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1 Introduction

In the classical Schwarz framework for conforming approximations of nonsym-
metric and indefinite problems [5, 6] the finite element space is optimally decom-
posed into the sum of a finite number of uniformly overlapped, two-level sub-
spaces. In each iteration step, a coarse mesh problem and a number of smaller
linear systems, which correspond to the restriction of the original problem to sub-
regions, are solved instead of the large original system of equations. Based on this
decomposition, domain decomposition methods of three basic type — additive,
multiplicative and hybrid Schwarz methods — have been studied in the literature
(cf. [5, 6, 4]). In [1, 2] it was shown that for discontinuous Galerkin (DG) approx-
imations of purely elliptic problems optimal nonoverlapping Schwarz methods
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(which have no analogue in the conforming case) can be constructed. Moreover,
it was proved that they exhibit spectral bounds analogous to the one obtained
with conforming finite element approximations in the case of “small” overlap,
making Schwarz methods particularly well-suited for DG preconditioning. Mo-
tivated by the above considerations, we study a class of nonoverlapping Schwarz
preconditioners for DG approximations of convection-diffusion equations. The
generalized minimal residual (GMRES) Krylov space-based iterative solver is ac-
celerated with the proposed preconditioners. We discuss the issue of convergence
of the resulting preconditioned iterative method, and demonstrate through nu-
merical computations that the classical Schwarz convergence theory cannot be
applied to explain theoretically the converge observed numerically.

2 Statement of the Problem and its DG Approxima-
tion

Given a bounded polyhedral domain Ω ⊆ Rd, d = 2, 3, f ∈ L2(Ω), and g ∈
H1/2(∂Ω), we consider the following elliptic convection-diffusion problem with
constant coefficients:

− ε∆u+ ~β · ∇u = f in Ω, u = g on Γ ≡ ∂Ω, (1)

where ε > 0 is the diffusion coefficient and ~β ∈ Rd is the velocity field.

We consider, for simplicity, shape-regular quasi-uniform partitions Th of Ω
with granularity h > 0, where each K ∈ Th is the affine image of a fixed mas-
ter element K, i.e., K = FK(K), where K is either the open unit d-simplex
or the open unit d-hypercube in Rd, d = 2, 3. We denote by Fh the set of
all faces of Th, and for F ∈ Fh we set hF = diam(F ). The symbol FB

h will
denote the set of all faces that lie on the boundary, Γ. For a given approxi-
mation order ` ≥ 1, we define the discontinuous Galerkin finite element space
Vh = {v ∈ L2(Ω) : v|K ◦ FK ∈ M`(K) ∀K ∈ Th}, where M`(K) is either the
space of polynomials of degree at most ` on K, if K is the reference d-simplex,
or the space of polynomials of degree at most ` in each variable on K, if K is the
reference d-hypercube.

We denote by ∇h the elementwise application of the operator ∇, and, for
v ∈ Vh and K ∈ Th, v+ (respectively, v− ) denotes the interior (respectively,
exterior) trace of v defined on ∂K (respectively, ∂K \ Γ). Given K ∈ Th, the
inflow and outflow parts of ∂K are defined

∂−K := {x ∈ ∂K : ~β(x) · nK(x) < 0}, ∂+K := {x ∈ ∂K : ~β(x) · nK(x) ≥ 0},

respectively, where ~nK denotes the unit outward normal vector to ∂K.
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For a parameter α ≥ αmin > 0 (at our disposal), and adopting the standard
notation {{·}} for the face-average and [[·]] for the jump operator [3], we define
the bilinear form Bh(·, ·) : Vh × Vh → R as

Bh(u, v) =
∫

Ω
ε∇hu · ∇hv dx−

∑
F∈Fh

∫
F
{{ε∇hu}} · [[v]] ds

−
∑

F∈Fh

∫
F

[[u]] · {{ε∇hv}}ds+
∑

F∈Fh

∫
F
α εh−1

F [[u]] · [[v]]−
∫

Ω
u ~β · ∇hv dx

+
∑

K∈Th

∫
∂+K

(~β · nK)u+v+ ds+
∑

K∈Th

∫
∂−K\Γ

(~β · nK)u−v+ ds.

Then, the DG approximation of problem (1) reads as follows:

Find uh ∈ Vh such that Bh(uh, v) = Fh(v) ∀v ∈ Vh, (2)

where the functional Fh(·) : Vh → R is given by

Fh(v) :=
∫

Ω
fv dx+

∑
F∈FB

h

∫
F
ε g∇v+ · nK ds

+
∑

F∈FB
h

∫
F
ε α h−1

F g v+ ds+
∑

K∈Th

∫
∂−K∩Γ

(~β · nK) gv+ ds.

Given a basis of Vh, any function v ∈ Vh is uniquely determined by a set of
degrees of freedom. Here and in the following, we use boldface notation to denote
elements of the spaces of degrees of freedom (vectors in Rn, and matrices in
Rn×Rn). If B is the stiffness matrix associated with the bilinear form Bh(·, ·) and
the given basis, problem (2) can be rewritten as the system of linear equations
Bu = F. In order to solve this system of linear equations efficiently by a Krylov
space-based iterative solver (such as, for example, the GMRES method), suitable
preconditioners have to be employed to accelerate the iterative scheme.

3 Nonoverlapping Schwarz Methods

We consider three levels of nested partitions of the domain Ω satisfying the pre-
vious assumptions: a subdomain partition TN consisting of N nonoverlapping
subdomains Ωi, a coarse partition TH (with mesh size H) and a fine partition
Th (with mesh size h). Next we introduce the key ingredients of the definition
of the Schwarz preconditioners.

Local solvers. For i = 1, . . . , N , we define the local DG spaces by

V i
h := {v ∈ Vh : v|K = 0 ∀K ∈ Th, K ⊂ Ω r Ωi}.
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We note that a function in V i
h is discontinuous and, as opposed to the case of

conforming approximations, does not in general vanish on ∂Ωi. The classical
extension (injection) operator from V i

h to Vh is denoted by RT
i : V i

h −→ Vh,
i = 1, . . . , N . We define the local solvers Bi : V i

h × V i
h −→ R as

Bi(ui, vi) := Bh(RT
i ui, R

T
i vi) ∀ui, vi ∈ V i

h , i = 1, . . . , N.

Remark 3.1 Approximate local solvers, such as the ones proposed in [1, 2],
could also be considered for the definition of the local components of the precon-
ditioner.

Coarse solver. For a given approximation order 0 ≤ p ≤ ` we introduce the
coarse space VH ≡ V 0

h := {v0 ∈ L2(Ω) : v0|K ◦ FK ∈ M`(K) ∀K ∈ TH}, and
we define the coarse solver B0 : V 0

h × V 0
h −→ R by

B0(u0, v0) := Bh(RT
0 u0, R

T
0 v0) ∀u0, v0 ∈ V 0

h ,

where RT
0 : V 0

h −→ Vh is the classical injection operator from V 0
h to Vh.

For 0 ≤ i ≤ N , let the projection operators Ti : Vh −→ V i
h ⊂ Vh be given by

Bi(Tiu, vi) := Bh(u, vi) ∀vi ∈ V i
h .

The additive and multiplicative Schwarz operator are defined by

Tad :=
N∑

i=0

Ti, Tmu := I − (I − TN )(I − TN−1) · · · (I − T0),

respectively (cf. [5, 6]). The multiplicative Schwarz method is less amenable
to parallelization than the additive method because the presence of the coarse
solver T0, which cannot be handled in parallel with the other local subproblem
solvers, leads to a bottleneck for the whole algorithm. Motivated by the above
observations, we also consider a hybrid operator in which the global operator T0

is incorporated additively relative to the rest of the local solvers (see [4]):

Thy := T0 + I − (I − TN )(I − TN−1) · · · (I − T1).

The Schwarz operators can be written as products of suitable preconditioners,
namely Mad, Mmu or Mhy, and ~B. Then, the Schwarz method consists of
solving, by a suitable Krylov space-based iterative solver, the preconditioned
system of equations MBu = MF, where M is either Mad, Mmu or Mhy.

4 The Issue of Convergence

The abstract analysis of Schwarz methods for conforming approximations to
nonsymmetric elliptic problems, originally carried out by Cai and Widlund in [6],
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relies upon the GMRES convergence bounds of Eisenstat et al. [7]. According
to [7], the GMRES method applied to the preconditioned system of equations
does not stagnate (i.e., the iterative method makes some progress in reducing
the residual at each iteration step) provided that the symmetric part of T (where
T is one of the Schwarz operators introduced in Section 3) is positive definite,
and T is uniformly bounded. That is,

cp(T ) := inf
v∈Vh
v 6=0

Sh(v, Tv)
Sh(v, v)

> 0, Cp(T ) := sup
v∈Vh
v 6=0

‖Tv‖h
‖v‖h

≤ C, (3)

where ‖·‖h is a suitable (mesh-dependent) norm on Vh in which the bilinear form
Bh(·, ·) is continuous and coercive, and where Sh(·, ·) denotes the symmetric part
of Bh(·, ·). While the second condition can usually be shown to hold without
difficulties, the first condition cannot, in general, be guaranteed. Indeed, as we
demonstrate by numerical computations, cp(T ) may be negative even in generic,
non-pathological, cases. In Table 1 we show the computed values of cp(Tad) and
cp(Tmu) obtained with two choices of the global Péclet number Pe := ‖~β‖∞|Ω|/ε
(that relates the rate of convection of a flow to its rate of diffusion) for the
first test case considered in Section 5. Even though GMRES applied to the
preconditioned systems does not stagnate and, in fact, converges in only a few
iterations (cf. Section 5), cp(T ) < 0 once the spacing of the fine grid is sufficiently
small.

Table 1: Estimate of cp(T ): ` = p = 1, N = 16, Cartesian grids.

(a) cp(Tad): ε = 10−1, ~β = (1, 1)T

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.077 -0.008 -0.047 -0.067
H0/2 - 0.101 0.037 0.005
H0/4 - - 0.117 0.050
H0/8 - - - 0.119

(b) cp(Tmu): ε = 10−3, ~β = (1, 1)T

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.225 -0.553 -1.484 -2.795
H0/2 - 0.114 -0.628 -1.554
H0/4 - - 0.114 -0.570
H0/8 - - - 0.077

Remark 4.1 Closer inspection reveals that, in the case of elliptic convection-
dominated diffusion equations, the theory in [6] is far from satisfactory since,
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on the one hand, it relies upon the GMRES bounds from [7] that only provide
sufficient conditions for non-stagnation of GMRES and, on the other hand, it
requires the skew-symmetric part of the operator to be “small” relative to the
symmetric part (typically a low-order compact perturbation). Clearly, such a
requirement cannot be satisfied in the convection-dominated case. Similar con-
clusions have been drawn in [1, 2] in the case of nonoverlapping preconditioners
for nonsymmetric DG approximations of the Laplace operator (where the skew-
symmetric part of the operator happens to be of the same order as the symmetric
part).

Remark 4.2 The comments above also apply in to the case of generous over-
lapping partitions (cf. [8]) under suitable additional assumptions on the size of
the coarse mesh, i.e., H < H0. Closer inspection reveals that H0 strongly de-
pends on the size of the global Péclet number, making the analysis inapplicable
in the convection-dominated case.

5 Numerical Experiments
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Figure 1: (a) Subdomain ordering for N = 16; (b) initial coarse (solid line) and
fine (dashed line) meshes; (c) the exact solution (4) for ε = 10−2 (right).

We investigate the performance of our preconditioners while varying h, H
and the Péclet number. We use a uniform subdomain partition of Ω = (0, 1)2

consisting of 16 squares ordered as in Figure 1(a). The initial coarse and fine
refinements are depicted in Figure 1(b). We denote by H0 and h0 the correspond-
ing initial coarse and fine mesh sizes, respectively, and we consider n = 1, 2, 3
successive uniform refinements of the initial grids. The linear systems of equa-
tions have been solved by GMRES with a (relative) tolerance set equal to 10−6

allowing a maximum of 100 (respectively, 600) iterations for the preconditioned
(respectively, unpreconditioned) systems.

We set ~β = (1, 1)T and adjust the source term f and the boundary condition
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so that the exact solution is given by

u(x, y) = x+ y − xy +
1

1− e−1/ε

[
e−1/ε − e−(1−x)(1−y)/ε

]
. (4)

We note that for 0 < ε � 1, i.e., for Pe � 1, the solution exhibits boundary
layers along x = 1 and y = 1 (cf. Figure 1(c) for ε = 10−2).

Table 2: GMRES iteration counts: ε = 1.
(a) Additive

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 20 30 40 54
H0/2 - 19 27 37
H0/4 - - 20 28
H0/8 - - - 19

#iter(B) 58 109 204 371

(b) Multiplicative

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 8 13 17 24
H0/2 - 7 10 13
H0/4 - - 6 8
H0/8 - - - 5

#iter(B) 58 109 204 371

(c) Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 11 15 20 27
H0/2 - 11 15 20
H0/4 - - 12 17
H0/8 - - - 12

#iter(B) 58 109 204 371

We compare the GMRES iteration counts for the additive, multiplicative and
hybrid Schwarz preconditioners for different values of the Péclet number, working
for the sake of simplicity with approximations with ` = p = 1. The computed
iteration counts obtained for ε = 1, 10−1, 10−3, 10−4 are shown in Tables 2–5,
respectively. Clearly, the multiplicative and the hybrid Schwarz preconditioners
perform far better than the additive preconditioner. The results in Tables 2–
5 show that for small Péclet numbers the iteration counts seem to increase
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with the Péclet number; whereas, whenever the problem becomes convection-
dominated, i.e., for Pe � 1, the iteration counts needed for achieving the fixed
tolerance decrease with the increase of the Péclet number. Moreover, in the
convection-dominated regime the performance of the additive nonoverlapping
preconditioner is comparable with the one in [8] in the overlapping case, making
the nonoverlapping version competitive in practical applications.

Table 3: GMRES iteration counts: ε = 10−1.
(a) Additive

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 23 34 48 62
H0/2 - 20 30 41
H0/4 - - 21 29
H0/8 - - - 19

#iter(B) 59 110 209 396

(b) Multiplicative

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 11 15 21 29
H0/2 - 8 11 16
H0/4 - - 7 10
H0/8 - - - 6

#iter(B) 59 110 209 396

(c) Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 12 17 24 30
H0/2 - 12 16 20
H0/4 - - 12 17
H0/8 - - - 11

#iter(B) 59 110 209 396

Finally, we investigate the effect of the subdomain ordering on the perfor-
mance of the Schwarz preconditioner. We set ~β = (−1,−1)T, and we choose as
exact solution one that is analogous to the exact solution considered so far but
now such that u exhibits boundary layers along x = 0 and y = 0 for 0 < ε� 1,
so that the subdomains turn out to be ordered “downwind” (cf. Figure 1(a)). In
Table 6 we report the GMRES iteration counts obtained with the multiplicative
and hybrid (in parenthesis) Schwarz method using ` = p = 1. As expected,
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Table 4: GMRES iteration counts: ε = 10−3.
(a) Additive

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 15 21 26 33
H0/2 - 17 24 32
H0/4 - - 18 27
H0/8 - - - 20

#iter(B) 41 68 115 213

(b) Multiplicative

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6 8 10 14
H0/2 - 5 8 13
H0/4 - - 6 10
H0/8 - - - 5

#iter(B) 41 68 115 213

(c) Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 8 10 12 16
H0/2 - 8 11 15
H0/4 - - 9 14
H0/8 - - - 10

#iter(B) 41 68 115 213

9



Table 5: GMRES iteration counts: ε = 10−4.
(a) Additive

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 14 16 17 18
H0/2 - 14 16 18
H0/4 - - 14 17
H0/8 - - - 14

#iter(B) 40 67 119 215

(b) Multiplicative

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 3 4 4 6
H0/2 - 3 4 5
H0/4 - - 3 4
H0/8 - - - 4

#iter(B) 40 67 119 215

(c) Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6 6 7 8
H0/2 - 6 6 7
H0/4 - - 6 7
H0/8 - - - 6

#iter(B) 40 67 119 215
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the subdomain ordering does affect the performance of the preconditioner and
“downwind” ordering of subdomains can lead to an increase in the number of
GMRES iterations.

Table 6: GMRES iteration counts: multiplicative and hybrid (between paren-
thesis) Schwarz preconditioners.

(a) ε = 10−1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 13 (15) 20 (21) 27 (29) 36 (39)
H0/2 - 11 (15) 16 (19) 21 (26)
H0/4 - - 10 (13) 14 (19)
H0/8 - - - 8 (11)

#iter(B) 79 152 290 551

(b) ε = 10−4

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 5 ( 8) 6 ( 9) 8 (10) 10 (12)
H0/2 - 5 ( 7) 6 (10) 9 (12)
H0/4 - - 5 ( 9) 7 (11)
H0/8 - - - 6 (10)

#iter(B) 39 65 113 203
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