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Abstract

Recent advances in learning systems and sensor technology have enabled powerful strategies
for autonomous data-driven damage detection in structural systems. This work proposes a
novel method for the real-time localization of damage relying on a Siamese convolutional
neural network. The method exploits a learnable mapping of raw vibration measurements
onto a low-dimensional space, wherein damage locations can be easily identified. The
mapping is learned in a supervised pairwise fashion exploiting labelled data, to induce a
task-specific metric that allows to encode the damage position in the structure. Training
data are generated through a reduced-order numerical model of the monitored structure. The
damage position is then identified by performing a regression in the resulting low-dimensional
features space. The proposed method does not require to define a-priori target classes and
decision boundaries, thus requiring a limited amount of user-dependent assumptions. Results
relevant to an L-shaped cantilever beam and a portal frame railway bridge demonstrate that
the procedure can be effectively exploited for the purpose of damage localization. The method
also proves to be insensitive to operational variability, measurement noise and modeling
inaccuracies.

1. Introduction

Civil structures are a backbone of our society. However, they may progressively deteriorate
and accumulate damage during their service life. A proper health monitoring strategy for
civil structures would greatly reduce the maintenance costs over time and also avoid potential
tragic events. As the installation of permanent real-time data collecting systems has become
affordable [1], systematic diagnostic and prognostic activities can nowadays allow for a
condition-based maintenance approach. This evolution involves benefits related not only
to users safety; indeed, traffic delays and lost productivity due to maintenance, repair, and
rehabilitation of infrastructures hamper the economic growth and cost to the users dozens of
billions of dollars a year only in the US [2]. For instance, a potential shutdown of the Hudson
River rail tunnel in New York City has been estimated to cost the US economy about $16
billion [3], with more than half due to the time lost by users for longer daily commutes.
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Modern structural health monitoring (SHM) strategies aim at monitoring a structural
system from collected sensor data, enabling informed evaluations of the current state of
that system [4]. Specifically, vibration-based monitoring techniques assume the dynamic
characteristics of the structure to be sensitive to damage [5], independently of its location and
for a severity beyond a critical threshold to allow distinguishing its effect from environmental
and operational variability. Because of their ability of easily managing big data affected
by noise, vibration-based data-driven approaches [6–8] represent today the most promising
solution to the SHM challenges. These procedures can take advantage of an offline/online
decomposition. During the offline phase, a dataset involving conditions of interest for the
monitored structure is collected and used to calibrate the algorithm, in order to get rid of
all the potential issues linked to the aforementioned variability. During the online phase,
the trained algorithm is exploited to produce informed estimations of the structural health.
According to the statistical pattern recognition paradigm [6, 9], damage-sensitive features
are extracted from the raw vibration recordings, represented for instance by acceleration or
displacement multivariate time series, and processed by machine learning (ML) algorithms.
The use of deep learning (DL) [10, 11] can further empower such data-driven approach. By
catching temporal correlations within and across time recordings, the pattern recognition
capability of DL models enables to automatically learn damage-sensitive features from the
raw sensor data, without the need of a preliminary feature engineering stage. Moreover, since
the underlying mapping is learned offline, the structural state can be next assessed in real
time, making the DL-empowered strategies suitable for SHM stream applications.

This work specifically focuses on damage localization, with damage assumed to be already
detected but not localized yet. Focusing on data-driven strategies, this problem can be
addressed either in an unsupervised or a supervised way. The unsupervised case is usually
carried out as an extended outlier analysis, repeated for all the outputs of the sensor system.
Unsupervised solutions are sometimes preferred to supervised ones, as they only require
data relevant to the damage-free condition of the structure to detect the inception of a drift
from the baseline, characterizing the presence of damage. Relevant algorithms involve, for
instance, one-class support vector machine [12, 13] and combinations of density-based and
distance-based techniques [14, 15]. On the other hand, supervised algorithms leverage labeled
data related to known damage positions in order to locate the damage itself. However, it is
practically impossible to conduct destructive experiments on real civil structures, in order
to obtain data involving the various damage states. Labeled data pertaining to specific
damage conditions can be instead generated numerically; experimental measurements are
then replaced by the responses of a physics-based digital twin of the structure to be monitored,
whose damage patterns can be systematically reproduced. Such a database can then be used
to train the ML model. Such an hybridization between data and physics is referred to as
simulation-based paradigm [16], and can be thought of as the way to let ML models learn
in a simulated environment, before transferring their knowledge to the real world [7]. For
instance, recent contributions in this field have been obtained by means of fully convolutional
classifiers [17–19] and decision trees [20, 21]. Parametric model order reduction strategies
that enjoy an offline/online decoupling are another example of how the information from
physics-based models can be exploited. As proposed in [22, 23], such a methodology can be
adopted to efficiently solve vibration-based crack detection problems by feeding an outer-loop
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optimization algorithm.
Convolutional neural networks (NNs) have recently been used to develop state-of-the-art

learning machines for vibration-based SHM of civil structures [24–27]. Originally developed
within the computer vision community, convolutional NNs have quickly become a first choice
to solve several problems, outperforming alternative methods. Their success is due to: the
synthesis of the feature selection and feature extraction stages into a single learning stage; the
sparse connectivity and parameter sharing, which lead to a great computational efficiency in
comparison to feed-forward fully-connected NNs and recurrent models, such as the long-short
term memory and the gated recurrent unit; the tolerance for translation, scaling, skewing,
and distortion of the input data [28]. The popularity for SHM purposes is also due to
their ability to detect correlation in time, within and across time series, through repeated
convolution operations [17].

A supervised method is here proposed to localize damage without the need of defining a
bunch of target classes in advance – a task that often seems unreasonable. For instance, a
large number of locations can be foreseen for a crack in a concrete structure, which cannot
be fully accounted for within a standard classification setting. To this aim, a combination of
some aspects from metric learning and dimensionality reduction is exploited in this paper.
Metric learning [29, 30] aims at learning a distance function that conforms to a task-specific
definition of similarity, such that the true neighbors of a testing example will be closer
than non-neighbors in the learned metric space [31]. Since it is often impossible to infer
the quantity of interest directly from sensors data, due to the curse of dimensionality [32],
dimensionality reduction is here intended as a strategy to map the high dimensional inputs
onto a low-dimensional manifold, embedding the relevant semantic content [33]. The term
semantic stems from the fact that the components of the low-dimensional space encode the
position of the damage in the structure (semantic content). In concrete terms, a nonlinear
projection of the input data onto the feature space is devised by means of a deep NN,
under the constraint of inducing a damage position-related metric in the low-dimensional
space. The training stage is performed in a supervised pairwise fashion, exploiting a Siamese
convolutional architecture [34], and consists in learning a smooth and ordered mapping of
the labelled data. After learning the low-dimensional mapping, informed predictions of
the damage position are carried out in this low-dimensional space by performing a simple
regression.

To efficiently assemble a synthetic dataset, sufficiently representative of potential damage
scenarios and operating conditions the structure might undergo during its lifetime, a reduced-
order modeling strategy for parametrized systems is exploited. Specifically, the reduced basis
(RB) method [35] is adopted to replace the full-order numerical model of the monitored
structure with a cheaper, yet accurate, reduced-order model (ROM).

The strength of the proposed procedure relies in its ability of linking the distances in the
projection space and those in the physical space, avoiding the definition of target classes.
Moreover, the damage assessment is done without tuning highly sensitive hyperparameters,
such as distance thresholds and margins, and yields easily interpretable results.

The proposed methodology is investigated by adopting three alternative loss functions to
train the Siamese network, and by also varying the size of the low-dimensional feature space.
Results relevant to an L-shaped cantilever beam and a portal frame railway bridge are shown
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to provide notable damage localization capabilities, outperforming alternative real-time
methods. Even if real experimental data are not exploited in this paper, the robustness of the
method against measurement noise is assessed considering noise-contaminated measurements.

The remainder of the paper is organized as follows. The proposed methodology is detailed
in Sec. 2. The application of the methodology to a couple of case studies is discussed in
Sec. 3 and in Sec. 4, respectively dealing with an L-shaped cantilever beam and a portal
frame railway bridge. Conclusions and future developments are finally reported in Sec. 5.

2. Method

In the proposed framework, the damage localization problem is traced back to the
construction of an ordered and smooth mapping of the labelled data onto a low-dimensional
space. The adopted notation and the composition of the dataset are specified in Sec. 2.1,
while the NN performing the mapping alongside its training and prediction phases are
described in Sec. 2.2; the numerical model and the order reduction strategy adopted to
populate the synthetic dataset are finally discussed in Sec. 2.3.

2.1. Data specification

The dataset D is built upon I instances provided by a physics-based numerical model of
the structure to be monitored, assembled as

D = {(Ui,𝔂i)}
I
i=1 . (1)

Each instance consists of Nu raw vibration recordings, un ∈ RL, n = 1, . . . , Nu, each including
L measurements, and shaped as a multivariate time series Ui(ηi,𝔂i, δi) = [u1, . . . ,uNu ]i ∈
RNu×L, where: ηi is the vector of parameters ruling the operational conditions of the i-th
instance; 𝔂i and δi characterize the relevant structural damage as specified in the following.
The parameters defining the operational and, possibly, the environmental conditions [36, 37]
undergone by the structure while the i-th instance is collected, are condensed in the vector
ηi ∈ RNpar , Npar being the number of parameters. Each instance thus refers to a time window
(0, T ), T = (L− 1)/𝒻 with 𝒻 being the sensor sampling rate, short enough to assume steady
operational, environmental, and damage conditions, yet long enough to assure capturing the
mechanical response of the structure. The associated label 𝔂i ∈ RD identifies the position of
the damaged zone, so that D represents the dimension of the problem. Damage is modeled
by reducing the material stiffness by a magnitude δi within a domain Ω𝓎 identified by the
spatial coordinates 𝔂i of its center of mass. Even though a distinct δi is assigned for each
instance to account for uncertainties related to its value, it is not considered part of the
label as only the damage localization task is of interest. In order to mimic the measurement
noise, each vibration recording is corrupted by adding an independent, identically distributed
Gaussian noise, whose statistical properties depend on the target accuracy of the sensors.

Situations characterized by a small damage evolution rate are considered. In this context,
a stiffness reduction fixed in time stands as the simplest possible damage model resulting
from a time scale separation between damage evolution and damage assessment. This is a
standard assumption in the literature [6] and does not limit the type of damage patterns
that can be represented, like e.g.: failure of bolted connections in steel structures [38]; crack
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formation in reinforced concrete beams [39]; cracks and delaminations in aircraft wings [40].
The amplitude of stiffness reduction δi can be selected to populate the dataset D of instances
representative of structural states sufficiently deteriorated with respect to the damage-free
baseline, so that their effects on the measurable response can be distinguished from the noise
and the changing operational conditions, yet with enough structural resources not to be
fully compromised. Indeed, if damage can be detected early before reaching such critical
conditions, it is possible to reduce the lifecycle costs and to increase the safety and availability
of the monitored structure. To simplify the notation, the index i will be dropped in the
following, if unnecessary to refer to a specific instance.

To build the synthetic dataset D, the parametric input space of the numerical model is
assumed to display a uniform probability distribution for each parameter. To sample the input
parameters from the aforementioned space, the latin hypercube rule is here considered, as it
ensures a good compromise between randomness and coverage of the parameters domain [41].
Probability distributions other than the uniform one can also be allowed for and will be
envisaged in future developments, to account for any a-priori knowledge of the structure and
of the relevant operational conditions.

2.2. Damage localization model

For any given distance measure, a feature extraction algorithm can be considered as
a way to learn a similarity metric among the input data [42]. In this context, a NN
is designed to approximate a target function G : U ∈ RNu×L → h ∈ RDh , mapping the
vibration recordings U onto its representation h in a low-dimensional manifold of size Dh.
The distance Eh = Eh(h1,h2), computed according to a chosen metric, e.g. the cosine or
the Euclidean one, between any pair of mappings h1 = G(U1) and h2 = G(U2), is required
to approximate, at least semantically, the Euclidean distance E𝓎 = ∥𝔂1 − 𝔂2∥2 between
the associated target labels 𝔂1 and 𝔂2. A possible approach to achieve this goal relies on
pairwise learning, which implies that instances are processed in pairs. By fixing a threshold
distance E𝓎, below which the associated damage conditions can be considered similar, each
instance is paired with τN dissimilar instances (or negative pairs), characterized by E𝓎 > E𝓎,
and τP similar instances (or positive pairs), characterized by E𝓎 ≤ E𝓎. In this way, the
dataset is augmented, and becomes

DP = {(U1,𝔂1,U2,𝔂2)j}
IP
j=1 , (2)

IP = I(τP + τN ) being now the total number of pairs.
The Siamese architecture, originally proposed for signature verification [34], allows for

pairwise learning and can be thought of as a network made of two heads linked by the loss
function, see Fig. 1. Here, the two sub-networks share the same set of parameters Ω, and
each of them is therefore simply referred to as the sub-network providing the mapping G(·).
The vibration recordings U1 and U2 are then processed, yielding the two outputs h1 and
h2; the loss function then computes the associated distance Eh to rule the training. In the
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Figure 1: Scheme of the proposed methodology - A: physics-based digital twin of the monitored structure
used to simulate vibration recordings in the presence of damage; model order reduction strategy to speed
up the dataset population. B: NN parameters Ω, controlling mapping G(·), are learned by processing
paired vibration recordings U1,U2, and minimizing a functional L of the distance Eh between the two
low-dimensional representations h1,h2 and of the Euclidean distance E𝓎 between the associated labels
𝔂1,𝔂2; subnetwork G(·) features three 1D convolutional units CUk, k = 1, 2, 3, each one provided with a 1D
convolutional layer (Conv1D) ruled by tanh activation function, batch normalization (BN), 1D max pooling
(Pooling) and dropout regularization (Dpout); the output is reshaped through a flatten layer and run through
a stack of three fully-connected layers Dk, k = 4, 5, 6, whose output is the low-dimensional representation h;
the first two fully-connected layers are activated by a tanh function before undergo a BN, while the last one
has no activation function; Nk refers to the number of kernel filters for the convolutional layers and to the
number of neurons for the dense layers. C: the damage position associated to vibration recordings unseen
during training is predicted performing a simple regression in the low-dimensional space.

following, two alternative loss functions are considered:

L1(Ω,DP ) =
1

IP

IP∑
j=1

(E𝓎 − Eh)2j + λ∥Ω∥22 ; (3)

L2(Ω,DP ) =
1

IP

IP∑
j=1

{
(1− γ)

1

2
(Eh)2 + γ

1

2
[max (0, ψ − Eh)]2

}
j

+ λ∥Ω∥22 . (4)6



L1 is the mean squared error between Eh and E𝓎, while L2 is the pairwise contrastive
loss [33, 43], or square-square loss [44]. Herein: λ is the L2 regularization rate; γ = {0, 1},
respectively if 𝔂1 and 𝔂2 identify a positive pair or a negative pair; ψ > 0 is a margin beyond
which negative pairs do not contribute to L2. The adopted metric for the computation of Eh
is the Euclidean distance; additionally, a further loss function L3 is introduced by exploiting
the cosine similarity Sc as a metric for the square-square loss. Specifically:Eh = ∥h1 − h2∥2 for L1,L2 ,

Eh = 1− Sc , Sc =
h1·h2

∥h1∥2∥h2∥2
for L3 ,

(5)

where Sc measures the cosine of the angle between h1 and h2, so that Sc = 1 if h1 and h2 are
parallel, and Sc = 0 if h1 and h2 are orthogonal. The reason to consider L3 as a loss function
is that embeddings associated to different conditions are constrained to feature a relative
rotation in the low-dimensional space, rather than a different module. This induces an
auto-regularization effect that stabilizes the training, and should improve the representation
capability of the network.

An interesting perspective to frame the proposed damage localization strategy can be
built upon energy-based models (EBMs) [44]. EBMs rely on an energy function E(Y,X )

that measures the level of compatibility between observed variables X and the variables to
be inferred Y. The learning phase consists in finding, among a family of energy functions
E(Ω,Y,X ) parametrized by Ω, the one that provides low energy values for a correct associ-
ation of Y to X and high energy values otherwise. The shaping of E(Ω,Y,X ) is achieved
through the minimization of a loss functional L(D, E(Ω,Y,X )) to optimize Ω. The inference
of Y thus consists in simply picking its value that minimizes the learned energy function,
given X . Contrastive methods shape the energy function through a loss functional designed
to yield: low values for either low energies on correct associations or high energies on incorrect
associations; high values for either high energy on correct associations or low energy on
incorrect associations. In this work, the energy function of interest is represented by Eh;
the mean squared error loss and square-square loss in Eqs. (3) and (4), respectively, are the
considered loss functionals. The former implicitly pushes up the energy for all the possible
outcomes, while pushing down the energy for the correct association; the latter instead pushes
down the energy for the correct association and pushes up the energy above a prescribed
margin for incorrect answers.

For SHM purposes, the mapping G(·) is required to be invariant under transformations
on the input space not related to the damage position. To this goal, an extractor of
damage-sensitive features is implemented at the beginning of the sub-network model, through
the composition of three one-dimensional (1D) convolutional units. Convolutional layers
are chosen because they naturally embed good relational inductive biases such as locality
(the convolutional kernel inputs are in close proximity with one another and isolated from
distal entities) and translation equivariance (the ability to reuse the learned rule across
different localities in the input) [10, 45], which prove highly effective to analyze signals like
multivariate time series. Each convolutional unit consists of a convolutional layer, a nonlinear
activation function, batch normalization, a 1D max pooling layer and a dropout layer. The
extracted features are expected to be sensitive to the presence of damage, but insensitive to
measurement noise and operational variability. The output features are then flattened and
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run through a stack of three dense layers, whose output is the low-dimensional representation
h. No activation is applied to the last dense layer, while the hyperbolic tangent function is
employed as activation function elsewhere. A schematic representation of the subnetwork is
reported in Fig. 1. More insights on the working principle of convolutional units and dense
layers are reported in Appendix A, for the sake of completeness.

This specific NN architecture, as well as its hyperparameters, are selected through a
preliminary sensitivity study, aimed at reducing the computational cost while retaining the
damage localization capacity. Details related to the NN architecture and the training options
are summarized in Tab. 1. Adopting the Glorot’s weights initialization [46], the loss function
is minimized using the Adam optimization algorithm [47] for a maximum of 100 epochs. The
learning rate η is initially set to 10−3/10−4, and decreased for 80 epochs by adopting a cosine
decay schedule with weight decay 0.05. An early-stopping strategy is used to avoid overfitting.
The NN architecture is implemented through the Tensorflow-based Keras API [48], and
trained on a single Nvidia GeForce RTX 3080 GPU card.

Table 1: selected hyperparameters and training options.

Kernels sizes: H1 = 25 − H2 = 13 − H3 = 7 Weight initializer: Glorot uniform
Kernel filters: N1 = 16 − N2 = 32 − N3 = 16 Optimizer: Adam
Depth of dense layers: N4 = 64 − N5 = 16 − N6 = Dh Batch size: 32
Initial learning rate: η = {10−3, 10−4} Allowed epochs: 100

Final learning rate: 0.05 initial value Early stopping patience: 15 epochs
Learning schedule: 80 epochs cosine decay Train-validation split: 80 : 20

Once the NN is trained, the damage position for data unseen during the training phase
is predicted in the low-dimensional space. To this aim, the Siamese architecture as well as
DP are discarded, and only the trained subnetwork G(·) together with D are retained. The
damage position is then predicted using the k-nearest neighbors (KNN) algorithm [49, 50]
performing a regression on top of mapping G(·), similarly to [51]. Besides its effectiveness,
the KNN algorithm is chosen because it is a nonparametric, memory-based method and is
therefore extremely fast at both learning and prediction stages, as long as the dimensionality
of data is limited.

Denoting by U(u) the incoming (unknown) vibration recordings and h(u) = G(U(u))

the correspondent query mapping, the KNN regression algorithm works as follows. During
training, the recordings in D are mapped onto the low-dimensional space, once and for all,
to provide

Dh = {(hi,𝔂i)}
I
i=1 , (6)

so that the low-dimensional maps and the relative labels collected in Dh are stored by the
KNN model. At prediction time, the model computes the distances among hi, i = 1, . . . , I,
and h(u) to evaluate a weighted average over its K nearest neighbors, providing an estimate
�̂�(u) of the associated damage position 𝔂(u) according to

�̂�(u) =

∑K
k=1 χk(h

(u),h(k))𝔂(k)∑K
k=1 χk(h(u),h(k))

, k = 1, . . . ,K. (7)

In Eq. (7), the weighting rule can be uniform, i.e. χk = 1 ∀k, or based on the inverse distance
weights χk = 1

Eh(h(u),h(k))
, where h(k) ∈ Dh, k = 1, . . . ,K, is the k-th closest neighbor of
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h(u). The number of neighbors K is not set a-priori; its optimal value and the relative
weighting rule are determined through an N-fold cross-validation strategy. This latter works
as follows [52]: the training data are randomly split into N distinct folds; the model is
trained and evaluated N times, picking a different evaluation fold every time and leaving
all the others for training; for each possible combination of K and weighting rule, a total
regression score is obtained by averaging over each validation fold; the model class providing
the maximum fold-averaged score is selected and retrained using the full dataset. This
approach is expected to be effective in reducing the potential influence of outliers within Dh,
as it should identify the model of optimal complexity.

It might be noticed that, fitting the KNN regressor on the reference low-dimensional
representations hi, i = 1, . . . , I, also adopted for training G(·), may yield poor generalization
capabilities. Indeed, as learning machines best perform on training data, the associated
low-dimensional representation may be too optimistic compared to that obtained for data
unseen during training. Even if in this work this issue does not show up, since any possibility
of overfitting is prevented, it could be beneficial for the damage localization performance to
exploit an additional budget of recordings to fit the KNN regressor.

2.3. Numerical modeling of the structural behavior

The structure to be monitored is modeled as an elastic continuum, discretized in space by
means of finite elements. Its dynamic behavior, under the assumption of linearized kinematics,
is governed by the following semi-discretized form of the elasto-dynamic problem

Md̈(t) +K(𝔂, δ)d(t) = f(t,η) , t ∈ (0, T )

d(0) = d0

ḋ(0) = ḋ0 ,

(8)

which is referred to as full-order model (FOM). Here: t ∈ (0, T ) denotes time; d(t) ∈ Rℳ

and d̈(t) ∈ Rℳ are the vectors of nodal displacements and accelerations, respectively; ℳ is
the number of degrees of freedom (dofs); M ∈ Rℳ×ℳ is the mass matrix; K(𝔂, δ) ∈ Rℳ×ℳ

is the stiffness matrix; 𝔂 and δ, that are fixed within (0, T ), provide the dependence of K
on the damage position and magnitude, respectively; f(t,η) ∈ Rℳ is the vector of nodal
forces associated to the operational conditions, parametrized by the vector η; d0 and ḋ0 are
the initial conditions (at t = 0) in terms of nodal displacements and velocities, respectively.
Because of the small relevance in the identification of continuously excited systems, according
to, e.g. [53, 54], structural damping is disregarded.

Adopting a uniform partition of the time interval (0, T ), with a time step size set on
the basis of the fundamental structural frequencies and of the sensor sampling rate, the
solution of problem (8) is advanced in time using the Newmark time integration scheme [55],
to provide the vectors of displacements dl and accelerations d̈l, with l = 1, . . . , L.

As ℳ increases, the computational cost associated to the solution of the FOM for
any sampled (η,𝔂, δ) grows, and the generation of synthetic datasets becomes prohibitive.
Therefore, following the same strategy adopted in [17, 56], the construction of D is speeded
up through the use of a projection-based ROM strategy for parametrized systems. The RB
method [35], relying on the proper orthogonal decomposition (POD)-Galerkin approach, is
here adopted because of its appealing offline-online decoupling. Moreover, POD has been
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largely investigated in the context of structural dynamics [57–59], so that clear algebraic and
geometric interpretations of the POD-basis functions are available, together with efficient
criteria for their selection.

The solution of problem (8) is thus approximated, in terms of displacements, as d(t,η,𝔂, δ) ≈
WdR(t,η,𝔂, δ) through a linear combination of R ≪ ℳ basis functions wr ∈ Rℳ, r = 1, . . . ,R,
gathered in the matrix W = [w1, . . . ,wR] ∈ Rℳ×R.

W is obtained by performing a singular value decomposition (SVD) of a snapshot matrix
S = [d1, . . . ,dS ] ∈ Rℳ×S . Matrix S collects S snapshots of the FOM, namely solutions in
terms of time histories of nodal displacements, obtained by solving problem (8) for different
values of the parameters (η,𝔂, δ) selected through the latin hypercube sampling. The SVD
factorizes matrix S as

S = PΣZ⊤ , (9)

where: P = [p1, . . . ,pℳ] ∈ Rℳ×ℳ is an orthogonal matrix, whose columns are the left
singular vectors of S; Σ ∈ Rℳ×S is a pseudo-diagonal matrix collecting the singular values
σl, l = 1, . . . ,P, of S, arranged so that σ1 ≥ σ2 ≥ . . . ≥ σP ≥ 0, being P = min (S,ℳ) the
rank of S; Z = [z1, . . . , zS ] ∈ RS×S is another orthogonal matrix, whose columns are the
right singular vectors of S.

According to the Schmidt-Eckart-Young theorem, see [35, 60], the first R columns of
P minimize the reconstruction error, when approximating S by a matrix of rank R. The
ROM order R is then obtained by prescribing the error in energy to be smaller than a given
tolerance ϵ, according to: ∑R

l=1(σl)
2∑P

l=1(σl)
2
≥ 1− ϵ . (10)

For any parameter set not accounted for in the construction of the ROM itself, the
reduced-order approximation to the solution of problem (8) is determined by solving the
following R-dimensional problem:

MRd̈R(t) +KR(𝔂, δ)dR(t) = fR(t,η) , t ∈ (0, T )

dR(0) = W⊤d0

ḋR(0) = W⊤ḋ0 ,

(11)

resulting by enforcing the orthogonality between the residual f(t,η)−MWd̈R(t)−K(𝔂, δ)WdR(t)

and the subspace span{w1, . . . ,wR}, where:

MR ≡ W⊤MW , KR(𝔂, δ) ≡ W⊤K(𝔂, δ)W , fR(t,η) ≡ W⊤f(t,η). (12)

The approximated solution is then recovered by back-projecting the ROM solution whenever
necessary, via d(t) ≈ WdR(t), or d̈(t) ≈ Wd̈R(t) depending on the handled measurements.
Nodal displacements or accelerations in (0, T ) are collected as V = [d1, . . . ,dL] ∈ Rℳ×L or
V = [d̈1, . . . , d̈L] ∈ Rℳ×L, so that the sensor recordings U are ultimately obtained as

U = (TV)⊤ , (13)

where T ∈ BNu×ℳ is a Boolean matrix whose (n,m)-th entry is equal to 1 only if the m-th
dof coincide with the n-th sensor output.
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The algorithmic description of the offline phase of the proposed methodology is reported
in Algorithm 1. During the next online phase, new vibration recordings provided by the
sensing system are mapped onto the discriminative low-dimensional feature space and the
position of the damage, if any, is predicted.

Algorithm 1 Offline phase of the proposed methodology: algorithmic description
1: Set up the Physics-based numerical model of the structure to be monitored
2: Parametrize the relevant operational (and possibly environmental) conditions
3: Parametrize the relevant damage conditions

4: Build the ROM according to the POD approach of the RB method
5: Run FOM analyses to generate snapshots of the structural response:
6: Sample the input parameters
7: Run the FOM simulation and store snapshots of the solution in time
8: Perform the SVD to find the POD-basis functions

9: Generate a synthetic dataset through the ROM
10: Run ROM analyses to simulate the structural response:
11: Sample the input parameters
12: Run the ROM simulation
13: Extract the nodal dofs mimicking the relevant sensing system
14: Store the vibration recordings and the associated label

15: Train the damage localization model
16: Augment the dataset through the pairing process
17: Train the feature extractor by means of the Siamese network
18: Map labeled data onto the discriminative low-dimensional space
19: Fit the prediction strategy on the low-dimensional features

In the present work, the FOM and the ROM are implemented in the Matlab environment,
using the redbKIT library [61]. All computations are carried out on a desktop PC featuring
an AMD RyzenTM, 9 5950X CPU @ 3.4 GHz and 128 GB RAM.

3. Damage detection in an L-shaped cantilever beam

The first case study adopted to assess the performance of the proposed methodology
is the three-dimensional model of the L-shaped cantilever beam depicted in Fig. 2. The
structure is composed of two arms, each one having a length of 4 m, a width of 0.3 m and a
height of 0.4 m. The model is discretized using linear tetrahedral elements, with the entire
mesh resulting in ℳ = 4659 dofs. The structure is assumed to be made of concrete, whose
mechanical properties are: Young’s modulus E = 30 GPa, Poisson’s ratio ν = 0.2, density
ρ = 2500 kg/m3. The structure is perfectly clamped at one end and is excited close to the
other one by a distributed load q(t), acting on an area of (0.3× 0.3) m2, see Fig. 2. The load
q(t) varies in time according to q(t) = Q sin (2πft), where Q ∈ [1, 5] kPa and f ∈ [10, 100] Hz
respectively denote the load amplitude and frequency, and are collected in η = {Q, f}⊤; the
above notation specifying the range of variation of parameters, implicitly assumes that a
uniform probability distribution is adopted to describe them.

This first case study aims at verifying the damage localization capability of the proposed
method, also illustrating the interpretability of the obtained results. A further purpose is the
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identification of the combination of loss function and size Dh of the low-dimensional space
that provides the most satisfactory results.

Figure 2: L-shaped cantilever beam: physics-based digital twin, with details of the loading conditions and
synthetic recordings related to displacements u1(t), . . . , u8(t).

3.1. Dataset assembly and training options

The dataset D, according to Eq. (1), is populated of multivariate time series U(η,𝔂, δ)
obtained by reducing the stiffness within the subdomain Ω𝓎, which is a box (0.3×0.3×0.4) m3

in size. The target position of this reduction is given by the coordinates of its center of mass
𝔂 = (xΩ, yΩ) ∈ R, with xΩ, yΩ ∈ [0.15, 3.85] m, which vary one at a time and can be encoded
as an abscissa running along the axis of the structure. The damage level δ ∈ [10%, 25%] is
held constant within the time instance (0, T ).

Synthetic displacement recordings U(η,𝔂, δ) = [u1, . . . ,uNu
] are obtained in relation

to Nu = 8 dofs along the bottom surface of the structure, to mimic a monitoring system
arranged as depicted in Fig. 2. Each recording un(t), n = 1, . . . , Nu, is provided with a
frequency of acquisition of 𝒻 = 500 Hz over the time interval (0, T = 1 s), thus consisting of
L = 501 data points. Measurement noise, represented by an additive white Gaussian noise
featuring a signal-to-noise ratio of 80, is then used to corrupt the recordings.

The ROM is built exploiting a snapshot matrix S featuring S = 150, 000 snapshots,
obtained through 300 evaluations of problem (8) carried out over (0, T ), at varying values
of the input parameters. By prescribing a tolerance ϵ = 0.5 · 10−3, R = 68 POD bases are
selected in place of the original 4659 dofs; thanks to the ROM, the computing time required
by each simulation decreases from 11.30 s to 0.39 s, entailing a speed-up of about 29 times.
For a deeper discussion concerning these aspects in a DL-integrated SHM framework see [17].

For the case at hand, I = 8000 instances are collected using the ROM. The augmented
dataset DP in Eq. (2) is constructed pairing each instance with τP = 10 similar instances
yielding E𝓎 ≤ E𝓎 and with τN = 10 dissimilar instances yielding E𝓎 > E𝓎, after prescribing
E𝓎 = 0.15 m on the basis of the aforementioned size of the damaged box. The testing
data consist of IT = 800 pseudo-experimental instances, generated instead through the
noise-corrupted FOM solutions.
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3.2. Damage localization outcomes

The results regarding the achieved performance are now commented considering the
adoption of the loss functions L1, L2 and L3 introduced in Sec. 2.2. A comparison among
the three different outcomes is finally reported and discussed.

3.2.1. MSE loss function
The damage localization performance obtained by adopting at the training stage the MSE

loss function L1, equipped with an Euclidean metric, is first considered. In this case, the size
Dh = 2 of the low-dimensional space directly follows from the modeling of the considered
problem, without any need of tuning. The low-dimensional mapping obtained for the training
data is reported in Fig. 3a, where {(h1, h2)i}Ii=1 are plotted together with a color channel
referring to the target damage position along the x-axis, i.e. {xΩi}Ii=1, and along the y-axis,
i.e. {yΩi}Ii=1, see also Fig. 2. The overall shape defined by the scatter plots reflects the actual
structural geometry, and the colors are in agreement with the coordinates in the physical
space. Hence, the mapping is properly learned and the low-dimensional features provide a
system of coordinates suitable to catch the damage position from the vibration recordings.

The testing phase attempts to mimic a real monitoring process of a structural system:
raw vibration recordings are therefore assumed to be collected on-the-fly, and analyzed to
localize the damage position. The mapping of the testing data is reported in Fig. 3b, to
show that the NN has a proper generalization capacity. Damage is then located in real-time
by exploiting the KNN algorithm described in Sec. 2.2. K = 58 nearest neighbors and
the uniform weighting rule are adopted through a 20-fold cross-validation, as providing the
maximum folds-averaged regression score.

The distributions of the prediction error along the x and y directions, related to the testing
data, are reported in Fig. 4. In these charts, the counts refer to the number of instances for
which a certain prediction error is reported. The observed values are distributed in a rather
narrow range around the origin, showing that the damage position is almost always identified
with high accuracy. It can be noted that the error distribution along the y-direction features
a slightly greater variance with respect to what happens along the x-direction; this is due to
the structural layout, which yields a sensitivity of sensor recordings to damage smaller for
damage positions far from the clamped side.

Assuming the prediction errors along the same two directions to follow a Gaussian
distribution, some related statistics are also reported in Tab. 2. In this table, the mean
average error (MAE), the error mean µ and standard deviation ζ, along the x and y directions,
are employed to assess the performance of the damage localization model. In particular, the
MAE values have to be highlighted, which are smaller than half the size of the damaged
region in both directions; the µ values are close to zero, as it should be for an unbiased
estimator; the ζ values confirm the greater inaccuracies along the y-direction, as well as the
MAE values. Accordingly, 95% of the testing population is reported to yield prediction errors
lying within the intervals [−0.38, 0.43] m and [−0.43, 0.51] m, respectively along the x and y
directions, which is a remarkable result.
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(a)

(b)

Figure 3: L-shaped cantilever beam - mapping learned via L1 and Dh = 2: (a) training instances {(h1, h2)i}Ii=1

against the correct damage position along the (left) x-direction {xΩi}Ii=1 and (right) y-direction {yΩi}Ii=1;
(b) testing instances {(h1, h2)i}ITi=1 against the correct damage position along the (left) x-direction {xΩi}ITi=1

and (right) y-direction {yΩi}ITi=1.

Table 2: L-shaped cantilever beam - testing data, accuracy of damage localization along the x and y directions
for L1 and Dh = 2. Data reported in terms of: mean absolute error (MAE); mean (µ) and standard deviation
(ζ) associated to the error distributions.

IT : 800 k: 58 – uniform
MAEx: 0.094 m MAEy : 0.117 m
µx: 0.028 m µy : 0.043 m
ζx: 0.21 m ζy : 0.24 m

3.2.2. Square-square loss function with Euclidian metric
The results obtained using the square-square loss function L2, equipped with an Euclidean

metric, are now described. By minimizing L2, dissimilar pairs are kept away by at least
the margin ψ, while similar pairs are pushed to be as close as possible. The mapping is not
explicitly constrained by the label values as in the previous case, and the NN is left free
to learn a suitable metric space by itself. This aspect results in the need of increasing the
size Dh of the low-dimensional mapping, to provide a sufficient representation capability to
properly describe the input variability to the NN. In order to identify a suitable criterion
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(a) (b)

Figure 4: L-shaped cantilever beam - distribution of the prediction error over the testing instances along the
(a) x-direction and (b) y-direction, adopting L1 and Dh = 2.

to select Dh, the performances of the NN are systematically analyzed for Dh = 2− 4. By
slightly anticipating the discussion of the results, the best outcome is obtained with Dh = 4,
with no improvement for Dh > 4. This is somehow expected, being Dh = 4 equal to the
number of parameters, i.e. the intrinsic dimension of the structural model.

A compact, two-dimensional representation of the embedding for the training and testing
data related to Dh = 4 is reported in Fig. 5, as obtained by applying the multidimensional
scaling (MDS) to the NN mappings. MDS is a nonlinear dimensionality reduction method in
statistical learning that seeks a low-dimensional representation of the input data, still preserv-
ing the pairwise scalar products [62, 63]; the metric implementation in scikit-learn [64] is
here adopted. As expected, the overall shape defined by the scatter plots does not resemble
the actual structural layout in this case, as the relevant geometrical information are not
exploited during the training. Graphs showing the general low-dimensional mapping for
the training and testing data are instead reported in Fig. 6 and Fig. 7, respectively. Here,
{(h1, h2, h3, h4)i}I,ITi=1 are plotted in pairs, against the correct damage position along the x
and y directions, providing the low-dimensional manifold described by the learned mapping as
the position of damage varies. From both the MDS representation and the general mapping
it can be claimed that the task-specific mapping is learned with a proper generalization
capacity, as consistent results are obtained for the training and testing data.

The distributions of the prediction error along the x and y directions relative to the
testing data are reported in Fig. 8, only for Dh = 4. The two distributions confirm that
the damage position is almost always identified with high accuracy, yet less accurately
along the y-direction, according to the results obtained in Sec. 3.2.1. The statistics of the
prediction errors for the considered choices of the embedding size Dh are shown in Tab. 3.
The performance of the damage localization model is more than satisfactory even for Dh = 2,
although increasing Dh yields an improvement of all the considered metrics, as the NN
features a greater representation capability useful to describe the variability of the structural
response properly. In all cases, the reported MAE values are smaller than, or equal to,
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half the size of the damaged region in both directions and the best result is obtained with
Dh = 4, improving the result provided with L1 in all the considered performance measures.
Adopting this setting, and according to the reported mean and standard deviation values,
95% of the testing population yields prediction errors bounded within [−0.36, 0.42] m and
[−0.44, 0.54] m, respectively along the x and y directions. In spite of the improvement
reported for higher values of Dh, the computational time required to train and evaluate
the NN is not affected. Indeed, choosing Dh = 4 has a negligible impact on the number
of tunable parameters Ω, yet the relevant representation capability of the NN significantly
improves. The comparison among the results obtained with L1, L2 and L3 is postponed to
Sec. 3.3.

(a)

(b)

Figure 5: L-shaped cantilever beam - multidimensional scaling onto two dimensions of the mapping learned
via L2 and Dh = 4: (a) training instances {(h1, h2, h3, h4)i}Ii=1, against the correct damage position along
the (left) x-direction {xΩi}Ii=1 and (right) y-direction {yΩi}Ii=1; (b) testing instances {(h1, h2, h3, h4)i}ITi=1

against the correct damage position along the (left) x-direction {xΩi}ITi=1 and (right) y-direction {yΩi}ITi=1.

3.2.3. Square-square loss function with cosine similarity
The results obtained with the square-square loss function L3, equipped with the metric

built upon the cosine similarity defined in Eq. (5), are now detailed. In this case, the
performances of the NN are systematically analyzed in the range Dh = 3− 5. As compared
to what reported for L2, the size of the low-dimensional space is increased, to account for
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: L-shaped cantilever beam - mapping of the training data {(h1, h2, h3, h4)i}Ii=1 plotted 2-by-2
against the correct damage position using L2 and Dh = 4, along the (a-f) x-direction {xΩi}Ii=1 and (g-l)
y-direction {yΩi}Ii=1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7: L-shaped cantilever beam - mapping of the testing data {(h1, h2, h3, h4)i}ITi=1 plotted 2-by-2 against
the correct damage position using L2 and Dh = 4, along the (a-f) x-direction {xΩi}ITi=1 and (g-l) y-direction
{yΩi}ITi=1.
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(a) (b)

Figure 8: L-shaped cantilever beam - distribution of the prediction error over the testing instances along the
(a) x-direction and (b) y-direction, adopting L2 and Dh = 4.

Table 3: L-shaped cantilever beam - testing data, accuracy of damage localization along the x and y directions
for L2 and Dh = {2, 3, 4}. Data reported in terms of: mean absolute error (MAE); mean (µ) and standard
deviation (ζ) associated to the error distributions.

IT = 800 Dh = 2 Dh = 3 Dh = 4

k: 96 – unif. 56 – dist. 51 – dist.
MAEx: 0.120 m 0.091 m 0.082 m
MAEy : 0.152 m 0.116 m 0.105 m
µx: 0.037 m 0.038 m 0.028 m
µy : 0.073 m 0.078 m 0.047 m
ζx: 0.26 m 0.21 m 0.20 m
ζy : 0.30 m 0.27 m 0.25 m

the normalization constraint provided by Sc. Anticipating the discussion of the results, and
according to what obtained with L2, the best results are provided by Dh = 5.

The MDS representations onto two dimensions of the embedding obtained with the
training and testing data for Dh = 5 are reported in Fig. 9. It is interesting to note how the
manifold described by the learning mapping increases in size for damage positions far from
the clamped side, because of their smaller impact on the sensor recordings yielding a less
accurate identification. For completeness, the embedding on the unit hypersphere obtained
from the general low-dimensional mapping is reported in Fig. 10, as obtained for Dh = 3

only; it should be remarked that Dh = 3 is here considered in place of Dh = 5, to fully
display an exemplary metric space built upon the cosine similarity. It can be noticed that
embeddings associated with different damage conditions are forced to differentiate themselves
by featuring a rotation in the low-dimensional space.

The distributions of the prediction error along the x and y directions in relation to the
testing data are reported in Fig. 11, only for Dh = 5. It has to be noted that the same
metric built upon the cosine similarity used during the training, has to be adopted also
for the computation of distances at prediction stage. The observed values are distributed
similarly to what reported for L1 and L2, but it can be qualitatively appreciated that damage
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localizations are slightly less accurate for L3. The statistics of the prediction errors obtained
at varying size Dh of the low-dimensional space are shown in Tab. 4. In this case, increasing
Dh enables only a partial enhancement: the performance measures along the y-direction are
not improving for higher Dh values, while those along the x-direction improve only by a
limited amount in comparison to what reported for L2. As anticipated, the best result is
reported for the largest size Dh = 5 of the low-dimensional space among those considered:
95% of the testing population yields prediction errors bounded within [−0.48, 0.54] m and
[−0.47, 0.59] m, respectively along the x and y directions.

(a)

(b)

Figure 9: L-shaped cantilever beam - multidimensional scaling onto two dimensions of the mapping learned via
L3 and Dh = 5: (a) training instances {(h1, h2, h3, h4, h5)i}Ii=1, against the correct damage position along the
(left) x-direction {xΩi}Ii=1 and (right) y-direction {yΩi}Ii=1; (b) testing instances {(h1, h2, h3, h4, h5)i}ITi=1

against the correct damage position along the (left) x-direction {xΩi}ITi=1 and (right) y-direction {yΩi}ITi=1.

3.3. Discussion of the results

The results obtained for the present case study are in general fairly good. Given the
structural layout, the sensitivity of measurements to damage is smaller for damage positions
far from the clamped side; accordingly, the NN performs better along the x-direction. For
all considered sizes of the low-dimensional space, the three loss functions yield MAE values
smaller than, or equal to, half the size of the damaged region in both directions, which is a
remarkable result. The worst localization outcomes are obtained with the NN leveraging
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(a)

(b)

Figure 10: L-shaped cantilever beam - normalized embedding of the mapping learned via L3 and Dh = 3: (a)
training instances {(h1, h2, h3)i}Ii=1, against the correct damage position along the (left) x-direction {xΩi}Ii=1

and (right) y-direction {yΩi}Ii=1; (b) testing instances {(h1, h2, h3)i}ITi=1, against the correct damage position
along the (left) x-direction {xΩi}ITi=1 and (right) y-direction {yΩi}ITi=1.

Table 4: L-shaped cantilever beam - testing data, accuracy of damage localization along the x and y directions
for L3 and Dh = {3, 4, 5}. Data reported in terms of: mean absolute error (MAE); mean (µ) and standard
deviation (ζ) associated to the error distributions.

IT = 800 Dh = 3 Dh = 4 Dh = 5

k: 120 – unif. 103 – unif. 82 – dist.
MAEx: 0.143 m 0.132 m 0.125 m
MAEy : 0.148 m 0.146 m 0.148 m
µx: 0.032 m 0.038 m 0.032 m
µy : 0.074 m 0.075 m 0.061 m
ζx: 0.27 m 0.26 m 0.26 m
ζy : 0.27 m 0.27 m 0.27 m
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(a)

Figure 11: L-shaped cantilever beam - distribution of the prediction error over the testing instances along
the (a) x-direction and (b) y-direction, adopting L3 and Dh = 5.

L3 during training, which looks almost insensitive to the selected dimension Dh of the
low-dimensional space. On the other side, the most accurate results are obtained with the
NN leveraging L2 during training. In this latter case, increasing Dh provides a non-negligible
improvement of the localization outcomes. The positive effect of increasing Dh can also be
appreciated by the inverse distance weighting rule selected by the cross-validation method in
place of the uniform weighting rule, which intuitively testifies the goodness of the learned
mapping. The NN trained on L1 provides instead slightly worse localization results, while
the associated low-dimensional mapping is easier to interpret. In light of these considerations,
only the loss functions L1 and L2 are accounted for in the reminder of the research activity
here reported.

To assess the robustness of the proposed methodology against the uncertainties related to
the size of the damaged region, the setting yielding the most accurate localization outcomes,
leveraging the L2 loss function, is also tested on a further dataset made of IT = 800 pseudo-
experimental instances. These instances are generated with the FOM and noise-corrupted as
before, but the size of the subdomain wherein the stiffness is reduced by δ ∈ [10%, 25%] is
also varied in its longitudinal thickness lΩ, according to lΩ ∈ [0.2, 0.45] m. Such variation is
accounted for in the testing dataset, while the same value lΩ = 0.3 m of the previous case is
used for training. The obtained results are summarized in Tab. 5, in terms of the statistics
of the prediction errors. The obtained outcomes are very close to those reported in Tab. 3:
the MAE values are smaller than half the size of the damaged region in both directions; the
prediction error mean values are close to zero along the x and y directions; according to the
slightly higher deviations than that observed in the reference testing condition, 95% of the
testing population yields prediction errors bounded within [−0.54, 0.63] m and [−0.56, 0.66] m,
respectively along the x and y directions, which is a remarkable result considering damaged
regions of variable size and damage level.
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Table 5: L-shaped cantilever beam - testing data characterized by damaged regions of varying size, accuracy
of damage localization along the x and y directions for L2 and Dh = 4. Data reported in terms of: mean
absolute error (MAE); mean (µ) and standard deviation (ζ) associated to the error distributions.

IT : 800 k: 51 – dist.
MAEx: 0.122 m MAEy : 0.133 m
µx: 0.045 m µy : 0.048 m
ζx: 0.30 m ζy : 0.31 m

4. Damage detection in a railway bridge

This second case study aims to assess the proposed methodology in a more complex
situation, involving the integral concrete portal frame railway bridge depicted in Fig. 12.
The bridge is located along the Bothnia line in the urban area of Hörnefors in the northern
Sweden. It features a span of 15.7 m, a free height of 4.7 m and a width of 5.9 m (edge beams
excluded). The wing walls stretch out in the longitudinal direction, up to 8 m at the top.
The thickness of the structural elements is 0.5 m for the deck, 0.7 m for the frame walls, and
0.8 m for the wing walls. The bridge is founded on a couple of plates connected by two stay
beams and supported by pile groups. The superstructure consists of a single ballasted track,
0.6 m deep and 4.3 m wide, that rests on sleepers spaced 0.65 m apart. All the geometrical
and mechanical data used in this experiment are adapted from former research activities
involving the analysis of the relevant soil-structure interaction, see [65, 66].

Figure 12: Hörnefors railway bridge.

The bridge is subjected to the transit of trains type Gröna Tåget, at a speed υ ∈
[160, 215] km/h. Only trains composed of two wagons are considered, thus characterized by
8 axles, see also [17], each one carrying a mass ϕ ∈ [16, 22] ton. The equivalent distributed
force is transmitted to the structure through 25 sleepers over the deck, and then propagated
through the ballast with a slope 4 : 1, according to Eurocode 1 [67]. Denoting by pmax the
maximum load that each axle can provide to the structure, the entire moving load system is
modeled as:

P (t, υ, x) =

25∑
ι=1

8∑
κ=1

pmax · Aι(x) · Aι
κ(t, υ) , (14)

with sums of all contributions due to the 8 axles and the 25 sleepers. Herein, Aι(x) is the
space activation function of the ι-th sleeper, and Aι

κ(t, υ) is the relevant time modulation
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Figure 13: FE discretization of the Hörnefors railway bridge.

function related to the κ-th axle; further details on Aι(x) and Aι
κ(t, υ) can be found in [17].

The bridge is discretized with 17, 057 linear tetrahedral elements as shown in Fig. 13,
resulting in ℳ = 17, 292 dofs. To ensure a smooth transmission of the moving load, the
space discretization features a reduced element size of 0.15 m for the deck, while it is set to
0.80 m elsewhere. The concrete is assumed of class C35/45, whose mechanical properties are:
E = 34 GPa, ν = 0.2, ρ = 2500 kg/m3. The ballast, whose density is ρ = 1800 kg/m3, is
modeled through an increased density of the deck and of the edge beams. The presence of
the embankments is accounted for through a Robin mixed boundary condition (with elastic
coefficient kRobin = 108 N/m3) over the surface facing the ground. The dynamic response of
the bridge to the train passage is computed within the time interval (0, T = 1.5 s) with a
time step size of 1/𝒻, 𝒻 = 400 Hz, in order to both allow the train to cross the bridge even
when traveling at the lowest speed and properly catch the structural effects at the maximum
speed of 215 km/h.

4.1. Dataset assembly and training options

D is assembled by considering that damage can take place anywhere over the two
lateral frame walls and the deck, within subdomains Ω𝓎 featuring a different layout in
the two cases, see Fig. 14. The localized stiffness reduction can occur with magnitude
δ ∈ [30%, 40%] fixed within (0, T ), and its target coordinates are given by 𝔂 = (xΩ, zΩ) ∈ R,
with xΩ ∈ [−0.115, 16.63] m and zΩ ∈ [0.25, 6.25] m varying one at a time.

The monitoring system is devised to provide synthetic displacement recordings U(η,𝔂, δ) =
[u1, . . . ,uNu

], related to the Nu = 10 dofs highlighted in Fig. 14. Each time history un(t),
n = 1, . . . , Nu, collects L = 601 data points. To allow for the sensor noise, all the data are cor-
rupted with an independent, identically distributed Gaussian noise, featuring a signal-to-noise
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ratio equal to 120.

Figure 14: Railway bridge - physics-based digital twin, perspective cross-section with details of the damaged
region Ω𝓎 and synthetic recordings related to displacements u1(t), . . . , u10(t).

The number of snapshots used to construct the ROM is set to S = 180, 000, resulting from
300 FOM analyses, for different input parameters. To build the ROM, the error tolerance
is set to ϵ = 10−3, yielding R = 528 in place of the original 17, 292 dofs; the CPU time
required by each simulation thus decreases from 82.95 s to 12.50 s, yielding a speed-up of
about 6.90 times. This slightly large number of POD-basis functions is mainly due to the
need of embedding into the ROM the specific response of the structure, in the presence of a
variety of potential localized stiffness reductions.

The dataset D is built with I = 8000 instances computed with the ROM, which are
augmented to DP with τP = τN = 10 pairs after setting E𝓎 = 0.25 m. The testing dataset
consists of IT = 800 pseudo-experimental instances, generated through the FOM and noise
corrupted. Time histories of the vertical displacement at midspan are reported in Fig. 15, to
compare the FOM and ROM solutions in the absence of the added measurement noise, to
assess the ROM accuracy, and, in the presence of noise, to also assess its potential impact on
the handled structural response to the loading.

4.2. Damage localization Outcomes

In view of the results reported for the L-shaped cantilever beam case, only the loss
functions L1 and L2 are considered for the present investigation.

4.2.1. MSE loss function
If the MSE loss function L1 equipped with an Euclidean metric is adopted, the size of the

low-dimensional mapping is set to Dh = 2. The low-dimensional mappings obtained with the
training and testing data are reported in Figs. 16a and 16b, respectively. The representation
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Figure 15: Railway bridge - vertical displacement time histories at midspan (xΩ = 8.25 m, zΩ = 6.25 m,
δ = 0.35, υ = 210 km/h and ϕ = 20 ton): comparison between (a) FOM and reduced-order approximation,
and (b) FOM and noise-corrupted reduced-order approximation.

of the two components {(h1, h2)i}Ii=1, against the position of damage along the x and z

directions, proves that the mapping is properly learned, as the overall shape defined by the
scatter plots clearly reflects the geometrical parametrization of the damage position over the
bridge, described by the color channel. It can also be claimed that the NN is not incurred
in overfitting issues, as the low-dimensional representations obtained with the training and
testing data show an extremely good agreement.

Regarding the KNN regressor, K = 42 nearest neighbors and the uniform weighting rule
are selected by the cross-validation method, to predict the damage position. The distributions
of the prediction error along the x and z directions relative to the testing data are reported in
Fig. 17. The two distributions provide a first qualitative indication that the damage position
is almost always identified with great accuracy, as the observed values are concentrated
in a rather narrow range around the origin. The associated statistics are shown in Tab. 6,
reporting drastically larger inaccuracies in locating damage along the x-direction: both the
MAE and the standard deviation values are more than doubled with respect to the z-direction.
Despite that, the damage position is often provided with a high level accuracy: assuming the
observed prediction errors to be Gaussian distributed, 95% of the testing population yields
prediction errors lying within the intervals [−2.54, 2.63] m and [−1.16, 1.19] m, respectively
along the x and z directions.

Table 6: Railway bridge - testing data, accuracy of damage localization along the x and z directions for L1

and Dh = 2. Data reported in terms of: mean absolute error (MAE); mean (µ) and standard deviation (ζ)
associated to the error distributions.

IT : 800 k: 42 – unif.
MAEx: 0.692 m MAEz : 0.306 m
µx: 0.043 m µz : 0.019 m
ζx: 1.32 m ζz : 0.60 m
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(a)

(b)

Figure 16: Railway bridge - mapping learned via L1 and Dh = 2: (a) training instances {(h1, h2)i}Ii=1

against the correct damage position along the (left) x-direction {xΩi}Ii=1 and (right) z-direction {zΩi}Ii=1;
(b) testing instances {(h1, h2)i}ITi=1 against the correct damage position along the (left) x-direction {xΩi}ITi=1

and (right) z-direction {zΩi}ITi=1.

4.2.2. Square-square loss function with Euclidian metric
On the basis of the results presented in Sec. 3.2, the square-square loss function L2

equipped with an Euclidean metric is adopted by choosing the size of the low-dimensional
mapping to be Dh = 4, thus equal to the number of free parameters ruling the structural
model. The MDS representations onto two dimensions, obtained with the training and testing
data, are reported in Figs. 18a and 18b, respectively. These plots qualitatively show that
the damage position is encoded in the low-dimensional space with higher accuracy along the
z-axis, as the portion of the manifold describing the variation along the x-axis looks more
confused and increased in size, which is in accordance to the results reported for L1.

K = 51 nearest neighbors and the inverse distance weighting rule are adopted through
the cross-validation method, to set the KNN regressor. The damage localization outcomes
are reported in Fig. 19, in terms of the distributions of prediction error along the x and z
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(a) (b)

Figure 17: Railway bridge - distribution of the prediction error over the testing instances along the (a)
x-direction and (b) z-direction, adopting L1 and Dh = 2.

directions. It can be qualitatively appreciated that the two distributions feature a smaller
variance with respect to those obtained leveraging L1. Such claim is confirmed by the relative
statistics reported in Tab. 7, that show an improvement over all the considered performance
metrics, in particular along the x-direction: the MAE values improve from 0.692 m and
0.306 m to 0.453 m and 0.260 m, respectively along the x and z directions; 95% of the
testing population yields prediction errors lying within the intervals [−2.07, 2.12] m and
[−0.95, 1.01] m along the same directions. This further validates the square-square loss
function L2 equipped with an Euclidean metric as the most satisfactory one.

According to the obtained results, the proposed methodology is shown to outperform the
former damage detection strategy, proposed by the authors in [17]. The latter is based upon
a supervised DL-based classification framework, exploited to locate damage in structures by
mapping raw vibration recordings onto discrete target labels, associated to predefined damage
scenarios of interest. Considering the very same railway bridge case study, the quality of the
outcomes is improved in several ways: the level of accuracy at which the damage is located
is markedly refined, as only six damage scenarios, associated to quite large damaged regions,
were accounted in the previous work; during this former investigation, the damage level δ
was held constant within all instances, while a range of interest to sample δ is prescribed in
the present work; moving from a classification framework toward a metric-based one, it is
not required to define a-priori a bunch of target classes, yet the damage can be identified
anywhere in the structure.

Table 7: Railway bridge - testing data, accuracy of damage localization along the x and z directions for L2

and Dh = 4. Data reported in terms of: mean absolute error (MAE); mean (µ) and standard deviation (ζ)
associated to the error distributions.

IT : 800 k: 51 – dist.
MAEx: 0.453 m MAEz : 0.260 m
µx: 0.028 m µz : 0.027 m
ζx: 1.07 m ζz : 0.50 m
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(a)

(b)

Figure 18: Railway bridge - multidimensional scaling onto two dimensions of the mapping learned via L2 and
Dh = 4: (a) training instances {(h1, h2, h3, h4)i}Ii=1, against the correct damage position along the (left)
x-direction {xΩi}Ii=1 and (right) z-direction {zΩi}Ii=1; (b) testing instances {(h1, h2, h3, h4)i}ITi=1 against
the correct damage position along the (left) x-direction {xΩi}ITi=1 and (right) z-direction {zΩi}ITi=1.

(a) (b)

Figure 19: Railway bridge - distribution of the prediction error over the testing instances along the (a)
x-direction and (b) z-direction, adopting L2 and Dh = 4.
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5. Conclusion

Within a structural health monitoring framework, this paper has developed a new method
for damage localization, in case of low evolution rate. The procedure has exploited an ordered
and smooth mapping of vibration data onto a low-dimensional space, whose components
encode the damage position in the structure.

The training stage has been performed in a supervised pairwise fashion, exploiting
synthetic datasets generated through a reduced-order model to speed up the entire procedure
and allow to move toward real-time applications. The location of the damaged zone has
been carried out through a k-nearest neighbors regression performed on the learned low-
dimensional space. Thanks to the link between the internal characterization of the problem
and the physical space, the proposed method can be exploited to locate damage at different
scales, without the need to define several target damage classes.

The proposed strategy has been assessed on an L-shaped cantilever beam and a portal
frame railway bridge, exploring the use of three different loss functions and also varying the
size of the low-dimensional feature space. In all the considered cases, as long as the low-
dimensional mapping features enough representation capability to describe the variability of
the structural response, the damage localization task has been carried out with a remarkable
accuracy. The best results have been achieved by using the square-square loss function
equipped with an Euclidean metric, to train the neural network used to parametrize the
mentioned low-dimensional mapping. The method has shown to be insensitive to measurement
noise, to the varying operational conditions characterized by time-varying and moving loads,
and to the relevant damage severity. Moreover, it has been also reported to be rather
insensitive to the assumed size of the damaged region – an aspect that has been considered
to assess the possible effect of an improper setting of the SHM procedure.

Besides the need of validating the proposed diagnostic framework within a suitable
experimental framework, the future work will be devoted to also provide a quantification of
damage severity, possibly even when material and geometrical nonlinearities simultaneously
affect the structural response. An optimal sensor placement strategy, to maximize the
sensitivity to damage of the low-dimensional features, will be also envisaged to improve the
overall effectiveness of the methodology.
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Appendix A. Details on the convolutional units and dense layers

For completeness, in this Appendix the algorithmic details of the convolutional units and
dense layers used in this work are reported.

During training, the learning algorithm tunes the NN parameters in Ω, by iteratively
minimizing the loss function over the IP pairs. At each iteration, the NN parameters are
updated after having processed a mini-batch made of B instances. The tunable parameters
Ω, here include the convolution kernel filters Θ and the weights ω of the dense layers.

Each convolutional unit consists of: a convolutional layer C, a nonlinear activation function
N , a batch normalization B and a 1D max pooling layer P . What described in the following
applies to all three convolutional units.

Let Uk−1 = {Uk−1
b }Bb=1 = {(uk−1

1b , . . . ,uk−1
Nkb

)}Bb=1 ∈ RLk−1×Nk−1×B be the input tensor
of the k-th convolutional layer Ck, with k = 1, 2, 3. The relevant output of Ck is given by:

𝔃k
nb =

Nk−1∑
m=1

Θkm
n ∗ uk−1

mb , n = 1, . . . , Nk , b = 1, . . . , B , (A.1)

and assembled as 𝓩k = {(𝔃k
1b, . . . ,𝔃k

Nkb
)}Bb=1 ∈ RL∗

k×Nk×B. In Eq. (A.1): ∗ : (RHk ×
RLk−1) → RL∗

k is the convolution operation of kernel size Hk; Θk
n = {Θkm

n }Nk−1

m=1 ∈ RHk×Nk−1

are the kernel filters, that the n-th channel simultaneously applies to the input tensor of the
b-th instance within the current mini-batch; Θk = {Θk

n}
Nk
n=1 ∈ RHk×Nk−1×Nk is the overall

filters set. Then, Θ = {Θ1,Θ2,Θ3} collects all the tunable parameters of C1, C2 and C3.
The linear activations produced by the repeated convolutions are then run through a

nonlinear activation function, which in this case is the hyperbolic tangent function, to provide:

�̄�kl
nb = N (𝓏kl

nb) = tanh (𝓏kl
nb) , l = 1, . . . , L∗

k . (A.2)

Batch normalization is used to mitigate the gradient issues typically encountered when
training deep NN architectures, and thus stabilize the training dynamics by re-centering and
re-scaling the outputs of the last hidden layer across the relevant mini-batch, according to:

�̂�kl
nb = Bkn(�̄�kl

nb) = γBkn
· �̄�kl

nb − µBkn√
σ2
Bkn

+ ϵB
+ βBkn

, l = 1, . . . , L∗
k , (A.3)

where: µBkn
and σBkn

are the mean and the variance computed across the batch of the
activation values relevant to the n-th feature, which are used to enforce the inputs to comply
with a unit normal distribution; during inference, µBkn

and σBkn
are computed as a moving

average of, respectively, the mean and standard deviation of the batches seen during training,
to give more importance to the last iterations; ϵB is a small constant useful to avoid numerical
instabilities; γBkn

and βBkn
are a scaling factor and an offset factor, respectively, that are

learned during training in order to restore the flexibility of the NN.
Finally, the pooling layer reduces the dimensionality of �̂�

k
= {(�̂�k

1b, . . . , �̂�
k
Nkb

)}Bb=1 ∈
RL∗

k×Nk×B by down sampling the detection of nearby features [10]. Here, the 1D max
pooling is used to obtain Uk ∈ RLk×Nk×B from �̂�

k
, by choosing a stride equal to 2, in order

to subsample within a 1D neighborhood in time and resulting in an output size equal to
Lk = L∗

k/2.
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In a dense layer Dk, each neuron is fully-connected to its input layer, and it provides
a scalar output ruled by the composition of a nonlinear activation function with a linear
mapping. Denoting by Ak−1 = {Ak−1

b }Bb=1 = {(ak−1
1b , . . . , ak−1

Nk−1b
)}Bb=1 ∈ RNk−1×B the input

mini-batch for the k-th dense layer, the output is computed as:

aknb = N (ωk
n ·Ak−1

b + βk
n) , n = 1, . . . , Nk , b = 1, . . . , B , (A.4)

and assembled as Ak = {(ak1b, . . . , akNkb
)}Bb=1 ∈ RNk×B. In Eq. (A.4): ωk

n ∈ RNk−1 are the
connection weights ruling the linear mapping; βk

n is the bias term; ωk = {(ωk
n, β

k
n)}

Nk
n=1 ∈

R(Nk−1+1)×Nk is the overall filters set of Dk; N is the nonlinear activation function, which is
chosen as the hyperbolic tangent function. The set ω = {ω4,ω5,ω6} collects all the tunable
parameters of D4, D5 and D6.
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