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Abstract

We study a class of models at the interface between statistics and
numerical analysis. Specifically, we consider non-parametric regression
models for the estimation of spatial fields from pointwise and noisy
observations, that account for problem specific prior information, de-
scribed in terms of a PDE governing the phenomenon under study. The
prior information is incorporated in the model via a roughness term us-
ing a penalized regression framework. We prove the well-posedness of
the estimation problem and we resort to a mixed equal order Finite El-
ement method for its discretization. We prove the well posedness and
the optimal convergence rate of the proposed discretization method.
Finally the smoothing technique is extended to the case of areal data,
particularly interesting in many applications.

Keywords: mixed Finite Element method, fourth order problems, non-parametric
regression, smoothing.

1 Introduction

In this work we study the properties of a non-parametric regression technique
for the estimation of bidimensional or three dimensional fields on bounded domains
from some pointwise noisy evaluations. The technique is particularly well suited
for applications in physics, engineering, biomedicine, etc., where a prior knowledge
on the field might be available from physical principles and should be taken into
account in the field estimation or smoothing process. We consider in particular
phenomena where the field can be described by a partial differential equation (PDE)
and has to satisfy some known boundary conditions.

Spatial regression with PDE penalization (SR-PDE) has been developed in [1]
for the estimation of the blood velocity field on an artery section, from Echo-Doppler
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data. This technique has very broad applicability since PDEs are commonly used
to describe phenomena behavior in many fields of physics, mechanics, biology and
engineering. Many applications of particular interest can be named: the estimation
of the concentration of pollutant released in water or in the air and transported by
the stream or by the wind from noisy observations, the estimation of temperature
or pressure fields from electronic control units or sensors in environmental sciences
and many other phenomena in physical and biological sciences or engineering. In
this work we focus on phenomena that are well described by linear second order
elliptic PDEs, typically transport-reaction-diffusion problems.

SR-PDE uses a functional data analysis approach (see, e.g., [16]) and gener-
alizes classical spatial smoothing techniques, such as thin-plate splines. SR-PDE,
in fact, estimate the surface or the field minimizing a penalized least square func-
tional, with the roughness penalty involving a partial differential operator. Many
methods for surface estimation define the estimate as the minimizer of a penalized
sum-of-square-error functional, with the penalty term involving a simple partial
differential operator. Thin-plate spline smoothing, for example, penalizes an en-
ergy functional in R

2 that involves second order derivatives. The minimizer of this
functional belongs to the linear space generated by the Green’s functions associated
to the bilaplacian (see [21] for details). Thin-plate spline smoothing has been first
extended to the case of bounded domains in [19], where the thin-plate energy is
computed only over the bounded domain of interest. Since the minimizer cannot be
directly characterized, it is approximated by a surface in the space of tensor prod-
uct B-splines. Recently, more complex smoothing methods have been developed,
that deal with general bounded domains in R

2 and general boundary conditions.
Some examples are soap-film smoothing, described in [22], and the spatial spline
regression models described in [18], which generalize the Finite Element L-splines
introduced in [17]. These methods estimate bidimensional surfaces on complex
bounded domains penalizing the Laplace operator of the surface as a measure of
the local curvature. Soap-film smoothing approximates the minimizer of the pe-
nalized least square functional with a linear combination of Green’s functions of
the bilaplacian on the domain of interest, centered on the vertices of a lattice. On
the other hand Finite Element L-splines and spatial spline regression models solve
directly the PDE associated to the penalized least square functional by means of a
mixed Finite Element method.

Following the approach presented in [17] and [18], we propose to estimate the
field minimizing a least square functional regularized with the L2-norm over the
domain of interest of the misfit of a second order PDE, Lf = u, modeling the
phenomenon under study. The important novelty with respect to the methods
cited above is that the problem-specific prior information, formalized in the PDE,
is here used to model the phenomenon space variation. Furthermore, SR-PDE
allows for important modeling flexibility in this direction, accounting for instance
for space anisotropy and non-stationarity in a straightforward way. We assume here
that all the parameters appearing in the operator L and the boundary conditions
are known while the forcing term in the PDE is not completely determined. This
approach is similar to the one used in control theory when a distributed control is
considered; see for example [15]. The main analytic difference with respect with
respect to classical results in control theory is that the observations are pointwise
and affected by noise. For this reason it is necessary to require higher regularity to
the field to ensure that the penalized least square functional is well defined.
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The penalized least square functional has a unique minimum in the Sobolev
space H2 and the minimum is the solution of a fourth order problem. In order
to prove the existence and the uniqueness of the estimator we resort to a mixed
approach for fourth order problems, since the penalized error functional is not nec-
essarily convex in H2. Accordingly, a mixed equal order Finite Element method,
similar to classical mixed methods described for example in [5], is used for discretiz-
ing the estimation problem. Other classical conforming and nonconforming meth-
ods (see [5] and references therein) or more recent discontinuous Galerkin methods
(see, e.g., [3, 20, 12]) can be used for the discretization of the fourth order problem.
However, in the specific case here considered the mixed Finite Element method is a
convenient choice since the problem in exam can be written as a system of second
order PDEs. Moreover the mixed approach provides also a good approximation of
second order derivatives of the field that can be useful in order to compute physical
quantities of interest.

The proposed mixed equal order Finite Elements discretization is known to
have sub-optimal convergence rate when applied to fourth order problems with
arbitrary boundary conditions and, in particular, the first order approximation
might not converge to the exact solution (see, e.g., [4, 5]). However we are able
to prove the optimal convergence of the proposed discretization method for the
specific set of boundary conditions that are naturally associated to the smoothing
problem, whenever the true underlying field satisfies exactly those conditions. The
theoretical results are confirmed by numerical experiments.

The inspected convergence concerns the study of the bias of the estimator, while
the study of the variance of the estimator and the convergence when the number
of observations goes to infinity will be the subject of a future work. These topics
are studied in the classical setting of smoothing splines (see, e.g., [6]), thin-plate
splines or multidimensional smoothing splines (see, e.g., [7, 8, 13] and references
therein) but they cannot be directly generalized to SR-PDE models.

The smoothing technique is also extended to the case of areal data, i.e., data
that represent quantities computed on some subdomains; this data framework is
frequent in many applications. For instance in the case of the driving problem
considered in [1], which concerns the velocity field estimation from Echo-Doppler
acquisitions, the data represent the mean velocity of blood on some subdomains on
the considered artery section. The properties of the estimator in the areal setting
are obtained along the same line followed for pointwise observations.

The paper is organized as follows. Section 2 introduces SR-PDE model used
for pointwise observations. Section 3 proves the well-posedness of the estimation
problem and Section 4 obtains a bound for the bias of the estimator. Section
5 describes the mixed Finite Element method used for the discretization of the
estimation problem and proves the well-posedness of the discrete problem. Section 6
proves the convergence of the proposed mixed Finite Element method and provides a
bound for the bias of the Finite Element estimator. Section 7 presents the numerical
experiments supporting the theoretical results. Section 8 extends the models to the
case of areal data and presents the asymptotic results in this setting. Section 9
outlines future research directions.
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2 Surface estimator for pointwise data

Consider a bounded, regular, open domain Ω ⊂ R
d with d ≤ 3, whose boundary

∂Ω is a curve of class C2, and a regular function f0 : Ω → R to be estimated from
noisy observations. Let zi, for i = 1, . . . , n, be n observations that represent noisy
evaluations of the field f0 at points pi ∈ Ω. The error model that we consider for
the observations is a classical additive model:

zi = f0(pi) + ǫi (1)

where ǫi, i = 1, . . . , n, are independent errors with zero mean and constant variance
σ2. This model is a classical framework used in functional data analysis, see for
example [16].
We suppose to have, in addition to the observations zi, a physical knowledge of
the phenomenon under study and that this prior knowledge can be described by
means of a differential operator. Specifically, we can formalize this as a PDE that
f0 satisfies:

{

Lf0 = ũ in Ω
Bcf0 = h on ∂Ω

(2)

where the operator L and the boundary conditions are completely determined and
fixed, while the forcing term ũ = u+ g0 ∈ L2(Ω) is composed by a known and fixed
part u and an unknown term, called g0, that will be estimated from data. The
parameters of the PDE and the boundary conditions could be as well considered
partly unknown and estimated from data, but in this work we assume them to be
known and fixed. We focus on second order elliptic operators, in particular L is a
diffusion-transport-reaction operator

Lf0 = −div(K∇f0) + b · ∇f0 + cf0 (3)

with smooth and bounded parameters. The matrix K ∈ R
d×d is a symmetric

and positive definite diffusion tensor, b ∈ R
d is the transport vector and c ≥ 0

is the reaction term. These parameters can be spatially varying in Ω; i.e., K =
K(x), b = b(x) and c = c(x), with x ∈ Ω. The boundary conditions of the
PDE are homogeneous or non-homogeneous Dirichlet, Neumann, Robin (or mixed)
conditions. All the admissible boundary conditions are summarized in

Bcf0 =







f0 on ΓD

K∇f0 · ν on ΓN

K∇f0 · ν + γf0 on ΓR

h =







hD on ΓD

hN on ΓN

hR on ΓR

(4)

where ν is the outward unit normal vector to ∂Ω, γ ∈ R is a positive constant and
∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR not overlapping.
In what follows, we make the following assumption.

Assumption 1. ΓD 6= ∅, so that a Poincaré inequality holds, i.e.,

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) . (5)
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In order to estimate the field f0, starting from the observations z1, . . . , zn and
using the a priori knowledge on the phenomenon, we propose to minimize the
penalized sum-of-square-error functional

J(f) =
1

n

n
∑

i=1

(f(pi)− zi)
2
+ λ

∫

Ω

(Lf − u)2 (6)

over the set of functions V = {v ∈ H2(Ω) : Bcv = h} where H2(Ω) is the Sobolev
space of functions in L2(Ω) with first and second derivatives in L2(Ω); notice that
the boundary conditions (4) are imposed directly in V . Even if in this case we are
considering fixed and deterministic boundary conditions, when data on the bound-
ary are available it is possible to include the uncertainty on the boundary conditions
in the model including in the least square functional a dedicated regularizing term.
The functional J is composed by a data fitting criterion, consisting in classical least
square errors, and a model fitting criterion, formalized as a roughness term that
penalizes the misfit of a PDE governing the phenomenon. Notice that by minimiz-
ing the misfit of the PDE Lf0 − u, where u is the known part of the forcing term,
we are actually minimizing the contribution of the unknown forcing term g0. The
contribution of the data fitting criterion and of the model fitting criterion is tuned
by means of the parameter λ. A large literature is devoted to the optimal choice
of this parameter; see, e.g., [14, 16] and references therein; classical methods are
for example the Akaike’s Information Criterion (AIC), the Bayesian Information
Criterion (BIC) and the Generalized Cross-Validation (GCV) criterion. See [1] for
details on the GCV computation in these models.

The functional J(f) is well defined if f ∈ H2(Ω) thanks to the embedding
H2(Ω) ⊂ C(Ω̄) if Ω ⊂ R

d with d ≤ 3. For data in R
d with d > 3 one has to require

more regularity in order to obtain f ∈ C(Ω); in particular one needs f ∈ Hs(Ω)
with s > d/2; see, e.g., [11].
The estimation problem is formulated as follows.

Problem 1. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J(f).

As it will be shown in the next section, this problem is well posed if we assume
some regularity on the parameters of the PDE and on the domain Ω. In particular,
in the case d ≤ 3, we make the following assumption.

Assumption 2. The parameters of the PDE are such that ∀ũ ∈ L2(Ω) there exists
a unique solution f0 of the PDE (2), which moreover satisfies f0 ∈ H2(Ω).

The Lax-Milgram theorem guarantees the existence and the uniqueness of the
solution of the PDE (2) in H1(Ω) when the parameters of the PDE K, b and c sat-
isfy some classical requests, for example Kij , bj , c ∈ L∞(Ω), K is symmetric and
uniformly elliptic, i.e., ξTK(x)ξ ≥ αK ∀x ∈ Ω and ∀ξ ∈ R

d, b · ν ≥ 0 on ΓN ∪ ΓR,
−1/2div(b(x)) + c(x) ≥ −αK/CP , where αK is the ellipticity constant and CP is
the Poincaré constant, γ ∈ L∞(∂Ω), γ ≥ 0 and hD ∈ H1/2(∂Ω), hN ∈ H−1/2(∂Ω),
hR ∈ H−1/2(∂Ω).
To guarantee that the solution of the PDE is in H2(Ω) we need to make further

5



assumptions on the parameters of the PDE and on the boundary conditions requir-
ing extra regularity: Kij is Lipschitz continuous, hD ∈ H3/2(∂Ω), hN ∈ H1/2(∂Ω),
hR ∈ H1/2(∂Ω). If the boundary conditions imposed are mixed, they have to sat-
isfy some joint conditions in order not to reduce the regularity of the solution; see
[11] for more details.

3 Well posedness analysis

To analyze the well-posedness of Problem 1 we introduce a new quantity g ∈
G = L2(Ω) that represents the misfit of the PDE in the penalizing term. This new
quantity, g ∈ G, is defined as g = Lf − u, where L is the second order elliptic
operator (3), and is the classical control term in PDE optimal control theory.
It is useful to introduce also the space V0 = {v ∈ V : Bcv = 0}, which represents the
space of functions in V with homogeneous boundary conditions, and the operator
B : L2(Ω) → V0 such that Bũ is the unique solution of the PDE (2) with forcing
term ũ and homogeneous boundary conditions, i.e., L(Bũ) = ũ in Ω and Bc(Bũ) = 0
on ∂Ω. Under Assumptions 1 and 2, thanks to the well-posedness and the H2-
regularity of the PDE (2), the operator B is an isomorphism between the spaces L2

and V0 and the H2-norm of Bu is equivalent to the L2-norm of u, i.e., there exist
two positive constants C1 and C2 such that

C1 ‖u‖L2(Ω) ≤ ‖Bu‖H2(Ω) ≤ C2 ‖u‖L2(Ω) . (7)

The solution of the PDE (2) can thus be written as f = fb + Bũ where fb is
the solution of the PDE with homogeneous forcing term and non-homogeneous
boundary conditions.
Existence and uniqueness of the estimator f̂ is obtained thanks to classical results
of calculus of variations. We recall here the result stated, e.g., in [15].

Theorem 1. If the functional J(g) has the form

J(g) = A(g, g) + Lg + c (8)

where A : G × G → R is a continuous, coercive and symmetric bilinear form in
G, L : G → R is a linear operator, c is a constant and G is a Hilbert space, then
∃! ĝ ∈ G such that J(ĝ) = infG J(g).
Moreover ĝ satisfies the following Euler-Lagrange equation:

(J ′(ĝ), ϕ) = 2A(ĝ, ϕ) + Lϕ = 0 ∀ϕ ∈ G. (9)

The existence and uniqueness of the estimator is stated in the following theorem.

Theorem 2. Under Assumptions 1-2, the solution of Problem 1 exists and is
unique.

Proof. Thanks to the definition of g we can write f as an affine transformation of
g, i.e., f = fb +B(u+ g), and the functional (6) as

Jg(g) = J(fb+B(u+g)) =
1

n

n
∑

i=1

(B(u+ g)(pi) + fb(pi)− zi)
2
+λ ‖g‖2L2(Ω) . (10)
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This reformulation of the functional J is very useful since we can now write Jg in
the quadratic form (8) where

A(g, ϕ) =
1

n

n
∑

i=1

Bg(pi)Bϕ(pi) + λ

∫

Ω

gϕ

Lϕ =
2

n

n
∑

i=1

Bϕ(pi)(Bu(pi) + fb(pi)− zi)

c =
1

n

n
∑

i=1

(Bu(pi) + fb(pi)− zi)
2.

Clearly A(g, ϕ) is a bilinear form, since both B and the pointwise evaluation of a
function are linear operators. Moreover, it is continuous in G; indeed, thanks to the
embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ R

d with d ≤ 3 and thanks to (7) we have that

|Bg(pi)| ≤ ‖Bg‖C(Ω̄) ≤ C ‖Bg‖H2(Ω) ≤ C ‖g‖L2(Ω) .

We thus obtain that A(g, ϕ) ≤ (C2 + λ) ‖g‖L2(Ω) ‖ϕ‖L2(Ω).
Finally, the operator A(g, ϕ) is coercive in L2(Ω), since

A(g, g) =
1

n

n
∑

i=1

|Bg(pi)|2 + λ

∫

Ω

g2 ≥ λ

∫

Ω

g2 = λ ‖g‖2L2(Ω) .

Due to the fact that the bilinear form A(·, ·) is continuous and coercive in
G = L2(Ω), that the operator L is linear and that c is a constant, Theorem 1 states
the existence and the uniqueness of ĝ = argming∈G Jg(g). From the bijectivity of

B : L2(Ω) → V0 we deduce the existence and uniqueness of f̂ = fb + B(ĝ + u) =
argminf∈V J(f).

The estimator f̂ is obtained by solving:

{

Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω.
(11)

We now show that if ĝ is smooth enough, e.g., ĝ ∈ H2(Ω), then ĝ solves the PDE

{

L∗ĝ = − 1
nλ

∑n
i=1(f̂ − zi)δpi

in Ω
Bc

∗ĝ = 0 on ∂Ω
(12)

where δpi
is the Dirach mass located in pi, L∗ is the adjoint operator of L

L∗g = −div(K∇g)− b · ∇g + (c− div(b))g (13)

and the “adjoint" boundary conditions are

Bc
∗g =







g on ΓD

K∇g · ν + b · νg on ΓN

K∇g · ν + (b · ν + γ)g on ΓR.
(14)
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Indeed, if we associate to any ϕ ∈ G the function v ∈ V0 such that v = Bϕ (or
equivalently Lv = ϕ with homogeneous boundary conditions), we have that

1

2

(

J ′
g(ĝ), ϕ

)

=

∫

Ω

1

n

n
∑

i=1

(

f̂ − zi

)

vδpi
+ λ

∫

Ω

ĝLv

=

∫

Ω

1

n

n
∑

i=1

(

f̂ − zi

)

vδpi
+ λ

∫

Ω

L∗ĝv +

∫

∂Ω

ĝBcv +

∫

∂Ω

Bc
∗ĝv

=

∫

Ω

[

1

n

n
∑

i=1

(

f̂ − zi

)

δpi
+ λL∗ĝ

]

Bϕ+

∫

∂Ω

Bc
∗ĝBϕ = 0 ∀ϕ ∈ G.

Since B is a bijection between L2(Ω) and V0 the latter is equivalent to

∫

Ω

[

1

n

n
∑

i=1

(

f̂ − zi

)

δpi
+ λL∗ĝ

]

v +

∫

∂Ω

Bc
∗ĝv = 0 ∀v ∈ V0. (15)

Choosing v ∈ C∞ with compact support in Ω, equation (15) implies that ĝ is the
solution in the sense of distributions of

L∗ĝ = − 1

nλ

n
∑

i=1

(f̂ − zi)δpi
.

Choosing v ∈ C∞(Ω̄) with support not including any of the location points pi, we
obtain from equation (15) the boundary conditions for ĝ that are Bc

∗ĝ = 0 where
Bc

∗ is defined in equation (14).
In this case, the estimator f̂ is obtained by solving the coupled system of PDEs

{

Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω

{

L∗ĝ = − 1
nλ

∑n
i=1(f̂ − zi)δpi

in Ω
Bc

∗ĝ = 0 on ∂Ω.
(16)

4 Bias of the estimator

The penalty term in the functional J(f) induces a bias in the estimator f̂
unless the unknown part of the forcing term g0 = 0 and the true underlying field
f0 satisfies exactly the penalized PDE Lf0 = u; we want now to quantify this bias.
The estimator f̂ is obtained as the unique minimum of the functional J(f), solving
the Euler-Lagrange equation (9). Thanks to the linearity of equation (9), we can
write

f̂ =argmin
f∈V

[

1

n

n
∑

i=1

(f(pi)− f0(pi))
2
+ λ

∫

Ω

(Lf − u)2

]

+ argmin
w∈V0

[

1

n

n
∑

i=1

(w(pi)− ǫi)
2
+ λ

∫

Ω

(Lw)2

]

where f0(pi) is the mean value of the observation zi located in pi, i.e., E[zi] =

f0(pi). The first term is the deterministic part of f̂ , while the second term

ŵ = argmin
w∈V0

[

1

n

n
∑

i=1

(w(pi)− ǫi)
2
+ λ

∫

Ω

(Lw)2

]

(17)
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is related to the observation noise: ŵ is in fact the minimizer of the functional when
data are pure noise and the penalized PDE is homogeneous (both the forcing term
and the boundary conditions are homogeneous). Notice that ŵ is a linear function
of the errors ǫi and for this reason it has zero mean. Indeed, ŵ is obtained as the
solution of the PDE

{

Lŵ = ĝw in Ω
Bc

∗ŵ = 0 on ∂Ω
(18)

where ĝw satisfies
{

L∗ĝw = − 1
nλ

∑n
i=1(ŵ − ǫi)δpi

in Ω
Bc

∗ĝw = 0 on ∂Ω.
(19)

Moreover, thanks to the PDE (18) we know that E[ŵ] = BE[ĝw], while from the
PDE (19) we obtain that

L∗
E[ĝw] +

1

nλ

n
∑

i=1

BE[ĝw(pi)]δpi
=

1

nλ

n
∑

i=1

E[ǫi]δpi
= 0.

Finally, since L∗, B and the evaluation in a point are linear operators, we have
that both ĝw and ŵ have zero mean. It follows then that the mean value of the
estimator E[f̂ ] is the minimizer of the functional when the observations are without
noise and the PDE is not homogeneous (both the forcing term and the boundary
conditions are not homogeneous), i.e.,

E[f̂ ] = argmin
f∈V

[

1

n

n
∑

i=1

(f(pi)− f0(pi))
2
+ λ

∫

Ω

(Lf − u)2

]

. (20)

Notice that the sum of the Euler-Lagrange equations associated to the functionals
(17) and (20) corresponds to the Euler-Lagrange equation (9) associated to the
functional (6).

Since E[f̂ ] is related to the bias induced by the penalizing term, we are interested
in studying the error term E[f̂ − f0]; in particular it is natural to study it in the
norm induced by the functional J(f), i.e.,

‖f‖2J =
1

n

n
∑

i=1

f(pi)
2 + λ

∫

Ω

(Lf)2. (21)

Lemma 1. The norm (21) of the bias of f̂ is bounded by

∥

∥

∥E[f̂ − f0]
∥

∥

∥

2

J
≤ 4λ ‖Lf0 − u‖2L2(Ω) . (22)

Proof. In order to obtain the inequality (22) we can use the optimality (20) of E[f̂ ]
in the minimization of the functional with respect to any other function in V . We

9



have in fact that

∥

∥

∥E[f̂ ]− f0

∥

∥

∥

2

J
=

1

n

n
∑

i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥

∥

∥L(E[f̂ ]− f0)
∥

∥

∥

2

L2(Ω)

≤ 1

n

n
∑

i=1

(E[f̂ ](pi)− f0(pi))
2 + 2λ

∥

∥

∥LE[f̂ ]− u
∥

∥

∥

2

L2(Ω)
+ 2λ ‖Lf0 − u‖2L2(Ω)

≤ 2

[

1

n

n
∑

i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥

∥

∥LE[f̂ ]− u
∥

∥

∥

2

L2(Ω)

]

+ 2λ ‖Lf0 − u‖2L2(Ω)

≤ 2λ ‖Lf0 − u‖2L2(Ω) + 2λ ‖Lf0 − u‖2L2(Ω) .

This result means that the estimator is asymptotically unbiased in the norm
‖·‖J either if ‖Lf0 − u‖L2(Ω) = 0 or if λ → 0 for n → +∞. The condition
‖Lf0 − u‖L2(Ω) = 0 means that the real field f0 is in the kernel of the penalty
term, while the condition λ→ 0 for n→ +∞ means that the more observations we
have, the less we penalize the PDE misfit.

5 Finite Element estimator

The estimation problem presented in Section 2 is infinite dimensional and can-
not be solved analytically. To reduce this infinite dimensional problem to a finite
dimensional one we approximate the PDE system (16) with the Finite Element
method; this method has already been used in this framework for example in [17],
[18] and [10]. The Finite Element approximation of the system (16) can be re-
garded as a naive mixed Finite Element method for the discretization of Problem
1. More complex methods for the discretization of fourth order problems could
be used: in [5], for example, some conforming and nonconforming methods for the
discretization of fourth order problems are introduced, while in [3, 20, 12] more
recent discontinuous Galerkin methods are described.

Let Th be a regular and quasi-uniform triangulation of the domain, that for con-
venience we assume here to be polygonal and convex, and h = maxK∈Th

diam(K)
be the characteristic mesh size (see, e.g., [2]). Notice that the mesh Th can be
defined independently of the location of the observations p1, · · · ,pn. We consider
the space V r

h of piecewise continuous polynomial functions of degree r ≥ 1 on the
triangulation

V r
h =

{

v ∈ C0(Ω̄) : v|K ∈ P
r(K) ∀K ∈ Th

}

and V r
h,ΓD

= V r
h ∩H1

ΓD
(Ω) where H1

ΓD
=

{

v ∈ H1(Ω) : v|ΓD
= 0

}

.
In order to discretize the PDE system (16) we define the bilinear forms

r(g, v) =

∫

Ω

gv, l(f, ψ) =
1

n

n
∑

i=1

f(pi)ψ(pi),

a(f, ψ) =

∫

Ω

(K∇f · ∇ψ + b · ∇fψ + cfψ) +

∫

ΓR

γfψ, (23)

the latter being the bilinear form associated to the operator L; we also introduce
the linear operator F (ψ) =

∫

Ω
uψ +

∫

ΓN
hNψ +

∫

ΓR
hRψ.

10



Let now fD,h ∈ V r
h be a lifting of the non-homogeneous Dirichlet conditions, i.e,

fD,h|ΓD
= hD,h, where hD,h is the interpolant of hD in the space of piecewise

continuous polynomial functions of degree r on the Dirichlet boundary ΓD. The
Finite Element approximation of the system (16) becomes

{

1
λ l(f̂h, ψh) + a(ψh, ĝh) =

1
nλ

∑n
i=1 ziψh(pi) ∀ψh ∈ V r

h,ΓD

a(f̂h, vh)− r(ĝh, vh) = F (vh) ∀vh ∈ V r
h,ΓD

(24)

with (f̂h − fD,h, ĝh) ∈ V r
h,ΓD

× V r
h,ΓD

.
In this Section and in the following one, we need a slightly stronger regularity

assumption on the PDE (2), in particular we need its solution to be in a Sobolev
space W 2,p, where W s,p(Ω) is the space of functions in Lp(Ω) with derivatives up
to order s in Lp(Ω).

Assumption 3. The parameters of the PDE are such that ∀ũ ∈ Lp(Ω) there exists
a unique solution f0 ∈W 2,p(Ω), for some p > d.

Lemma 2. Under Assumption 3, there exists h0 > 0 s.t. ∀h ≤ h0, Problem (24)
has a unique solution.

Proof. The proof mimics the strategy used to prove the existence and the unique-
ness of the estimator at the continuos level in Theorem 2.
Let B : L2(Ω) → V0 be the operator defined in Section 3 such that ψ = Bϕh is the
solution of

a(ψ, v) =

∫

Ω

ϕhv ∀v ∈ H1
ΓD
.

We define the operator Bh as the discretization of the operator B, i.e., ψh = Bhϕh ∈
V r
h,ΓD

is the solution of

a(ψh, vh) =

∫

Ω

ϕhvh ∀vh ∈ V r
h,ΓD

.

It is easy to show that the operator Bh is stable in the L∞-norm, i.e., ‖ψh‖L∞(Ω) ≤
C ‖ϕh‖L2(Ω). We have in fact that

‖ψh‖L∞(Ω) ≤ ‖ψ − ψh‖L∞(Ω) + ‖ψ‖L∞(Ω) .

Thanks to the H2-elliptic regularity of the PDE (2) (see Assumption 2) we have
that

‖ψ‖L∞(Ω) ≤ C ‖ψ‖H2(Ω) ≤ C ‖ϕh‖L2(Ω)

while thanks to Assumption 3 and the Sobolev inequality (see, e.g., [2])

‖w‖L∞(Ω) ≤ C ‖w‖W 1,p(Ω) ∀w ∈W 1,p(Ω) ∀p > d (25)

where W 1,p(Ω) is the space of functions in Lp(Ω) with first derivatives in Lp(Ω),
we obtain the bound for the error term in the L∞-norm

‖ψ − ψh‖L∞(Ω) ≤ C ‖ψ − ψh‖W 1,p(Ω) ≤ C inf
vh∈V r

h,ΓD

‖ψ − vh‖W 1,p(Ω)

≤ Ch |ψ|W 2,p(Ω) ≤ Ch ‖ϕh‖Lp(Ω) ≤ Ch1+min{0, dp− d
2} ‖ϕh‖L2(Ω) .
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In the last step we have used an inverse inequality; see, e.g., [9], and taking p =
2d/(d− 2), which is larger than d for d ≤ 3, we conclude

‖ψ − ψh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

We define now the operators Ah and Lh as the discretization of the operators A
and L defined in Section 3:

Ah(gh, ϕh) =
1

n

n
∑

i=1

Bhgh(pi)Bhϕh(pi) + λ

∫

Ω

ghϕh

Lhϕh =
2

n

n
∑

i=1

Bhϕh(pi)(Bhu(pi) + fb,h(pi)− zi)

where fb,h is the discretization of fb. The operator Ah is coercive in L2, in fact

Ah(gh, gh) =
1

n

n
∑

i=1

(Bhgh(pi))
2 + λ

∫

Ω

g2h ≥ λ ‖gh‖2L2(Ω) .

Thanks to the stability in the L∞-norm of the operator Bh, both the operators Ah

and Lh are continuous:

Ah(gh, ϕh) ≤ C ‖Bhgh‖L∞(Ω) ‖Bhϕh‖L∞(Ω) + λ ‖gh‖L2(Ω) ‖ϕh‖L2(Ω)

≤ C ‖gh‖L2(Ω) ‖ϕh‖L2(Ω)

Lh(ϕh) ≤ C ‖Bhϕh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

Thanks to the fact that Ah is continuous and coercive in L2(Ω) and Lh is continuous
in L2(Ω), the equation

2Ah(gh, ϕh) + Lh(ϕh) = 0 ∀ϕh : Bhϕh = ψh ∈ V r
h,ΓD

has a unique solution gh ∈ V r
h,ΓD

. This equation corresponds to the first equation
of the system (24).
Once ĝh is known, f̂h is recovered uniquely from the second equation in (24).

Let now {ψk}Nh

k=1 be the Lagrangian basis of the space V r
h,ΓD

, where Nh =
dim(V r

h,ΓD
), and let ξ1, . . . , ξNh

be the nodes associated to the Nh basis functions.
Thanks to the Lagrangian property of the basis functions we can write a function
f ∈ span{ψ1, . . . , ψNh

} as

f(x) =

Nh
∑

k=1

f(ξk)ψk(x) = fTψ

where f = (f1, . . . , fNh
)
T
= (f(ξ1), . . . , f(ξNh

))
T and ψ = (ψ1, . . . , ψNh

)
T .

Analogously, we define the Lagrangian basis of the space V r
h \V r

h,ΓD
as {ψD

k }N
D
h

k=1,
where ND

h = dim(V r
h \V r

h,ΓD
) and the nodes on the boundary ΓD as ξD1 , . . . , ξ

D
ND

h

.

A lifting fD,h can be constructed in span{ψD
1 , . . . , ψ

D
ND

h

} as fD,h = fTDψ
D where

fD = (fD(ξD1 ), . . . , fD(ξD
ND

h

))T and ψD = (ψD
1 , . . . , ψ

D
ND

h

)T .

12



The Finite Element solution f̂h of the discrete counterpart of the estimation problem
can thus be written as

f̂h = f̂Tψ + fTDψ
D

where f̂ is the solution of the linear system

[

ΨTΨ/(nλ) AT

A −R

] [

f̂

ĝ

]

=

[

ΨT z/(nλ)−ΨTΨDfD/(nλ)
u+ hN + hR −ADfD

]

. (26)

Rjk =
∫

Ω
ψjψk is the mass matrix, Ψij = ψj(pi) and ΨD

ij = ψD
j (pi) are the

matrices of pointwise evaluation of the basis functions, Ajk = a(ψk, ψj) and AD
jk =

a(ψD
k , ψj) are the matrices associated to the bilinear form a(·, ·). The vector z =

(z1, . . . , zn) contains the observed data while the vectors uj =
∫

Ω
uψj , (hN )j =

∫

ΓN
hNψj and (hR)j =

∫

ΓR
hRψj are related to the forcing term and the non

homogeneous boundary conditions.
Thanks to the linearity of the estimator f̂h in the observations we derive in [1]
some classical inferential tools such as approximate pointwise confidence bands and
prediction intervals, providing measures for uncertainty quantification within such
models.

6 Bias of the Finite Element estimator

The Finite Element estimator f̂h can be split, as its continuous counterpart
f̂ , in two different terms E[f̂h] and ŵh that are respectively the Finite Element
approximation of E[f̂ ] and ŵ. Reasoning as for the continuous problem, we can
easily show that E[ŵh] = 0. Neglecting this zero mean term, we now aim at
studying the bias of the Finite Element estimator, E[f̂h − f0], in the norm

∣

∣

∣

∣

∣

∣

∣

∣

∣
E[f̂h − f0]

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∥

∥

∥
E[f̂h − f0]

∥

∥

∥

2

n
+ λ

[

∥

∥

∥
E[f̂h]− f0

∥

∥

∥

2

H1(Ω)
+ ‖E[ĝh]− g0‖2L2(Ω)

]

(27)

where the norm ‖·‖n, is the norm induced by the bilinear operator l(·, ·), defined as

∥

∥

∥E[f̂h − f0]
∥

∥

∥

n
=

1

n

n
∑

i=1

(E[f̂h](pi)− f0(pi))
2.

Notice that the norm |||·||| contains both the norm ‖·‖J and the H1-norm of f̂h. We
need in fact also an explicit control on the H1-norm of f̂h to study the convergence
properties of the mixed Finite Element solution of the system (24).

Remark 1. One might be tempted to compare E[f̂h] to its continuous counterpart

E[f̂ ]. However, due to the presence of δpi
in the forcing term of the dual equation in

(16), E[f̂ ] is not smooth in general. For this reason, in the error analysis proposed

in this Section, we directly compare E[f̂h] with the true underlying field f0, which
is assumed to be sufficiently smooth.

The convergence of the bias term is studied when h→ 0, fixing the number n of
observations and the penalty parameter λ. Since we are considering n and λ fixed
we expect to obtain an error bound that contains a term going to zero as h → 0
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and a term that represents the bias induced by the roughness penalty, similarly to
the continuous setting in Lemma 1.

Thanks to the introduction of the adjoint variable ĝ, which represents the misfit
of the PDE, the estimation Problem 1 can be reformulated as a constrained problem
that is more convenient for the study of the convergence of the Finite Element
estimator.

Problem 2. Find f̂ ∈ V , ĝ ∈ G such that

(f̂ , ĝ) = argmin
(f,g)∈W

1

n

n
∑

i=1

(f(pi)− zi)
2 + λ

∫

g2

where W is the constrained space

W = {(f, g) ∈ V × G : Lf − u = g} . (28)

The constrained space W, can be discretized as

Wh = {(fh, gh) ∈ V r
h × V r

h,ΓD
: fh|ΓD

= hD,h and

a(fh, vh)− r(gh, vh) = F (vh), ∀vh ∈ V r
h,ΓD

},

where a(·, ·), r(·, ·), F (·) and hD,h are defined in Section 5. The expected value of
the Finite Element estimator (E[f̂h],E[ĝh]) is thus the solution of the equation

l(E[f̂h], ψh) + λa(ψh,E[ĝh]) = l(f0, ψh) ∀ψh ∈ V r
h,ΓD

(29)

in the constrained space Wh.
The bound for the bias of the Finite Element estimator E[f̂h−f0] is obtained thanks
to the following Lemma and Theorem.

Lemma 3. Let g0 = Lf0−u. The bias of the Finite Element estimator (E[f̂h],E[ĝh]) ∈
Wh satisfies the inequality

∥

∥

∥
f0 − E[f̂h]

∥

∥

∥

2

n
+ λ

[

∥

∥

∥
f0 − E[f̂h]

∥

∥

∥

2

H1(Ω)
+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C

{

inf
(ϕh,ph)∈Wh

[

‖f0 − ϕh]‖2n + λ ‖f0 − ϕh‖2H1(Ω) + λ ‖g0 − ph‖2L2(Ω)

]

+ λ ‖g0‖2L2(Ω)

}

(30)

for some constant C > 0 independent of h.

Proof. We set f∗h = E[f̂h] and g∗h = E[ĝh] and we recall that ‖·‖n is the norm
induced by the bilinear form l(·, ·), i.e., ‖f‖2n = l(f, f).
In order to prove Lemma 3 we can use the theory of saddle points systems. From
equation (29) and the definition of Wh we have immediately

1

λ
l(f̂∗h − f0, ψh) + a(ψh, ĝ

∗
h) = 0 ∀ψh ∈ V r

h,ΓD

a(f̂∗h − ϕh, vh) = r(ĝ∗h − ph, vh) ∀vh ∈ V r
h,ΓD

, (ϕh, ph) ∈ Wh.

14



Choosing (ϕh, ph) ∈ Wh we thus obtain

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

n
+ λ ‖ĝ∗h − ph‖2L2(Ω) = l(f̂∗h − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= l(f̂∗h − f0, f̂
∗
h − ϕh) + l(f0 − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= −λa(f̂∗h − ϕh, ĝ
∗
h) + l(f0 − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= l(f0 − ϕh, f̂
∗
h − ϕh)− λr(ĝ∗h − ph, ph) (31)

since f̂∗h −ϕh ∈ V r
h,ΓD

. We now bound the term f̂∗h −ϕh in the H1-norm using the
coercivity of the bilinear form a(·, ·) in H1(Ω):

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

H1(Ω)
≤ 1

α
a(f̂∗h − ϕh, f̂

∗
h − ϕh) =

1

α
r(ĝ∗h − ph, f̂

∗
h − ϕh)

≤
√

1 + C2
P

α
‖ĝ∗h − ph‖L2(Ω)

∥

∥

∥
f̂∗h − ϕh

∥

∥

∥

H1(Ω)

where α is the coercivity constant and CP is the constant in the Poincaré inequality
(5), which holds thanks to Assumption 1. Summing this inequality to (31) we obtain

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

n
+ λ

[

α2

4(1 + C2
P )

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

H1(Ω)
+ ‖ĝ∗h − ph‖L2(Ω)

]

≤ l(f0 − ϕh, f̂
∗
h − ϕh)− λr(ĝ∗h − ph, ph) +

λ

4
‖ĝ∗h − ph‖2L2(Ω)

≤ 1

2
‖f0 − ϕh‖2n +

1

2

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

n
+
λ

2
‖ĝ∗h − ph‖2L2(Ω) + 2λ ‖g0 − ph‖2L2(Ω)

+ 2λ ‖g0‖2L2(Ω) .

This inequality provides the bound

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

n
+ λ

[

∥

∥

∥f̂∗h − ϕh

∥

∥

∥

2

H1(Ω)
+ ‖ĝ∗h − ph‖2L2(Ω)

]

≤ C
{

‖f0 − ϕh‖2n + λ ‖g0 − ph‖2L2(Ω) + λ ‖g0‖2L2(Ω)

}

.

The final error bound (30) can now be obtained by triangular inequality and ex-
ploiting the arbitrariness of (ϕh, ph) ∈ Wh.

We want now to split the error term on the constrained space Wh in two different
errors for E[f̂h] and E[ĝh] on the space V r

h . Assuming moreover that f0 and g0 are
in proper Sobolev spaces W s,p(Ω) we obtain the following result.

Theorem 3. Using Finite Elements of degree r, if f0 ∈W r+1,p(Ω) with f0|ΓD
= hD

and g0 ∈W r,p(Ω) with g0|ΓD
= 0 for p > d then, under Assumption 3, there exists

h0 > 0 s.t. ∀h ≤ h0

∥

∥

∥f0 − E[f̂h]
∥

∥

∥

2

n
+ λ

[

∥

∥

∥f0 − E[f̂h]
∥

∥

∥

2

H1(Ω)
+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C
[

h2r
(

|f0|2W r+1,p(Ω) + λ |g0|2W r,p(Ω)

)

+ λ ‖g0‖2L2(Ω)

]

. (32)
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Proof. In order to prove the result we need to split in two parts the constrained
error term

inf
(ϕh,ph)∈Wh

[

‖f0 − ϕh‖2n + λ ‖f0 − ϕh‖2H1(Ω) + λ ‖g0 − ph‖2L2(Ω)

]

in inequality (30).
We fix in the following ph ∈ V r

h,ΓD
and we chose ϕh ∈ V r

h that satisfies a(ϕh, vh) =
r(ph, vh) + F (vh) and ϕh|ΓD

= hD,h, so that (ϕh, ph) ∈ Wh. Thanks to this choice
we obtain the following bound

‖f0 − ϕh‖2H1(Ω) ≤ C
[

‖f0 − zh‖2H1(Ω) + ‖g0 − ph‖2L2(Ω)

]

(33)

where zh is an arbitrary function in V r
h such that zh|ΓD

= hD,h. This inequality is
obtained thanks to the fact that

‖f0 − ϕh‖2H1(Ω) ≤ 2 ‖f0 − zh‖2H1(Ω) + 2 ‖zh − ϕh‖2H1(Ω)

and that

α ‖zh − ϕh‖2H1(Ω) ≤ a(zh − ϕh, zh − ϕh) = a(f0 − ϕh, zh − ϕh) + a(zh − f0, zh − ϕh)

= r(g0 − ph, zh − ϕh) + a(zh − f0, zh − ϕh)

≤ ‖g0 − ph‖L2(Ω) ‖zh − ϕh‖L2(Ω) + ‖zh − f0‖H1(Ω) ‖zh − ϕh‖H1(Ω)

≤ C
[

‖g0 − ph‖L2(Ω) + ‖zh − f0‖H1(Ω)

]

‖zh − ϕh‖H1(Ω) .

The term ‖f0 − ϕh‖2n can be bounded with the W 1,p-norm (p > d) of the same
quantity, i.e.,

‖f0 − ϕh‖n ≤ C ‖f0 − ϕh‖W 1,p(Ω) . (34)

We have in fact that

1

n

n
∑

i=1

(f0(pi)− ϕh(pi))
2 ≤ max

pi

(f0(pi)− ϕh(pi))
2 ≤ ‖f0 − ϕh‖2L∞

and thanks to the Sobolev inequality (25) we obtain the upper bound (34).
We define now f0h ∈ V r

h such that a(f0h, ψh)− r(g0, ψh) = F (ψh) ∀ψh ∈ V r
h,ΓD

; the
error term can be split in two parts

‖f0 − ϕh‖W 1,p(Ω) ≤ ‖f0 − f0h‖W 1,p(Ω) + ‖f0h − ϕh‖W 1,p(Ω) .

The first term on the right-hand side of the inequality represents the W 1,p-norm
of the Finite Element error of the elliptic equation. The quantity f0h can in fact
be seen as the Finite Element approximation of the exact solution f0 and for this
reason (see, e.g., [2])

‖f0 − f0h‖W 1,p(Ω) ≤ C inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖W 1,p(Ω) .

The second term of the right-hand side of the inequality can be bounded by

‖f0h − ϕh‖W 1,p(Ω) ≤ C ‖g0 − ph‖Lp(Ω)
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where p > d. This bound is obtained thanks to the Lp-stability of the problem

a(f0,h − ϕh, vh) = r(g0 − ph, vh) ∀vh ∈ V r
h,ΓD

,

see, e.g., [2]. Therefore

‖f0 − ϕh‖n ≤ C



 inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖W 1,p(Ω) + ‖g0 − ph‖Lp(Ω)



 . (35)

Collecting the bounds (33) and (35), since Lp(Ω) ⊆ L2(Ω) for p ≥ 2 and Ω is
bounded, we obtain for p > d, d = 2, 3 the unconstrained upper bound

∥

∥

∥f0 − f̂∗h

∥

∥

∥

2

n
+ λ

[

∥

∥

∥f0 − f̂∗h

∥

∥

∥

2

H1(Ω)
+ ‖g0 − ĝ∗h‖2L2(Ω)

]

≤ (36)

C

{

inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖2W 1,p(Ω) + λ inf
ph∈V r

h,ΓD

‖g0 − ph‖2Lp(Ω) + λ ‖g0‖2L2(Ω)

}

.

The classic error bound for the interpolant Πr
hv ∈ V r

h of v ∈W r+1,p(Ω) with p > 1:

‖v −Πr
hv‖Wk,p(Ω) ≤ Chr+1−k |v|W r+1,p(Ω) , (37)

provides
inf

zh∈V r
h

zh|ΓD
=hD,h

‖f0 − zh‖W 1,p(Ω) ≤ Chr |f0|W r+1,p(Ω)

inf
ph∈V r

h,ΓD

‖g0 − ph‖Lp(Ω) ≤ Chr |g0|W r,p(Ω) .

Notice that the inequality (32) can be split in two terms, the first term of the
right-hand side goes to zero for h→ 0 while the second term ‖g0‖2L2(Ω) is the same
bias term obtained in the error splitting (22) and goes to zero when λ→ 0.

Remark 2. In this work we propose an equal order Finite Elements approxima-
tion for f̂ and ĝ. Equal order Finite Elements are known to lead to sub-optimal
convergence rates for the fourth order biharmonic problem (see, e.g., [4, 5]). How-
ever, here we are able to recover the optimal convergence rate thanks to the fact
that the boundary conditions that are naturally associated to the smoothing problem
are the same for f̂ and ĝ. It should be noticed that the optimal convergence rate
is recovered only if g0 satisfies exactly the homogeneous Dirichlet boundary con-
ditions on ΓD, which might be a restrictive hypothesis. If g0 does not satisfy the
Dirichlet boundary conditions we should expect a “boundary term" decaying as h1/2

both in two and three dimensions. Observe however that the approximation term
λ infph∈V r

h,ΓD

‖g0 − ph‖2Lp(Ω) is always smaller than λ ‖g0‖2Lp(Ω) and for this reason

the ”boundary term” effect will be hidden by the bias term.
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Figure 1: Left: true surface f0 used for the simulation studies of Test 1; the image
displays the isolines (0, 0.005, 0.01, . . . , 0.06). Right: location points sampled uniformly
on the domain for Test 1 and 2.

7 Numerical simulations

7.1 Test 1

We propose to verify in a simple setting the convergence results shown in Section
6. We consider the bidimensional domain Ω = [0, 1]× [0, 1] and we assume that the
true underlying surface f0 satisfies the following PDE

{

∆f0 = 2 [x(x− 1) + y(y − 1)] in Ω
f0 = 0 on ∂Ω

(38)

whose solution, f0 = xy(x− 1)(y− 1), is represented in Figure 1, Left. We consider
the n = 200 observation points p1, . . . ,pn, represented in Figure 1, Right, and
we want to test the convergence of |||E[f̂h − f0]||| when h → 0. For this reason
we solve the estimation problem on different uniform structured meshes with size
h = 1/2, 1/4, . . . , 1/29.
We will consider different settings.

A. The observations are without noise, i.e., zi = f0(pi), and the functional
J(f) penalizes the misfit of the governing PDE (38), i.e., L = ∆ and u =
2 [x(x− 1) + y(y − 1)].

B. The observations are without noise, i.e., zi = f0(pi), but the functional J(f)
penalizes the misfit of a PDE different from the governing PDE (38). In
particular L = ∆ but u 6= 2 [x(x− 1) + y(y − 1)]:

1. the penalized forcing term u is such that g0 = Lf0 − u satisfies homo-
geneous Dirichlet boundary conditions on ∂Ω: u = 2(x(x− 1) + y(y −
1))(1 + (x(x− 1)y(y − 1)));

2. different penalized forcing terms u are considered, such that g0 = Lf0−
u does not satisfies homogeneous Dirichlet boundary conditions on ∂Ω:

(a) u = (x(x− 1) + y(y − 1)), which corresponds to the knowledge of
the real forcing term up to a multiplying constant factor;

18



(b) u = 2x(x− 1), which corresponds to the knowledge of only a part
of the real forcing term;

(c) u = 2(x(x − 1) + y(y − 1)) + (x10 + y10 + (x − 1)10 + (y − 1)10),
which forces g0 to be equal to -1 on the boundary, with a relatively
large boundary layer.

C. The observations are with noise, i.e., zi = f0(pi) + ǫi, where ǫi ∼ N (0, σ2),
and the functional J(f) penalizes the misfit of the governing PDE (38), i.e.,
L = ∆ and u = 2 [x(x− 1) + y(y − 1)].
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||ĝh − g0||L2

Figure 2: Test 1, case A: convergence rates of the bias of the estimator in the norms
|||f̂h − f0|||, ‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1. Left: linear mixed
Finite Element approximation. Right: quadratic mixed Finite Element approximation.

Case A (no bias, no noise) We solve the estimation problem both with linear
and quadratic Finite Elements fixing the roughness parameter λ = 1. We recall that
we are using the same order of approximation for f̂h and ĝh. The results of the linear
and the quadratic mixed Finite Element approximation are shown respectively in
the left and right panel of Figure 2. In particular we show the convergence of the
error |||f̂h − f0||| as well as the convergence of each individual term of the norm |||·|||,
namely ‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω). Since we are considering

the case of observations without noise E[f̂h−f0] = f̂h−f0 and E[ĝh−g0] = ĝh−g0.
We notice that both with the linear and the quadratic approximation we obtain
a rate of convergence equal to or higher than the expected rate for all the error
terms. In particular, the H1-norm of the error is the dominating term both in the
linear and the quadratic approximation and decays as h in the case of linear Finite
Elements and as h2 in the case of quadratic Finite Elements. All the other terms
are negligible. As expected, the norm ‖·‖n of f̂h − f0 and the L2-norm of ĝh − g0
decay as h2 in the case of linear Finite Elements and at least as h3 in the case of
quadratic Finite Elements.

Case B1 (bias with exact b.c., no noise) We solve the estimation problem
with linear Finite Elements and we study the convergence for different values of the
roughness parameter λ. Recall that, in this case, g0 = ∆f0 − u 6= 0 satisfies the
homogeneous Dirichlet boundary conditions. Figure 3 shows the rate of convergence
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Figure 3: Test 1, case B1: convergence rates of the bias of the estimator obtained
with linear Finite Elements, when λ = 0.05, 0.1, 0.2, 0.4. Top left: |||f̂h − f0|||, top right:
‖f̂h − f0‖n, bottom left: ‖f̂h − f0‖H1(Ω), bottom right: ‖ĝh − g0‖L2(Ω).
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Figure 4: Test 1, case B2: convergence rates of |||f̂h − f0|||Ω and |||f̂h − f0|||Ωint
using linear

Finite Elements with λ = 10−5. Left: case a), center: case b), right: c).
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of the error in different norms, when λ = 0.05, 0.1, 0.2, 0.4. As in case A, since the
observations are without noise, E[f̂h−f0] = f̂h−f0 and E[ĝh−g0] = ĝh−g0. Notice
that when the mesh is fine the approximation error in the norm |||·||| asymptotically
approaches a value proportional to

√
λ, as expected from Theorem 3; this behavior

is caused by the presence of the bias term in the error bound (32). The dominant
term is in this case the L2-norm of ĝh − g0. This term has a different behavior for
different values of λ: if λ is sufficiently small, it decays as h2 before approaching
the asymptote, otherwise it decays as h. It is thus necessary to use small values of
λ in order to recover the expected convergence rate h2 but even when using a large
value of λ the rate of convergence of |||f̂h − f0||| is at least linear before reaching
the saturation level caused by the bias term. The other two terms instead decay
with the expected convergence rate for all the values of λ, before approaching the
asymptote.

Case B2 (bias with wrong b.c., no noise) We consider three different
forcing terms u such that g0 = ∆f0−u 6= 0 does not satisfy the homogeneous Dirich-
let boundary conditions. In this case we study the error in the norm |||·||| over the
whole domain Ω, which will be denoted by |||f̂h − f0|||Ω, as well as over the subdomain
Ωint = [0.1, 0.9]× [0.1, 0.9], denoted by |||f̂h − f0|||Ωint

. As highlighted in Remark 2,
the former error should be affected by a “boundary term" decaying as h1/2, while
the latter does not include the error at the boundary. As in case A and B1, since
the observations are without noise, E[f̂h − f0] = f̂h − f0 and E[ĝh − g0] = ĝh − g0.
The results obtained with the three forcing terms are represented respectively in
the left, center and right panels of Figure 4. In theory we would expect a different
rate of convergence for the two errors, which should be more clearly visible when
the mesh is fine. On the other hand the numerical simulations do not display any
significant difference between the convergence rates of the two errors in all the three
cases; this is due to the presence of the bias, which is asymptotically approached
by both the error terms, that hides the expected convergence rate. Thus, using
a forcing term such that g0 does not satisfy the homogeneous Dirichlet boundary
conditions, does not affect too much the surface estimation.

Case C (no bias, with noise) We add some noise to the pointwise evalua-
tions f0(pi) of the surface: for each location point we sample independent errors,
ǫ1, . . . , ǫn, from a zero mean Gaussian distribution N (0, σ2), with different stan-
dard deviations σ = 0.005, 0.01, 0.02. The first value of σ corresponds to a rather
high signal to noise ratio, since the value of the true surface varies from 0 to 0.062,
while the last corresponds to a very low signal to noise ratio with errors of the same
order of magnitude as the variation of f0. The values zi, obtained from model
(1), are shown in Figure 5. We can notice that the observations with small additive
noise, represented in the left panel of Figure 5, are similar to the evaluation of f0
in the sampling points, while the observations with large errors, represented in the
right panel of the same figure, are far from the true underlying surface. The results
obtained solving the estimation problem with linear Finite Elements, fixed rough-
ness parameter λ = 0.01 and the exact PDE penalized are shown in Figure 6. The
represented results concern a single replicate of the experiment and show a typical
behavior of the error convergence in different norms. Notice that in Figure 6 the
represented errors include both the approximation error and the error associated to
the noisy observations. Due to the presence of noise, both |||f̂h − f0||| and ‖f̂h − f0‖n
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Figure 5: Test 1, case C: value of the observations z1, . . . , zn obtained from model
(1) adding noise with different values of standard deviation σ, superimposed to the true
underlying surface f0 (the image displays the isolines (0, 0.005, 0.01, . . . , 0.06)). Left: σ =
0.005, center: σ = 0.01, right: σ = 0.02.
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Figure 6: Test 1, case C: convergence rates of the bias of the estimator obtained
with linear Finite Elements and λ = 1, when the error in the observations is gener-
ated form a Gaussian distribution with different standard deviations σ = 0.005, 0.01, 0.02.
Top left: |||f̂h − f0|||, top right: ‖f̂h − f0‖n, bottom left: ‖f̂h − f0‖H1(Ω), bottom right:
‖ĝh − g0‖L2(Ω).
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reach quite soon a saturation limit proportional to the standard deviation of the
noise σ. Refining further the mesh still provides better approximation of the first
derivatives as shown by the convergence of ‖f̂h − f0‖H1(Ω).

7.2 Test 2

We test the convergence also in a different simulation study concerning a
diffusion-transport-reaction (DTR) PDE. We consider the domain Ω = [0, 1]× [0, 1]
and we assume that the true underlying field f0 satisfies the following PDE

{

Lf0 = −1 in Ω
f0 = 0 on ∂Ω

(39)

where the operator L is the diffusion-transport-reaction operator defined in (3) with
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Figure 7: True surface f0 used for the simulation study of Test 2; the image displays the
isolines (0, 0.0025, 0.005, . . . , 0.03).
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Figure 8: Test 2: convergence rates of the bias of the estimator in the norms |||f̂h − f0|||,
‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1. Left: linear mixed Finite
Element approximation. Right: quadratic mixed Finite Element approximation.

parameters K11 = 4, K22 = 1, K12 = K21 = 0, b1 = 2, b2 = 1 and c = 1, Kij and
bi being respectively the element (i, j) of the diffusion tensor K and the i-th element
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of the transport vector b. The solution of the PDE (39) is represented in Figure
7. We consider the n = 200 observation points p1, . . . ,pn represented in Figure
1, Right. In this case we only show the convergence of |||E[f̂h − f0]||| = |||f̂h − f0|||
when the observations are without noise and the functional J(f) penalizes the
misfit of the governing PDE (39). The results obtained solving the estimation
problem with linear and quadratic Finite Elements and λ = 1 on different uniform
structured meshes with size h = 1/2, 1/4, . . . , 1/29 are shown in Figure 8. We
can notice that also in the DTR case we obtain a rate of convergence equal to or
higher than the expected rate for all the error terms both with the linear and the
quadratic approximation. The H1-norm is still the dominating term while all the
other terms are negligible. As in the Laplacian case, the error terms ‖f̂h − f0‖n
and ‖ĝh − g0‖L2(Ω) decay as h2 for linear Finite Elements and at least as h3 for
quadratic Finite Elements.

7.3 Test 3

In the last simulation study we test the error convergence in a setting similar
to the applied motivating problem and the simulation studies presented in [1].
We consider in particular a circular domain centered in zero, with unitary radius,
Ω = B1, which is similar to the almost circular artery cross-section used in the
blood velocity field estimation problem in [1]. We assume that the true underlying
field f0 satisfies the following PDE

{

∆f0 = y in Ω
f0 = 0 on ∂Ω

(40)

whose solution f0 = y/8(1− x2 + y2) is represented in Figure 9, Left. We consider
the n = 200 observation points p1, . . . ,pn, represented in Figure 9, Right, on the
circular domain. As in the previous simulation study, in this case we only show the
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Figure 9: Left: true surface f0 used for the simulation study of Test 3; the image displays
the isolines (−0.055,−0.045,−0.035, . . . , 0.055). Right: location points sampled uniformly
on the domain for Test 3.

convergence when the observations are without noise and the penalized PDE is the
exact PDE (40). The results obtained solving the estimation problem with linear
Finite Elements and λ = 1 on 6 different uniform unstructured meshes are shown

24



h

e
rr

o
r

1

2

0.0362 0.0893 0.1886 0.3429 0.6824

1
.9

e
−

0
8

5
.9

e
−

0
7

1
.8

e
−

0
5

0
.0

0
0
5
8

0
.0

1
8

||| f^h − f0|||

|| f^h − f0||n

|| f^h − f0||H1
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Figure 10: Test 3: convergence rates of the bias of the estimator in the norms |||f̂h − f0|||,
‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1 and linear mixed Finite Ele-
ment approximation.

in Figure 10. As expected, the rate of convergence of the error |||E[f̂h − f0]||| =
|||f̂h − f0||| is h, since ‖f̂h − f0‖H1(Ω) is the dominating term, while ‖f̂h − f0‖n and
‖ĝh − g0‖L2(Ω) decay as h2. We thus obtain an optimal convergence rate of the
error also in the case of a circular domain.

8 Surface estimator for areal data

The field smoothing method presented in Section 2 can be extended to the case
of areal data that represent quantities computed on some subregions. This is useful
in many applications of interest and it is for instance the case of the estimation
of blood velocity field from Echo-Doppler data presented in [1]; the Echo-Doppler
data represent in fact the mean velocity of the blood cells on a subdomain within
an artery and cannot be approximated with pointwise observations.
Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains and z̄i, for i = 1, . . . , N , the
mean value of a quantity of interest on the subdomains. We consider the following
model for the observations z̄i:

z̄i =
1

|Di|

∫

Di

f0 + ηi. (41)

The error terms ηi have zero mean and variances σ̄2
i . The variances σ̄2

i depend
inversely on the dimension of the beams Di under the assumption that the number
of observations in a subdomain is proportional to its dimension. This model can be
derived starting from the model for pointwise observations; see [1] for more details.
In order to estimate the field we propose to minimize the penalized sum-of-square-
error functional

J̄(f) =
1

N

N
∑

i=1

1

|Di|

(∫

Di

(f − z̄i) dp

)2

+ λ

∫

Ω

(Lf − u)2 (42)

over the space V , defined in Section 2. The first term is a weighted least-square-
error functional for areal data over subdomains Di, weighted with the inverse of
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the variances σ̄2
i , under the assumption that σ̄2

i ∝ 1/ |Di|.
Existence and uniqueness of the estimator f̂ = argminf∈V J̄(f) is provided by the
following theorem.

Theorem 4. The estimator f̂ exists, is unique and is obtained solving the system
of PDEs:

{

Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω

{

L∗ĝ = − 1
Nλ

∑N
i=1

1
|Di|

IDi

∫

Di
(f̂ − z̄i) in Ω

Bc
∗ĝ = 0 on ∂Ω

(43)
where ĝ ∈ G represents the misfit of the penalized PDE, L∗ is the adjoint operator
of L, described by equation (13), and Bc

∗ is the operator that defines the boundary
conditions of the adjoint problem, summarized in (14).

The proof is analogous to the proof of Theorem 2. The existence and uniqueness
of the estimator is in fact obtained, thanks to Theorem 1, writing the functional
J̄(f) as the quadratic form (8). The proof of the well posedness of the problem
in the areal case is easier than the one presented in Section 3 and it is similar to
classical results in control theory. Data are in fact distributed and it’s not necessary
to require more regularity as in the case of punctual observations.

The estimator is then discretized by means of the mixed Finite Element method
described in Section 5. The Finite Element estimator f̂h can be written as f̂h =
f̂Tψ + f̂TDψ

D where f̂ is the solution of the linear system

[

Ψ̄TWΨ̄/(Nλ) AT

A −R

] [

f̂

ĝ

]

=

[

Ψ̄TWz̄/(Nλ)− Ψ̄T Ψ̄DfD/(Nλ)
u+ hN + hR −ADfD

]

. (44)

where Ψ̄ik = 1/ |Di|
∫

Di
ψk and Ψ̄D

ik = 1/ |Di|
∫

Di
ψD
k represents the spatial average

of the basis functions on the subdomains Di, W = diag(|D1| , . . . , |DN |) is the
weight matrix and z̄ = (z̄1, . . . , z̄N )

T is the vector of mean values on subdomains.
For more details on the properties of the estimator see [1].

As in the case of pointwise observations we can obtain a bound for the bias of
the estimator f̂ that corresponds exactly to the bound (22). We can use the results
obtained in the pointwise case also for the study of the bias of the Finite Element
estimator. In the areal data case we can also relax the hypothesis on f0 and g0 in
Theorem 3.

Theorem 5. Using Finite Elements of degree r, if f0 ∈ Hr+1(Ω) with f0|ΓD
= hD

and g0 ∈ Hr(Ω) with g0|ΓD
= 0, we obtain, under Assumption 1,

1

N

N
∑

i=1

1

|Di|

∫

Di

(f0 − E[f̂∗])2 + λ

[

∥

∥

∥f0 − E[f̂h]
∥

∥

∥

2

H1(Ω)
+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C
[

h2r
(

|f0|2Hr+1(Ω) + |g0|2Hr(Ω)

)

+ λ ‖g0‖2L2(Ω)

]

. (45)

Proof. If we define f̂∗h = E[f̂h], ĝ∗h = E[ĝh] and the bilinear form l(·, ·) as

l(f, ψ) =
1

N

N
∑

i=1

1

|Di|

∫

Di

fψ
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we can easily obtain the bound (30) for the norm of the bias defined as:

∣

∣

∣

∣

∣

∣

∣

∣

∣f̂∗h − f0

∣

∣

∣

∣

∣

∣

∣

∣

∣ =
1

N

N
∑

i=1

1

|Di|

∫

Di

(f̂∗h − f0)
2 + λ

[

∥

∥

∥f̂∗h − f0

∥

∥

∥

2

H1(Ω)
+ ‖ĝ∗h − g0‖2L2(Ω)

]

.

Since the norm associated to the bilinear form l(·, ·) is bounded by the H1-norm
we have that

1

N

N
∑

i=1

1

|Di|

∫

Di

(f0 − f̂∗h)
2 + λ

[

∥

∥

∥f0 − f̂∗h

∥

∥

∥

2

H1(Ω)
+ ‖g0 − ĝ∗h‖2L2(Ω)

]

≤ C

{

inf
(ϕh,ph)∈Wh

[

‖f0 − ϕh‖2H1(Ω) + λ ‖g0 − ph‖2L2(Ω)

]

+ λ ‖g0‖2L2(Ω)

}

.

The inequality (33) still holds for (ϕh, ph) ∈ Wh and zh ∈ V r
h and we obtain

1

N

N
∑

i=1

1

|Di|

∫

Di

(f0 − f̂∗h)
2 + λ

[

∥

∥

∥
f0 − f̂∗h

∥

∥

∥

2

H1(Ω)
+ ‖g0 − ĝ∗h‖2L2(Ω)

]

≤

C

{

inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖2H1(Ω) + λ inf
ph∈V r

h,ΓD

‖g0 − ph‖2L2(Ω) + λ ‖g0‖2L2(Ω)

}

Using the classic error bound (37) we obtain the desired result.

9 Conclusion and future work

In this work we have studied the properties of the SR-PDE smoothing tech-
nique. This smoothing method has a very broad applicability, since PDEs are
commonly used to model physical phenomena. The method is actually not appli-
cable to PDEs with discontinuous parameters, pointwise forcing term or defined
on irregular domains, due to the extra regularity required to the parameters of the
penalized PDE. This request however is not restrictive in spatial statistics and in
the smoothing framework since the field is normally assumed to be very regular.
The proposed mixed Finite Element method requires moreover g0 to satisfy the
Dirichlet boundary conditions on ΓD. This hypothesis could be sometimes restric-
tive since it means that the second derivatives of the field at the boundary are
clumped to zero; other discretization methods for fourth order problems could be
considered in the future. However, we have observed numerically that whenever g0
does not satisfy the homogeneous Dirichlet boundary conditions on ΓD, the extra
consistency error is of the same order as the bias contribution and therefore does
not really compromise the optimal convergence rate of the method.

The convergence studied in this work concerns the bias of the estimator when
the characteristic mesh size h goes to zero and neglects instead the error induced
by the presence of noise in the observations. Classical results concerning smoothing
splines and thin-plate splines (see, e.g., [6, 7, 8, 13]) show the consistency of these
estimators when the smoothing parameter λ goes to zero, as n→ +∞, with a proper
rate. Unfortunately these results cannot be directly extended to SR-PDE and a
different approach needs to be developed to show the consistency of these models.
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We are currently studying the (infill) asymptotic properties of the estimator when
the number of observations n goes to infinity. In particular we are studying the
convergence of the variance term ŵ, both in the continuous and the discrete setting,
when n goes to infinity and we are looking for a proper rate of λ that makes both
the bias and variance vanish.

It will be also interesting to balance the discretization error induced by the
Finite Element approximation with the bias of the estimator and the variance term
related to the noise of the observations. A possible way to solve the problem is the
development of a proper mesh adaptation technique, based on a posteriori estimates
of noise, variance and bias. This technique should locally refine the mesh in order
to obtain a local discretization error of the same order or smaller than the bias and
the noise standard deviation σ.
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