
MOX–Report No. 20/2014

Anisotropic mesh adaptation for crack detection in
brittle materials

Artina, M.; Fornasier, M.; Micheletti, S.; Perotto,
S.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





Anisotropic mesh adaptation for crack detection in

brittle materials

Marco Artina∗ Massimo Fornasier∗ Stefano Micheletti†

Simona Perotto†

May 23, 2014

∗ Faculty of Mathematics
Technische Universität München

Boltzmannstrasse 3, 85748, Garching, Germany
marco.artina,massimo.fornasier@ma.tum.de

† MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

stefano.micheletti,simona.perotto@polimi.it

Keywords: non-convex minimization, brittle materials, a posteriori error estima-
tors, anisotropic mesh adaptation

AMS Subject Classification: 65N30, 65N50, 74R10, 74G65, 65K10

Abstract

The quasistatic brittle fracture model proposed by G. Francfort and
J.-J. Marigo can be Γ-approximated at each time evolution step by the
Ambrosio-Tortorelli functional. In this paper, we focus on a modification
of this functional which includes additional constraints via penalty terms to
enforce the irreversibility of the fracture as well as the applied displacement
field. Secondly, we build on this variational model an adapted discretization
to numerically compute the time-evolving minimizing solution. We present
the derivation of a novel a posteriori error estimator driving the anisotropic
adaptive procedure. The main properties of these automatically generated
meshes are to be very fine and strongly anisotropic in a very thin neighbor-
hood of the crack, but only far away from the crack tip, while they show
a highly isotropic behavior in a neighborhood of the crack tip instead. As
a consequence of these properties, the resulting discretizations follow very
closely the propagation of the fracture, which is not significantly influenced
by the discretization itself, delivering a physically sound prediction of the
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crack path, with a reasonable computational effort. In fact, we provide
numerical tests which assess the balance between accuracy and complexity
of the algorithm. We compare our results with isotropic mesh adaptation
and we highlight the remarkable improvements both in terms of accuracy
and computational cost with respect to simulations in the pertinent most
recent literature.

1 Introduction and motivations

Mathematical models of the propagation of brittle fractures based on variational
principles have arisen a strong interest in the past 15 years. On the one hand,
they describe a mechanical problem which collects the interest of different dis-
ciplines, from physics of solids to mechanical engineering. On the other hand,
they pose fascinating mathematical questions related to existence, regularity,
and numerical simulation of physically sound solutions.

One of the most advocated models for quasistatic brittle fracture evolution
was first presented by G. Francfort and J.-J. Marigo in [25]. This model is
particularly relevant because it is able to predict complex crack paths, without
making a priori assumptions on their possible propagation. The behavior of the
fracture is defined by the minimization of the energy of the system following
Griffith’s principle of energy balance of two main terms: the first is the elastic
energy and the second is a fictitious energy that represents the crack formation
cost, typically assumed to be proportional to the surface of the created crack
[29]. While in the original model of G. Francfort and J.-J. Marigo, the existence
of the crack evolution is assumed, only with the works of G. Francfort and C. J.
Larsen [26] and G. Dal Maso and R. Toader [20] the existence of a continuous
time evolution of the quasistatic model was proved.

Despite the success of this model for its mathematical well-posedness and,
at the same time, its rather general framework, mechanical engineers and physi-
cists of solids tend to favor more realistic models, where a smoother process
towards fracture is considered and a minimal cohesion between the surfaces of
the crack is not negligible. From this perspective, the approximation made by
L. Ambrosio and V. M. Tortorelli in [2] of the energy functional driving the
quasistatic evolution of the Francfort-Marigo model is very interesting because
the crack is identified by a smooth phase field v : Ω→ [0, 1], instead of a sharp
lower dimensional set. For this reason, we consider exclusively a numerical anal-
ysis and simulation of a quasistatic evolution based on the Ambrosio-Tortorelli
functional. Although it can be defined in any dimension and for any Lipschitz
domain, for simplicity of presentation we assume that Ω ⊂ R

2 is a polygonal
domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will
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drive the evolution of the crack. This function, g : [0, T ]× Ω→ R, is such that

g(t) =





t on ΩD+

−t on ΩD−

0 elsewhere
, (1)

where ΩD± = ΩD+ ∪ ΩD− is the subdomain where the load is applied and the
dependence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|Ω
D±

= g(t)|Ω
D±
}

of the admissible solutions. We define the functional: Iε : H
1(Ω)×H1(Ω; [0, 1])→

R as

Iε(u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx, (2)

where 0 < η ≪ ε ≪ 1, κ > 0, u ∈ A(g(t)), and v ∈ H1(Ω; [0, 1]). The first
integral of (2) represents the elastic energy Ee of the body, while the second one
is the fictitious crack energy Ef . As proved in [9], this functional Γ-converges in
L1(Ω) × L1(Ω) to the energy functional driving the evolution of the Francfort-
Marigo model, as ε → 0. This proof is built upon the original result of conver-
gence made by L. Ambrosio and V.M. Tortorelli in [1] for the approximation of
the Mumford-Shah functional [37]. Moreover, in [2], the proof of the existence
of minimizers for (2) is provided for all ε, η > 0. Alternative Γ-approximations
results are addressed, e.g., in [5, 22].

Our numerical approximation will be based on a discretization in both space
and time. Therefore, we introduce a time discretization 0 = t0 < t1 < . . . <
tF = T . The evolution is driven by a process of minimization of (2) at each
discrete time, which, for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H
1(Ω; [0, 1])

Iε(u, v),

whereas, for subsequent times t = tk, for k = 1, . . . , F , we look for a pair
(uε(tk), vε(tk)) such that

(uε(tk), vε(tk)) ∈ argmin
u ∈ A(g(tk)),

v ∈ H
1(Ω; [0, 1]), v ≤ vε(tk−1)

Iε(u, v). (3)

The two components of the solution to (3) represent the displacement of the
body and the phase field of the fracture. In particular, the fracture is identified
by the subset of the domain where vε(tk) is close to zero. The transition layer
between the two regions has a thickness of order ε and the condition v ≤ vε(tk−1)
enforces the irreversibility of the crack [28].
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While the existence of a continuous time evolution for the model evolving
along global minimizers, as defined in (3), has been shown in [26, 20], it is
more delicate to address the system development when it is evolving along local
minimizers or critical points of the energy. In this paper, we actually consider
a reliable numerical approximation of the evolution along critical points, as it
would be more realistic from a physical point of view [19]. So far, accurate
numerical simulations of the Francfort-Marigo model of fracture evolution are
based on very fine ad hoc meshes, with an enormous computational effort [9,
6]. After some attempts towards adaptive discretization of free-discontinuity
functionals of Mumford-Shah type [8, 10, 11, 14, 39], still we lack a reliable
adaptive strategy which can successfully break the dilemma “the grid follows
the fracture or the fracture follows the grid”, with a proper balance between
accuracy and complexity. In this paper, we make a yet another attempt to
challenge this serious difficulty. We follow and combine both strategies suggested
in the papers [10, 8]; in particular, we merge the minimization of the Ambrosio-
Tortorelli model with an adaptive anisotropic discretization by exploiting the
fact that the considered model exhibits solutions with very steep features close
to the crack. Moreover, as the crack evolves along a specific direction, the choice
of an anisotropic adaptation can be really advantageous compared with a more
standard isotropic approach. In more detail, the proposed adaptation procedure
is driven by the residual associated with the gradient of the energy functional. To
highlight the contribution of the present paper, we describe below its relevance
with respect to the recent literature [8, 10].

The significant innovation with respect to [8], where adaptive anisotropic
meshes are also considered, is twofold. On the one-hand, we deal with the
Ambrosio-Tortorelli functional instead of the Mumford-Shah functional. On the
other hand, while in [8] a heuristic Hessian-based approach is employed to drive
the mesh adaptation, we resort to a metric-based procedure hinging on a sound
error estimator.

The main improvements with respect to [10] are both in considering anisotro-
pic meshes, in contrast to exclusively isotropic refinement, and the fact that we
adapt the mesh at each minimization step. These apparently minor changes lead
to considerable improvements both in terms of accuracy and computational cost.
In particular, the proposed a posteriori error estimator has two main properties:
the automatically generated meshes are very fine and strongly anisotropic in a
thin neighborhood of the crack, whereas they show highly isotropic behavior in
a neighborhood of the crack tip. As a consequence, the resulting discretization
follows very closely the propagation of the fracture, which is not significantly
influenced by the discretization, delivering a physically sound prediction of the
crack path, with a reasonable computational effort.

The content of the paper is organized as follows: in Section 2, we introduce
a mild modification of the Ambrosio-Tortorelli functional and we provide some
results on its regularity. In Section 3, we introduce the anisotropic setting and
we derive the anisotropic a posteriori error estimator. Then, two different adap-
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tation algorithms are furnished in Section 4 and numerically validated on two
test cases in Section 5.

2 The modified Ambrosio-Tortorelli model

The minimization process (3) requires minimizing a functional subject to con-
straints on both u and v. In particular, we propose a minimization process
where the constraints are relaxed through suitable penalty terms. This choice
avoids us selecting special function spaces and allows us to pose the problem
in H1(Ω) for both u and v. Moreover, it simplifies significantly the numerical
implementation.
Before introducing the penalized functional, we properly rewrite the constraint
on the function v. In fact, the condition

v ≤ vε(tk−1), (4)

enforcing the irreversibility of the crack, cannot be easily implemented. So we
follow an alternative criterion, first introduced by Bourdin in [6], where the
irreversibility is provided by an equality constraint. In particular, if at time
t = tk−1 the set

CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL} (5)

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced
by

vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F. (6)

Moving from this idea, we propose minimizing the following penalized functional

Ipenaltyε,k (u, v) =

∫

Ω
(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

Ω
D±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

(7)

where γA and γB are the two (small) penalty constants. Hence, the new opti-
mization problem is

(uε(tk), vε(tk)) ∈ argmin
u ∈ H

1(Ω),

v ∈ H
1(Ω; [0, 1])

Ipenaltyε,k (u, v), (8)

for k = 1, . . . , F . Notice that, even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values
in [0, 1], shortly we shall prove that this boundedness is automatically fulfilled
by the unconstrained minimization and one need not implement it in practice.
Differently from the previous models [6, 10], we observe that for t = t0, we can
still use (8) as a starting minimization, as the last penalization term vanishes.

5



Since the constraints are clearly continuous, convex, and always non-negative,
the proof of the convergence of the minimizers of (8) to ones fulfilling (6) instead
of (4) in (3) for γA, γB → 0, follows from the Γ-convergence theory [18].
From now on, we refer only to functional (7), and we simplify the notation by
setting κ = 1 and by adopting the short-hand notation

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

Ω
D±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,
(9)

with α = (4ε)−1. Henceforth, we refer to (9) as to the modified Ambrosio-
Tortorelli functional. Throughout the remaining part of this section, we mimic
the analysis in Süli et al. [10] by suitably modifying it to deal with functional
(9).

Using a truncation argument, it can be checked that any local minimizer
(u, v) of I(·, ·) in the H1(Ω)×H1(Ω) topology is such that 0 ≤ v ≤ 1 a.e. in Ω.
Hence, we allow ourself to restrict the trial space for v to L∞(Ω) ∩H1(Ω).

Proposition 2.1 The functional I(·, ·) is Fréchet-differentiable in
H1(Ω)× (H1(Ω) ∩ L∞(Ω)).

Proof. The proof follows directly from Proposition 1.1 in [10]. In particular, the

differentiability of the additional penalty terms is trivial and thus the penalty terms

does not change the regularity of the functional I(·, ·). �

Let us introduce now the Fréchet derivative of I(w, z) in the direction (ϕ, ψ),
i.e.,

I ′(w, z;ϕ, ψ) = 2

(∫

Ω
(z2 + η)∇w · ∇ϕdx+

1

γA

∫

Ω
D±

(w − g(tk))ϕdx
)

+2

(∫

Ω

[
zψ|∇w|2 + α(z − 1)ψ + ε∇z · ∇ψ

]
dx+

1

γB

∫

CRk−1

zψ dx

)

=: 2aγA(z;w,ϕ) + 2bγB (w; z, ψ),
(10)

where we have split the derivative in two parts; the first one, aγA , associated
with the derivative in the direction ϕ, and the second one, bγB , related to the
direction ψ. Accordingly, we define the notion of critical point for I(·, ·).

Definition 2.1 The pair (u, v) ∈ H1(Ω)× (H1(Ω) ∩ L∞(Ω)) is a critical point
of I(·, ·) if I ′(u, v;ϕ, ψ) = 0 for all ϕ ∈ H1(Ω) and for all ψ ∈ (H1(Ω)∩L∞(Ω)).

By the following proposition, we can get rid of the constraint on v, as anticipated
above.
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Proposition 2.2 If (u, v) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)) is a critical point of
I(·, ·), then 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω.

Proof. Following the argument of Proposition 1.3 of [10], suppose that (u, v) is a
critical point of I(·, ·) and that Ω1 and Ω2 are the two subsets of Ω such that Ω1 = {x ∈
Ω | v(x) > 1}, Ω2 = {x ∈ Ω | v(x) < 0}, and |Ω1 ∪Ω2| > 0. Since (u, v) is a critical point
of I(·, ·), we have

bγB
(u; v, ψ) = 0 ∀ψ ∈ H1(Ω) ∩ L∞(Ω).

Then, if we choose

ψ(x) =





1− v(x) x ∈ Ω1

−v(x) x ∈ Ω2

0 elsewhere,

we obtain

bγB
(u; v, ψ) =

∫

Ω1

[
v(1− v)|∇u|2 − α(v − 1)2 − ε|∇v|2

]
dx

−
∫

Ω2

[
v2|∇u|2 + α(v − 1)v + ε|∇v|2

]
dx

− 1

γB

∫

CRk−1∩Ω2

v2 dx+
1

γB

∫

CRk−1∩Ω1

v(1− v) dx = 0.

(11)

The left-hand side of (11) consists of four negative terms, leading to a contradiction. �

2.1 The finite element discretization

We introduce the discrete counterpart of the minimization problem (8) in a finite
element setting. Thus, we denote by {Th}h>0 a family of meshes of the domain Ω,
with Nh the index set of the vertices of Th and Eh the skeleton of Th. Henceforth,
we assume that the boundary of ΩD± coincides with the union of consecutive
edges in Eh. With {Th}h>0 we associate the space Xh of the continuous piecewise
linear finite elements [15].

We denote by Ih(uh, vh) the discrete correspondent of I(u, v) in (9), given by

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)2) + ε|∇vh|2

]
dx

+
1

γA

∫

Ω
D±

Ph
(
(gh(tk)− uh)2

)
dx+

1

γB

∫

CRk−1

Ph
(
v2h
)
dx,

(12)
where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick
gh(tk) such that

∫

Ω
D±

gh(tk)wh dx =

∫

Ω
D±

g(tk)wh dx ∀wh ∈ Xh, (13)

i.e., gh(tk) is the L
2(ΩD±)-projection of g(tk) ontoXh. The action of the operator

Ph is equivalent to a mass lumping [41] and it allows us to extend Proposition 2.2
to the critical points of Ih(·, ·) as well.
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In the sequel, we assume that the off-diagonal entries of the stiffness matrix
K = [kij ] associated with the space Xh be non-positive, i.e.,

kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i 6= j ∈ Nh, (14)

where {ξl}#Nh

l=1 denotes the finite element basis of Xh. This condition is related
to discrete maximum principle as discussed, for instance, in [16, 31, 40]. The
discrete analogue to (8) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,

v̂h ∈ Xh

Ih(ûh, v̂h).

Analogously to Definition 2.1, we have the following

Definition 2.2 The pair (uh, vh) ∈ Xh × Xh is a critical point of Ih(·, ·) if
I ′h(uh, vh;ϕh, ψh) = 0 for all (ϕh, ψh) ∈ Xh ×Xh, where

I ′h(uh, vh;ϕh, ψh)

= 2

(∫

Ω
(Ph(v

2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

Ω
D±

Ph((uh − gh(tk))ϕh) dx
)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh, ϕh) + 2bhγB (uh; vh, ψh).

Proposition 2.2 can be adapted to the discrete case, suitably relying on as-
sumption (14) and the properties of Ph as shown in the following

Proposition 2.3 Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·), then
0 ≤ vh ≤ 1 for all x ∈ Ω.

Proof. The proof generalizes Proposition 2.2 in [10], by properly including the term∫

CRk−1

Ph(v
2
h) dx. By mimicking in a discrete setting the proof of Proposition 2.2, we

suppose, by contradiction, that there exist two index sets J1, J2 ⊂ Nh where vi > 1 for
all i ∈ J1 and vj < 0 for all j ∈ J2, where we let vi = vh(xi, tk).
Consider j ∈ J2 such that vj ≤ vi, for all i ∈ Nh and let ∆j be the patch of elements
associated with xj with Mj = {i ∈ Nh : xi ∈ ∆j}.
Now, if we choose as a test function the hat function ξj associated with xj , from the
equality bhγB

(uh; vh, ψh) = 0 we have

ε

∫

∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1

γB

∫

CRk−1∩∆j

Ph (vhξj) dx

> −vj
∑

K∈∆j

|∇uh|K |2
|K|
3
− α(vj − 1)

|∆j |
3

> 0,

(15)
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where the last inequality is obtained considering that vj < 0 and that Ph (vhξj) is a

non-positive function on the set CRk−1 ∩∆j . Since vh =
∑

i∈Nh

viξi, and the sum of the

rows of the stiffness matrix is zero, we have

ε

∫

∆j

∇vh · ∇ξj dx = ε
∑

i∈Mj

kjivi = ε
∑

i∈Mj

kji(vi − vj) + ε
∑

i∈Mj

kjivj = ε
∑

i∈Mj

kji(vi − vj).

Thus, using assumption (14) and the hypothesis vj ≤ vi, we have that

ε

∫

∆j

∇vh · ∇ξj dx ≤ 0

in contradiction with (15).
Similarly, we can proceed to contradict the existence of nodes in J1. Consider j ∈ J1
such that vj ≥ vi for all i ∈ Nh and let ∆j be the patch of elements associated with xj .
Now, choosing again as a test function the hat function ξj associated with xj , from the
equality bhγB

(uh; vh, ψh) = 0 we have

ε

∫

∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1

γB

∫

CRk−1∩∆j

Ph (vhξj) dx

< −vj
∑

K∈∆j

|∇uh|K |2
|K|
3
− α(vj − 1)

|∆j |
3

< 0,

(16)

where the last inequality is obtained considering that vj > 1 and that Ph (vhξj) is a

positive function on the set CRk−1 ∩ ∆j . Following a similar reasoning as before and

thanks to the hypothesis vj ≥ vi, we have that ε

∫

∆j

∇vh · ∇ξj dx ≥ 0 in contradiction

with (16). �

3 An anisotropic error estimator for the modified

Ambrosio-Tortorelli functional

Goal of this section is to provide a suitable optimization procedure for minimizing
functional (7) by successive minimizations of (12) on adapted anisotropic meshes.
For this purpose, we first lay down the anisotropic background and then we derive
an a posteriori estimator for |I ′(uh, vh;ϕ, ψ)|, by extending the analysis in [10].

3.1 The anisotropic background

We refer to the setting in [21, 34], where the anisotropic information is derived
from the spectral properties of the standard affine map TK : K̂ → K with

x = TK(x̂) =MK x̂+ tK
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between the equilateral reference triangle K̂ inscribed in the unit circle and the
generic triangle K of the mesh Th, with MK ∈ R

2×2, tK ∈ R
2, x ∈ K, x̂ ∈ K̂.

We introduce the polar decomposition of the Jacobian MK , i.e., MK = BKZK ,
where BK , ZK ∈ R

2×2 are a symmetric positive definite and an orthogonal ma-
trix, respectively. The first matrix models the deformation of K, while ZK
rotates it rigidly. Then, we consider the eigenvalue factorization of BK as
BK = RTKΛKRK , with RTK = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K). In partic-
ular, the eigenvectors r1,K , r2,K give the directions of the semi-axes of the ellipse
circumscribed to K, while the eigevalues λ1,K , λ2,K measure the length of these
semi-axes (see Figure 1). We also define the aspect ratio of the element K by
sK = λ1,K/λ2,K .

K
^

1

1,K
λ

λ

K

r

2,K

1,K

2,K
r

TK

Figure 1: Geometric quantities associated with the map TK

With a view to an anisotropic control of the mesh, we introduce the quasi-
interpolant Clément operator Qh : L2(Ω) → Xh [17]. We recall the following
anisotropic estimate for the interpolation error.

Lemma 3.1 Let w ∈ H1(Ω). If the cardinality #∆K ≤ N for some N ∈ N, and
diam(T−1

K (∆K)) ≤ C∆ ≃ O(1), where ∆K = {T ∈ Th : T ∩K 6= ∅}, then there
exist constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any K ∈ Th, it
holds

‖w −Qh(w)‖Hs(K) ≤ Cs
(

1

λ2,K

)s [ 2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
, (17)

with s = 0, 1, and

‖w−Qh(w)‖L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
, (18)

where hK = diam(K),

G∆K
(w) =

∑

T∈∆K

GT (w) (19)
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is a symmetric positive semi-definite matrix with

GT (w) =




∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx



, (20)

for any T ∈ Th.

Proof. See [23, 24] for the details. �

Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly
the anisotropic features (stretching factor and orientation) of each element, but
rather they ensure some smoothness in the variation of the anisotropic features
[36].

We recall an equivalence result between the standard H1(∆K)-seminorm and
its anisotropic correspondent:

Lemma 3.2 Let w ∈ H1(Ω) and K ∈ Th. For any β1, β2 > 0, it holds

min{β1, β2} ≤
β1(r

T
1,KG∆K

(w)r1,K) + β2(r
T
2,KG∆K

(w)r2,K)

|w|2
H1(∆K)

≤ max{β1, β2},

(21)
where G∆K

(·) is defined as in (19).

Proof. See [33] for the details. �

3.2 An a posteriori error estimator

We can now state the main result of this section which represents the anisotropic
analogue of Proposition 3.1 in [10].

Proposition 3.1 Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.2. Then, it holds

|I ′(uh, vh;ϕ, ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ, ψ ∈ H1(Ω),

(22)
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where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
‖[[∇uh]]‖L∞(∂K) ‖v2h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ‖2vh(∇vh · ∇uh)‖L2(K) +
δK,Ω±

D

γA

(
‖uh − gh(tk)‖L2(K)

+‖gh(tk)− g(tk)‖L2(K)

)
+

1

λ2,K

[
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K)

+
|K|1/2 h2K

γA
|uh − gh(tk)|W 1,∞(K)

]

ρBK(uh, vh) = ‖(|∇uh|2 + α)vh − α‖L2(K) +
ε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K) +

h2K
λ2,K

[
‖ |∇uh|2 + α‖L2(K)

+
|K|1/2 δK,CRk−1

γB

]
|vh|W 1,∞(K)

ωK(w) =
[ 2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
∀w ∈ H1(Ω),

where

[[wh]] =

{ ∣∣[∇wh · ν]
∣∣ on Eh

∣∣∇wh · ν
∣∣ on Eh ∩ ∂Ω

(23)

denotes the absolute value of the jump of the normal derivative, with ν the unit
normal vector to the generic edge in Eh, gh is chosen as in (13) and δK,̟ is such
that δK,̟ = 1 if K ∩̟ 6= ∅ and δK,̟ = 0 otherwise.

Proof. Since (uh, vh) is a critical point of Ih(·, ·), we have

ahγA
(vh;uh, ϕh) = 0 ∀ϕh ∈ Xh, bhγB

(uh; vh, ψh) = 0 ∀ψh ∈ Xh. (24)

Moreover, from (10), for any pair (ϕ, ψ) ∈ H1(Ω)×H1(Ω), it holds

|I ′(uh, vh;ϕ, ψ)| ≤ 2|aγA
(vh;uh, ϕ)|+ 2|bγB

(uh; vh, ψ)|. (25)

Let us deal with the two terms above, separately. We start from |aγA
(vh;uh, ϕ)|. Thanks

to (24), we have

|aγA
(vh;uh, ϕ)| ≤ |aγA

(vh;uh, ϕ− ϕh)|

+ |aγA
(vh;uh, ϕh)− ahγA

(vh;uh, ϕh)| ∀ϕ ∈ H1(Ω), ∀ϕh ∈ Xh.
(26)

12



Concerning the first term on the right-hand side of (26), we get

∣∣aγA
(vh;uh, ϕ− ϕh)

∣∣

=
∣∣∣
∑

K∈Th

{∫

K

(v2h + η)∇uh · ∇(ϕ− ϕh) dx+
1

γA

∫

K

(uh − g(tk))(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

=
∣∣∣
∑

K∈Th

{∫

K

−2vh(∇vh · ∇uh)(ϕ− ϕh) dx+

∫

∂K

(v2h + η)∇uh · ν(ϕ− ϕh)ds

+
1

γA

∫

K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

≤
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K) +

1

2

∫

∂K

[[∇uh]] |v2h + η| |ϕ− ϕh|ds

+
1

γA

(
‖(uh − gh(tk))χΩ±

D
‖L2(K)+‖(gh(tk)− g(tk))χΩ±

D
‖L2(K)

)
‖(ϕ− ϕh)χΩ±

D
‖L2(K)

}

≤
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K)

+
1

2
‖[[∇uh]]‖L∞(∂K)‖v2h + η‖L2(∂K)‖ϕ− ϕh‖L2(∂K)+

1

γA

(
‖(uh − gh(tk))χΩ±

D
‖L2(K)

+‖(gh(tk)− g(tk))χΩ±

D
‖L2(K)

)
‖(ϕ− ϕh)χΩ±

D
‖L2(K)

}
,

(27)
after splitting the integrals on the mesh elements, exploiting integration by parts, Hölder
and Cauchy-Schwarz inequalities, and definition (23). Hereafter, χ̟ denotes the char-
acteristic function of the set ̟. Picking ϕh = Qh(ϕ) and thanks to Lemma 3.1 with
s = 0, we obtain

∣∣aγA
(vh;uh, ϕ− ϕh)

∣∣

≤ C
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K)+

1

2
‖[[∇uh]]‖L∞(∂K)‖v2h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1

2

+
δK,Ω±

D

γA

(
‖uh − gh(tk)‖L2(K)+ ‖gh(tk)− g(tk)‖L2(K)

)}[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ϕ)ri,K)

] 1

2

.

(28)
Let us now deal with the second term on the right-hand side of (26). We anticipate the
auxiliary result

|whϕh|H2(K) ≤ 4 |wh|W 1,∞(K) ‖∇ϕh‖L2(K) ∀wh, ϕh ∈ Xh, ∀K ∈ Th, (29)

which can be proved by straightforward calculus. Now, employing standard inequali-
ties (Hölder, Cauchy-Schwarz) together with the definition of gh(tk) and the standard
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isotropic estimate for the L2-norm of the interpolation error associated with Ph, we get

|aγA
(vh;uh, ϕh)− ahγA

(vh;uh, ϕh)| ≤
∣∣∣
∫

Ω

[
v2h − Ph(v

2
h)
]
∇uh · ∇ϕh dx

∣∣∣

+
1

γA

∣∣∣
∫

Ω±

D

[
(uh − gh(tk))ϕh − Ph((uh − gh(tk))ϕh)

]
dx
∣∣∣

+
1

γA

∣∣∣
∫

Ω±

D

(
gh(tk)ϕh − g(tk)ϕh

)
dx
∣∣∣

≤ C
∑

K∈Th

{
‖v2h − Ph(v

2
h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+
|K|1/2 h2K

γA
|(uh − gh(tk))ϕh|H2(K)

}
,

(30)

where the constant C does not depend on the aspect ratio sK of K. Then, we employ
(29) together with estimate (17) with s = 1 and Lemma 3.2 with β1 = λ21,K , β2 = λ22,K ,
to obtain

|aγA
(vh;uh, ϕh)− ahγA

(vh;uh, ϕh)|

≤ C
∑

K∈Th

{
‖v2h − Ph(v

2
h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+
|K|1/2 h2K

γA
|uh − gh(tk)|W 1,∞(K) ‖∇ϕh‖L2(K)

}

≤ C
∑

K∈Th

{(
‖v2h − Ph(v

2
h)‖L∞(K) ‖∇uh‖L2(K) +

|K|1/2 h2K
γA

|uh − gh(tk)|W 1,∞(K)

)

(
‖∇ϕh −∇ϕ‖L2(K) + ‖∇ϕ‖L2(K)

)}

≤ C
∑

K∈Th

{(
‖v2h − Ph(v

2
h)‖L∞(K) ‖∇uh‖L2(K) +

|K|1/2 h2K
γA

|uh − gh(tk)|W 1,∞(K)

)

1

λ2,K

[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ϕ)ri,K)

]1/2}
.

(31)
Therefore, collecting (28) and (31), we are able to bound the first term on the right-hand
side of (25), as

|aγA
(vh;uh, ϕ)| ≤ C

∑

K∈Th

ρAK(vh, uh)ω
A
K(ϕ).

Let us consider now the second term on the righ-hand side of (25). In the same way as
in (26) and thanks to (24), we have

|bγB
(uh; vh, ψ)| ≤ |bγB

(uh; vh, ψ − ψh)|

+|bγB
(uh; vh, ψh)− bhγB

(uh; vh, ψh)| ∀ψ ∈ H1(Ω), ∀ψh ∈ Xh.
(32)

We tackle the first term |bγB
(uh; vh, ψ − ψh)|. Rewriting the integrals on Ω over the

mesh elements, integrating by parts, and thanks to the Cauchy-Schwarz inequality and
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definition (23), we obtain

∣∣bγB
(uh; vh, ψ − ψh)

∣∣

=

∣∣∣∣∣
∑

K∈Th

{∫

K

[(
(|∇uh|2 + α)vh − α

)
(ψ − ψh) + ε∇vh · ∇(ψ − ψh)

]
dx

+
1

γB

∫

K

vh(ψ − ψh)χCRk−1
dx

}∣∣∣∣∣

≤
∑

K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K)‖ψ − ψh‖L2(K) +

∣∣∣ε
∫

∂K

(ψ − ψh)∇vh · ν ds
∣∣∣

+
1

γB
‖vh χCRk−1

‖L2(K) ‖(ψ − ψh)χCRk−1
‖L2(K)

}

≤
∑

K∈Th

{
‖(|∇uh|2+α)vh−α‖L2(K)‖ψ−ψh‖L2(K)+

ε

2
‖[[∇vh]]‖L2(∂K)‖ψ−ψh‖L2(∂K)

+
1

γB
‖vh χCRk−1

‖L2(K) ‖(ψ − ψh)χCRk−1
‖L2(K)

}
.

(33)
We now choose ψh = Qh(ψ) and use Lemma 3.1 to get

∣∣bγB
(uh; vh, ψ − ψh)

∣∣

≤ C
∑

K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K) +

ε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)

}[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ψ)ri,K)

]1/2
.

(34)

We estimate now the second term on the right-hand side of (32). By mimicking the
arguments employed in (30)-(31), we obtain the following bound:

∣∣bγB
(uh; vh, ψh)− bhγB

(uh; vh, ψh)
∣∣

≤
∣∣∣
∫

Ω

(vhψh − Ph(vhψh))(|∇uh|2 + α) dx
∣∣∣+ 1

γB

∫

CRk−1

(vhψh − Ph(vhψh)) dx
∣∣∣

≤ C
∑

K∈Th

{
‖vhψh − Ph(vhψh)‖L2(K)

[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vhψh|H2(K)

}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vh|W 1,∞(K)‖∇ψh‖L2(K)

}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vh|W 1,∞(K)

1

λ2,K

[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ψ)ri,K)

]1/2}
.

(35)
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Inequalities (34) and (35) allow us to control the second term on the right-hand side of
(25), i.e.,

|bγB
(uh; vh, ψ)| ≤ C

∑

K∈Th

ρBK(uh, vh)ω
B
K(ψ).

Estimate (22) now follows in a straightforward way. �

Estimate (22) holds for any choice of test functions (ϕ, ψ) ∈ H1(Ω)×H1(Ω).
To get rid of the particular test functions, following [10], we can bound the dual
norm ‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗ as

‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2]
,

(36)
where (H1(Ω)×H1(Ω))∗ is the dual space of H1(Ω)×H1(Ω) and C = C(N , C∆).
Indeed, thanks to Lemma 3.2 and the discrete Cauchy-Schwarz inequality, we
have

‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗ = sup
(ϕ,ψ)∈H1(Ω)×H1(Ω)

|I ′(uh, vh;ϕ, ψ)|[
‖ϕ‖2

H1(Ω)
+ ‖ψ‖2

H1(Ω)

]1/2

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2
]

[ (
‖ϕ‖H1(Ω) + ‖ψ‖H1(Ω)

)

(‖ϕ‖2
H1(Ω)

+ ‖ψ‖2
H1(Ω)

)1/2

]
.

Nevertheless, the right-hand side of (36), despite being an explicitly computable
quantity, turns out to be a very poor error estimator in terms of driving efficient
anisotropic mesh adaptation. Thus, we cannot pursue the approach in [10].
Alternatively, we make a specific choice for the test function pair in (22), namely
ϕ = u and ψ = v. This is mainly motivated by the fact that we weight the
residual ρAK(vh, uh) associated with the derivative of I(·, ·) with respect to u with
the directional information provided by u itself, and analogously for ρBK(uh, vh)
weighted via v. As a consequence, the error estimator that we propose is

η(uh, vh) =
∑

K∈Th

ηK(uh, vh), (37)

with ηK(uh, vh) = ρAK(vh, uh)ω
R
K(uh) + ρBK(uh, vh)ω

R
K(vh), where

ωRK(zh) =
[ 2∑

i=1

λ2i,K(rTi,KG
R
∆K

(zh)ri,K)
]1/2

with zh = uh, vh,

with GR∆K
(zh) the matrix G∆K

defined as in Lemma 3.1 applied to the recovered
gradient from zh [42, 34, 35]. Notice that we have already replaced (ϕ, ψ) by the
pair (uh, vh) in (22) to make the estimator explicitly computable.
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Remark 3.1 In the numerical computations of the next section, after [10], we
replace definition (5) by the discrete version

CRhk−1 =
⋃

e∈ECR
h

e, where ECRh = {e ∈ Eh : vh(x, tk−1) ≤ CRTOL, ∀x ∈ e},

which enjoys one-dimensional features. It is beyond the purpose of this paper to
study the error induced by this approximation.

4 The numerical procedure

The numerical minimization of the functional (9) by successive minimizations
of (12) is not a trivial task. In fact, the presence of the term v2|∇u|2 makes it
nonconvex. Therefore, it is not possible, in general, to construct an algorithm
with polynomial complexity guaranteeing convergence to the global minimizers.
The methods in the literature in general only ensure convergence to local minima
(see [4] and references therein).
In the first part of this section, we provide the algorithm employed for the
minimization of (9) in H1(Ω) × H1(Ω). The discrete version of this algorithm
coupled with the mesh adaptive procedure is introduced in Section 4.2.

4.1 The minimization algorithm

To minimize (9), we resort to the alternate minimization algorithm proposed in
[9]. This method exploits the convexity of the functional with respect to the
two separate variables. Thus, after fixing a termination tolerance VTOL≪ 1, the
algorithm is the following:

Algorithm 1

1. Set k = 0;
2. If k = 0, set v1 = 1; else v1 = v(tk−1).
3. Set i = 1; err = 1;
while err ≥ VTOL do

4. ui = argmin
z∈H1(Ω)

I(z, vi);

5. vi+1 = argmin
z∈H1(Ω)

I(ui, z);

6. err = ‖vi+1 − vi‖L∞(Ω);
7. i← i+ 1;

end while

8. u(tk) = ui−1; v(tk) = vi;
9. k ← k + 1;
10. if k > F , stop; else goto 2.
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Steps 4. and 5. involve the two separate convex minimizations.
In the literature, several examples of implementations of this algorithm are avail-
able (see, e.g., [6, 7, 9, 10]) and a corresponding convergence proof can be ob-
tained by exploiting [6, Theorem 1] and [10, Theorems 4.1 and 4.2].

With a view to the numerical implementation, we will consider the discrete
counterpart of Algorithm 1. Since, in general, we expect the crack propagation
to be a strongly anisotropic process, characterized by very steep gradients of
both the fields u and v, we will resort to a finite element discretization based on
anisotropic adapted meshes, driven by the a posteriori error estimator derived in
Proposition 3.1. The challenge is to properly merge the minimization algorithm
with an anisotropic adaptive procedure, as shown in the next section.

4.2 The mesh adaptive procedure

Following [33, 34, 35], we use a metric-based mesh adaptive approach (see, e.g.,
[27]). In particular, for a fixed accuracy tolerance TOL, we “predict” the optimal
mesh with the least number of elements.
A metric is a symmetric positive-definite tensor fieldM : Ω → R

2×2 which, for
any x ∈ Ω, provides the sizes that the optimal mesh should have along all the
directions around x. In practice, we approximate M via a piecewise constant
metric on a given mesh Th, i.e., M|K = MK = RTKL−2

K RK , for any K ∈ Th,
where the matrices RK and LK share the same structure as RK and ΛK in
Section 3, respectively.
Actually, there exists a strict link between metrics and meshes. We can associate
with an assigned mesh Th, a corresponding piecewise-constant metric identified
by MK = RTKΛ−2

K RK , for any K ∈ Th, where matrices RK and ΛK are exactly
the same as in Section 3.1. Vice versa, for a given metric M, we can build a
mesh, say TM, such that MK ≡ MK , for any K ∈ TM (for all the details, we
refer, for instance, to [33, 34]).

The procedure we follow is first to derive a metric moving from the a pos-
teriori error estimator (37) and then to generate the new mesh induced by this
metric via a metric-based mesh generator. In particular, we resort to the func-
tion adaptmesh in FreeFem++ [30].
In the spirit of a standard predictive approach, the metricM is obtained via an
iterative procedure. At each iteration, say j, we deal with three quantities:

i) the actual mesh T (j)
h ;

ii) the new metricM(j+1) computed on T (j)
h ;

iii) the updated mesh T (j+1)
h induced byM(j+1).

The most tricky step is the prediction of the new metric out of the estimator
η(uh, vh). For this purpose, we suitably rewrite the local estimator ηK(uh, vh)
as

ηK(uh, vh) = µK

{
ρAK(vh, uh)ω

R
K(uh) + ρBK(uh, vh)ω

R
K(vh)

}
, (38)
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where µK = |K̂|
(
λ1,Kλ2,K

)3/2
gathers all the area |K| information,

ρAK(vh, uh) =
ρAK(vh, uh)(

|K̂|λ1,Kλ2,K
)1/2 , ρBK(vh, uh) =

ρBK(vh, uh)(
|K̂|λ1,Kλ2,K

)1/2 ,

are approximately pointwise values (at least for a sufficiently fine mesh), while
the new weights

ωRK(zh) =
[
sK rT1,K G

R
∆K

(zh) r1,K+
1

sK
rT2,K G

R
∆K

(zh) r2,K

]1/2
with zh = uh, vh,

collect the anisotropic information associated with K, with

G
R
∆K

(·) = GR∆K
(·)/(|K̂|λ1,Kλ2,K).

Following Section 4 in [35], we properly merge the two terms in (38) to deal with
a single metric. This yields

ηK(uh, vh) = µKΥK

with

ΥK =
[
sK rT1,K ΓK r1,K +

1

sK
rT2,K ΓK r2,K

]1/2
, (39)

where the local matrix

ΓK =
[
ρAK(vh, uh)

]2
G
R
∆K

(uh) +
[
ρBK(vh, uh)

]2
G
R
∆K

(vh) (40)

merges the anisotropic information provided by u and v suitably weighted via
the local residuals. In this way, we are able to grasp all the directional features
induced by u and v, thus avoiding the metric intersection issue.

Now to minimize the number of mesh elements, we equivalently maximize the
area of each elementK with the equidistribution constraint, i.e., for each element

K ∈ T (j+1)
h , ηK(uh, vh) = µK ΥK = TOL/#T (j)

h , where TOL and #T (j)
h are the

fixed global tolerance and the number of mesh elements in T (j)
h , respectively.

The maximization is achieved by minimizing the weight ΥK with respect to sK
and r1,K , i.e., by solving elementwise the constrained minimization problem

min
sK≥1,ri,K ·rj,K=δij

ΥK(r1,K , sK), (41)

δij being the Kronecker symbol. Notice that all the quantities involved in (40)

are computed on the background grid T (j)
h . On the other hand, the aspect ratio

sK and the unit vectors ri,K in (39) represent our actual unknowns.
According to Proposition 4.2 in [35], we can state the desired minimization

result as

19



Proposition 4.1 Let {γi,K , gi,K} be the eigenvector-eigenvalue pair of ΓK with
g1,K ≥ g2,K > 0. Then the minimum (41) is obtained for the choices

r1,K = γ2,K and sK =

(
g1,K
g2,K

)1/2

, (42)

yielding the value
(
2
√
g1,Kg2,K

)1/2
for ΥK .

Notice that the minimization problem (41) is not a computational overhead,
since it can be solved analytically via (42). Moreover, we observe that the
optimal weight ΥK does not depend any more on the aspect ratio.

Finally, the optimal metricM(j+1) is obtained by exploiting the equidistri-
bution constraint, i.e., by solving the equations

|K̂|
(
λ1,Kλ2,K

)3/2 (
2
√
g1,Kg2,K

)1/2
=

TOL

#T (j)
h

and
λ1,K
λ2,K

= sK =

(
g1,K
g2,K

)1/2

.

(43)
System (43) provides us with the distinct values

λ1,K =

(
1

|K̂|
√
2

(
g1,K
g22,K

)1/2
TOL

#T (j)
h

)1/3

, λ2,K =

(
1

|K̂|
√
2

(
g2,K
g21,K

)1/2
TOL

#T (j)
h

)1/3

.

(44)
Eventually, the optimal metricM(j+1) is characterized by r1,K in (42), λ1,K and
λ2,K in (44), with r2,K ⊥ r1,K .

4.3 The whole adaptive procedure

Now, we glue the discrete counterpart of Algorithm 1 with the mesh adaptive
procedure. In particular, we propose two algorithms, which differ in the way the
minimization and the mesh adaptivity are interlaced. For both algorithms, we
denote by Th the mesh used to start up the mesh adaptive procedure.

The first algorithm, which is a variant of ALGORITHM 1 in [10], applies the
mesh adaptation after convergence of the minimization algorithm on both uh
and vh. In particular, after fixing a termination tolerance VTOL≪ 1 for the
minimization algorithm, a relative tolerance MESHTOL≪ 1 on the change of the
mesh cardinality, and REFTOL≪ 1 which fixes the accuracy on the functional
(22), the algorithm is the following:

Algorithm 2 (Optimize-then-Adapt)

1. Set k = 0, j = 0, T (0)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set j = 0; errmesh= 1;
while errmesh ≥ MESHTOL do

4. Set i = 1; err = 1;
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while err ≥ VTOL do

5. uih = argmin
zh∈X

(j)
h

I(zh, v
i
h);

6. vi+1
h = argmin

zh∈X
(j)
h

I(uih, zh);

7. err = ‖vi+1
h − vih‖L∞(Ω);

8. i← i+ 1;
end while

9. Compute the new metric M(j+1) based on ui−1
h and vih with TOL =

REFTOL;

10. Build the adapted mesh T (j+1)
h ;

11. errmesh = |#T (j+1)
h −#T (j)

h |/#T
(j)
h ;

12. Set v1h = Πj→j+1(v
i
h);

13. j ← j + 1;
end while

14. uh(tk) = Πj−1→j(u
i−1
h ); vh(tk) = Πj−1→j(v

i
h); T kh = T (j)

h ;

15. Set T (0)
h = T kh ;

16. k ← k + 1;
17. if k > F , stop; else goto 2.

The convergence of the mesh adaptivity is checked by monitoring the variation
of the number of elements during the adaptivity process. Although this check is
not rigorously sound, in practice it provides an effective stopping criterion.
An interpolation step between two successive adapted meshes is also employed
before restarting any new optimization or time loop. This is carried out by
a suitable interpolation operator, Πn→n+1(wh), which maps a finite element
function wh defined on T nh onto the new mesh T n+1

h .
This algorithm performs well if the tip of the fracture moves sufficiently slow

in time. Indeed, since the coupling between optimization and adaptation is not
so tight, a time-adaptivity could be desirable to restrain a fast mesh evolution.
Nevertheless, time adaptivity is not able to contain the final evolution steps when
the actual fracture lead to a sudden breakdown of the material which splits into
two separate parts. This limit can be ascribed also to the deficiency of the em-
ployed quasistatic model, which clearly fails in describing very fast dynamics.
To dampen the crack propagation, we propose a second algorithm, which in-
troduces a tighter alternation of the optimization and mesh adaptation phases.
The meaning of all the involved parameters is the same as in Algorithm 2.

Algorithm 3 (Optimize-and-Adapt)

1. Set k = 0, T (1)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set i = 1; errmesh= 1; err= 1;
while errmesh ≥ MESHTOL & err ≥ VTOL do
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4. uih = argmin
zh∈X

(i)
h

I(zh, v
i
h);

5. vi+1
h = argmin

zh∈X
(i)
h

I(uih, zh);

6. Compute the new metric M(i+1) based on uih and vi+1
h with TOL =

REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ‖vi+1
h − vih‖L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T
(i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i← i+ 1;
end while

12. uh(tk) = Πi−1→i(u
i−1
h ); vh(tk) = v1h; T kh = T (i)

h ;

13. Set T (1)
h = T kh ;

14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5 Numerical experiments

Goal of this section is to assess the robustness of the algorithms proposed in
the previous section on some benchmark problems. In particular, to have a
comparison solution, we choose the test-cases proposed in [10].
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Figure 2: Domain and initial mesh for the straight crack (left pair), and for the
curved crack (right pair)

5.1 The straight crack

Let us identify a brittle material of rectangular shape, Ω = (0, 2)× (0, 2.2), con-
taining a slit along {1}× [1.5, 2.2] (see Figure 2, left), that we approximate with
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a very thin gap 2 · 10−5 thick. We apply the antiplane displacement g(t) = −t
on ΩD− = (0, 1)× (2, 2.2), g(t) = t on ΩD+ = (1, 2)× (2, 2.2). Due to the perfect
symmetry of this problem, we expect that the fracture does not bend but that
it goes straight down starting from the tip of the slit.
As an initial grid, we pick the uniform unstructured mesh in Figure 2, left.
We consider a time window [0, 1.5] sufficiently wide to contain the whole phe-
nomenon. Concerning the parameters involved in both the algorithms, we choose
the ones in Table 1.

Table 1: The straight crack: parameters involved in Algorithms 2 and 3

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2

Figure 3 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the
crack reaches the final stage, it tries to enter a region where the mesh has not
been modified yet. Conversely, the tighter interplay between optimization and
mesh adaptation in Algorihm 3 lets the crack find an already properly adapted
mesh. An additional difference is the time when the breakdown is detected, i.e.,
t = 1.36 for Algorihm 2 and t = 1.33 in the case of Algorihm 3, compared with
t = 1.24 in [10]. Indeed, since in the first algorithm we do not update the mesh
during the minimization process, it can happen that the crack growing is slowed
down in order to find a good compromise between the actual mesh and the
fracture evolution. We additionally observe that for both Algorithms 2 and 3,
the time of initiation of the fracture actually occurs later, i.e., at time t = 0.35,
than the experiments in [10], where t = 0.25. We ascribe this discrepancy
to the finite-width representation of the initial crack path via the vertical slit,
while in [10] this is modeled via an actual 1-dimensional manifold. Concerning
the computational effort, the run time of Algorithms 2 and 3 is 1541.30s and
1639.29s, respectively.

Figure 4 shows the adatpted mesh T algo2h and T algo3h obtained by the two
algorithms at the final time. The meshes, consisting of 38299 and 33927 elements
respectively, exhibit really stretched elements which closely follow the crack path,
whereas the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1.
The maximum aspect ratio is sK = 2154.3 for T algo2h and sK = 1891.5 for T algo3h .
The close up in Figure 4 at time t = 1.21 highlights the strongly anisotropy of
the mesh far from the crack tip. We observe instead that the triangles closer to
the tip are still rather isotropic. This should guarantee that the next advancing
step of the crack is not biased by the directionality of the elements. After [8, 14],
there has been the perception that anisotropic mesh adaptation may influence
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Figure 3: The straight crack: v-field at the final time yielded by Algorihm 2
(left) and Algorihm 3 (right)
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Figure 4: The straight crack: final anisotropic adapted mesh provided by Al-
gorithm 2 (left); final anisotropic adapted mesh (center) and zoom in (right)
delivered by Algorithm 3

the propagation of the fracture, in particular its initiation [13]. However, it
seems that the numerical procedure that we propose is in practice robust and
stable thanks to its automatic capability of yielding a rounded tip.

Figure 5 provides the v-field and the final adapted mesh for an isotropic
adaptation, obtained by enforcing sK = 1 for all K ∈ Th in Algorithm 2. The
crack is detected also in this case even though the required number of elements
is far larger, i.e., 78025 triangles versus 38299. Moreover, a slightly wavier path
is exhibited with respect to Figure 3, left.
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Figure 5: The straight crack: v-field (left), final adapted mesh (center), and
zoom in (right) at the final time in the case of the isotropic counterpart of
Algorithm 2.

5.2 The curved crack

This second test case is meant to assess whether the fracture changes direction
if the domain exhibits a weak inset, such as a hole. The computational domain
is the same as in the previous test case with the additional presence of a circular
hole of radius 0.2, centered at (0.3, 0.3) (see Figure 2, right). The presence of
the hole introduces an element of weakness in the material. As a consequence,
due to energy arguments, we expect that the fracture bends its path towards
the hole instead of proceedings along a straight line. As observed in [10], this
test case is more challenging than the previous one. Therefore, we choose a
tighter tolerance, i.e., REFTOL = 10−3. The simulated crack path is very stable
with respect to the choice of the parameters, as long as they are not larger than
those in Table 1 (see [3], where an extensive sensitivity analysis to the parameter
tuning is carried out).

In Figure 6, we show the v-field at the final time yielded by the two algo-
rithms. In both cases, the crack enters the hole. As already observed in the
previous test case, Algorithm 2 leads a more “bumpy” crack path ahead of the
hole (compare Figure 6, left with Figure 6, center, and the corresponding zooms
in).

Figure 7 displays the u-field superposed to the adapted meshes at t = 1.37
(left) and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge
is evident where the tearing apart is exerted. The mesh in both cases follows
very closely the crack propagation. A top view of the final adapted meshes
generated via Algorithm 2 and 3 is provided in Figure 8, together with a detail
of the second mesh. Notice that the anisotropic adaptive procedure is able to
detect the presence of a very fine structure inside the crack in correspondence
with the ridges. Moreover, the cardinality of the two meshes is very different:
Algorithm 2 employs 48599 elements in contrast to Algorithm 3 which demands
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Figure 6: The curved crack: v-field at the final time provided by Algorithm 2
(left) and by Algorithm 3 (center); zooms in around the hole for Algorithm 2
(top-right) and for Algorithm 3 (bottom-right)

Figure 7: The curved crack: u-field and adapted mesh at t = 1.37 (left) and at
t = 1.43 (right) provided by Algorithm 3

only 15987 triangles. The maximum aspect ratio is sK = 1525.3 for T algo2h and

sK = 1469.9 for T algo3h .
Figure 9 shows four snapshots close to the breakdown time by comparing four

successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the
case of Algorithm 2, the crack, after entering the hole, reaches a region where the
mesh is still coarse. Afterwards, the grid is correctly refined. On the contrary,
the strategy optimize-and-adapt detects a sharper path already on entering the
hole. Moreover, before converging to the failure of the material, two possible
paths, energetically equivalent, pop out past the hole.

Figure 10, left provides the time evolution of the energy, Ee+Ef in (2). The
energy constantly increases. During the very first phase, when the crack has
not started yet, the dominant contribution to the energy is Ee. Successively,
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Figure 8: The curved crack: final anisotropic adapted mesh provided by Al-
gorithm 2 (left); final anisotropic adapted mesh (center) and zoom in (right)
delivered by Algorithm 3

Figure 9: The curved crack: successive iterations of Algorithm 2 (top) and
Algorithm 3 (bottom) in the breakdown phase

after the onset of the crack propagation at t = 0.35, the fictitious energy Ef
contributes to the whole energy. After the breakdown of the material (t = 1.43),
the energy decreases suddenly since the elastic energy abruptly vanishes. On
physical grounds, we would expect the energy to go to zero after the breakdown.
However, the fictitious energy leaves a trace which never disappears. In Fig-
ure 10, right we compare the trend of the cardinality of the anisotropic meshes
associated with the two adaptive algorithms along with the isotropic counterpart
of Algorithm 3. It is evident the saving brought by Algorithm 3 and the strong
increase exhibited by Algorithm 2 in the very final phase.
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Figure 10: The curved crack: energy (left) and cardinality (right) evolution
for the anisotropic meshes yielded by the two Algorithms and for the isotropic
counterpart of Algorithm 3

Moreover, the isotropic variant of Algorithm 3 generates a larger number of el-
ements throughout all the time evolution. In particular, at the final time the
isotropic mesh consists of 131367 triangles, i.e., about a factor 8 with respect to
the best performing Algorithm 3.
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Figure 11: The curved crack: v-field (left) at the final time, final adapted mesh
(center) and zoom in (right) on the hole in the case of the isotropic counterpart
of Algorithm 3

Finally, in Figure 11, we collect the results obtained through Algorithm 3
when we enforce an isotropic mesh adaptation, i.e., sK = 1 for all K ∈ Th.
We first recognize the different path undertaken by the crack, namely, the crack
leaves the hole on the bottom instead on the left. However, this different path
could be plausible from a physical point of view since both the paths are en-
ergetically equivalent. On the other hand, physical experiments select the one
in Figure 6 as the most likely ([32, 38], see also their related works [9, 39]).
The alternative path in Figure 11 suggests that a more thorough numerical in-
vestigation should be carried out in order to properly calibrate the algorithm
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parameters for isotropic meshes.
Future developments of the proposed approach concern the modeling of frac-

tures under plane-strain elasticity as well as more general mathematical models
such as the ones introduced in [12].
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[12] S. Burke, C. Ortner, and E. Süli. An adaptive finite element approxima-
tion of a generalized Ambrosio-Tortorelli functional. Math. Models Methods
Appl. Sci., 23(9):1663–1697, 2013.

[13] A. Chambolle. Personal communication.

[14] A. Chambolle and G. Dal Maso. Discrete approximation of the Mumford-
Shah functional in dimension two. M2AN Math. Model. Numer. Anal.,
33(4):651–672, 1999.

[15] Ph. G. Ciarlet. The Finite Element Method for Elliptic Problems. North–
Holland, Amsterdam, 1978.

[16] Ph. G. Ciarlet and P.-A. Raviart. Maximum principle and uniform conver-
gence for the finite element method. Comput. Methods Appl. Mech. Engrg.,
2(1):17–31, 1973.

[17] Ph. Clément. Approximation by finite element functions using local regu-
larization. RAIRO Anal. Numér., 2:77–84, (1975).

[18] G. Dal Maso. An introduction to Γ-convergence. Birkhäuser, Basel, 1993.
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