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Abstract

In this work, Bayesian semiparametric logit models are fitted to grouped
data related to in-hospital survival outcome of patients hospitalised with
ST-segment Elevation Myocardial Infarction diagnosis. Dependent Dirich-
let Process priors are considered for modelling the random-effects distri-
bution of the grouping factor (hospital of admission), in order to provide
a cluster analysis of the hospitals. The clustering structure is highlighted
through the optimal random partition that minimises the posterior ex-
pected value of a suitable loss function. Two are the main goals of the
work: to provide model-based clustering and ranking of the providers ac-
cording to the similarity of their effect on patients’ outcome, and to make
reliable predictions on the survival outcome at patient’s level, even when
the survival rate itself is strongly unbalanced. The study is within a project,
named Strategic Program of Regione Lombardia, and is aimed at support-
ing decisions in healthcare policies.
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1 Introduction

Bayesian nonparametrics provides extremely flexible models for fitting a variety
of datasets. One of its most popular use is in modelling distributions for ran-
dom effects in hierarchical models for grouped data, as in the seminal paper [24].
With such grouped data, the aim is usually to find clusters among groups which
are able to capture the latent structure in the data assigned to each group. In
this context, a natural way to achieve model-based clustering via Bayesian non-
parametrics is to assume that the random-effects distribution is almost surely
discrete, so that there will be ties in the posterior values of the random-effect pa-
rameters. In this way, two groups are in the same cluster if their corresponding
sampled random-effects parameters values coincide. Dirichlet Processes (DPs),
introduced by [15], are the most popular discrete random probability measures,
used to represent population distributions. In particular, the discrete feature
of DP-based models has been frequently exploited as a mechanism to generate
clusters of subjects or groups (see [13] and [20] among others). Models incorpo-
rating DP priors play an important role in Bayesian applied statistics, spanning
a wide range of applications, i.e., density estimation, nonparametric regression,
survival analysis, as recalled in [33].

In many applications, data include covariates besides the recorded responses.
Recent efforts have produced interesting classes of random probability measures,
dependent on such covariates, yielding Dependent Dirichlet Processes (DDPs)
as described in [3], [31] and [32]. Applications or extensions of such priors
include covariate-DDPs resembling traditional ANOVA models [12], DDP with
an additional probability model for group classification for longitudinal data
[13], and probit stick-breaking random probability measures [38]. See also the
references therein.

In this paper we present two Bayesian semiparametric mixed models for the
analysis of binary survival data coming from a clinical registry on ST-segment
Elevation Myocardial Infarction (STEMI), where statistical units (i.e., patients
hospitalised because affected by STEMI) are grouped by hospital of admission.
In particular, in such hierarchical framework we adopt nonparametric DDP pri-
ors for modelling random effect superimposed on the grouping factor, in order to
provide a proper methodological approach to the problem of assessing hospitals
performances and to profile hospitals according to their effects on patient’s out-
come. This topic is crucial within the context of healthcare planning, and proper
methods for addressing such a problem are extremely of interest for people in
charge of healthcare government (see [2] and [41] for details on recent discussions
and developments). Since the outcome of interest (in-hospital survival, i.e., if
a patient is discharged alive from hospital) is strongly unbalanced within the
context of the disease we focus on, any model will perform poorly in predicting
it. Therefore we propose a new method for classifying patients according to the
whole predictive distributions of their outcome, based on the posterior predictive
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credibility intervals.
We adopt a Bayesian semiparametric approach since it has a twofold advan-

tage. First of all, as mentioned before, Bayesian semiparametric models allow for
a great flexibility in modelling data, avoiding critical dependence on paramet-
ric assumptions. Moreover, they robustify parametric models and define model
diagnostics and sensitivity analysis for parametric models by embedding them
in a larger encompassing semiparametric model (see [33]). Secondly, Bayesian
nonparametric priors selecting discrete probability measures yield a “natural”
clustering of the groups (hospitals in our application), according to the grouping
provided by the random-effects parameters sampled from the discrete random
probability measure. In this way, the nonparametric prior component leads to
a random partition of the group indices set; cluster estimates will be based on
the posterior distribution of the random partition itself. A common way for
estimating the unobserved true random partition is to observe the Maximum A
Posteriori (MAP), i.e., the mode of the posterior distribution. However, since
the number of partitions is large even for moderate sizes of the indices set, differ-
ent summary statistics of the posterior distribution of the random partition are
needed. Formal decision-theoretic-based procedures for choosing one single esti-
mate based on posterior expectations of appropriate loss functions are discussed
in [29] and [35].

One of the main focuses of the paper is to exploit model-based clustering of
groups provided by the semiparametric Bayesian models considered in Section
2. We will pursue this issue providing a Bayesian estimate, as proposed in [29],
looking for a posteriori clustering structure, optimal with respect to a specified
loss function. Specifically we focus on a loss function based on pairwise coinci-
dences, that is, whether pairs of items are clustered in the same group or not, as
in [5] and [6]. In this case, [29] shows that the problem of estimating the optimal
random partition can be formulated as a binary integer programming problem.
On the other hand, our interest here is also focused on classification and pre-
diction of binary responses in situations where the chance of success is strongly
unbalanced. We then propose a new rule for the classification of patients, based
on the posterior credibility intervals of patients’ survival probability, instead of
point estimates, discussing how the classification obtained in such way depends
on the choice of a reference threshold, according to what was suggested in [9]. A
discussion on performances of threshold criteria for binary classification based
on pointwise outcome estimates is presented in [16].

Finally, as we mentioned before, we apply these methods to a dataset aris-
ing from a clinical registry (the STEMI Archive, see [11] and [25]) on patients
affected by STEMI and admitted to any hospital of Regione Lombardia, a north-
ern Italian region whose capital is Milano. Specifically, the binary outcome of
interest is measured at patients’ level, and patients are grouped according to
the hospital of admission. Then, there is a hierarchical structure in the dataset:
providers (i.e., hospitals) at a higher level and the patients at a lower one.
Bayesian generalised linear mixed models provide a natural framework for such
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data. It is known from the literature (see [8], among others) that STEMI is
characterized by a strongly unbalanced share of success in terms of in-hospital
survival; in our dataset, in fact, 97% of patients are discharged alive from the
hospital. It is also known (see [7] and [26] for instance) that, for such disease,
reducing treatment times and optimizing pre- and intra-hospital patterns of care
strongly improve patients’ prognosis. Among the number of variables available
in the STEMI Archive at patient’s level, in the models considered in Section 2 we
introduced the following covariates: age, total ischemic time (Symptom Onset
to Balloon time, denoted by OB), presence of Chronic Kidney Disease (CKD
- equal to 1 if the patient had loss in renal function, 0 otherwise) and Killip
class (an ordinal variable indicating the severity of infarction, from 1 - lowest
severity to 4 - highest severity). Moreover, since hospital-dependent covariates
are also present in the registry, we included in the models hospital exposure,
i.e., the number of patients treated with primary angioplasty per year, and a
binary variable (Milano) indicating if the hospital is in (Milano = 1) or outside
(Milano = 0) the city of Milano. In particular, we are interested in profiling
healthcare providers, investigating whether any clustering of the hospitals where
patients are admitted has a meaning. Since clustering is obtained through esti-
mates of the posterior distribution of the random partition of the hospital index
set, we will be able to assess the effect of groups of healthcare providers with
“similar” behaviour on patients’ outcome, as well as to evaluate the quality of
their performances in treating STEMI patients, adjusting for case-mix and all
other known sources of variability that induce overdispersion in the outcomes
distribution.

We will consider two logit models for the in-hospital survival probability. We
adopted this link function because it enables a straightforward clinical interpre-
tation of parameters and results, and since our study is motivated by a clinical
problem, it is also important to ease the communication of results. In both mod-
els we consider, the random-effect parameters are given a nonparametric prior,
similarly to [24], while lower level covariates are treated parametrically. Specif-
ically, the random-effect parameters are assumed as a sample from a Dirichlet
Process (DP), in order to exploit the discreteness of its trajectories to carry out
a cluster analysis. In our case, since a random effect is superimposed on the
grouping factor represented by the hospital of admission of patients, we model
the dependence across random distributions through the hospitals’ covariates, so
that priors can be interpreted as DDP densities. The two Bayesian models differ
for the choice of covariates included in the likelihood and for the nonparametric
components of the random-effect parameters (see Section 2).

The novelty of this work consists of exploiting a model-based clustering,
provided by the optimal partition of the random effects estimated through a
Bayesian semiparametric hierarchical model, for carrying out providers profiling
in a real clinical problem, i.e., the hospitals’ performances evaluation aimed at
cardiovascular healthcare planning. In fact, the method we propose in this paper
yelds a model-based ranking of hospitals, based on the evolution of the optimal
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partition of the random effects. Moreover, using posterior credibility intervals
for classifying patients as dead or alive instead of pointwise estimates, we identify
a classification rule that proves to be less sensitive to the choice of the threshold
discriminating groups of alive and dead patients.

The paper is organised as follows. In Section 2 we present the models and
the methodology developped for hospital clustering and patients classification.
Goodness-of-fit indices for comparing the models are also considered, and details
on random-effects clustering carried out through the optimal random partition
are provided. Section 3 presents the results of the inference for the STEMI
Archive data. Finally, some conclusions and comments are given in Section 4.
All the analyses have been carried out with R [36] and JAGS [34].

2 Bayesian semiparametric models for random ef-

fects clustering

In this section, we present the two models we will use to analyse the data in
Section 3, discussing different alternatives in terms of likelihood and priors on
random effects. In what follows, the model formulation is already intended
for the application of interest, where the outcome is the in-hospital survival
after a STEMI event, and patients are grouped by hospital of admission. We
will also explain why hyperparameters tuning was made in order to match the
marginal effect of random components. Moreover, details on some goodness-of-
fit tools will be given. Then the mathematical framework of loss functions for
the evaluation of the optimal partition is briefly described, in order to cluster the
hospitals. Finally, a classification rule based on posterior Credibility Intervals
will be introduced.

As we mentioned in Section 1, we assume DP priors for the random effects
distributions in the logit likelihood. An equivalent representation yields that, in
the models we are considering, the random-effect parameters bjs, corresponding
to the j-th hospital effect, are distributed according to a DDP prior Pvj , which
depends on a covariate vj in its definition. Hence, marginally bj has still a
DP prior, with the property that “Pvj varies smoothly with vj” (see [32]). This

implies that Pvj and P
v
′

j
are correlated for vj 6= v

′

j and, at least where continuous

covariates are present, that P
v
′

j
reaches Pvj as long as v

′

j approaches vj . Of

course, DDPs can adopt many different and rather elaborated forms, but here
we analyse only two such specifications, which retain interpretability of model
parameters.

2.1 DDP priors on random effects

For statistical unit i = 1, . . . , nj in group j = 1, . . . , J , let Yij be a Bernoulli
random variable with mean pij . To our aims, pij represents the probability that

5



the patient i treated in hospital j is discharged alive after a STEMI event. The
pij ’s are modelled through a multivariate logistic regression with fixed effects α
and β, and a random-effect b superimposed on the covariates referred to the
grouping factor, i.e.,

Yij |pij
ind
∼ Be(pij) (1)

log(
pij

1− pij
) =

4
∑

l=1

αluijl +
5

∑

k=1

βkxijk + b0j + b1jzj . (2)

Within the context of the application motivating this study, uij = (uij1, . . . , uij4) =
(Killip1, . . . ,Killip4)ij is a vector of dummies, xij = (xij1, . . . , xij5) = (age, logOB,
CKD, exposure,Milano)ij and zj is the exposure of the j-th hospital. All con-
tinuous covariates have been centred and standardised (so that their range is
between −1 and 1) to get a better mixing of the Markov chains arising from
simulations. A null covariate vector represents a patient with “average” age and
total ischaemic time, not at risk in terms of CKD and treated in a structure
dealing with an “average” number of STEMI patients per year, too. In what
follows, we will refer to such patient as a “standard reference”, and will com-
pare hospitals effects once adjustments for all fixed effects has been carried out
in the “standard reference” setting. The prior distributions assumed for the
parameters of the model are

α = (α1, . . . , α4) ∼ N (µα, σ
2
αI4), β = (β1, . . . , β5) ∼ N (µβ, σ

2
βI5) (3)

(b0j , b1j)
′|P ∼ P j = 1, . . . , J (4)

P |a, P0 ∼ DP (a, P0) (5)

Independence among α, β and P is assumed. By P ∼ DP (a, P0) we mean that
P , the (conditional) distribution of the bivariate random-effects parameter bj ,
has Dirichlet process prior with total mass parameter a > 0 and base probability
measure parameter P0; see [15] for details on definition and standard notation
of DPs. The base probability measure on R

2, P0, for this model will be chosen
as the product measure N(0, σ2

0) × N(0, σ2
1), being σ0 and σ1 independent and

uniformly distributed. Moreover, a is assumed to be random with prior π(a);
in Section 3 a truncated-Exponential distribution is chosen as prior distribution
for a.

Observe that in (2), the random-effect parameter of hospital j appears lin-
early as b0j + b1jzj . Moreover, each bj , given P , has distribution

P =
+∞
∑

h=1

whδθh (6)

where θh are i.i.d. according to P0 and {wh} are the weights in the stick-breaking
representation (see [40]). It is straightforward to see that b0j + b1jzj , given P̃ is
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distributed as P̃ , where

P̃ =
+∞
∑

h=1

whδθ̃h(zj). (7)

Here θ̃hs are i.i.d. according to P̃0 which is the distribution of b0j + b1jzj if
bj = (b0j , b1j) is distributed according to P0. Therefore, by (7), the random-
effect contribution to the likelihood in (2) is distributed according to a DDP.
This is a rather simple case of Dependent Dirichlet Process, called “single-p
linear DDP” [32], since the weights in the stick-breaking construction do not
depend on covariates, whereas the location points do, in a linear way.

The other semiparametric model that we consider is as follows:

Yij |pij
ind
∼ Be(pij) (8)

log(
pij

1− pij
) =

4
∑

l=1

αluijl +
3

∑

k=1

βkxijk + bvjj . (9)

being α, β and b the parameters vectors corresponding to the fixed and ran-
dom effects, respectively, as in the previous case. Referring to the motivating
application, uij is the Killip dummy vector and xij = (xij1, xij2, xij3) = (age,
logOB,CKD)ij . Finally, bvjj is the random intercept depending on values as-
sumed by the location dummy Milano (vj = 0/1). Notice that here we distin-
guish the random intercept parameter according to the geographical origin of
the hospital: in fact, bvjj is the parameter referring to the j-th hospital, which
will be b1j if the j-th hospital is located in Milano, b0j otherwise. We assume
the following priors for fixed and random effects respectively:

α = (α1, . . . , α4) ∼ N (µα, σ
2
αI4), β = (β1, . . . , β3) ∼ N (µβ, σ

2
βI3) (10)

(b0j , b1j)
′|P ∼ P j = 1, . . . , J (11)

P |a, P0 ∼ DP (a, P0) (12)

Independence among α, β and P , is assumed. For our scopes, we will assume
that the base probability measure on R

2, P0, is chosen as the product measure
P00 × P01 ≡ N (0, σ2

0) × N (µ1, σ
2
1). Moreover,σ0 and σ1 will be assumed to be

Uniformly distributed. Finally, Gaussian distribution will be considered for µ1

and truncated-exponential for a, respectively.
Observe that the number of random-effect parameters in (9) is J (and not

2J), since if j is the index of a statistical unit with vj = 1, then the corresponding
random-effect parameter is b1j ; on the other hand, if j is the index corresponding
to a group with vj = 0, the corresponding random-effects parameter is b0j . This
means that the marginal prior of the hospitals’ effect is partially exchangeable
instead of being exchangeable.

In this case the nonparametric prior component assumed for the random-
effects parameters can be interpreted as an ANOVA-DDP prior with one factor
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and two levels (see [12]), where the vj covariate ruling the prior assumes only val-
ues in {0, 1}, here representing the Milano effect. In fact, we could equivalently
assume

bvjj |P, vj
ind
∼ Pvj

Pvj |P0vj ∼ DP (a, P0vj ),

where, for v equal to 0 or 1,

Pv =

+∞
∑

h=1

whδθvh , (θ0h, θ1h)
′ iid∼ P00 × P01 (13)

being {wh} the weights of the stick-breaking construction. Observe that Pv is
marginally DP (a, P0v), and the dependence among P0 and P1 is induced by the
presence of common weights in their stick-breaking representation.

Observe that the main difference between the priors of the two models de-
scribed in the previouos section stands for the Milano covariate effect, which is
included directly in the locations of the stick-breaking representation in (13) in
the second model.

In what follows, we will refer to the model defined by equations (1)-(5) as “Model
A”, and to the model defined by equations (8)-(12) as “Model B”.

2.2 Models comparison

Since the dataset we deal with in the motivating application is complex and rich
in covariates, there is a number of Bayesian models that could be fitted to the
data. In particular, the covariates dependency could be included in the DDP in
many different ways. We focused on likelihoods containing the most significant
covariates pointed out in previous works (see [22] and [26]) by some variable se-
lection methods, and tried different way of combining hospitals covariates within
the nonparametric priors. Some covariates (both at patients and hospital level)
are included to allow us to investigate specific topics related to clinical enquires
and health analytics.

However, We fitted two more models: one is a simplified version of Model
A, where we removed the hospital exposure (fixed and random) from (2), and
assumed a univariate DP prior for the random intercept. The inference we
obtained from the two models was similar, but we preferred to consider the
likelihood as in (2), since it allowed us to draw conclusions on the relationship
between goodness of performances and hospital exposure, as reported in Section
3. On the other hand, as a second alternative, we fitted a model with a DDP prior
for the vector of the random-effects parameter bvjj = (b0j , b1j) representing the
effect of the intercept and the exposure for each hospital. The posterior inference
we obtained was very similar to that given by Model B, reported with details in
Section 3.
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In order to compare the two different models with respect to their estimates
of the random effects, we must match them up to some extent, e.g., matching the
marginal distribution of the random intercepts under the two models. Table 1
reports the random intercept parameters, up to the Killip parameter α, of the
two models for an hospital located in or outside Milano.

Table 1: Random intercept parameters in Model A (first row) and Model B (second

row).

Hospital location
in Milano outside Milano

Model A β5 + b0j b0j
Model B b1j b0j

As we mentioned before, since we deal with standardised covariates, the random
intercepts reported in Table 1 represent the in-hospital survival probability on
the logit scale for a “standard reference” patient (without the Killip effect). As
we will see in Section 3, we fixed hyperparameters so that the prior marginal dis-
tributions of random intercepts of hospitals located in Milano are equal, as well
as that of random intercepts of hospitals located outside Milano. Anyway, even
if denoted with the same symbols, the intercepts have a different interpretation,
according to the different likelihoods they refer to. Moreover, the covariances
between the random intercepts differ under the two models. It is easy to show
that for Model A, for an hospital h outside Milano and an hospital l in Milano,

Cov(b0h, b0l + β5) = Cov(b0h, b0l) =
σ2
0

a+ 1

whereas for the Model B

Cov(b0h, b1l) =
Cov(P00, P01)

a+ 1
= 0

To evaluate model goodness-of-fit, we compute an index introduced in [18], where
the authors propose a Bayesian generalization of the R2 index for linear models.
In a frequentist framework, the coefficient of determination R2 estimates the
proportion of variance explained by the linear model. Here we apply it to the
first level of the logistic regression, that can be rewritten in terms of latent
variables formulation (see [1]) as follows:

Yij =

{

1 if Zij ≥ 0
0 if Zij < 0

,

and

Zij = µij + ǫij . (14)
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Here µij ’s are the linear predictors, as in the right handsides of (2) or (9) and
ǫij ’s are i.i.d. standard logistic random variables, i.e., random variables with
density function fǫ(t) = e−t(1 + e−t)−2, mean equal to zero and variance equal
to π2/3. We assume that, conditioning on the latent variables Zij ’s, the Yij ’s
are independent.

Starting from the latent variable representation of the model provided in
(14), a Bayesian generalization of the R2 index for linear models can be defined
as

R2 = 1−
E[
∨

ij ǫij ]

E[
∨

ij µij ]

= 1−
V ar[ǫ]

E[
∨

ij µij ]
,

(15)

where
∨

represents the sample variance operator

∨

ij

=

J
∑

j=1

nj
∑

i=1

(xij − x̄)2

J
∑

j=1

nj − 1

. (16)

Bayesian R2 provides an index of the explained variability at the latent variable
level. It is close to 1 when µij ’s approximate well the conditional mean of Yij ’s
and close to zero when the sample variance of the ǫ’s is approximately equal
to the variance of the µij ’s. While frequentist R2 ranges from zero to one, the
Bayesian R2 index could also be negative.

2.3 Random partitions for model-based cluster analysis

As we mentioned in Section 1, one of the main aim of the work is to exploit the
clustering induced by the random-effect prior in order to investigate the effects
of groups of “similar items” on the outcomes of interest. In particular, the idea
is to carry out a model-based clustering, in which labels are exchangeable, and
items are also exchangeable, possibly up to covariates effects.

In a Bayesian formulation of a clustering procedure, the partition of the item
labels into subsets depends on the probability model for the data, and therefore
cluster inference is obtained from the posterior distribution of the partition itself.
As already recalled, the DP prior selects discrete distributions almost surely.
Since there is a positive probability of coincident values, i.i.d. sampling from P
induces a random partition on the positive integers, and consequently a posterior
distribution for the random partition itself.

More specifically, let X1, . . . , XJ be a sample from a Dirichlet Process P

on R
s, for some positive integer s, i.e., X1, . . . , XJ |P

i.i.d.
∼ P . Since P is almost
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surely discrete, two sampled random variables Xi and Xj are equal with positive
probability. We say thatXi andXj share the same cluster if and only ifXi = Xj .
In this case, the set of integers {1, 2, . . . , J} is partitioned into a finite number
of sets {A1, . . . , Ak(J)}, where k(J) is the number of different determinations
among (X1, . . . , XJ) and each Aj contains the labels of the random variables
{X1, . . . , XJ} which coincide but are different from the others. Note that since
(X1, . . . , XJ) is a random vector, the partition {A1, . . . , Ak(J)} of {1, 2, . . . , J} is
random as well. Specifically, ρ = {A1, . . . , Ak(J)} is a random partition induced
by the sampling from a DP or from any random probability measure which is
discrete with positive probability. For both models, clusters are defined by ties
in the variables {(b0j , b1j), j = 1, . . . , J} in (4) and (11), respectively. Since both
prior components can be interpreted as DDP, the posterior distributions under
the two models will be similar. In [24], the full conditionals (and therefore the
posterior distributions) of a Generalised Linear Mixed Effects (GLME) model
with a DP prior for the random-effect parameters are computed. They consist
of a mixture of a discrete distribution and a continuous one. The discrete com-
ponent is the empirical distribution of the other bj ’s and the continuous one is
the baseline distribution. The weights in such mixture depend on the condi-
tional distribution of the data, given the parameters, and therefore they will be
different under the two models. In particular, note that for Model B, where the
nonparametric prior component is an ANOVA - DDP, clusters of random-effect
parameters occur both within the two groups (hospitals in Mialno and outside
Milano) as well as across the geographical location.

Concerning the application of interest, since the discrete nature of the prior
of the random-effects parameters yields a random partition on the set of hospital
labels, any inference on hospital clustering, aimed at quantifying the effect of
each group of hospitals on outcomes at patient’s level, must be based on the
posterior of the random partition ρ itself. Our aim is then to compute a suitable
estimate ρ̂ of this posterior distribution, representing the best estimate of the
“true” clustering of the random-effects estimates. Clinically speaking, we would
like to estimate a latent clustering among hospitals of our dataset, identifying
groups of providers affecting outcomes at patients’ level in a similar way. This
could be of great interest for decision makers, in order to point out outliers with
respect to a reference standard of quality, as well as to rank groups of structures
according to suitable criteria, after adjusting for all confounding factors, both
due to patients’ covariates and hospital features.

Choosing a partition ρ can be considered as a model choice problem, and different
approaches to tackle it are available (see [10], [19], [23] and [37]). The most naive
solution would be to choose the maximum a posteriori (MAP) partition, but it
may not be a good choice if the posterior distribution of the random partition
is very spread out, as it is usually the case. A loss function approach avoids
some criticisms related to sparsity of random partitions, which are common
also to the selection methods based on marginal likelihood and Bayes factor.
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As in [29], we concentrate on loss functions that rely on pairwise coincidences
(see [5]), penalising pairs of items that are assigned to different clusters when
they should be in the same one, and vice-versa. Specifically, we choose the
loss function which assigns a positive cost u any time two random effects are
incorrectly assigned to different clusters, and a positive cost w any time two
random effects are incorrectly clustered together. The function counts how many
times a wrong labelling happens, assigning a different weight to the two types
of misclassification. The total loss is then obtained by summing over all pairs.
Denoting by ci the true allocation variable, which is ci = j if and only if i ∈ Aj ,
we define

L(ρ, ρ̂) =
∑

(i,j)∈M

(u · I[ci = cj , ĉi 6= ĉj ] + w · I[ci 6= cj , ĉi = ĉj ]) ,

where ρ̂ is the estimate and ρ is the current value of the partition, and M =
{(i, j) : i < j; i, j ∈ {1, . . . , J}}. The proposed estimate of the random partition
in this case is the one minimising the posterior expected loss

E[L(ρ, ρ̂)|Y] =
∑

(i,j)∈M

(u · I[ĉi 6= ĉj ]P[ci = cj |Y] + w · I[ĉi = ĉj ]P[ci 6= cj |Y]) ,

where ĉi is the estimated allocating variable for i-th unit. If we define γij =
P[ci = cj |Y], the previous formula can be written as

E[L(ρ, ρ̂)] = u
∑

(i,j)∈M

γij − (u+ w)
∑

(i,j)∈M

I[ĉi = ĉj ](γij −K)

being K = w/(u+w) ∈ [0, 1]. Minimising the posterior expected loss is equiva-
lent to maximising

l(ρ̂, K) =
∑

(i,j)∈M

I[ĉi = ĉj ](γij −K) (17)

over all possible choices of ρ̂ (see [29]). The right-hand side of (17), as a function
of K, characterises the quality of each possible ρ̂, and the whole family of such
functions determines in particular for which K, if any, each partition is optimal,
as well as defining the optimal ρ̂ for each K. The approach proposed in [29],
therefore, is to consider all values of K simultaneously. As it will be clear in
Section 3, we will observe how the clustering induced by the random partition
changes as long as different values of K are considered. This will lead to a sort
of “implicit ranking” of the hospitals in our dataset, in the sense clarified in
Section 3.

The maximisation of (17) can be carried out through binary integer program-
ming techniques, as explained in [29]. Since the total number of hospitals is not
large, the computational effort required for solving the optimisation problem can
be carried out using the R package lpSolve [4].
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2.4 Outcomes classification and prediction

The second major goal of the present work is to make predictions for outcomes
of interest starting from the posterior predictive distributions of our models. It
is well known that the rarest event is hard to predict, aside from the model con-
sidered, when the dataset contains binary variables characterised by unbalanced
shares of success. We propose a method for addressing this issue, enhancing the
strength of the Bayesian approach.

The usual predictive method for binary data is based on point estimates of
the posterior predictive distribution, i.e., being pij the probability to observe
a successful outcome for the item i in the group j, the outcome Yij will be
predicted as a success whenever E(pij |Y ) is bigger than a given threshold. In
the application setting we are interested, we consider the in-hospital survival
probability pij of patient i admitted in hospital j, and we are interested in
correctly classifying the patients belonging to the current dataset as well as in
making prediction on the status of a new patient. Since the survival outcome
is strongly unbalanced in this case (97% of in-hospital survival is observed), the
models will provide poor results in predicting deaths, if the usual criteria based
on pointwise estimates are adopted.

Quite a large number of solutions to this problem have been proposed, since
the classification is typically very sensitive to the choice of the threshold (see
for example [16] for a review and comparison of such most popular criteria in
the frequentist literature). Anyway, in our opinion, classification rules based on
pointwise estimates are not completely satisfactory. First of all, they are not
robust with respect to the choice of the thresholds. Moreover, since Bayesian
approach is adopted for modelling data and Bayesian inference provides the
whole posterior predictive distribution of outcomes, we would like to exploit the
richer information it provides. The posterior predictive distribution for a new
patient i in hospital j can be easily simulated through MCMC algorithm via the
compositional parameter method, first generating a draw from the posterior dis-
tribution of the parameters characterizing the model, and then generating from
the conditional distribution of Y new

ij given the parameters and the corresponding
covariates. We propose a new method for outcome predictions at a lower unit
level. It is based on interval estimate of posterior success rate and it can be con-
sidered as a generalisation of the “standard” one, based on pointwise estimates
and thresholds. Concerning the application of interest, we classify a patient as
alive if the Credibility Interval (CI) of his/her survival rate is entirely over a
given threshold, or as dead if the CI is entirely below the threshold; rather, we
do not classify it if the threshold lies within the CI. Of course, the higher the
credibility level is, the larger is the number of patients belonging to this latter
Uncertainty Class (UC).
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3 Data analysis

In this section we present the analysis of data arising from the motivating prob-
lem, according to the two models and techniques presented in the previous sec-
tion. As we said before, the data we consider come from a clinical registry,
named STEMI Archive, gathering patients admitted with STEMI diagnosis in
any hospital of Regione Lombardia district. A complete description of the reg-
istry is provided in [25] and [27], where data are presented together with the
clinical setting that motivated their collection. As mentioned in Section 1, in-
formation about both patients and hospitals are available. Among the most
important patients’ information provided by the clinical registry there are mode
of admission (a patient reaches the hospital on his/her own or delivered by three
different types of rescue units of 118, the national free-toll number for emergen-
cies), demographic features (age, sex), clinical appearance (Killip), risk factors
(diabetes, smoke, Chronic Kidney Disease (CKD), . . . ), times to treatment and
times to intervention as well as all the process indicators concerned with pre- and
in-hospital phase, and clinical outcomes. Some of these covariates have already
been described in Section 1. In this application we focus on in-hospital survival
of patients whose data are contained in the STEMI Archive. On the other hand,
information about the hospital of admission - considered as the grouping factor
- are also present (in particular, a dummy variable indicating if the hospital is
in or outside Milano and the hospital exposure).

The variability of the distribution of patients’ outcome is high between struc-
tures. The dataset contains n = 697 patients, admitted in J = 29 hospitals of
Regione Lombardia. A first patient covariates’ selection was done in [26] ac-
cording to clinical know-how and stepwise selection procedures, based on the
AIC index, confirmed later on by a Bayesian variable selection method, using
Gibbs variable selection (as reported in [22]). As we said in Section 1, the most
significant factors which explain in-hospital survival probabilities are age, Killip,
CKD and total ischaemic time in log-scale from symptom Onset to the primary
angioplasty (Balloon), i.e., logOB. Providers’ covariates Milano and exposure
are also included. In fact, we are interested in evaluating if differences among
the hospitals may be assessed and, in this case, if such differences lead to a
clustering of providers.

As far as posterior inference from the models introduced so far is concerned,
first we provide posterior estimates of the parameters for each model, focusing
in particular on posterior interval estimates and cluster estimates of the hospital
random effects; then we evaluate models’ goodness-of-fit and classify patients
according to the predictive rule proposed in Section 2. All estimates have been
carried out by a Gibbs sampler algorithm, translated into a JAGS code. In the
two models we implemented the truncated DP approximation suggested by [28]
to obtain a trajectory from P ; we truncated (and normalised) the sums in (6), (7)
and (13) atH = 30. We ran the two models for 200, 000 iterations, discarting the
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first 100, 000, and using a thinning of 20 to reduce autocorrelations, so that the
final sample size was 5, 000. Traceplots, autocorrelations and Geweke diagnostics
indicate that the Gibbs sampler algorithms could have converged.

A robustness analysis showed that inferences are quite sensitive to the choice
of the fixed effects’ hyperparameters and the variance of the nonparametric com-
ponents σ2

0 and σ2
1. Concerning the former, we fixed them “informatively” as the

means of the posterior distributions obtained fitting a parametric model with the
same covariates and Gaussian-distributed errors on data arising from a previous
data collection of the same registry. This enabled us to set informative values
for the means of fixed effects α and β, as well as for their variances σ2

α and σ2
β .

On the other hand, concerning the random-effect variance components we tested
two classes of priors: the conjugate inverse-gamma distribution on the variances
and the uniform distribution on the standard deviations. The estimates of the
random-effects are particularly sensitive to the choice of the inverse-gamma hy-
perparameters, while they are more robust using the uniform prior. We refer to
[17] for a discussion on priors of the variance components in hierarchical mod-
els. Finally, the lower bound of the support of the prior distribution for the
total mass parameter was set equal to 1 to avoid computational problems. This
choice does not affect too much the total number of clusters a priori. Finally,
we tested an exchangeable prior for the Killip vector (α1, . . . , α4), instead of
assuming them i.i.d.. The estimation is robust to these choices, but the mixing
is better under the independence assumption.

Figure 1 shows the survival posterior predictive distributions for a patient who
was discharged alive (left panel) and who died (right panel), respectively for
Model A (solid line) and Model B (dashed line).
Note that the two posterior predictive distributions in both panels do not differ
too much, but they do differ from the corresponding prior predictive distributions
(not displayed here in order to make the graphs clearer). Concerning the patient
who was discharged alive (left panel of Figure 1), he is a man, aged 66, with
a less severe infarction (Killip class equal to 1), no Chronic Kidney Disease
(CKD = 0) and an acceptable total ischaemic time (OB = 120 min), according
to guidelines indicating the limit of 120 minutes. On the other hand, the dead
patient (right panel of Figure 1) was a man, aged 59, with a severe infarction
(Killip class equal to 4), no Chronic Kidney Disease (CKD = 0) and a total
ischaemic time (OB = 72 min) that is much lower than the one indicted by
guidelines. Both patients have been admitted to hospitals located in Milan,
although not the same.

3.1 Fixed and random-effects estimates

In Table 2 we provide posterior 95% credibility intervals (CIs) of the fixed effects
under the Model A and Model B. Hyperparameters in (3) were set informatively
as we mentioned before, and, as a consequence, µα = (4.2, 4.2, 4.2, 4.2)′, µβ =

15



0.970 0.980 0.990 1.000

0
50

10
0

20
0

30
0

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

Figure 1: Posterior predictive distribution, respectively for Model A (solid line) and

Model B (dashed line), of survival probability for two patients: one discharged alive

(left panel) and one who died (right panel).

(−1.7,−0.45,−1.7, 0.07,−0.45)′, σ2
α = 4 and σ2

β = 4. For Model B, the same
values are adopted, selecting only the fixed effects of interest for (10).

Table 2: Posterior 95% CIs of the fixed effects.

Model A Model B

Parameter 2.5% median 97.5% 2.5% median 97.5%

Killip1 4.81 6.59 8.49 4.17 6.04 8.10
Killip2 2.79 4.69 6.70 2.45 4.39 6.58
Killip3 2.10 4.22 6.42 1.61 3.70 6.07
Killip4 -0.24 1.57 3.43 -1.12 0.81 2.94
age -3.41 -1.88 -0.50 -3.38 -1.77 -0.35

log(OB) -3.33 -1.82 -0.22 -3.46 -1.91 -0.17
CKD -3.00 -1.71 -0.41 -3.41 -2.09 -0.79

exposure -2.34 0.19 2.79
Milano -3.68 -2.00 -0.26

Notice that the estimates are similar. In particular, the Killip seems a good
stratification parameter for both models, since the posteriors of the Killip 1 pa-
rameter concentrate on “high” values (i.e., it leads to high survival probability),
those of Killip 2 and 3 concentrate on “average” values, while those of Killip 4
concentrate on “small” values. As we could expect, as long as age, logOB and
CKD increase, the survival probabilities decrease. Finally, the binary covariate
Milano has a negative effect in Model A, while the exposure is not significant.
For this reason we decided to omit the exposure from Model B, but we used
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Milano covariate to enrich the hospital random intercepts prior distribution.
Results about exposure and location influence have been deeply investigated by
decision makers and physicians. The exposure being not significant means that
there is no evidence from data for concluding that hospitals that treat more
patients are necessarily the best ones in terms of performances, countrary to
what people in charge of healthcare government sustained. On the other hand,
it seems that being treated in Milano results in a worse outcome, that is pretty
unexpected. We asked epidemiologists if their data would confirm this finding,
and they verified that, according to the evidence of our results, the epidemiology
seems to be different between Milano and neighbourhoods, expecially for elder
people over 80s.

As we discussed in the previous section, we tuned hyperparameters of the priors
of the two models in order to match them in terms of marginal random intercepts
priors (see Table 1). In particular, the matching in Section 2.2 is achieved fixing
(informatively) both marginal distributions of the random intercepts in Milano

∫

N (−0.45, 4 + σ2)I[0,5](σ)dσ =

∫

N (µ1, σ
2)I[0,5](σ)π(µ1)dσdµ1,

being π(µ1) the Normal distribution N (−045, 4), and outside Milano

∫

N (0, σ2)I[0,5](σ)dσ,

respectively.

In Figure 2 we provide posterior 95% CIs of the hospital random intercepts with
at least ten patients, highlighting the Milano effect, for the two models.
The plots of hospitals’ slope (exposure) for both models show no appreciable
variability, and for this reason we do not include them here. Note that under
Model A (left panel) all the hospitals outside Milano have a higher median than
Milano ones, and intervals are shorter. Model B , on the other hand, gives higher
variability within each subpopulations. This variability is reasonably due to the
greater flexibility of the prior of the second model.

3.2 Hospital Clustering

As mentioned in Section 2.3, the nonparametric prior component induces a ran-
dom partition of the hospitals labels. Therefore we analyse the posterior of the
process P to obtain an insight on the clustering among the hospitals. In [21],
investigating the clustering structure of the random-effect estimates arising from
different frequentist techniques implemented on a similar database, we pointed
out that few groups could be detected among hospitals. The same conclusion
holds under a parametric Bayesian mixed effects model (see [22] for details). We
tuned hyperparameters of the prior for the total mass a in our models according
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Figure 2: Posterior 95% CIs of the random intercepts for hospital with at least ten

patients, highlighting Milano effect. The hospitals located in Milano are depicted in

blue dashed lines, those outside Milano in red solid lines. The estimates are in increasing

order of number of patients per hospital. The last two intervals represent new random

intercepts for a hospital in and outside Milano, respectively.

to this prior information, i.e., a ∼ Exp− trunc(1) on the interval [1,∞), which
a priori leads to E[a] = 2. The a priori number of groups in this case is 5.8. The
mass parameter a is a posteriori concentrated around small values under both
models: mean 1.61 (SD 0.62) in Model A and 1.65 (SD 0.65) in Model B. We
observe a slight reduction of the expected number of groups, going from a prior
mean of 5.8 to a posterior one of 4.24 in Model A and 4.58 in Model B.
Finally, we run the algorithm fixing the mass parameter a equal to one (doing
so, the expected number of cluster is 4) and we obtained similar posterior es-
timates; hence we can conclude that the inference is quite robust to the prior
specification of the mass parameter a.

Even if Bayesian semiparametric models allow a model-based clustering without
making any extra assumption, the results provided in this sense by such models
may not be straightforward to be interpreted. The precise estimation of the true
number of clusters is, in general, a very hard task. As explained in Section 2, the
estimated grouping is the optimal partition defined by the maximisation problem
in (17). Two hospitals belong to the same cluster j if their labels are in the same
set Aj . In Model A, this is equivalent to say that two hospitals belong to the
same cluster if the observed effects are equal. In Model B two different observed
effects can share the same cluster since we have two sub-populations. Since for
any choice of u and w the optimal partition can be determined, we consider
different values for the couple (u,w), enabling K to range from the maximum
value allowing all hospitals to be clustered together and the minimum value
allowing all hospitals to be singletons. Notice that low values of K penalise
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separation of items more than aggregation, whereas high values of K do the
opposite.

Figure 3 shows how the clustering induced by the optimal partitions evolves
as long as K grows up, for Model A (upper panel) and Model B (lower panel)
respectively. Hospitals on the abscissa are sorted so that a more effective visu-
alisation is allowed. On the other hand, on the vertical axis we retain only K
values corresponding to relevant changes in hospitals grouping.
As it can be seen from the picture, Model B starts to distinguish groups for lower
values of K and it reaches the setting where all items are singletons for higher
values of K. In fact, in the case where Model B is fitted to data, for K = 0.21
the best partition minimising the expected loss is the one where all the hospitals
are clustered together. As long as K increases, some hospitals progressively exit
the cluster and disaggregate, up to the case where all hospitals are singletons,
that comes out for K = 0.81. Analogous considerations hold for Model A, with a
smaller range from K = 0.39 to K = 0.66. Notice that disaggregation provided
by Model B is more gradual than the one provided by Model A. Observing
how the partition evolves as long as K increases, we obtain a sort of implicit
ranking of the providers (see also [39]). In general, starting from low values of
K (hospitals clustered together) up to the high values (hospitals all singletons),
the two models point out similar results: in fact, hospitals 6 and 11, and, then,
7 and 10 are in both cases among the first items that are distinguished from
others. In particular, in Model B they are also aggregated in a different cluster
for almost all K. Moreover, during the progressive splitting of the initial group,
we observe similar groups appearing and disappearing in partitions generated by
both models. Finally, hospitals 9, 15, 21, 23 and 29 are the last ones becoming
singletons, and are grouped together in both models.

Tables 3 and 4 show the 95% CIs of the posterior distribution of the random
effects for Model A and Model B, respectively. It can be observed that estimates
concerning hospitals 11, 7, 6 and 10, highlighted as similar and early detected as
different from all the others by both models, are concentrated on higher values
than the others. Moreover estimates concerning hospitals 9, 15, 21, 23 and 29,
grouped together by both models for almost all Ks, are concentrated on smaller
values than the others. In conclusion, the first items that are discarded by the
initial group are those with the most favourable contribution to the patient’s
survival and the last ones are those with the less favourable contribution to the
patient’s survival, for this reason we may say that the “evolving partition” is
pointing out a ranking among hospitals.
According to the previous comments, we may say that, as long as values of K
are far from 0.5 (i.e., couples (u,w) far from (1, 1)), partitions tend to point out
outliers with respect to a “reference” group, in the sense of [39]. The discrim-
inating power is determined by K, which is problem-driven. Summing up, we
conclude that Model B is better in distinguishing different cases; this is probably
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Figure 3: Hospitals’ optimal partition as long as K increases, for Model A (upper

panel) and Model B (lower panel) respectively.

due to the higher flexibility it allows for.

3.3 Model fit and patients classification

In this section we estimate the variability explained by our models using the
Bayesian R2 defined in (15) and evaluate their performance by predicting in-
hospital survival probability for each given patient. In particular, we compare
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Table 3: Posterior 95% CIs of the random effects of Model A.

hospital 2.5 median 97.5 hospital 2.5 median 97.5

11 -1.53 0.49 6.71 29 -2.86 -0.19 1.90
6 -2.18 0.31 5.84 28 -2.96 -0.29 1.65
10 -2.29 0.02 4.65 27 -2.88 -0.06 3.62
7 -2.05 0.14 5.29 26 -2.79 -0.05 3.88
22 -3.94 -0.48 1.38 3 -2.68 -0.04 3.70
13 -2.85 -0.06 3.52 4 -2.81 -0.06 3.31
2 -2.68 -0.04 3.62 25 -2.68 -0.04 3.78
14 -2.79 -0.06 2.41 8 -2.70 -0.04 3.60
20 -2.86 -0.09 2.11 18 -2.82 -0.06 3.52
19 -3.03 -0.38 1.52 17 -2.71 -0.04 3.70
16 -2.90 -0.27 1.70 12 -2.72 -0.07 3.77
9 -2.89 -0.20 1.88 1 -2.79 -0.04 3.41
21 -2.90 -0.21 1.95 5 -2.88 -0.07 3.61
23 -2.86 -0.17 1.96 24 -2.70 -0.03 3.89
15 -2.96 -0.26 1.75

Table 4: Posterior 95% CIs of the random effects of Model B.

hospital 2.5 median 97.5 hospital 2.5 median 97.5

6 -2.80 1.80 9.02 15 -4.34 -1.54 0.83
10 -2.48 2.28 9.37 19 -4.56 -1.89 0.21
11 -1.29 3.74 10.13 16 -2.82 -0.33 1.55
7 -2.10 2.99 9.68 25 -3.33 -0.07 8.19
13 -4.18 -0.83 2.99 24 -3.41 -0.47 8.23
2 -3.98 -0.73 3.12 8 -3.57 -0.64 7.89
14 -3.97 -0.95 1.65 18 -3.48 -0.60 7.86
28 -3.63 -1.34 2.01 17 -3.67 -0.61 3.24
22 -4.11 -1.60 0.69 26 -3.52 -0.66 7.81
20 -3.70 -1.42 0.97 3 -3.86 -0.68 3.26
9 -3.76 -1.54 0.54 5 -3.60 -0.71 7.79
21 -3.76 -1.53 0.59 12 -3.51 -0.65 7.86
23 -3.71 -1.53 0.50 4 -3.71 -0.70 7.78
29 -3.72 -1.50 0.63 1 -4.09 -0.74 3.27
27 -3.56 -0.72 8.01

two different predictive methods: the usual one based on point estimates sum-
marising the posterior predictive distributions, and the new one we proposed,
based on interval estimates.
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In Table 5 we provide the Bayesian R2 of the two models. Observe that Model
B seems to better fit the data, as we expected according to the greater flexibility
it allows for. As we said before, the Bayesian R2 provides an index of the
explained variability at the latent variable level; however we would evaluate also
the predictive performance at the outcome level.

Table 5: Bayesian R2 defined in (15) for the two models.

Model A Model B

Bayesian R2 0.35 0.57

In our application, since the share of outcome success in the dataset is particu-
larly unbalanced, if we consider the standard threshold equal to 0.5, we would
obtain a very low overall misclassification rate (around 2% for all models), but
a bad result in the prediction of the rarest outcome (death). In this case, more
than 50% of deaths were misclassified. For this reason, it is important to keep
the death misclassification rate as low as possible. A first attempt aimed at
improving the capability of the model in predicting deaths is based on adopting
a threshold equal to the empirical rate of success, as suggested in [9]. Table 6
displays the results of the patient classification under Model A (left) and Model
B (right), using a threshold equal to the sample survival rate (p̄ = 0.97). The
posterior predicted rates of survival and death respectively are more balanced
than using a threshold of 0.5. On the other hand, we obtain a worse overall
misclassification rate (around 10% for all models). This is because the overall
misclassification rate is less dependent on the unbalance of shares, as explained
in [9].

Table 6: Predictive tables of survival outcome when the classification rule is based on

the comparison between survival posterior means and p̄ = 0.97.

(a) Model A.

Y = 1 Y = 0

Ŷ = 1 599 3

Ŷ = 0 75 20

(b) Model B.

Y = 1 Y = 0

Ŷ = 1 596 3

Ŷ = 0 78 20

Since the overall misclassification rate represents a goodness of fit index, as
mentioned in Section 2, we developed a rule in order to improve performances of
our models in predicting the unsuccessful outcome, enhancing the information
provided by the Bayesian approach.

In Table 7 we report 90% posterior predictive CIs and assume equal misclas-
sification costs, i.e., the threshold is set equal to 0.5. With our dataset, only
around 4% of the patients belong to the Uncertainty Class (UC) and the total
misclassification rate, based only on classified patients, is less than 3% for both
models. Considering the number of patients in UC as an index of the predictive
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performance of the model, the two models provide similar results. Of course
there is a trade off between the length of the UC and the misclassification rate,
whose setting is problem specific.

Table 7: Predictive tables of survival outcome when the classification rule is based on

survival posterior 90% CIs and threshold equal to 0.5.

(a) Model A.

Y = 1 Y = 0

Ŷ = 1 661 8

Ŷ = 0 0 3
UC 13 12

(b) Model B.

Y = 1 Y = 0

Ŷ = 1 661 8

Ŷ = 0 0 2
UC 13 13

Of course, the number of patients classified in the UC depends on the lengths
of the CIs of the posterior predictive distributions, which in turn are sensitive
to the prior variances of the fixed effects. Therefore we suggest to fix the prior
components for the fixed effects informatively, i.e., using previous data and/or
expert opinions.
In Figure 4 we provide the 90% posterior predictive CIs for all patients under
Model B (the corresponding plot of Model A is quite similar and we did not
report it here).
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Figure 4: 90% posterior predictive CIs of all the patients (ordered by increasing median)

under Model B. The positive outcomes are in blue and the negative ones in red.

Notice that most of the interval lengths of the survived patients are quite small,
while there is more uncertainty on the negative outcomes, as expected since the
unsuccessful outcome is rare.

As an example, in Figure 5 we focus on a smaller set of patients (those 29
treated in hospital 19, under Model B). Notice that predictive distributions with
very large and very low mean have small width, while those with mean around

23



0.5 have wider interval estimates. There are five unclassified patients and only
one is misclassified.
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Figure 5: 90% posterior predictive CIs of all the patients from one of the hospital

belonging to STEMI Archive, obtained fitting Model B to data. The CIs corresponding

to alive patients are in blue solid line, while those corresponding to dead patients are in

red dasehd. There are five unclassified patients and only one was misclassified.

Finally, we would like to mention that, even if we fit a different model including
the exposure random effect through a DDP (as mentioned in Section 2.2), the
posterior inference does not differ from those reported here. Neverthless, a
comparison of the exposure parameter CI’s shows that including the exposure
nonparametrically through a DDP leads to more variability among hospitals
than we observed fitting Model A.

4 Conclusions

In this work, two different Bayesian semiparametric logit models are fitted to
grouped data related to the in-hospital survival outcome of patients hospitalised
with STEMI diagnosis. Dependent Dirichlet Process priors are considered for
modelling the random-effect distribution of the grouping factor (the hospital
of admission), with the aim of studying their clustering through the optimal
partition minimizing a posterior pairwise coincidence loss function. The study
is within a project, named Strategic Program of Regione Lombardia and aimed
at supporting decisions in healthcare policies.

We fitted two models to the data, matching the marginal distributions of
corresponding random effects, and we compared them in terms of the Bayesian
R2 index proposed in [18]. Then we studied the evolution of the estimated par-
tition as long as the proportion K of incorrect clustering cost increases. A sort
of “implicit ranking” among hospitals or groups of hospitals can be sustained,
since low values ofK identify better performing hospitals in terms of influence on
patient’s survival, whereas high values of K retain worse performing hospitals.
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In general, random partitions may be considered a powerful tool to investigate
the latent grouping structure among random effects in grouped data, without
making any further assumption. Finally, we pointed out a classification rule for
patients’ survival (a strongly unbalanced outcome in our application) based on
the posterior credibility intervals instead of pointwise estimates. This rule intro-
duces the Uncertainty Class, which collects patients whose credibility intervals
includes the reference threshold adopted for classification. This classification
rule proved to be less sensitive to the choice of the threshold with respect to
classification criteria based on pointwise estimates.

Further developments of this work will be focused on taking advantage of
physicians’ expertise in priors elicitation. Moreover, it would be of interest to
develop a dynamic update of DDP priors, generalizing frameworks such those
proposed in preliminar works like [14] and [30]. Finally, methods aimed at
monitoring the evolution of the clusters over time, trying to identify the causes
of the changes, are definitively of interest for a proper monitoring of hospital
performances, since only a structured and systematic monitoring of the care-
delivery process may lead to an improved healthcare process.

We think that the methods adopted in this paper properly and effectively
tackle the problem of supporting decision makers in assessing hospitals perfor-
mances, enhancing interactions among physicians and statisticians.
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