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Abstract

A fundamental aspect in the regulation of continuity of electricity sup-
ply is the identification of faults that could be caused by an exceptional
event and therefore that are outside the utility control and responsibility.
Different methods have been proposed during the years; the interpretation
of the observed faults as a signal of an underlying system naturally leads to
the analysis of the problem by means of an hidden Markov model. These
models, in fact, are widely used for introducing dependence in data and/or
for modelling observed phenomena depending on hidden processes. The
application of this method shows that the model is able to identify excep-
tional events; moreover the study of the estimated model parameters gives
rise to reality-linked considerations.

∗We thank Ing. Luca Lo Schiavo and Autorità per l’Energia Elettrica e il Gas for data and

support.
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1 Introduction

Quality regulation in electricity distribution has received significant attention in
recent years (CEER [5]; Fumagalli et al. [10]; Fumagalli et al. [11]).

One of the main problems in reliability performance regulation is how to
identify events that are exceptional with respect to normal performance; reg-
ulators usually design incentive mechanisms specifically targeted at quality of
supply, assuming the form of financial penalties and rewards to the distribution
utility based on the expected performance. It is therefore crucial to understand
when failure in meeting the regulatory targets is due to the utility behavior or
to events that are outside the utility control and that could be considered excep-
tional. Moreover, even if some events, such as extreme weather conditions, are
unavoidable, regulators have become more interested in controlling the efficiency
and effectiveness of utility restoration schemes.

Traditional criteria for identifying data due to exceptional situations are
based on different definitions of exceptional event, given in terms of number of
customers interrupted, duration of the interruptions, weather conditions, extent
of the mechanical damage to the distribution system and combinations of these
factors. The application of these criteria in Italy from 2000 to 2003, however,
resulted in some practical cases quite difficult and ambiguous. For these reasons
the Italian Regulatory Authority for Energy and Gas - AEEG - suggested, in
2004, the introduction of statistical methodologies, that should reduce ambigui-
ties and increase fairness. Nevertheless, statistical analyses of exceptional events
can be performed in very different ways, depending on the choice of the quality
indicator, on the spatial and temporal units of such measure, and, of course,
on the statistical methods employed. We aim at contributing to the reliability
performance regulation by means of a Hidden Markov Model (HMM - Rabiner
[18]; MacDonald and Zucchini [14]; Cappé et al. [4]; Frühwirth-Schnatter [8]).

HMMs describe the relationship between an observed process {Yt}t>0 and
an underlying and unobserved process {Xt}t≥0; the hidden process is assumed
to follow a Markov chain whose realization Xk governs the distribution of the
corresponding Yk. The interpretation of the number of electrical faults as a
signal of an underlying and not observable process naturally leads to analyse
the problem by means of an HMM. The proposed statistical method is based on
the idea that the observed number of interruptions depends on the latent status
of the “global” system controlling the electricity distribution; the latent system
operating status along time is modeled by a Markov chain, whose realization
controls the distribution of the corresponding number of observed faults.

The brief description of methods adopted by the AEEG during the years, in
Section 2, will help us to clarify some aspects of the problem. In Section 3 we
will present the finite hidden Markov model and how to make inference when a
Bayesian approach is adopted. After briefly presenting the data in Section 4,
we will report and widely discuss results in Section 5. The final considerations
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in Section 6 complete the analysis. All data analysis are performed in R (R
Development Core Team [17]).

2 The methods adopted by the Italian Regulatory

Authority

Since the Italian Regulatory Authority introduced the first continuity of supply
regulation in 2000, different methods have been proposed, applied and in some
cases criticized and improved (see Fumagalli et al. [11] for a review).

In the first regulatory period (2000 - 2003), the AEEG required utilities
to classify interruptions according to three categories: Force Majeure, exter-
nal causes (i.e. third party responsibilities and interruptions originated on the
transmission grid) and utility responsibilities. AEEG accepted a Force Majeure
attribution only if the exceptional nature of the event could be proven by tech-
nical or administrative evidence. For instance, a formal declaration of calamity
made by the government or measures of wind speed made by an independent
weather center. In practical terms, this procedure turned out to be onerous
both for the companies, that were collecting the data, and for the regulatory
authority, that was controlling the documentation provided. In addition, a few
controversial cases, where the exceptional nature of the event was claimed by
the companies, but could not be formally proven, generated a large amount of
disputes.

For these reasons, the AEEG began to consider a simpler procedure for
identifying an exceptional event on the basis of the nature of the interruption it
caused, compared to the characteristics of the interruptions caused by “normal
events”. Then, in 2004, for the regulatory period 2004 - 2007, AEEG introduced
a statistical methodology for identifying exceptional events, based on the idea
that such events are characterized by extremely long restoration times (Christie
[6]; Warren et al. [25]; Fumagalli et al. [9]). Even if a significant reduction in
administrative work resulted, on both the regulator and the utilities side, the
method showed some empirical problems.

During the consultation process for the third regulatory period additional
elements emerged that led to a new statistical approach for the identification
of exceptional events; the new proposed method was incorporated by AEEG,
in the Regulatory Order 333/07 (AEEG [1]). With this method, given a util-
ity observed performance, a 6 hour interval is deemed to be exceptional when
the number of faults registered in that interval is larger than an exceptionality
threshold determined by a four step procedure (see Fumagalli et al. [11] for
details). Once the exceptional intervals have been identified, an exceptional pe-
riod is defined as the time interval beginning 3 hours before the beginning of an
exceptional interval and terminating 3 hours after the end of the same interval.
The AEEG method is briefly presented in Appendix A.
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The method adopted by the Authority analyses each utility separately from
the others and uses only the observed performance in terms of number of faults,
without considering any other type of information. Moreover this method incor-
porates the idea that an exceptional event causes several faults protracting in
time - in fact it considers the number of interruptions greater than a threshold
and the analysis is based on the sum of the interruptions occurred in a 6 hour
time interval. Finally enlarging an exceptional interval to the 3 hours before the
beginning and 3 hours after the end of the same interval, the AEEG method in-
corporates the idea that the exceptional event is preceded and followed by some
instability conditions.
Taking in mind these considerations we now present a finite hidden Markov model
for the identification of exceptional events; we will adopt a Bayesian approach
for solving the inferential problems involved in the analysis.

3 Bayesian hidden Markov model

3.1 The model

A Hidden Markov Model (HMM) is a bivariate discrete time process {Xt, Yt},
where {Xt}t≥0 is a Markov chain and, conditional on {Xt}, {Yt}t>0 is a sequence
of independent random variables such that the conditional distribution of Yk only
depends on Xk.
The distribution of a variable Xk+1 conditionally on the history of the process,
X0, . . . ,Xk, is determined by the value taken by the preceding one, Xk (Markov
property); likewise, the distribution of Yk, conditionally on the past observations
Y1, . . . , Yk−1 and the past value of the state X0, . . . ,Xk, is determined by Xk only.

We consider a finite hidden Markov model, where the state space of the
Markov chain and the set in which {Yt} takes its values are finite sets, say
X = {1, 2, . . . ,K} and Y = {0, 1, . . . , q}. This model can be characterized by the
initial state distribution π = {πi}, with πi = P (X0 = i), i ∈ X, the transition
matrix A = {ai,j}, where ai,j = P (Xk+1 = j|Xk = i), i, j ∈ X and the emission
matrix B = {bi(y)}, with the conditional probabilities bi(y) = P (Yk = y|Xk = i),
i ∈ X, y ∈ Y.

Let ϑ be a vector containing the model parameters, arising from the tran-
sition mechanism (i.e. the transition matrix A and the initial state probability
distribution π) and from the emission mechanism (i.e. the emission matrix
B). Consider a sequence of length T and let (y,X) be the complete data,
(Y1 = y1, . . . , YT = yT ,X0 = x0,X1 = x1, . . . ,XT = xT ); then the complete
data likelihood function p(y,X|ϑ) is given by

p(y,X|ϑ) = πx0

K
∏

k=1





∏

t:Xt=k

bk(yt)





K
∏

i=1

K
∏

j=1

a
nij

i,j (1)

where nij = #{1 ≤ t ≤ T : Xt−1 = i,Xt = j}, ∀i, j ∈ X.
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Regarding the transition mechanism, we fix the initial state at 1, i.e. X0 = 1
(for a discussion on the choices of π and related prior specification see Cappé
et al. [4], Subsection 13.1.2 or Frühwirth-Schnatter [8], Subsection 10.3.4). We
will consider an HMM with a four state Markov chain, i.e. K = 4. States have
a physical meaning: state 1 indicates that the system is in a normal operating
status while state 4 indicates an exceptional operating status; states 2 and 3
are transitional and refer to an increasing degree of perturbation of the system
operating status, as yet non exceptional.

Regarding the emission mechanism, we will consider observations greater
than 9 just as “many interruptions”, i.e. Y = {0, 1, . . . , 9, > 9}; because the
finite HMM could be considered as a nonparametric model, the introduction of
this threshold does not affect the estimating method and it makes possible to
compare not only different utilities, but also the performance of the same utility
in different years.

3.2 Inference

When an HMM is considered, problems of interest are inference on the model
parameters ϑ and on the unobserved chain {Xt}. For many years HMMs have
been implemented using recursive algorithms developed for parameter estimation
(Baum and Petrie [2]; Baum et al. [3]) and for restoring the hidden Markov chain
(Viterbi [24]). More recently, these models have been studied from a Bayesian
point of view (among others Robert et al. [20]; Robert et al. [21]; Chib [7]).

In a Bayesian approach, model parameters are random quantities, on which
a prior has to be assigned; a standard prior assumption is that the emission
matrix is a priori independent of the transition matrix: p(ϑ) = p(A)p(B).

Moreover, we assume the rows of the transition and emission matrices to
be independent a priori, each following a conjugate Dirichlet prior; for instance
p(A) =

∏K
i=1 Dir(ai|αi1, . . . , αiK), where ai = (ai,1, . . . , ai,K) is the ith row

of the transition matrix A and p(B) =
∏K

i=1 Dir(bi|βi0, . . . , βiq), where bi =
(bi(0), . . . , bi(q)) is the ith row of the emission matrix B.

Inference on the model parameters and on the hidden chain is based on the
posterior distribution

p(X,ϑ|y) ∝ p(y|X,ϑ)p(X|ϑ)p(ϑ) (2)

∝ p(y,X|ϑ)p(ϑ).

Sampling from the posterior (2) is commonly carried out by a Markov Chain
Monte Carlo (MCMC) sampling scheme; an HMM’s missing-data structure nat-
urally admits posterior samplers that alternate between simulating X given ϑ

and y, and simulating ϑ given the complete data X and y (i.e. we can apply a
particular MCMC sampling scheme that is the Gibbs sampling method).

Because the transition and the emission matrices are assumed independent a
priori, they are (given X) independent a posteriori. Given a trajectory X, each
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row of the transition matrix has, independently from the others K − 1 rows, a
posterior Dirichlet distribution

Dir(ai|αi1 + ni1, . . . , αij + nij, . . . αiK + niK), (3)

where nij = #{0 ≤ t ≤ T − 1 : Xt = i,Xt+1 = j}, i, j ∈ {1, . . . ,K}. More-
over, given the complete data X and y, the rows of the emission matrix are
independent and each row has a posterior Dirichlet distribution

Dir(bi|βi0 + ei0, . . . , βiy + eiy, . . . , βiq + eiq), (4)

where eiy = #{1 ≤ t ≤ T : Xt = i, Yt = y}, with i ∈ {1, . . . ,K} and y ∈ Y. The
path X of the hidden Markov chain is sampled by the global updating scheme
(Cappé et al. [4]), where the trajectory of the hidden chain is updated as a
whole from its conditional distribution given the data and the model parameters
ϑ. The global updating scheme and the Gibbs sampling algorithm are described
in Appendix B.

An HMM is a generalization of a Mixture model, where the components are
not selected independently, but according to a Markov chain; with these models
it shares an identifiability issue known as label-switching (Scott [23]). In fact,
the HMM likelihood (1) is invariant under permutations of the state labels and,
because also the introduced prior distributions are exchangeable (i.e. they are
invariant under permutations of the components), the posterior will also be ex-
changeable. In order to avoid this problem it is common to assume constraints
ordering the parameters; these constraints can be informative, because we con-
struct a new prior that is zero in regions where the constraints do not hold;
however, scientific insight about the chain may suggest an order for the param-
eter. In our case, given the physical interpretation of the states, it is natural to
assume that the mean of the observed number of faults in the normal state 1 is
smaller than the mean in the transitional state 2 and so on; in other words we
will assume that µ1 < µ2 < µ3 < µ4, where µi =

∑q
j=0 j · bi(j).

Posterior draws produced by the MCMC sampler, provided that a sufficiently
large number of initial draws (the burn-in period) are discarded, are used for
statistical inference (for a discussion on different methods to estimate the hidden
chain, see for example Scott [23]). Considering a quadratic loss function (i.e.
loss(ϑ, ϑ̂) = ‖ϑ−ϑ̂‖2), the parameter estimate is the posterior expectation, that
is approximated by averaging over the draws from the posterior distribution.
Point estimation of the hidden Markov chain X may be obtained by considering
a 0/1 loss function, minimized by the mode of the marginal posterior probability,
also called the maximum a posteriori (MAP) estimator.

4 Data presentation

First of all we define the statistical units that we are going to consider in the
analysis. The Italian electricity distribution sector includes one very large utility
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(that serves more than 80% of consumers and covers more or less the entire
Italian territory) and a number of local companies (whose distribution territory
is always confined within a single province). Each statistical unit is an ‘object’
identifiable by its geographical position (the reference province) and the serving
utility (the large or the local one); in the following we will refer to these statistical
units as administrative units.

The dataset provided by the AEEG includes the observed hourly number of
faults, in each of the 113 administrative units for the year 2004. For illustra-
tive purposes we first present data and results for one administrative unit; we
then proceed to summarize the results for the whole dataset. The distribution
of absolute frequencies of the number of faults observed during 2004 for the
(randomly chosen) administrative unit is:

y 0 1 2 3 4 5 6 7 8 11 17 24

8100 570 66 23 8 7 4 1 1 2 1 1

This situation is quite typical and the following comments hold for each ad-
ministrative unit. The great majority of observations (more than 90%) are equal
to 0, a quite large number of faults are equal to 1 and so on in a decreasing order.
Note that just four observations are greater than 9, and thus the assumption to
relabel observations greater than 9 with >9 (see last part of Section 3.1) involves
a very small number of observations.

Moreover the performance of each administrative unit follows a common
pattern; for example, consider the observed performance for the administrative
unit previously considered during the whole 2004 (Figure 1) and during a week,
from the beginning of July 23rd to the beginning of July 30th (Figure 2). We
see that very often no interruptions occur, sometimes an intermediate number
of faults are observed and there are periods with several faults lasting in time.
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Figure 1: Observed performance for an administrative unit, year 2004.
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Figure 2: Observed performance for an administrative unit during a week, from
the beginning of July 23rd to the beginning of July 30th.
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5 Results

5.1 Identifying exceptional events

We analyse each administrative unit separately from the others, as an indepen-
dent system.

Dirichlet prior parameters are set equal to 1, for the transition matrix, and
equal to 4/11, for the emission matrix. A Dirichlet distribution with parameters
equal to 1 is a Uniform distribution; parameters of the Dirichlet distributions on
the emission matrix are set to be smaller than 1 in order to have a large prior
variance. Estimates are obtained running 30 000 iterations of the Gibbs sampler
and discarding the first 2 000 generated values; convergence of the sampling
algorithm is verified.

We now present results obtained by analysing, by the proposed HMM model,
the performance of the administrative unit described in Section 4. In Figure 3,
for each hour t, the observation yt is represented with a different symbol and
color according to the state xt of the estimated Markov chain; to better under-
stand the results, the values actually observed are plotted (in fact, recall that,
during the estimation process, observations greater than 9 were relabeled as >9).
Red marks at the bottom of the plot refer to periods deemed as exceptional by
the AEEG method; in order to obtain these periods, we compute the excep-
tionality threshold using the 6 hours time-interval data, and we declare (label)
the hours belonging to the obtained exceptional periods as AEEG exceptional
(see Appendix A for details on the AEEG method). There is a good concor-
dance between the HMM exceptional observations (dark red triangles in Figure
3) and the AEEG exceptional periods. Given the large number of observations
(8 784 = 366× 24, in fact 2004 was a leap year) and the differences, also concep-
tual, in the identification methods, it is almost impossible that the exceptional
events perfectly match.
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Figure 3: Observed performance for an administrative unit, year 2004; obser-
vations with different colors and symbols based on the estimated underlying
Markov chain. Red marks at the bottom represent the AEEG exceptional peri-
ods.

Moreover, by inspecting Figure 3, we see that, unlike the AEEG method, the
HMM method does not consider as exceptional all the observations greater than
a threshold, but it identifies more complex patterns. Because of the underlying
Markov structure, the same number of faults is exceptional or not depending
on the system performance close to that observation. To better understand
this consideration, we report the estimated transition matrix and (transpose)
emission matrix in Figure 4. We may notice some general features (that appear
in the estimated transition and emission matrices for all administrative units).
The probability of staying in state 1, a1,1, is almost equal to 1: when the global
system is in state 1, it means that it is in the normal operating status and this is
the most common situation. Also, the probability of staying in the exceptional
state, a4,4, is large: this means that, when the system enters in an exceptional
operating status, it is highly probable that it remains in it for some time steps
(hours), before visiting other states. Regarding the emission mechanism, by
inspecting Figure 4 it emerges that: states 1 and 2 mainly “emit” observations
equal to 0 and 1, when the chain is in state 3 it is highly probable to have from
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3 to 5 faults and when the underlying system is in state 4, it is likely to observe
higher values.

Â =







0.994 0.005 0.001 ≈ 0

0.006 ≈ 0 0.979 0.014

≈ 0 0.711 0.077 0.212

0.001 0.019 0.392 0.588






B̂T =





























0.943 0.477 0.085 0.047

0.052 0.378 0.103 0.055

0.004 0.095 0.110 0.073

0.001 0.024 0.220 0.180

≈ 0 0.016 0.080 0.067

≈ 0 0.003 0.156 0.155

≈ 0 0.003 0.097 0.117

≈ 0 0.001 0.036 0.055

≈ 0 0.002 0.037 0.044

≈ 0 0.001 0.018 0.021

≈ 0 0.001 0.058 0.185





























Figure 4: Estimated transition and (transpose) emission matrices.

Let us focus on time periods containing observations deemed, by the HMM
method, as due to an exceptional event. Given that the estimated Markov chain
visited an exceptional state 4, we can go backward and forward in time until the
estimated chain reaches again the normal state 1; for this administrative unit
and for the year 2004, we thus obtain 5 intervals that are plotted in Figure 5,
where, for each plot, the title indicates the month and the abscissa labels the
day and the hour when each interval starts and finishes.

By inspecting the plots in Figure 5, we see that each exceptional event is pre-
ceded and followed by an instability situation; indeed, this is also incorporated
in the AEEG method. When an exceptional event occurs (i.e. the underlying
chain is in state 4), it is interesting to consider the distribution of the random
time requested for the system to reestablish the normal operating status (i.e. the
chain comes back to state 1); this distribution can be gathered by the analysis
of the estimated transition matrix of the hidden Markov chain.
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Figure 5: Intervals containing at least one exceptional event. Given that an
exceptional event occurs, we can go backward and forward until the estimated
chain is in the normal state 1; the title indicates the month and the abscissa
labels the day and the hour when each interval starts and finishes.

5.2 Exceptional excursions

The study of the time needed to the chain to come back in the normal state,
given that an exceptional event occurred, starts with the definition of an ex-
ceptional excursion. An exceptional excursion is a sequence of states beginning
in the first state after a state 1 (it could be state 2, 3 or 4), ending in state
1 and containing at least one state 4; in Figure 5 are represented five excep-
tional excursions. It can be shown that the length of an exceptional excursion is
discretely Phase-type distributed, where a Phase-type distribution (Neuts [16])
is the distribution of the number of steps until absorption for a finite Markov
chain with all states that are transient but one that is absorbing. We refer to
Appendix C for details relative to the definition of the Phase-type distribution,
the proof that an exceptional excursion is discretely Phase-type distributed and
how to obtain the estimated Phase-type distribution.

The estimated Phase-type distribution for the administrative unit so far anal-
ysed is reported in Figure 6. The length of an exceptional excursion represents
the time spent by the chain outside the normal state 1, when an exceptional
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event occurs and thereby the Phase-type distribution represents the distribution
of the time needed to the electricity distribution utility to reestablish the normal
operating status. Therefore we can use the estimated (length of) exceptional ex-
cursion distributions as a tool for evaluating the efficiency and the effectiveness
of different utility restoration schemes. Consider for example Figure 7 showing
the estimated Phase-type distribution of two administrative units (labeled as P1
and P2, where P2 is the administrative unit so far considered), in 2004. We see
that the Phase-type distribution associated to P2 concentrates more mass on
larger values and then it is more probable that P2 needs more time, compared
to administrative unit P1, to reestablish the normal operating status.
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Figure 6: Estimated Phase-type distribution, that is the estimated distribution
of the time needed to the system to reestablish the normal operating status. In
the legend the basic indicators.
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Figure 7: Estimated Phase-type distribution for administrative units labeled as
P1 and P2; in the legend the basic indicators.

5.3 Analysing the Italian electricity distribution utilities

We have presented and discussed results related to a single administrative unit,
but the same analysis has been performed for the whole dataset. Let us now
summarize results related to the whole dataset. Considering together the 113
administrative units for the year 2004 (i.e. a total of 113 × 8 784 = 992 592
observations), we have that the great majority of observations - more than 97% -
are classified in the normal state (i.e the estimated underlying Markov chain is in
state 1), 2% and 0.1% of the interruptions are classified in the transitional states
2 and 3 respectively, while just about the 0.09% of the faults - 881 observations
- are classified as due to an exceptional event (i.e. the estimated hidden chain is
in state 4). This is not an astonishing result, given that for each administrative
unit, about 90% of observations are equal to 0.

For each administrative unit, because they are analysed separately, the model
evaluates as exceptional, interruptions of different magnitude. The presumption
is that the model indirectly incorporates all relevant exogenous information, even
though it does not explicitly takes into account any covariate different from the
hourly number of faults, like, for instance, the geographical size of the admin-
istrative unit or the number of served costumers. Note that the same adaptive
mechanism characterizes the AEEG method; indeed the AEEG exceptionality
threshold, based on the observed performance, is typically different for each
administrative unit.

In order to understand if, at the same hour, the exceptionality involves more
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than one administrative unit, consider the number of administrative units that
are simultaneously experiencing an exceptional situation. We previously said
that the exceptionality involves a larger time period, described by the exceptional
excursion; then given that an exceptional event occurs, we enlarge the interval
in order to also consider the instability condition preceding and following an
exceptional event. Note that this relabelling process is conceptually similar to
the AEEG procedure, that considers as exceptional the three hours preceding
and following an exceptional interval.

For each hour when at least one administrative unit is experiencing an excep-
tional excursion, we count the number of administrative units that are simul-
taneously experiencing an exceptional excursion. Table 1 reports the number
of times one, two, . . . , different administrative units experienced a simultane-
ous exceptional instability situation in 2004; in particular during a single hour
(January 30th, 5 AM), 15 different administrative units were managing an ex-
ceptional situation. Let us focus on the administrative units that generated the
796 “single exceptional excursions”.

Without considering any technical or morphological information, we expect
that an exceptional situation (e.g. due to a meteorological phenomenon) involves
more than one administrative unit; consequently administrative units that more
often are alone in the exceptional excursions are likely to be particularly sen-
sible to changes in underlying conditions. In Figure 8, the province relative to
each administrative unit is colored with a different intensity on the basis of the
number of hours the administrative unit has been the only one in an exceptional
excursion. Note that administrative units with “single exceptional excursions”
are mainly placed in the South part of Italy.

# of prov. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hours 796 291 170 111 85 81 57 24 11 5 10 8 7 2 1

Table 1: Number of administrative units simultaneously experiencing an excep-
tional excursion in 2004. For 796 times only one administrative unit was in an
exceptional instability situation and so on.
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Figure 8: Geographical distribution of the number of times the administrative
units have been the only one experiencing an exceptional excursion in 2004: the
province relative to each administrative unit is colored with different intensity
proportional to the number of times the administrative unit has been the only
one experiencing the exceptional excursion.

For each hour t in 2004 and for each administrative unit, the estimated
Markov chain indicates the system working operating status; moreover the ge-
ographical position of each administrative unit is known. Therefore, for each
hour t, we can picture the simultaneous system operating statuses by coloring
the province relative to each administrative unit with a different color on the
basis of the state of the underlying Markov chain at that time. Then, by letting
t run, we may appreciate the evolution in space and time of the exceptional
events. Consider, for example, Figure 9; each plot shows the provinces oper-
ating status at a certain time: if the underlying system is in state 1 the area
is colored in pale blue, if it is in state 2 in green, in state 3 in orange and in
state 4 in red. The Figure shows the temporal evolution of the situation since
January 29th 2 PM to January 30th 1 PM; focussing on red areas that indicate
an exceptional operating status, we notice that the instability situation started
from the North/West and, as time goes by, it involves the Center and finally the
South-East part of Italy. Therefore it seems that with the model (even if it was
estimated separately for each administrative unit) we are gathering an unsettled
situation that plausibly was a meteorological phenomenon.
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Figure 9: Spatio-temporal evolution of the exceptional events: the province
relative to each administrative unit has a different color on the basis of the state
of the estimated underlying Markov chain; if the system is in state 1 the area is
colored in pale blue, if it is in state 2 in green, in state 3 in orange and in state
4 in red. The plots show the situation from January 29th 2 PM to January 30th
1PM; time evolves from top to bottom and from left to right.
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We conclude this Section comparing results obtained with the HMM method
and those obtained with the method adopted by the AEEG. The two methods
are quite different and, in particular, the AEEG method is “rigid” in the sense
that it works with 6 hours intervals and it declares exceptional the three hours
before and after an exceptional interval. It is almost impossible that periods
deemed as exceptional by the two methods perfectly overlap, but, when there is
an agreement, those periods intersect.

Let us introduce a simple notation: we indicate with H the set of HMM
exceptional periods H, i.e. the intervals of time spent by the estimated Markov
chain in state 4, and with A the set of time intervals A declared exceptional by
the AEEG method. We then define the set of “stretched intervals” as

S =
{

H
⋃

A : H ∈ H,A ∈ A,H ∩ A 6= ∅
}

,

and set H′ = H
⋃

S and A′ = A
⋃

S. If an hour t belongs to a time interval in H′ it
is labeled as “H-exceptional” otherwise it is labeled as “H-normal”. Likewise,
if an hour t belongs to a time interval in A′ it is labeled as “A-exceptional”
otherwise it is labeled “A-normal”. For each administrative unit we may then
compute the confusion matrix:

HMM H-exceptional H-normal
AEEG

A-exceptional nAH nAHC

A-normal nACH nACHC

For example, nAH is the number of hours simultaneously declared excep-
tional by the two methods. The (A-normal, H-normal) situation is by far the
most frequent. Then, as a measure of similarity, instead of the simple matching
coefficient that could overestimate similarity, we use the Dice coefficient (it is
similar to the Jaccard similarity coefficient but gives twice the weight to agree-
ments); that is, for each administrative unit, we evaluate the similarity (the
agreement) between the two methods by

D =
2nAH

2nAH + nAHC + nACH

.

In 21 administrative units the HMM method does not identify exceptional events,
whilst the AEEG method declares exceptional a few hours; for 3 administrative
units no observations are considered as due to an exceptional event by any
method. For the other administrative units the absolute frequencies distribution
of the Dice coefficient is reported in the next table, that shows a satisfactory
agreement between the two methods.

D (0; 0.25] (0.25; 0.5] (0.5; 0.75] (0.75; 1]

4 13 31 41
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5.4 A Cluster analysis

Even if each administrative unit was analysed separately from the others it is
of interest to understand if administrative units are in some sense similar. Ex-
ceptional events are the central point of our study and, given the interpretation
of the model, the hidden process is the mechanism that manages the occurrence
of the exceptional operating status experienced by the system. For this reason
we will investigate, by means of a Cluster analysis, if administrative units are
similar with respect to the underlying process.

As a by product of the application of an HMM we have, for each adminis-
trative unit, estimated values for the transition matrix A, the emission matrix
B, the hidden Markov chain and the Phase-type distribution. In order to reach
the set goal we will consider estimated parameters related to the hidden Markov
chain. The Phase-type distribution has a “technical interpretation” (in fact it
is the distribution of the time needed for each system to reestablish the normal
situation) and it also permits a more visible comparison between administrative
units; nevertheless it is obtained by a transformation of the transition probabil-
ities and then it “contains less information” than the transition matrix. There-
fore the transition matrix seems to be more adequate for our purpose. Of course,
given a transition matrix, generated paths can be different; in other words, even
if two transition matrices are quite similar the generated chains might be differ-
ent. Note that considering the transition matrices and the path of the chains,
we want to gather two different aspects of the system: the potential transition
dynamic between states and the operating status actually experienced by the
systems.

A measure of the distance between probability distributions and a dissimi-
larity measure between the estimated Markov chains, able to underline if there
are periods with a similar behavior, need to be introduced.

Because each transition matrix is a collection of K probability distributions
(where we recall K = 4 is the number of possible states) and rows with the same
index are probability distributions conditional on the same event (that is “the
chain is in state i”), we consider as a measure of dissimilarity the average of the
symmetrized Kullback-Liebler distance between corresponding rows (Ramoni et
al. [19]). Let aq

i,j and ar
i,j be the transition probabilities from i to j in two

transition matrices Aq and Ar (corresponding to administrative units labeled q
and r). The Kullback-Liebler divergence between rows i, a

q
i and ar

i , of these
matrices is

dp(a
q
i ,a

r
i ) =

K
∑

j=1

aq
i,j log

aq
i,j

ar
i,j

, (5)

where the subscript p is for “potential”. The distance in equation (5) is not
symmetric because dp(a

q
i ,a

r
i ) 6= dp(a

r
i ,a

q
i ); the symmetric version of it is defined

as Dp(a
q
i ,a

r
i ) = [dp(a

q
i ,a

r
i ) + dp(a

r
i ,a

q
i )]/2. Then the average distance between

administrative units labeled with q and r, with respect to the transition matrices
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Aq and Ar is

Dp(q, r) =
1

K

K
∑

i=1

Dp(a
q
i ,a

r
i ). (6)

Consider now dissimilarity measures between the estimated Markov chains.
Given the physical interpretation of the states of the hidden Markov chain, as
increasing degree of system perturbation, we could consider a path of the chain
as a sequence of ordinal values.

Indicate by Z the estimated hidden Markov chain with observations in an
exceptional excursion relabelled as exceptional. Given the relabelled paths Zq

and Zr, relative to administrative units q and r, consider the Spearman rank
correlation coefficient ρ(Zq,Zr) (see Lehmann [13]) and set the dissimilarity
between q and r with respect to the estimated chain as

Da(q, r) =
1 − ρ(Zq,Zr)

2
, (7)

where in a similar way as before the subscript a is for “actual”.
In order to reach our goal, we will apply the Partitioning Around Medoids -

PAM algorithm (also called k-medoids method, Kaufman and Rousseeuw [12]).
The number of groups to consider is suggested by an agglomerative hierarchical
method (with the distance between clusters calculated by the complete linkage
method).

Output concerning each cluster obtained by the PAM method can be graph-
ically represented by the Silhouettes introduced by Rousseeuw [22]; briefly, Sil-
houettes provides a measure of how well a data point was classified when it was
assigned to a cluster by according to both the tightness of the clusters and the
separation between them. Consider an object i and denote by A the cluster to
which it has been assigned; calculate

a(i) = average dissimilarity of i to all other objects of A;

consider any cluster C different from A and define

δ(i, C) = average dissimilarity of i to all other objects of C.

After computing δ(i, C) for all clusters C 6= A, let

b(i) = min
C 6=A

d(i, C).

The cluster B such that δ(i, B) = b(i) is called the neighbor of object i and it is
like the second-best choice for object i. The silhouette s(i) is obtained as

s(i) =
b(i) − a(i)

max{a(i), b(i)}
, (8)
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and then
−1 ≤ s(i) ≤ 1.

Moreover by the definition of s(i) we can deduce that observations with a large
s(i) (almost 1) are very well clustered, a small s(i) (around 0) means that the
observation lies between two clusters, and observations with a negative s(i) are
probably placed in the wrong cluster.

k-medoids methods are implemented in the R package cluster (Maechler et
al. [15], that also provides the silhouette plot and other diagnostic tools.

We first consider clustering by means of the estimated transition matrices,
with k = 3 possible clusters.

Figure 10 shows the silhouette plot, where, for each cluster Cj, j = 1, . . . , k,
the silhouette s(i), i ∈ Cj is plotted by a bar in decreasing order; then, because
values of s(i) are positive and quite close to 1, we can deduce that administrative
units are well classified.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width :  0.69

n = 113 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   65  |  0.74

2 :   32  |  0.56

3 :   16  |  0.76

Figure 10: Silhouette plot for the clustering by the transition matrices. For
each cluster the silhouette is plotted by a bar in decreasing order. Large values
indicate that the objects are very well clustered.

The obtained clusters are described in Figure 11, where the province relative
to each administrative unit is colored with a different color on the basis of the
cluster to which it has been assigned. There are administrative units with the
same geographical position; when there is a disagreement in terms of assigned
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cluster the corresponding area is striped and colored with both colors, otherwise
the number “2” indicates that the two utilities have been classified in the same
cluster.

Figure 11: Clustering results by transitional dynamics. The area relative to each
administrative unit is colored with a different color on the basis of the cluster to
which it has been assigned; striped areas are referred to disagreements in terms
of assigned clusters, while the number “2” indicates an agreement. White little
points indicate the indicator starting point.

In order to understand which administrative units are classified in each clus-
ter we consider the Phase-type distribution. Figure 12 shows Phase type distri-
butions for medoid of each cluster; considering the graph where the distributions
are plotted together (bottom-right) we can see that for administrative units in
cluster 1 (red points) the Phase-type distribution concentrates more mass on
larger values (that is they need more time to reestablish the normal situation),
followed by administrative units in cluster 2 (blue circles) and in cluster 3 (green
triangles).

Therefore a general classification could be:

administrative units in cluster 1 → “exceptional persistent”
administrative units in cluster 2 → “exceptional transitional”
administrative units in cluster 3 → “fast recovering”
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Figure 12: Phase-type distributions for medoids of each cluster; in the plot on
bottom-right the three distributions are plotted together.

We now consider the clustering by means of the estimated hidden Markov
chains. In order to calculate the Spearman correlation coefficient we will not
consider administrative units whose estimated Markov chain was always in the
normal state 1.

Silhouette plots, obtained by the PAM method with k = 3 and shown in
Figure 13, indicate that clusters are not strongly defined and that there are
administrative units in each cluster that have been classified in the wrong cluster
by the PAM algorithm. Administrative units in each cluster are represented in
Figure 14, plot on the left, with the same logic as in Figure 11. As we said the
algorithm provides the neighbor cluster; then if we move administrative units
with a negative silhouette to the neighbor we obtain a more uniform situation,
shown in Figure 14, plot on the right. We underline that moving objects with
negative silhouette value in the neighbor cluster is not a general rule (in fact, the
neighbor cluster is the second-best choice); however we have information coming
from the problem under analysis and this helps us for having more interpretable
results.
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width :  0.04

n = 105 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   31  |  0.05

2 :   45  |  0.04

3 :   29  |  0.03

Figure 13: Silhouette plot for the clustering by the estimated hidden Markov
chains. For each cluster the silhouette is plotted by a bar in decreasing order.
Negative values indicate a misclassification.

Regarding the final interpretation, we recall that the dissimilarity measure
used in this clustering analysis, Da(q, r), defined in equation (7), quantifies the
dissimilarity between administrative units related to operating status actually
experienced by the administrative units. Then by Figure 14, plot on the right,
we could conclude that administrative units are affected by some “spatial de-
pendence”; in fact Cluster 1 mainly contains administrative units in the South,
Cluster 2 administrative units in the North and Cluster 3 administrative units
in the Center part of Italy. Considering this clustering evidence along with what
caught by analysing Figure 9, it seems that exceptional events spread geograph-
ically.
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Figure 14: Clustering results by estimated Markov chains. The area supplied
by each administrative unit is colored with a different color on the basis of the
cluster to which it has been assigned; striped areas are referred to disagreements
in terms of assigned clusters, while the number “2” indicates an agreement.
Administrative units not considered in the cluster analysis are colored in pale
blue. White little squares just indicate the indicators starting point. Left: clus-
ters before the reallocation of misclassified administrative units to the neighbor
cluster. Right: clusters after the reallocation of the misclassified administrative
units.

6 Final considerations

We have presented a finite hidden Markov model for identifying exceptional
events in electricity distribution. The application of this method showed that
the model fits well the data and the estimated hidden chain is able to identify
exceptional events as those where a large number of faults protracting in time
occur. The HMM method supports the AEEG method, even if the applied
statistical methods are completely different.

Moreover, given the model structure, by the inspection of the posterior dis-
tribution of the transition matrix, we can gather information relative to the
behavior of the system when it is experiencing an exceptional operating status.
We introduced, in fact, the exceptional excursions and the Phase-type distribu-
tion. This two concepts (and in particular the Phase-type distribution) could be
applied as a tool for evaluating the efficiency and the effectiveness of the utility
restoration schemes.
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The cluster analysis identified administrative units potentially and actually
similar. Grounding the clustering on the estimated transition matrices we gath-
ered information related to the potential transition dynamic between different
operating status, while considering the underlying Markov chain we compared
the working situation actually experienced by the systems.

Appendices

A The AEEG method

In the method applied by the AEEG for the third Regulatory period (Fumagalli
et al. [11] and AEEG [1]), a 6 hour interval is deemed to be exceptional when
the number of faults registered in that interval is larger than an exceptional-
ity threshold ; the procedure for the computation of these thresholds is briefly
presented in the following.

First of all, for each administrative unit, the distribution of the number X of
faults in 6 hours time-interval is clustered in two groups: that for Ordinary In-
tervals (OIs) and that for Exceptional Intervals (EIs). The threshold separating
the two clusters is computed using a k-means algorithm with k = 2.

Hence the distribution for the OI number of faults is modeled with a geo-
metric distribution with parameter (1 − e−λ),

P (X = h) = (1 − e−λ)e−λh

where h ∈ {0, 1, . . .}. The parameter λ is estimated with the maximum likelihood
estimator

λ̂ = − log

(

µ̄1

1 + µ̄1

)

,

where µ̄1 is the mean of the observations of X smaller than the threshold separat-
ing the two groups (i.e. it is the mean of the observations in the first OI-cluster).

Finally a quantile qα of the fitted geometric distribution for the OI number
of faults is computed and an interval is declared exceptional for the utility under
exam when the number of faults observed in the period is larger than qα, which
is therefore called the exceptionality threshold. In particular α is set so that,
according to the fitted distribution for the OI number of faults, a value of X
greater than qα would be seen once every t years, with t large; for example
suppose that an event is considered exceptional if it happens once every 20 years
(i.e. t = 20), then α = 1 − 1

365×4×20 = 0.9999658. Therefore, by the definition
of quantile, the exceptionality threshold qα is the minimum real value such that
P (X ≤ qα) = α: for each utility

qα =

[

−1 −
log(1 − α)

λ̂

]

,

where [x] indicates the integer part of x.
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For each administrative unit we have the exceptionality threshold qα and the
average number m of faults per 6 hours period computed over the years 2004–
2006; then, for ease of elicitation by the AEEG (see Fumagalli et al., 2008 for
details), qα is expressed as a linear function of m

q∗α = β0 + β1m

with β0 6= 0.
Given the EIs (where the number of faults occurred is greater than q∗α) an

exceptional period is defined considering 3 hours before the beginning of an EI
and 3 hours after the end of the same interval. Then the methodology labels as
an exceptional period a larger time span and in the simplest case (where there
are no contiguous EIs) the exceptional period covers a period of 12 hours.

Note that in order to compare results obtained by the AEEG method and
with the HMM, we compute the exceptionality threshold using the 6 hours time
intervals data, but without considering the regression function; in fact estimating
the HMM we did not consider information relative to the years 2005 and 2006.

B The MCMC algorithm

In Section 3.2 we introduced inference on the model parameters mentioning that
sampling of the hidden chain is carried out by the the global updating scheme
(Cappé et al. [4]). Global updating of the hidden chain is based on writing the
joint posterior distribution p(X|y,ϑ) as

p(X|y,ϑ) =

T
∏

t=1

p(Xt|Xt−1,y,ϑ). (9)

Now, let yh:k = (Yh = yh, . . . , Yk = yk) with h ≤ k; so

p(Xt = j|Xt−1 = i,y,ϑ) ∝ p(yt|Xt = j,ϑ)ai,jp(yt+1:T |Xt = j,ϑ)

where p(yt+1:T |Xt = j,ϑ) is the so called backward variable and it is the prob-
ability of the partial observation sequence from t + 1 to T, given state Xt = j
and the model parameters ϑ.

Let p(yt+1:T |Xt = j,ϑ) = βt(j) and solve inductively as follows:

a) Initialize with
βT (j) = 1 1 ≤ j ≤ K

b) and for t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ K

βt(i) =
K

∑

j=1

ai,jp(yt+1|Xt+1 = j)βt+1(j). (10)
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When p(yt+1|Xt+1 = j) is a density distribution, it is not necessarily bounded
by 1. Then the backward variables may converge, at a geometric rate, to either
zero or infinity. For this reason the introduction of a scaling factor is needed;
then we scale βt(i) by multiplying each variable by a scale coefficient 1

∑K
j βt(j)

,

that depends only on t; each scale factor effectively restores the magnitude of
the βt(i) terms to 1.

The conditional distribution (9) becomes

p(X|y,ϑ) ∝
T

∏

t=1

p(yt|Xt = xt,ϑ)axt−1,xtβt(xt) (11)

and Xt, for 1 ≤ t ≤ T , can be sampled from

Pr(Xt = j|Xt−1 = xt−1,y,ϑ) =
p(yt|Xt = j,ϑ)axt−1,jβt(j)

∑K
i=1 p(yt|Xt = i,ϑ)axt−1,iβt(i)

(12)

where we recall that X0 = 1.
Summarizing we can state the Gibbs sampling algorithm.

Algorithm 1 Gibbs sampling

Start with some state sequence X(0) and repeat the following steps for l =
1, . . . , L0, . . . , L.

1. Sample each row of A from the complete-data posterior distribution
p(A|X(l−1)) in equation (3), and store the values.

2. Sample the emission parameter from the complete-data posterior in equation
(4), p(B|y,X(l−1)) and store the values.

3. Conditional of knowing the model parameters ϑ(l)

a) Compute the means of the observable values in each state, µ(l) =

(µ
(l)
1 , µ

(l)
2 , . . . , µ

(l)
K ), with µ

(l)
i =

∑q
j=0 j · b

(l)
i (j), and

– if µ
(l)
1 < µ

(l)
2 < . . . < µ

(l)
K go to step b)

– else order the mean vector ρ(µ) and ρ(A), ρ(B)

b) Compute the scaled backward variables, like in equation (10)

c) Sample a path X of the hidden Markov chain from the conditional pos-
terior p(X|ϑ(l),y) in equation (12), trough the global updating sampler
and store all states.

4. Increase l and return to step 1.

L is the number of samples and L0 is the number of burn-in samples to be
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discarded from the estimate. Step 3.a) is introduced for controlling for the label
switching problem.

C The Phase-type distribution and the exceptional

excursions

In order to analyse the length of an exceptional excursion, we consider the Phase-
type distribution, that is the distribution of the number of steps from a Markov
chain starting until absorption into absorbing state (for a complete and clear
explanation see Neuts [16]).

Definitions C.1 Consider a discrete-time Markov chain with m + 1 states,
where m ≥ 1. The states 1, . . . ,m are transient and state m + 1 is an ab-
sorbing state. The process has an initial probability of starting in any of the
m + 1 phases given by the probability vector (α, αm+1).

This process can be written in the form of a transition probability matrix

P =

(

T T o

0 1

)

where T is an m × m substochastic matrix, T o + Te = 1 and e is the column
vector with all its components equal to one.

The distribution of the number of steps S until the process reaches the ab-
sorbing state is said to be discretely Phase-type distributed and it is represented
by the pair (α, T ).

Moreover, the probability density {ps} of the Phase-type distribution is given
by

p0 = αm+1 (13)

ps = αT s−1T 0, for s ≥ 1.

Proposition C.1 The length of an exceptional excursion is discretely Phase-
type distributed.

Proof. Let the normal state 1 be the absorbing state and, without loss of generality,
fix at 1 the starting time of the exceptional excursion; consider the two stopping times
E = min{t > 1 : Xt = 1}, that is the instant the chain reaches the absorbing state 1
and H = min{t ≥ 1 : Xt = 4}, that is the first time the chain enters in state 4. In order
to prove the statement we need to verify that

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 6= 1, Xh = 4 for at least one 0 < h < E) (14)

has a Markov structure.
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In the following we will write “Xh = 4, 0 < h < E” to indicate “Xh = 4 for at least
one 0 < h < E”. We have

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 6= 1, Xh = 4, 0 < h < E)

∝ P (X1 = x1|X0 = 1, X1 6= 1)

· P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 6= 1)

∝
a1,x1

∑

i∈Xr{1} a1,i

1Xr{1}(x1) (15)

· P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 6= 1)

where 1A(x) =

{

1, x ∈ A
0, x 6∈ A

and Xt:s = (Xt, Xt+1, . . . , Xs), with t < s.

Consider the second term in equation (15),

P (X2:E = x2:E, Xh = 4, 0 < h < E|X1 = x1, X0 = 1, X1 6= 1) =

= P (X2:H = x2:H , XH+1:E = xH+1:E , H < E|X1 = x1, X1 6= 1)

= P (X2:H = x2:H , H < E|X1 = x1, X1 6= 1)

· P (XH+1:E = xH+1:E , H < E|X1 6= 1, X1:H = x1:H)

= P (X2:H = x2:H , H < E|X1 = x1, X1 6= 1)

E
∏

i=H+1

ai−1,i. (16)

Consider the first term in equation (16); being H < E and H = min{t ≥ 1 : Xt = 4},
we know that from time 1 to H − 1, in the exceptional excursion there are no 1 and no
4. Therefore equation (14) becomes

P (X1 = x1, . . . , XE = 1|X0 = 1, X1 6= 1, Xh = 4 for at least one 0 < h < E)

=
a1,x1

∑

i∈Xr{1} a1,i

1Xr{1}(x1)

H
∏

l=2

axl−1,xl
∑

j∈Xr{1} axl−1,j

1Xr{1}(xl)

E
∏

i=H+1

ai−1,i

and this complete the proof. �

We can now obtain the pair, say (α∗, T ∗), representing the Phase-type distri-
bution, that describes the time needed to the system to reestablish the normal
operating status. Consider a Markov chain with absorbing state 1 and transient
states {2∗, 3∗, 2, 3, 4}, where 2∗ and 3∗ are states 2 and 3 conditioning on the
fact that in following there is at least a 4; indicate the corresponding state space
with X∗. Then the initial probability vector is

α∗ =

(

a1,2

a1,2 + a1,3 + a1,4
,

a1,3

a1,2 + a1,3 + a1,4
, 0, 0,

a1,4

a1,2 + a1,3 + a1,4

)

and α1 = 0. The first element in α∗ is, for example, the probability to have
X1 = 2∗, given that X0 = 1 and X1 6= 1; null values are relative to states 2 and
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3, in fact, given the definition of an exceptional excursion, it is not possible to
have X1 = 2 or X1 = 3 (we can have X1 = 2∗,X1 = 3∗ or X1 = 4).

Using similar considerations we obtain the following transition probability
matrix

P ∗ =



















a2,2

a2,2+a2,3+a2,4

a2,3

a2,2+a2,3+a2,4
0 0

a2,4

a2,2+a2,3+a2,4
0

a3,2

a3,2+a3,3+a3,4

a3,3

a3,2+a3,3+a3,4
0 0

a3,4

a3,2+a3,3+a3,4
0

0 0 a2,2 a2,3 a2,4 a2,1

0 0 a3,2 a3,3 a3,4 a3,1

0 0 a4,2 a4,3 a4,4 a4,1

0 0 0 0 0 1



















In order to obtain the estimated Phase-type distribution, shown in Figures

6 and 7, we compute, for any MCMC iteration, l = 1, . . . , L, {p
(l)
s }, s ≥ 1, using

(13), with α = α∗ and T = T ∗; then the estimated probability density is {p̂s},
where ∀s ≥ 1

p̂s =
1

L − L0

L
∑

l=L0

p(l)
s .
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