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In today’s world bike sharing systems are becoming increas-
ingly common in all main cities around theworld. To under-
stand the spatio-temporal patterns of how peoplemove by
bike through the city ofMilan, we apply functional data anal-
ysis to study the flows of a bike sharing mobility network.
We introduce a complete pipeline to properly analyse and
model functional data through a concurrent functional-on-
functional model taking into account the effects of weather
conditions and calendar on the bike flows.
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1 | INTRODUCTION

In the last years, due to urbanization and globalization, the demand for transportation increased like never before
(Martellato (2017)). The growth of urban population combinedwith the increase of traffic congestion, environmental
pollution and fuel prices have driven urban developers and city councillors to experiment new sustainable mobility
systems. To tackle these problems a paradigm shift in the field of mobility has been necessary, which has lead to a
gradually establishing of a model based on sharing mobility. In particular, it is of particular interest the continuous
growth of bike sharing systems (BSSs) in all major cities, which is replacing how people make short trips in highly
urbanized areas (Fishman (2016)). In Italy bike sharingmobility is growing up very fast and only in 2017 the bike sharing
usage has increased by 147%. Nowadays, in Italy, there are 265 cities with at least one BSS, for a total of 39500 available
bikes. Milan, in particular, is themost advanced reality in the Italian sharingmobility and holds the 44% of all available
bikes in the country, i.e. 17380.+ (Gentili et al. (2017)). The growth of this service has allowedmore Italians tomove by
bike and has revealed how important it is to study this phenomenon in order to handle withmobility management and
plan the city of the future.
The aim of this work is to use bike sharing data to studymobility in the city ofMilan providing useful information to the
municipality both for themanagement of urbanmobility network and for themanagement of the bike sharing service.
We are interested in understanding the global behaviour of the city and its spatio-temporal patterns: wewould like to
know how peoplemove by bike, departure and arrival times and venues, studying the variability within and between
days. We also aim to quantify how external factors, such as weather conditions (rain, temperature,wind...) or particular
events, influence people’s mobility behaviour. In the end, we aim to define a procedure able tomodel the future bike
trips between the districts of the city knowing the values of the external factors.
There is extensive literature analysing and modelling BSSs in different cities around the world. To have a good idea
of the evolution of works on BSSs, one can look at Fishman (2016). The spatio-temporal patterns are one of themost
studied aspects (e.g., Froehlich et al. (2009); Borgnat et al. (2013); Zhou (2015); Faghih-Imani and Eluru (2016); Saberi
et al. (2018)). Indeed, understanding patterns of usage is fundamental for fleet management of BSSs and it can give
insights on the social behaviour of the users. Each one of the cited works analyses a BSS in a different city, respectively,
Barcellona, Lione, Chicago, New York and London, but all of them find out similar results: differences in the usage
betweenweekdays and weekends are identified; moreover, it is also revealed the presence of threemain peaks of usage
during weekdays, respectively, in the morning, at lunchtime and in the evening. The limit of all these works on BSSs
is that time is treated as a discrete variable and the data are observed looking at their average behaviour in a time
interval. In the reality, instead, a mobility datum is continuously dependent on time and a thus a natural way to analyse
the nature of these data is to see them as continuous functions of time. For this reason, in order to develop our analyses,
we make use of tools from Functional Data Analysis (FDA), the branch of statistics dealing with curves, surfaces or
anything else varying over a continuum (e.g., Ramsay and Silverman (2005)). As far as we know, there are only fewworks
which apply FDA to study BSSs (e.g., Han et al. (2018); Gervini and Khanal (2018)) or, more generally, to anymobility
sharing system. In Han et al. (2018) a scalar-on-functional linear model is implemented to understand how the total
daily number of rentals is affected by the bike sharing activity in previous days. In Gervini and Khanal (2018), instead,
the daily demand distribution at every station in the city of Chicago is treated as a functional datum and a hierarchical
clustering technique is applied to find common patterns. To our knowledge, instead, FDA has never been employed to
the problem of analyzing andmodelling flows in amobility network.
Our analyses focus on BikeMi, the major and older BSS in the city of Milan. Wemodel it as a weighted time-varying
network, in which the districts of the city are seen as nodes, while bikes moving from one district to another one
represent the weight of each edge (Borgnat et al. (2013)). For each daywe define the corresponding functional flow
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from district A to district B as a function representing the rate of bikes that are leaving from district A to go towards
district B at time t. In conclusion, wemodel a BSS as a complex networkwith functional flows on its edges. Applying FDA
tools to this framework, we introduce a newmethodology to study not only a sharedmobility system but also, more in
general, any complex time evolving network whose edges can bemodelled as functional data (e.g., telecommunications
networks). There is an important observation that has to bemade on the number of flowswe are going to analyse: the
bike stations are concentrated into 39 of the 88 NILs, the official districts in which Milan is divided, and this means
392 possible paths. So, in our work, we are going to analyse flow data on 1521 different paths. This fact urged us
in developing an interactive interface to explore the results of the analyses. An example of the functional flows are
illustrated in Figure 1 for two randomly chosen NILs in the city ofMilan.

F IGURE 1 City ofMilan is divided into its 88 NILs highlighting the position of all the 263working bike stations (blue
dots) in the analysed period, from the 25th of January to the 6th ofMarch 2016. Moreover, two functional flows
samples fromDuomo (NIL 1) to 22Marzo (NIL 26) and vice versa are displayed.

To develop our analyses, for each flow we built a concurrent functional-on-functional model (e.g., Ramsay and
Silverman (2005); Kim et al. (2016)) taking into account the effects of weather conditions and calendar on the bike
flows. A concurrent model is simultaneous, meaning that the functional response and the functional covariates are
defined on the same domain and furthermore that the expected value of the functional response given the covariates is
a function of the value that the covariates assume at the same point of the domain. Specifically, the bike flows constitute
the functional response variables, while the weather conditions are the functional covariates and the type of the day is a
scalar dummy covariate.
Of course this is a strong approximation of the reality in which the expected value of the response variable at each
point of the domain is a function of the value that the covariates assume in all the domain. Nevertheless, we propose
a modelling based on the concurrent model for at least three reasons: first, being plausible that weather conditions
have only a short range effect, a concurrent model is a good approximation; second, using a concurrent model there is
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no need for a penalization (no extra tuning parameters); third, a concurrent model is easier to be interpreted by our
stakeholder.
The rest of this paper is organized as follows. In Section 2we describe the concurret functional-on-functional model,
discussing themethodology proposed for parameter estimation, inference, diagnostic and prediction. In Section 3 our
analyses are shown step by step: we present the used datasets, we estimate the functional data through a smoothing
procedure, we apply the developedmethodology andwe report themain results. In Section 4 a Shiny app to dynamically
show the results for all the network is presented. In Section 5 conclusions are presented and discussed. In the end, in
Appendix A and Appendix Bwe report some details related to the implemented procedure.

2 | METHODOLOGY
2.1 | Model Estimation and Inference
The Functional-on-Functional LinearModel
We introduce a concurrent functional-on-functional linearmodelwith interaction. Despite the large number ofworks on
functional models, themajority of them do not readily accommodate the existence of an interaction among covariates,
even if some exceptions can be found in fewworks dealing with functional models with scalar responses (e.g., Li et al.
(2010); Usset et al. (2016)). In our work we extend the literature related to this topic by adding a two-way scalar-
functional interaction to a functional responsemodel. Suppose to have a sample of n continuous squared-integrable
random functions yi (t ), s.t yi (t ) ∈ L2[a, b] ∩ C 0[a, b], [i ∈ {

1, ..., n
} and [t ∈ [a, b]. We assume that yi (t ) follow the

concurrent functional-on-functional linear model

yi (t ) = β0(t ) +
Ks∑
ks=1

βks ·(t )xks i +

Kf∑
kf =1

β·fk (t )zkf i (t ) +
Ks∑

ks=1=1

Kf 1∑
kf =1=1

βks kf (t )xks i zkf i (t ) + εi (t ), (1)

where [i ∈
{
1, ..., n

} , t ∈ [a, b] :
• xks i ∈ < for ks = 1, ...,Ks are known scalar covariates;
• zkf i (t ) ∈ L

2[a, b] ∩ C 0[a, b] for kf = 1, ...,Kf are known functional covariates;
• β0(t ) is the unknown fixed functional intercept;
• βks ·(t ) and β·kf (t ) for ks = 1, ...,Ks , kf = 1, ...,Kf are the unknown fixed functional regression coefficients, respec-

tively, for scalar and functional covariates;
• βks kf (t ) for ks = 1, ...,Ks , kf = 1, ...,Kf are the unknown fixed functional regression coefficients for interaction

terms;
• εi (t ) are independent and identically distributed random functions with zero-mean and finite total variance, i.e.

E (‖εi (t ) ‖
2
L2 ) < ∞.

The abovemodel can also be expressed in the followingmore compact way:

y (t ) = Z (t )β (t ) + ε(t ), t ∈ [a, b].

In this notation y (t ) and ε(t ) are, respectively, a n-vector of functional responses and of functional residuals, β (t ) =
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(β0(t ), ..., βK (t ))
′ is a (K +1)-vector of functional regression coefficients withK = Ks +Kf +KsKf and Z (t ) is a nx (K +1)

designmatrix of ones, scalar covariates, functional covariates and interactions.

Model Estimation
Once the model has been formulated, we have to estimate its functional parameters: this step is handled by least
squares estimation, as suggested, for instance, by Ramsay and Silverman (2005). The ordinary least squares (OLS)
estimators of the functional coefficients βk (t ), with k = 0, ...,K , is found byminimizing the sum over units of the squared
L2 distances between the observed functional dependent variables and those predicted by the linear model (1), hence
minimizing∑n

i=1

∫ b
a

[
yi (t ) −

{
β0(t ) +

∑Ks
ks=1

βks ·(t )xks i +
∑Kf
kf =1

β·fk (t )zkf i (t ) +
∑Ks
ks=1=1

∑Kf 1
kf =1=1

βks kf (t )xks i zkf i (t )
}]2
d t .

Because of the interchangeability of integration and summation, this boils down to a point-wise minimization of∑n
i=1

[
yi (t ) −

{
β0(t )+

∑Ks
ks=1

βks ·(t )xks i +
∑Kf
kf =1

β·fk (t )zkf i (t )+
∑Ks
ks=1=1

∑Kf 1
kf =1=1

βks kf (t )xks i zkf i (t )
}]2 for each t ∈ [a, b].

Thus, the OLS estimate β̂ (t ) = (β̂0(t ), ..., β̂K (t ))′, with t ∈ [a, b], coincides with theOLS estimator of the corresponding
ordinary linear regressionmodel at point t .

Model Inference and IntervalWise Testing Procedure
In this subsection we describe the adopted procedure to perform valid tests of various hypotheses on the functional
regression coefficients of model (1). Wewant to test if a covariate has a significant effect on the functional response
providing also the related portions of the domain that are responsible for rejecting a null hypothesis (domain selection).
More precisely, we do not simply want a infinite repetition of a point-wise test along all the domain, which would be
meaningless to our purpose, but wewant to globally asses the validity of our test for each interval of the domain. For
all these reasons, wemake use of the interval-wise testing (IWT) procedure, which has been introduced by Pini and
Vantini (2017) in the framework of testing differences between two populations. This procedure relies on the definition
of an adjusted p-value function, provided with a control of the interval-wise error rate, to select intervals of the domain
where the null hypothesis is rejected. This method has been applied and extended both to multi-way functional analysis
of variance (ANOVA) (e.g,. Pini et al. (2017)) and to a functional-on-scalar linear model (e.g., Abramowicz et al. (2018)).
In our workwemake a further step ahead using the same procedure tomake inference on the functional regression
coefficients of a concurrent functional-on-functional linear model.
In detail, letC ∈ R (q×(K+1)) be any real-valued full rankmatrix, where q denotes the number of hypotheses on linear com-
binations of functional regression coefficients to be jointly tested, with 1 ≤ q ≤ K + 1, and let c0(t ) = (c01(t ), ..., c0q (t ))′
be a vector of fixed functions in L2[a, b] ∩ C 0[a, b] representing the value under the null hypothesis of the tested linear
combination. Then, we can test hypotheses on one or more linear combinations of the functional coefficients as follows:


H0,C : Cβ (t ) = c0(t ) [t ∈ [a, b]

H1,C : Cβ (t ) , c0(t ) for at least one t ∈ [a, b].
(2)

Choosing properly C and c0(t ), we can both develop a global test for our model, the analog of the F-test for the
ordinary linear regression model, and a single test for the significance of each functional regression coefficient, the
analog of the t-test. The IWT procedure produces an adjusted p-value function p̃c (t )which can be thresholded at level α
to select the portions of the domain imputable for the rejection of the null hypothesisH0,C (domain selection). Moreover,
the used IWT procedure globally asses the validity of our test along all the domain providing a (asymptotic) control of
the IntervalWise Error Rate (IWER). This type of control implies that the probability of detecting false positive intervals
is (asymptotically) controlled at level α (for more details and demonstrations see Abramowicz et al. (2018)). In Appendix
A and Appendix B, a brief explanation of this procedure and some details on the implementation are included. The IWT
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procedure, in addition, can be used for reducing the functional model (1) through a backward elimination in order to
select only the significant covariates (Abramowicz et al. (2018)).

2.2 | Model Diagnostic
In this sectionwe deal with the diagnostic of a concurrent functional-on-functional linearmodel. Although there is a
large literature on scalar-on-scalar linear regression diagnostic assessing the assumptions of themodel and detecting
influential observation (e.g., Cook andWeisberg (1982)), little has been done on developing diagnostic measures for
functional regressionmodels. In the last years, a few diagnostic measures have been developed for regressionmodels
with functional responses (e.g., Shen andXu (2007); Chiou andMüller (2007); Gao et al. (2015)). Both Shen andXu (2007)
and Chiou andMüller (2007) propose some diagnostic measures including residuals and defining a scalar single-case
Cook’s distance for linear models with functional responses. In Gao et al. (2015) one step ahead is done. Authors define
both a global and local Cook’s distance for detectingmultiple curves in a functional-on-scalar linearmodel: the global
Cook’s distance returns a scalar value for each set of curves; the local Cook’s distance, instead, is evaluated point-wise
in the domain of the functional response variable. In our work we strengthen the literature of model diagnostic in
the functional scenario by defining a procedure able to select influential observations in a concurrent functional-on-
functionalmodel. Firstly, we check the estimated functional residuals, ε̂i (t ) [i ∈ 1, ..., n and [t ∈ [a, b]. Secondly, we
observe the functional errors under a leave one out cross validation analysis (LOOCV), yi (t ) − ŷi (t ) [i ∈ 1, ..., n and
[t ∈ [a, b], where ŷi (t ) denotes the predicted i -observation obtained by fitting themodel without the i -observation in
the data and predicting the i -observation as explained in Sect. 2.3 . Successively, similarly to the local Cook’s distance
introduced in Gao et al. (2015), we define a Cook’s distance function, a curve which estimates the scalar Cook’s distance
- as introduced Cook (1979) - for each functional response variable in each point of the domain. This approach does
not only allow to detect influential observations, but it is also able to explain why: in line with the idea of the domain
selection, the introduced Cook’s distance function is able to select the portions of the domain that bring to identify
an observation as an influential one. In the end, in addition to the detection of influential data, we define a proper
statistic, called DFBETA function, to study the difference in each coefficient estimation with andwithout an influential
observation.

Cook’s distance function

Cook’s distance is a commonly used estimate of the influence of a data point in ordinary linear regressionmodel. Given
a functional-on-functional model of the type (1), we need to estimate the related Cook’s distance functions for every
i -observation along thewhole domain. To evaluate these curves, wemake a point-wise estimation using the ordinary
scalar Cook’s distance for each given t on the corresponding ordinary linear regressionmodel.
Consequentially, [i ∈ {

1, ..., n
} and [t ∈ [a, b], we define:

Di (t ) =

∑n
j=1(ŷj (t ) − ŷj (−i )(t ))

2

(K + 1)S2(t )
, with S2(t ) =

ε̂T (t )ε̂(t )

K + 1
, and ε̂(t ) = y (t ) − ŷ (t ). (3)

At this point, we have to definewhen andwhere an observation is influential according to its Cook’s distance function.
In the ordinary regression analysis there are different opinions regarding which cut-off value to use for spotting highly
influential points, but the simpler suggested operational guideline isDi > 1. Transposing it to the functional case, we say
that a i -observation is influential if there is at least one point of the domain in whichDi (t ) > 1. Moreover, we say that
the i -observation is influential in the interval I ⊆ [a, b] of the domain ifDi (t ) > 1 [t ∈ I ⊆ [a, b].
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DFBETA Function
Given a functional model of the type (1), in order to study the difference in each coefficient estimation with andwithout
an observation, we define ameasure of influence called DFBETA function. After having computed [i ∈ {

1, ..., n
} the

OLS estimators β̂ (t ) = (β̂0(t ), ..., β̂K (t ))′ and β̂(−i )(t ) = (β̂0(−i )(t ), ..., β̂K (−i )(t ))′, the (K + 1)-vector of DFBETA functions
for each observation is defined as follows:

DFBETAi (t ) = β̂ (t ) − β̂(−i )(t ) [t ∈ [a, b], [i ∈ {
1, ..., n

}
. (4)

2.3 | Prediction of Functional Data
The prediction of functional data and the evaluation of its uncertainty is a open-question in literature. Some works
propose to perform prediction based on functional time series (e.g., Hörmann and Kokoszka (2012); Canale and Vantini
(2016)), others through functional linear models (e.g., Antoch et al. (2010)) and others using bootstrap (e.g., Goldsmith
et al. (2013)). Another interesting open question is how to define the prediction bands for the estimated curves. Despite
different works on both simultaneous and point-wise confidence bands for functional data (e.g., Goldsmith et al. (2013);
Degras (2017); Chang et al. (2017)), in the context of regressionmodels with functional responses, as far as we know,
there are no works which try to compute functional simultaneous prediction bands for the predicted curves. In our
work we do not cover this lack in literature, but we propose a first attempt to predict future observations with related
point-wise prediction bands.
Once the final functional-on-functional model (1) has been estimated, it can be straightforwardly applied to give a
prediction of the functional response in the followingway: ŷnew (t ) = znew (t )β̂ (t ), where znew (t ) contains both scalar
and functional new covariates. To obtain, instead, the prediction bands for the predicted curve, we use the empirical
distribution function of the estimated residuals {ε̂i (t )}i=1,...,n . Since we are working with a n-sample of functional data,
we define the point-wise functional empirical distribution function in the following way:

F̂t (s) =
1

n

n∑
i=1

1ε̂i (t )≤s , with t ∈ [a, b], s ∈ IR. (5)

To obtain the prediction bands, we calculate, for each t , theα/2 and the (1−α/2) percentiles of the empirical distribution.
Then, we add them to the the predicted value for each point t.

3 | DATA ANALYSIS
3.1 | Preprocessing
In this section we introduce the data analysed in our work to studymobility in the city ofMilan. To achieve this aimwe
use two datasets: the first one related to BikeMi, the analysed BSS, and the second one containing weather information.
BikeMi is a fixed-stations service, meaning that there are docking stations located through the city that subscribers
have to use to pick up and drop off bikes. It started inMilan in November 2008 and during these years it has evolved
considerably: at the beginning there were only 200 stations while nowadays there are more then 400with almost 5000
available bikes. Our analyses cover a period of 42 days, from the 25th of January 2016 to the 6th ofMarch 2016, inwhich
there have been 350093 bike trips. The dataset consists of a log of all the rentals, with the station and the time of both



8 TORTI ET AL.

departure and arrival. In order to focus on the global behaviour of the city and subsequently to better visualize results,
we decide to aggregate the closer stations. For the aggregation, we consider NILs, the 88 official districts in which the
city ofMilan is divided, andwe assign each station to the corresponding NIL.We focus on flows betweenNILs on the
basis that it is more interesting from a urban planning perspective. Nevertheless, an analysis of flows between stations
would be straightforward. In the analysed period, there were 263 operating docking stations, which are concentrated
only into 39 of the 88NILs (Figure 1). So, in our work, we study flows on 392 possible paths, i.e. 1521. On each selected
path, the route fromNIL A to NIL B, we define a different function for each day of the dataset. More precisely, since
in the analysed period the service was operative from 7:00am to 1:00am, we decide to redefine the day such that it
begins at 4:00am and ends at 4:00am of the following day in such a way that the bike activity is null at the edges of the
domain. At this point we are ready to compute the functional data. In order to turn the available raw data into smooth
functions, we use a kernel density estimation smoothingmethod (e.g., Hastie et al. (2001)). This method, as well all the
literature regarding smoothing techniques for functional data, has receivedmuch attention in last decades and has been
well-established over the years. For each day, we define a functional flow fromNIL A to NIL B as a function representing
the rate of bikes per hour that are leaving fromNIL A to go towards NIL B at time t along a single day. As a consequence,
the obtained functional flows represent at each time t the hourly rate of departure at time t . However, since bike trips
are of short duration and they generally take less than 20minutes, the estimated functional flows can be used to extract
information both on departure rate and arrival rate. In Figure 2 we report, as example, the obtained 42 functional flows
fromDuomo (NIL 1) to itself, which is themost travelled path in the period of interest. Moreover, in the plot the flows
are coloured according to week andweekend days. It is immediate to observe a completely different behaviour in the
two cases. With regard to the notation, we call yi j k (t ) the function representing the bikes going fromNIL j to NIL k on
day i, with i ∈ {

1, ..., n
} and t ∈ (4am, 4am).
Flow from DUOMO into DUOMO

Time

bi
ke

s 
pe

r 
ho

ur

4am 6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am

0
20

40
60

week
weekend

Rain

Time

m
m

/h
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r

4am 8am 12pm 4pm 8pm 12am 4am

0
1

2
3

4
5 week

weekend

Temperature

Time

°C

4am 8am 12pm 4pm 8pm 12am 4am

0
5

10
15

20 week
weekend

F IGURE 2 From left to right: functional flows fromDuomo into Duomo, functional rain data and functional
temperature data. In all figures weekdays are represented by a solid line while weekends by a dotted line.

Once the functional flows have been obtained, the step ahead is to aggregate themwith external factors, so that we
canunderstand their behaviour. For this reasonwedownloadweatherdata fromARPALombardia (www.arpalombardia.it)
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related to rain and temperature. Since these data have generally a different shape within the same day, to directly
compare the functional flows with weather information, we look at both rain and temperature as daily functions of time.
Starting from the rain (mm/hour) and the temperature (C), for each day, we turn these raw data into smooth functions.
The implementedmethod is the LocalWeighted Polynomial Regression (e.g., Hastie et al. (2001)). Figure 2 shows the
results of this procedure on both rain, which reveals the precipitations for each day, and temperature, which represents
the temperature in degrees Celsius at each instant for each day of the analysed period. Moreover, like before, the
functions are coloured according to week andweekend days.

3.2 | AppliedMethodology
In this section we report the specificmethods that we used to analyse andmodel the bike flows between districts of
Milan. It is clearly infeasible to show the procedure and the related results on all the available paths of the BikeMi
network, thus we decide to report here the general methodology and comment on a specific path, i.e. the flows fromNIL
1 to itself, that, for simplicity, wewill just call, in the reminder of this section, yi (t ).

3.2.1 | Model Estimation and Inference
Initially, we tried to apply a concurrent functional-on-functional linear model of the form (1) to our data. However,
since a linear model allows for negative values of the response variable andwewant to fit and successively predict non
negative functions, it turned out to be unsuitable to our purpose. This can be easily checked, for example, looking at the
errors under a LOOCV analyses proposed in Sect. 2.2. To overpass this problem, we use a concurrent functional-on-
functional log-linearmodel, which is able to preserve positivity of the analysed functional flows. The proposed approach
is easy and make use of a simple transformation: we introduce ỹi (t ) = l n(yi (t ) + δ), with δ close to zero but strictly
positive, and we fit themodel (1) using the transformed ỹi (t ) as response variables. Then, we can obtain information on
the original flows through the exponential transformation yi (t ) = e ỹi (t ) − δ . The parameter δ is necessary because the
flows yi (t ) can also be equal to zero and so l n(yi (t )) can be undefined. To select themost appropriate δ , we perform a
sensitivity analysis with δ ∈ (0, 2) andwe show the results for δ = 1.
In the initial full model we use six scalar covariates and two functional covariates. The scalar covariates are dummy
variables indicating the days of the week. We useMonday as baseline and we define a different dummy variable for
each day of the week from Tuesday until Sunday. The functional covariates are related to rain and temperature. We
introduce for each day-i the function zfr ai n i (t ), which is equal to the amount of rain (mm/hour) through time, and the
function zfd t emp i (t ), which is the difference through timewith respect to the average daily temperature function of the
period in degrees Celsius (C), zft emp i (t ) − z̄ft emp i (t ). As in classical multiple regression, we start from an initial full model
with all the available covariates and we apply a backward elimination procedure. Using the IWT procedure proposed in
Sect. 2.1, we perform a t-test (2) on each regression coefficient. At each step we remove the covariate with the largest
minimum value of the adjusted p-value function until only the significant coefficients remain in themodel. Specifically,
we say that a coefficient is significant if the adjusted p-value function of the related t-test is smaller than a threshold
value α in at least one point of the domain. In our analyses we fix α = 0.05 as significance level. Because of the high
number of covariates, six scalar and two functional, we initially fit themodel without interaction. With regards to the
scalar covariates, two dummy variables related to Saturday and Sunday are significant. However, using properly test
(2), we discover that their regression coefficients are not statistically different. Thus, we further simplify the model
introducing a unique dummy covariate xswe i , which is equal to one if day-i is a Saturday or a Sunday, zero otherwise.
Moving to the functional covariates, both rain and temperature are significant. At this point we add all the possible
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scalar-functional interactions among covariates in themodel andwe test their significance. In the end, we obtain the
following final reducedmodel:

l og (yi (t ) + 1) = β0(t ) + βwe (t )xswe i + βr ai n (t )zfr ai n i (t ) + βt emp (t )zfd t emp i (t ) + βwe_r ai n (t )xswe i zfr ai n i (t ) + εi (t ), (6)

with i ∈ {
1, ..., n

} and t ∈ (4am, 4am).
In the above final model there are three remaining covariates: the scalar covariate xswe i due to the weekend-

effect, the functional covariate zfr ai n i (t ) related to rain and the functional covariate zfd t emp i (t ) related to temperature.
Moreover, it is quite interesting the presence of a scalar-functional interaction between xswe i and zfr ai n i (t ).
In Figure 3 all the estimated functional regression coefficients, together with their adjusted p-value functions, are
displayed. The blue rectangles indicate the portions of domain where the p-value is lower than α = 0.05. Since we
are working with a log-linear model, but we are interest in the absolute variability of y (t ), the effect of the obtained
coefficients on y (t ) is not linear but it is multiplicative. Indeed, each change in a covariate linearly leads to a percentage
change in the response variable y (t ). More precisely, given a log-linear model l n(y ) = β0 + β1x + ε, then, the exact
percentage change in y depending on x is %∆y = (e∆xβ1 − 1) · 100. The coefficient β0(t ), which is significant in all the
domain, represents the average behaviour during week (xswe i = 0) with no rain (zfr ai n i (t ) = 0) and temperature equal
to its average daily behavior (zfd t emp i (t ) = 0). However, it gives information on l n(y (t ) + 1), so, to be interpreted, we
need to apply the exponential transformation. Theweekend coefficient βwe (t ) is always negative and has a significant
p-value in all the domain, meaning that during weekends the number of bike trips is smaller than during weekdays. This
reduction is more evident in the morning where the difference between week and weekend is more marked: in this
time interval βwe (t ) = −2.5, meaning a reduction of almost 90%. The rain coefficient βr ai n (t ) is negative and with a
significant p-value in everymoment of the day, meaning that an increase in the amount of precipitations (in terms of
mm/h of rain) implies a percentage decrease in the number of trips. Onweekdays this reduction is not constant during
the day but it is more evident in themorning: here βr ai n (t ) = −3, thus just one extra millimeter of rain implies a decrease
of almost 95% of the bike flows. This effect is counterbalanced during weekends by the interaction term βwe_r ai n (t )
which has a significant p-value only in the morning around 10:00am. In this time interval βwe_r ai n (t ) is positive and
βr ai n (t ) + βwe_r ai n (t ) is about −1, meaning that the rain has aminor influence during weekends: onemillimeter of rain
implies a decrease of just about 65%. Looking at the daily distributions of rain in the analysed period (Figure 2), it is
plausible that this effect is due to the limited availability of rainy data and not to a different attitude of users according
to the day of the week. Indeed, in the 42 analysed days only 15 are rainy days and in the morning it generally rains
heavily during weekends. In general, we can say that rain has a massive impact on the number of bike trips all hours
of the day: even a small amount of rain leads people not tomove by bike and over a rain threshold people do not use
bikes. So, to estimatemore accurately the effect of rain on bike trips, wewould need a larger dataset. The temperature
coefficient βt emp (t ) is statistically significant only in the afternoon after 4:00pm: here it is about 0.08, meaning that
one degree above (below) the average daily temperature at a given time of the day increases (decreases) bike flows by
about 8%. This means that if the temperature is higher than the average (zfd t emp i (t ) ≥ 0), people aremoremotivated
to travel by bike; if instead the temperature is lower than the average (zfd t emp i (t ) ≤ 0), people are more reluctant to
pick-up bikes.
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temp

F IGURE 3 Functional regression coefficients of the reduced logmodel and their adjusted p-value functions. From
left to right: β0(t ), βwe (t ), βr ai n (t ), βwe_r ai n (t ) and βt emp (t ).

3.2.2 | Model Diagnostic
Regardingmodel diagnostic of the final reduced log-linearmodel, we firstly check the residuals and the errors under
a LOOCV analysis. Not finding any strange behaviour, we secondly focus on the identification of possible influential
observations. For this purpose, we use the Cook’s distance function introduced in Sect. 2.2. However, since we are
working with a model of the form ỹ (t ) = l n(y (t ) + 1) = Z (t )β (t ) + ε(t ), but we are interested in the variability of
the original functional flows yi (t ), the formula defined in (3) is not suitable. Indeed, wewant to identify observations
yi (t )which influence the estimate of y (t ) and not l n(y (t ) + 1). For this reason, we readjust (3) using the exponential
transformation as follows:

D̃i (t ) =

∑n
j=1(ŷj (t ) − ŷj (−i )(t ))

2

(K + 1)S2(t )
, with ŷi (t ) = e

ˆ̃yi (t ) − 1, S2(t ) =
ε̂T (t )ε̂(t )

(K + 1)
and ε̂(t ) = y (t ) − ŷ (t ).

In Figure 4, the estimated readjusted Cook’s distance functions for the final logmodel (6) and a dotted black horizontal
line equal to one (the fixed cut-off value) are plotted together. We notice four influential observations: the 9th, the
16th, the 25th and the 27th of February. Three of them, the 09/02, the 16/02 and the 27/02, are rainy days, each one
with a high level of rain in the time interval where the related Cook’s distance function is bigger than one; the 25/02,
instead, is a not rainy day. It is a Thursday and it has a high Cook’s distance function in themorning. To better understand
why these observations appear to be influential, we plot the DFBETA functions, obtained using (5), for each regression
coefficient and highlighting the four discovered days (Figure 5). The three rainy days, as expected, affect the estimate of
the two rainy coefficients βr ai n (t ) and βwe_r ai n (t ). This implies that rainy days have a significant impact in estimating the
coefficients of themodel and that our model is sensible to the loss of rainy observations. This can be due to the fact that
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the number of rainy days in analysed dataset is very low. Focusing instead on the 25th of February, highlighted in light
blue, it affects the estimate of the intercept around 8:00am, in the same time interval where its related Cook’s distance
is bigger than one. These results are due to the fact that this day has an atypical behaviour and that there are no bike
trips before 8:00am (Figure 6).
Regarding the three rainy days, we decide not to remove them from the dataset, because necessary to estimate the
effect of rain on bike trips. Indeed, our dataset has the problem not to have enough rainy days to estimate precisely
their behaviour. Moving towards the 25th of February, instead, it seems to be due to an error in the registration of data,
indeed, on this day, there are never bike trips before 8:00am. Because of this atypical behaviour, we decide to remove it
from our data andwe refit model (6).
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F IGURE 4 Readjusted Cook’s distance functions of the logmodel on the path fromDuomo into itself.
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F IGURE 5 DFBETA functions of the logmodel on the path fromDuomo into itself. From the top left to the bottom
right: β0(t ), βwe (t ), βr ai n (t ), βwe_r ai n (t ) and βt emp (t ).
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3.2.3 | Prediction
Once the final model has been estimated and validated, it is ready to be used to predict future observations. In our case
study it can be useful both for short-term predictions, using the reliable weather forecast of the following hours or days,
and to investigate the network behavior in a business what-if scenario perspective.
We show the potential of our model trying to predict a hypothetical day on the path fromDuomo to itself. Using the log
model fitted without the 25th of February, we apply themethodology presented in Sect. 2.3 to predict the transformed
log variable and its prediction bands. Then, we use the exponential transformation ŷnew (t ) = e ˆ̃ynew (t ) − 1 to obtain our
true curve with its related prediction bands. We predict a flow during a weekday (xswe i = 0) with some random values
of rain and temperature (Figure 7). The weather conditions are displayed in comparison to the data of the analysed
period: we observe that there is a little bit of rain in themorning (around onemm/hour) and that the temperature is
under its average daily profile (around five C). The predicted curve is highlighted in orange and the related point-wise
prediction bands at level 95% in light blue. Observing the results, we can notice the combined effect of both rain and
temperature: the rain, which is present in the morning, implies that there are almost no bike trips in the same time
interval; the temperature, which has a significant effect only after 4:00pm, instead, implies that the number of bike trips
is less than usual.
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F IGURE 7 Left: selected value of rain (in blue) and temperature (in red) compared to the observed weather data (in
black) in the period of interest. Right: predicted curve (in orange) with the point-wise prediction bands at level 95% (in
light blue) compared to the observed flows (in black) in the period of interest.

3.3 | Results for the Entire Network
In this section we present some general results on the city of Milan obtained by applying the procedure shown in
Sect. 3.2 on all the flows of the BikeMi network. Since the BikeMi service has beenmodelled like a network with 39
nodes, theoretically there are 392 available paths, i.e. 1521. So, to study all the flows between the districts of the city,
we applied the log-linear model on each path of the network. In reality the network is very sparse in the sense that
about 88% of the available paths have in average less than ten bikes per day. There are only 185 paths with at least
ten bikes per day, but about 77% of all the trips in the analysed period is concentrated on these paths. For this reason
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we applied our model only on the 185 paths having an average daily number of trips greater or equal to ten. For all
the paths with a sufficient rate of bikes per day, we have been able to study both the effects of calendar andweather
condition by looking at the functional coefficients of the final models.
Firstly, observing the coefficients related to the calendar dummy variables, we found out that the bike sharing activity
has generally a well defined behavior depending on the day of the week and the selected path. The vast majority of
themodels found out statistical evidence to divide the days of the week into weekdays andweekends. Looking at the
intercepts, which reveal the average behaviour during weekdays with no rain and temperature in the average, the bike
sharing service seemsmainly used byworkers and during weekdays: in themorning people use to go in the city center,
while in the late afternoon they seem to come back fromwhere they leaved at the beginning of the day. This trend is
easily observable by looking at the flows going into Duomo and leaving from it. On this purpose, in figure 8we report
the results for the 19 NILs nearer to Duomo, Duomo included, which involve almost the 35% of the overall trips on
their own. We show both the average incoming (on the left) and outcoming (on the right) trips in Duomo estimated
using the intercepts of themodel on that paths: we observe an opposite behaviour in the two situations, indeed, the
great number of people going into Duomo in themorning (8:00am-9:00am) is balanced from an equal number of people
leaving fromDuomo in the afternoon (6:00pm-8:00pm). The pathwith the highest number of trips in a day is the one
fromDuomo on itself (red curves), but themost outstanding connection happens to be betweenMagenta andDuomo
(green curves). Observing always these paths, during weekends, instead, there is not anymore the presence of these
evident peaks in the rush hours. Indeed, the coefficients related to the corrective weekend term, βwe (t ), have a similar
shape to the respective intercepts but with an opposite sign. These weekend coefficients imply a reduction which is
different according to the selected path and the time of the day, varying from no difference to a negative impact of
the 90% on themost travelled paths. Looking at their adjusted p-value functions, we notice that they are significant
primarily in the rush hours and some times at lunch break. Beyond this distinction between days during week and days
during weekend, in some cases it has been observed a different behaviour on Friday. This happens, for example, on the
path fromDuomo toMagenta and fromDuomo to Brera. On these two paths, the corrective regression coefficients
related to Friday are significant around 8:00pm and they are negative, meaning that on Friday night people travelling by
bike are less then during other weekdays. This effect is minimal, indeed, the coefficients in this time interval imply a
reduction by about 4%.
Moving towards the effect of weather conditions, some conclusions can be drawn by looking at the coefficients of
the functional log model applied on the different bike flows inside the city of Milan. In Sect. 3.2.1 we have already
commented the effect of both rain and temperature on the flows fromDuomo on itself, and looking at the other flows,
as expected, the results are similar. With regards to the rain, it has amassive impact on the number of bike trips all hours
of the day: even a small amount of rain leads people not tomove by bike and over a rain threshold people do not use
bikes. The interaction term Rain-Weekend appears to be significant only in themorning of themost travelled paths. In
this time interval, as in the case of the flows fromDuomo to itself, it is positive to counterbalance the effect of the rain
on Saturdays and Sundays. Turning to the temperature, we find out that a temperature higher than its average implies
an increase of the number of bike trips, while a colder temperaturemakes people more reluctant to travel by bike. This
effect, however, is significant only on themost travelled paths around 4:00pm, and it affects the bike trips only in a small
proportion (an increase/decrease of one degree changes the final results of almost 6%).
In the end, we point out some of themain results of themodel diagnostic procedure applied on the different bike flows
inside the city ofMilan. In Sect. 3.2.1, estimating the Cook’s distance function for the flows fromDuomo on itself, we
discovered four influential observations: three rainy days (the 09/02, the 16/02 and the 27/02) and a not rainy Thursday
(the 25/02). Reapplying the same procedure on the other paths of the network, the same observations or just some of
them are found out. Observing the DFBETA functions related to these days, it can be noticed that the first three days
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F IGURE 8 Left: average behavior of the flows going into Duomo during weekwith no rain and temperature in the
average. Right: average behavior of the flows leaving fromDuomo during week during weekwith no rain and
temperature in the average. The 19 selected NILs are: Duomo (NIL 1), Brera (NIL 2), Giardini di Porta Venezia (NIL 3),
Guastalla (NIL 4), Vigentina (NIL 5), Ticinese (NIL 6), Magenta S. Vittore (NIL 7), Parco Sempione (NIL 8), Garibaldi
Repubblica (NIL 9), Centrale (NIL 10), Isola (NIL 11), Buenos-Aires Venezia (NIL 21), 22Marzo (NIL 26), Porta Romana
(NIL 27), Navigli (NIL 44), Tortona (NIL 50),Washington (NIL 51), Pagano (NIL 69) and Sarpi (NIL 69).

affect significantly the estimate of the two rainy coefficients, while the last day has a negative impact on the estimate of
the intercept in the early morning. The conclusions taken on these days for all the paths of the network are the same
done in the specif case of the path from Duomo on itself. We decide to not remove the rainy days from the dataset,
because necessary to estimate the effect of rain on bike trips. We instead decide to remove the 25th of February from
all our data. Indeed, on this day there are never bike trips before 8:00am and it seems to be due to an error in the
registration of data.

4 | SHINY APP

Recalling the fact that we are studying the flows in a networkmade of 39 nodes (the NILs ofMilan with at least one bike
station), it is clearly infeasible to report all the results. To overcome this problem, we create an app bywhich it is possible
to dynamically modify the model’s inputs in order to choose the scenario of interest and to visualize the associated
data and the subsequent results, as commented below. By doing this, wewould like to both visualize the statistically
significant spatio-temporal patterns of the users and tomodel each possible functional flow in the BikeMi network.
Figure 9 shows how the app appears. Some green numbers and letters are added in the picture in order to explain how
the appworks. The app is composed from threemain parts, identified by the numbers one, two and three.
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F IGURE 9 Shiny App.

1. On the left-hand side of the screen there is the "Input panel". This is the placewhere the user can select the scenario
of interest thanks to seven drop-down boxes (labelled in the picture as "a", "b", "c", "d", "e", "f", "g" and "h"). Firstly,
in "a" and "b", the user can choose a specific path selecting both the departure NIL (in "a") and the arrival NIL (in
"b"). Then, it is possible to select the day of the week during which wewant to predict the flow (in "c"). The possible
options are: fromMonday to Thursday, Friday orWeekend. In "e", "f", "g" and "h" it is possible to choose the weather
conditions for the day wewant to predict by setting both temperature (in "e" and "f") and rain (in "g" and "h"). The
initial values of the temperature, which are zero both in "e" and "f", give exactly the average daily temperature
function. Acting on "e" it is operated a vertical translation, while acting on "f" it is defined its range. The rain, instead,
can be selected according to the "time" (in "h") and to the "strength" (in "g"). The "time" drop-down box allows to
choose the intervals of the day during which it is raining. The day is split in four sections: themorning (4am-11am),
the lunch-break (11am-13pm), the afternoon (15pm-19pm) and the evening (19pm-4am). Choosing the "strength"
there are eleven possibilities which give a value between zero and 5mm/hour (themaximum rain value in the ob-
served data). In the end, in "d", it is possible to select one functional regression coefficient of themodel. The choice
is among the followings: Baseline (β0(t )),Weekend (βwe (t )), Friday (βf r i (t )), Rain (βr ai n (t )), Temperature (βd t emp (t ))
andWeekend-Rain (βwe_r ai n (t )).

2. In the central part of the screen it is possible to visualize the data related to the selected scenario: the twoNILs
(labelled in "i") and theweather conditions (labelled in "l"). Both the picking-upNIL and the dropping-off NIL are
plotted on themap ofMilan, respectively, in green and in red. All the remaining NILs in which the BikeMi service is
operative are instead highlighted in light blue. The choosen rain and temperature, instead, are plotted in comparison
to all the weather data of the analysed period.
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3. On the right-hand side of the screen are shown the estimated results: the predicted flows (labelled in "m") ad the
regression coefficients (labelled in "n"). The "Prediction panel" shows all the functional flows in our dataset on the
selected path and highlights in orange the predicted curve. Moreover, the empirical prediction bands (with α = 5%)
are added to the plot and the region that they define is coloured in light blue. The "Regression Coefficient panel"
shows the selected functional regression coefficient and its adjusted p-value function. The blue rectangles indicate
the portions of domainwhere the p-value is below the selected threshold α = 0.05. Furthermore, if the coefficient is
not significant for themodel, α > 0.05, it appears the sentence: "the selected coefficient is not significant for the model".

5 | CONCLUSIONS

The aim of our work was to use bike sharing data to study mobility in the city of Milan providing useful information
both to themunicipality and urban planners and the fleetmanagers. From this perspective, we have investigated the
presence of spatio-temporal patterns with the purpose of understanding how people move by bike, departure and
arrival and venues, studying the variability within and between days and taking into account the effects of weather
conditions.
To build our analyses we have applied, for the first time, FDA to study the flows of a bike sharing mobility network.
Moreover, we have developed a complete pipeline to properly analyse andmodel functional data through a concurrent
functional-on-functional model. Focusing on models with functional responses, many topics - e.g., regarding model
inference, model diagnostic andmodel prediction - should still be improved. In this framework our work has addressed
some interesting issues on different aspects. Firstly, we have incorporated a two-way scalar-functional interaction in
ourmodel, that has allowed to explain better the variability of the response variable without worsen significantly the
computational time needed andwithout overcomplicating the interpretation of themodel. Secondly, we have applied
for the first time the IWT procedure, as introduced by Pini and Vantini (2017), to test hypotheses on the functional
regression coefficients of a functional-on-functional model. Then, andmost importantly, we dealt with the diagnostic of
a functional model in a innovativeway. We have defined aCook’s distance function able not only to detect the influential
observations, but also able to select the portions of the domain that bring to identify an observation as an influential one.
According to this idea, we have also defined another statistic, called DFBETA function, able to highlight the portions of
the domain where the removal of an observation affects the estimation of the functional regression coefficients.
From a practical point of view, the developed approach have been applied to studymobility in the city ofMilan. The
data used in our analyses are about BikeMi, themain and older BSS ofMilan, in the period that goes from the 25th of
January 2016 to the 6th ofMarch 2016. Since we have studied the flows of a network of 39 nodes, meaning a total of
392 potential paths, i.e. 1521, we developed an app (createdwith Shiny, Studio (2014)) thanks to which it is possible to
visualize the results for each path in an interactiveway. This app allows us both to visualise the spatio-temporal patterns
of the users and tomodel future bikes flows between the districts of the city. Regarding the spatio-temporal patterns,
we have found out that BikeMi is mostly used byworkers at a specific time of the day and on some specif paths. This
information can be used by themunicipality ofMilan and by urban planners in improving themobility management in
different ways: first, designing new and safer bike paths on themost travelled routes; second, bringing other workers to
prefer this mean of transport instead of their ownmotor vehicle in order to reduce traffic congestion and air pollution.
Regarding themodelling of future bike flows, this tool can be useful to the fleet managers for at least two reasons: first,
managing the short term rebalancing procedure by predicting future bike flows for the following hours or days; second,
investigating the network behavior in a business what-if scenario perspective.
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Themain limitation of our work is that the available data cover a period of six weeks during winter. Moreover, among
these days, only 15 of them are rainy days, and due to this fact, the effects of the rain aremore difficult to estimate and
the obtained results are more challenging to interpret. Despite all of this, the developed approach is ready to be used to
analyse larger datasets and different sharedmobility systems in other cities. As amatter of fact, it can be applied to any
time evolvingmobility network which can bemodelled with functional data on its edges.
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A | IWT PROCEDURE
The applied IWT procedure is based on three steps presented in detail in Abramowicz et al. (2018). We briefly report
them here:

1. Interval-wise testing
Given any closed interval I ⊆ [a, b], we want to test:


H I0,C : Cβ (t ) = c0(t ) [t ∈ I

H I1,C : Cβ (t ) , c0(t ) for some t ∈ I .
(7)

To perform tests of linear hypotheses (7) we use the staticsT Ic =
∫
I
Tc (t )d t , whereTc (t ) =

(
Cβ̂ (t ) − c0(t )

)′ (
Cβ̂ (t ) −

c0(t )
)
and β̂ (t ) is theOLS estimator of the functional regression coefficients (see Sect. 2.2).

2. Adjusted p-value functions
Let pI

C
denote the p-value of test (7) obtained using functional permutation tests based on the Freedman and Lane

permutation scheme (Freedman and Lane (1983)). It is obtained by calculating the portion of permutations leading
to a larger value of the test static than the test static on the observed data. In order to identify sub-domains where
the null hypothesis of test (7) is rejected, wemake use of an adjusted p-value function that is defined, for each point
t , as the supremum p-value of all interval-wise tests on intervals containing t :

p̃C (t ) = sup
I 3t

pIC , t ∈ [a, b]

3. Domain selection
The intervals of the domain presenting a rejection of the null hypothesis (7) are obtained by thresholding the
corresponding adjusted p-value functions at level α .

B | DETAILS ON THE IMPLEMENTATION
In this section we report the implemented procedure to obtain the adjusted adjusted p-value function. Since this
function is defined [t ∈ [a, b] as a supremum over uncountably many subintervals covering point t, it is practically
infeasible to compute it. We therefore use a numerical approximation procedure, as already done in previous works
applying IWT (e.g., Pini and Vantini (2017) or Abramowicz et al. (2018)). The following steps describe this procedure for
testing linear hypotheses of the form (7) on the all domain [a, b].

1. Partition of the domain into K equally sized atomic sub-intervals I j of length δt = (b − a)/K with j = 1, ...,K . Let
S be the family (of sizeK /(K +1)/2) of all possible intervals J ∈ S obtained as unions of theK atomic sub-intervals I j .

2. For all intervals J ∈ S , approximate the value of the t-staticT Jc under the full model by a rectangle quadrature rule
with step δt applied to the point-wise test staticTc (t ) =

(
Cβ̂ (t ) − c0(t )

)′ (
Cβ̂ (t ) − c0(t )

)
.



22 TORTI ET AL.

3. Estimate the p-value p J
C
of the tests on each J ∈ S using the freedman and Lane permutation scheme (Freedman

and Lane (1983)) with B ∈ N randomchosen permutations (conditionalMonteCarlo algorithm, Pesarin and Salmaso
(2010)).

4. Estimate the adjusted p-vale function p̃C (t ) at point t as themaximum of the corresponding p-values of all intervals
J ∈ S containing t.

5. Select the significant intervals of the domain by tresholding at level α the obtained approximated adjusted p-value
function.

This procedure relies on the two parameters K and B. It is import to point out that, as K tends to infinity, the
error arising from the discretization of the domain becomes negligible. Moreover, increasing the number of random
permutations B, the Monte Carlo error tends to zero. In our work we fix K=119, indeed, all our functional data are
evaluated on a equally spread grid of 120 points. The choice of K is due to a balance between computation time needed
and results. It has been shown that, by increasing the number of points of the grid, the obtained adjusted p-value
functions do not change significantly, but the required computation time increases considerably. With regards to the
number of permutations, instead, we fix B=1000, that is themost used parameter in literature. However, our results are
robust even to a smaller B.
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