L, V to be determined. The force balance equation involves no derivatives in time and the

stress depends only on the spatial variations of the velocity, so that all the calculations of the

previous sections and the results (13) and (14) for the velocity and stress field remain valid. We

notice that v(x) given by equation (13) is the velocity field of the cytoskeleton measured by an

observer travelling with constant velocity V , while an observer at rest records v(x) + V .

The density of monomeric actin can now be calculated by solving equation (7), which here

rewrites

−V a′ −Da′′ = κσ. (24)

In order to determine the actin concentration we integrate once equation (24)

−V a−Da′ = κg + c1, (25)

for which no symmetry argument in principle applies.

We look for solutions of equation (25) of the type

a(y) = h(y)e−
V
D y,

and we find

a(y) = c2e−
V
D y − c1

V
− κ

D
e−

V
D y

(∫
e

V
D yg

)
, (26)

where c1, c2 are constants to be fixed enforcing the boundary conditions (8). In particular, we

get

c1 = − V

2 sinh
(
V
D
L
2

) { κ

D

[(∫
e

V
D yg

)
L/2

−
(∫

e
V
D yg

)
−L/2

]
+a1e

V
D

L
2 − a2e−

V
D

L
2

} (27)

where V and L are to be determined on the basis of the kinematic boundary conditions.

[Figure 7 about here.]

[Figure 8 about here.]140
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The kinematic boundary conditions in a travelling frame of reference follow (11) and (12)

when ẋ+ = V

−V a+ −Dax
∣∣
L/2

= (V − v+)a0, (28a)

−V a− −Dax
∣∣
−L/2 = (V − v−)a0. (28b)

Since v(y) is an odd function, subtracting the latter equations we find that the cell length is

provided by

2v+ +
κ

a0

∫ L/2

−L/2
σ dy = 0 (29)

and we again recover the condition (19), which is independent of V .

In order to determine the velocity of the cell we sum equations (28a) and (28b) and get

(−V a−Dax)L/2 + (−V a−Dax)−L/2 = 2V a0. (30)

The physical meaning of equation (30) is transparent: motion can be produced only by an

imbalance of actin flow at the border. We recall the form of the fluxes (11): by using the integral

(25) and the fact that g is an odd function we get

a0V = c1. (31)

or, using equation (27)

a0V =
−V

2 sinh
(
V
D
L
2

) { κ

D

[(∫
e

V
D yg

)
L/2

−
(∫

e
V
D yg

)
−L/2

]
+ a1e

V
D

L
2 − a2e−

V
D

L
2

}
(32)

After discarding the V = 0 solution, corresponding to the case c1 = 0 explored in the previous

section, we finally determine the condition that fixes the velocity of the travelling cell

2a0 sinh

(
V

D

L

2

)
=
−κ
D

[(∫
e

V
D yg

)
L/2

−
(∫

e
V
D yg

)
−L/2

]
−
(
a1e

V
D

L
2 − a2e−

V
D

L
2

)
(33)

where L is the unique solution of equation (29). In Appendix B it is shown that for a2 > a1 the

algebraic equation (33) has a unique positive solution V ; viceversa −V is solution when a1 and

a2 are exchanged.

[Figure 9 about here.]

In Figure 9 the migration velocity predicted by equations (29) and (33) is plotted versus some145

relevant parametric combinations. The migration velocity ranges the interval 0.1-0.3 micrometers

per second, consistently with the observations [30, 32, 33]. As could be expected, V diminishes
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linearly with λ and grows linearly with the G-actin diffusion coefficient D, but it is damped more

than linearly versus the viscous diffusion length
√
µ/β. The dependence of V versus the active

stress and versus the ratio between material velocity and growth velocity provide remarkable150

information, that could not be foreseen without the support of a mathematical model. In fact,

V grows versus α according to a curve that saturates at V ' .3 µm s−1 around the value of 400

pN, thus suggesting that the migration velocity weakly depends on the active stress. Conversely,

the very rapid growth of V when a0/κµ→ 0, prompts the conjecture that the retrograde velocity

plays a stabilizing role in cell mechanics, keeping the value of V in the portion of the curve at155

the right of the parametric value a0/κµ ' 0.2.

According to equation (29), a migrating fish keratocyte has the same size of a cell at rest;

while this is physically nearly true, we observe that such an approximation is due to the simplicity

of our model, that does not account for the stress field generated by an asymmetric pattern of

myosin. Our approach is therefore complementary to Recho et al [12], who focus on the initiation160

of motility as driven by contraction only. While the introduction of a dependence of the stress

field on the myosin concentration in equation (4) would be straightforward, the solution of the

equations should be written in terms of special functions, and the final results would not be that

transparent. More important, equation (33) suggests that the key ingredient to sustain the cell

motility is the imbalance of actin flow between leading and trailing edge. The (symmetric) stress165

field however plays a fundamental role in determining the actin depolymerization rate, which is

maximum far from the lamellipodium edge. While actin, myosin and adhesion orchestrate the

transition from (apparently) static to migrating cell [17], the nonlinearity of the actin flux at the

boundaries, that reflects the polarity of the polymeric chain, is sufficient to feed the locomotion

machinery of the polarized cell.170

As observed in Section 1, the profile of F-actin ap(y) can now be calculated a posteriori. In

a travelling frame of reference equation (9) rewrites

((v − V )ap)y = −κσ. (34)

As we are interested in the physical regime |V | > |v|, the quantity v − V always has the sign

of −V on the boundary. Assuming, for instance, that V > 0, the characteristics enter the right

boundary and therefore equation (34) has to be integrated between in [y, L/2],

(v − V )ap = [(v − V )ap]L/2 + κ

∫ L/2

y

σ (35)
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or,

ap(y) =
− [−V a−Da′]L/2 + κ

∫ L/2
y

σ

v − V
, (36)

where the boundary condition (28a) has been used. The profile of G-actin according to equation

(36) is plotted in figure 10.

[Figure 10 about here.]

A comparison of the plots n figures 7 and 10 with experimental curves [34] reveals qualitative

analogies: the concentration of F-actin as a function of the distance from the leading edge exhibits175

a peak and then a rapid decay, while the slope of the G-acin curve is mild and almost constant.

Final remarks

A fragment of lamellipodium of fish keratocyte is a very attractive minimal biophysical system

to investigate the physics of cell motility. We have formulated a mathematical model that

accounts for the basic mechanisms that drive the crawling of a lamellipodial fragment. While180

polarization of the cell is governed by a bistable reaction–diffusion equation accounting for the

trafficking of proteins on the plasma membrane and in the cytosol, the concentration of active

proteins dictates the polymerization rate at the edges of the cell. Our contribution is in coupling

this reaction–diffusion system with mechanics: the stress modulates the F-actin depolymerization

rate in bulk while the exchange between actin phases near the membrane is governed by the185

concentration of active proteins. In particular, in a polarized cell, the imbalance in the exchange

between F-actin and G-actin produces the displacement.

The mathematical model illustrated in this work has a number of physical and biological lim-

itations. Traction force microscopy reveals that when a fish keratocyte travels, the largest stress

occurs in the transverse direction [10]; this compressive pattern, which is probably instrumental190

to the stabilization of the trajectory and to the rearward depolymerization of the cytoskeletal

network, is ruled out by our transverse average. Moreover the active stress is here supposed to

be independent of the position, while information about the non-homogeneous distribution of

myosin motors are known. Last, but not least, the polarization dynamics and the stress pattern

are here fully decoupled: the diffusion of proteins on the membrane drives the polarity of the195

cell generating an asymmetric concentrations of G-actin at the boundary without any feedback.

This is the current paradigm in molecular biology [25, 26]. However it could be interesting to

investigate the role of myosin contractility during the transient polarization process: when the
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cell passes from the state at rest to the motile one the actin network reorganizes and forces play

a role which might be not purely slaved to the dynamics of proteins on the membrane. Such a200

regime is immaterial for the present work where only steady states are considered.

Another mechanical issue not addressed in the present work is the force produced by a

cell against an obstacle to move, a framework of paramount relevance in the perspective of 3D

migration. In the particular case of a stalled cell, the retrograde velocity is approximately equal to

the polymerization velocity of a free cell [30]. This demonstrates that in more complex scenarios,205

when external loads are applied, the mechanics produces a feedback on the polymerization rate

that is not captured by the present model.

Notwithstanding only few physical ingredients have been introduced, a number of analytical

results have been obtained. The linear equations representing the balance of mass of free actin and

the balance of momentum for the polymerized actin, can be integrated, thus providing profiles of210

concentration, velocity and stress that compare well with the observed ones. All the nonlinearity

of the system, needed to account for the observed bistability, is encoded in the bistable reaction–

diffusion system that governs the phase exchanges (oligomeric vs. polymeric) at the boundary,

i.e. in the kinematic and dynamic boundary conditions. The use of linear constitutive equations

allows to find a closed (algebraic) form for the dependence of the length and speed of a fragment215

on the parameters of the model which account for the observed bistability. Using values of

the physical parameters taken from the literature, we find that our predictions agree with the

reported ranges, thus backward supporting the validity of the overall theoretical model.
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Appendix

Appendix A225

Let

f(L) := − tanh
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the left hand side of (20). Notice that

f(0) = 0 , f ′(0) = − α

2µ
< 0, ∀ α, µ > 0.

Moreover,

lim
L→+∞

f(L) = lim
L→+∞

L

(
−λ
(

1√
βµ

+
κ

a0

√
µ

β

)
+
κα

2a0

)
.

Therefore if λ <
ακ

2

√
βµ

(a0 + κµ)
, there exists a positive solution L of (20).

Appendix B

Let

f(V ) :=− 2V a0 − V
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√
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V (V 2µ− βD2)

the explicit expression of left hand side of (33). Notice that

lim
V→0+

f(V ) =
−2D(a1 − a2)

L
, lim

V→+∞
f(V ) = −∞.

Therefore if a1 < a2 there exists a positive solution V of (33).
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Figure 1: Velocity pattern in a fish keratocyte at rest (left) and in a migrating one (right) (sketch from figure
1 in [23]). In the cell at rest, the material velocity v (in red) balances the growth velocity vp (in green) at the
boundary; in a migrating cell the sum of the contributions imbalance at the boundary and gives rise to the steady
motion with velocity V which is the vectorial sum of the two contributions [22].
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Figure 2: Velocity pattern in a minimal one–dimensional model of a cell (blue) on a flat substrate (light blue).
The generic non–equilibrium configuration corresponds to a cell length L(t) = x+(t) − x−(t) moving with speed
V (t) = (ẋ+(t) + ẋ−(t))/2 (left). The two possible equilibrium configurations are the cell at rest (center) and the
cell migrating with constant speed V and length (right). The material and polymerization velocities are plotted in
green and red, respectively. The cell at rest is characterized by symmetric velocity fields (center), while motility
emerges from the symmetry breaking (left and right).
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Figure 3: Cell at rest: spatial distributions of F-actin velocity for relevant sets of parameters. Green line:
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Figure 4: Cell at rest: spatial distribution of traction for relevant sets of parameters. Green line: α = 0.8 · 103,
β = 0.9 · 104, µ = 5.5 · 105, λ = 0.5, a0

κµ
= 0.33. Red line: α = 0.6 · 103, β = 1.1 · 104, µ = 5.5 · 105, λ = 0.9,
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Figure 6: Cell at rest: spatial distribution of monomeric actin for values of model parameters listed in table 1.
Here a0/a1 = 3.6; a0/κµ = 0.36.
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Figure 7: Migrating cell: spatial distribution of monomeric actin for a cell moving in the positive x direction
with different (given) migration velocities. Actin distributions are normalized using the value at the leading edge:
a(L/2) = a1 = 5 · 106, a(−L/2) = a2. We set a2 = 1.0078 a1 (black line), a2 = 1.82 a1 (red line), a2 = 3.75 a1
(blue line), a2 = 8.1 a1 (green line), a2 = 18.3 a1 (magenta line). Moreover a0/κµ = 0.36. The remaining model
parameters take the values listed in table 1.
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according to (36). Actin distributions is normalized by its maximal value. All the parameters are as listed in
table 1.

29



List of Tables350

1 Model parameters taken from the literature on fish keratocytes. . . . . . . . . . . 31

30



Parameter Physical Meaning Value Source
α contractile active stress 103 pN [14]
β friction coefficient 104 (pN s)/µm2 [14]
µ viscosity coefficient 5 · 105 pN s [5]
λ membrane elastic modulus λ = 0.5 pN/µm [4]
D diffusion coefficient 10µm2/s [16]

Table 1: Model parameters taken from the literature on fish keratocytes.
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