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Abstract

In this work we propose a Robin-Robin preconditioner combined with Krylov
iterations for the solution of the interface system arising in fluid-structure
interaction (FSI) problems. It can be seen as a partitioned FSI procedure
and in this respect it generalizes the ideas introduced in [Badia, Nobile and
Vergara, J. Comput. Phys. 227 (2008) 7027 –7051]. We analyze the
convergence of GMRES iterations with the Robin-Robin preconditioner
on a model problem and compare its efficiency with some existing algo-
rithms. The method is shown to be very efficient for many challenging
fluid-structure interaction problems, such as those characterized by a large
added-mass effect or by enclosed fluids. In particular, the possibility to
solve balloon-type problems without any special treatment makes this al-
gorithm very appealing compared to the computationally intensive existing
approaches.
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1 Introduction

In this paper we focus on the solution of the time-dependent fluid-structure
interaction (FSI) problem, which arises when an incompressible fluid interacts
with a structure. In particular, we focus on modular algorithms that allow to
reuse pre-existing fluid and structure codes (also called partitioned strategies).

We are interested in those FSI problems where the added mass effect is high,
that is when the ratio between the fluid and structure densities is close to one
(or larger). This typically appears in hemodynamic applications. It has been
reported in the literature [37, 6, 16, 25] that the solution of the FSI system
is problematic in this situation. In general, explicit algorithms that solve only
once (or just few times) per time step the fluid and structure subproblems are
unstable, unlike for low added mass problems such as those arising in aeroelas-
ticity. To obtain stable numerical schemes, one has then to consider implicit
or semi-implicit time discretizations that enforce exactly at each time step the
continuity of the velocity and normal stresses at the fluid-structure interface.

Several approaches can be followed to build partitioned schemes to solve such
fully coupled problem at each time step. The easiest way consists in splitting
the FSI problem into separate fluid and structure evaluations, which interact
through the exchange of suitable transmission conditions. This, at convergence,
guarantees the continuity of the velocity and the normal stress at the interface.

The most popular of such schemes is the so-called Dirichlet-Neumann (DN)
algorithm, which consists in solving iteratively the fluid equations, given the
structure velocity at the FSI interface (Dirichlet boundary condition), and the
structure equations, given the fluid normal stress at the interface (Neumann
boundary condition). However, it has been shown in [6] that in presence of a
large added mass effect, the DN procedure needs a strong relaxation and features
a very slow convergence.

In [2] a new class of partitioned procedures based on Robin transmission
conditions has been introduced (Robin-Robin schemes), which generalizes the
Dirichlet-Neumann approach. In particular, the results in [2] indicate that
among all possibilities, the Robin-Neumann (RN) algorithm exhibits very good
performances for a wide range of added mass and is by far more efficient than
the DN strategy.

Alternative to these simple iterative procedures, in [8] the FSI problem has
been rewritten as an interface equation by introducing a suitable FSI Steklov-
Poincaré operator, and “classical” Domain-Decomposition preconditioners as
Dirichlet-Neumann, Neumann-Dirichlet, Neumann-Neumann [33] have been ap-
plied to Richardson iterations on the interface displacement. This approach also
leads to partitioned procedures where subsequent fluid and structure problems
with either Dirichlet or Neumann boundary conditions are solved.

On the same lines, [24] and more recently [3] consider the algebraic version of
the fluid-structure interface problem (Schur complement), and propose precon-
ditioned Krylov iterations instead of Richardson iterations. In particular, [24]
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considers preconditioned Newton-Krylov methods, whereas [3] analyzes both
theoretically and numerically the DN preconditioned GMRES method applied
to a suitable linearization of the interface equation, highlighting its better per-
formance compared to the DN-Richardson version, in presence of a large added
mass effect.

For completeness, we also mention other effective approaches that have been
proposed recently, which however are not modular and do not lead to sepa-
rate solutions of fluid and structure subsystems. Among these, we mention the
strategies based on the application of GMRES to the monolithic system ([20, 14])
and the idea introduced in [12] of generalizing the well-known Chorin-Temam
method to the FSI problem. In the latter case the Poisson pressure equation is
kept strongly coupled to the structural problem to obtain a stable discretization.
Similar ideas, but on a purely algebraic level, have been investigated in [29, 4]
where the algebraic Chorin-Temam scheme (see [27]) and the Yosida scheme (see
[31, 30]), have been extended to the FSI problem. Finally, we mention the work
[5] which proposes a global weak formulation relying on the imposition of the
kinematic coupling conditions (continuity of the velocity at the interface) by the
Nitsche method and a partitioned iterative procedure which, however, leads to
non-standard fluid and structure discrete equations.

The goal of the present work is two-fold. Firstly, moving from the idea
proposed in [24, 3], we reinterpret the Robin-Robin partitioned scheme intro-
duced in [2] as a preconditioned Richardson algorithm (RR-Richardson) over
the Schur complement equation, and identify the corresponding preconditioner.
This allows us to further apply the RR-preconditioner together with more effi-
cient Krylov methods such as GMRES (RR-GMRES). In particular, we focus on
the Robin-Neumann GMRES method (RN-GMRES) and provide a theoretical
convergence analysis for a model linear FSI problem as well as a numerical com-
parison of performances among RN-Richardson, RN-GMRES and DN-GMRES.

We also study the sensitivity of RN-Richardson and RN-GMRES with re-
spect to the coefficient appearing in the Robin transmission condition. A good
candidate for such coefficient has been given in [26] in context of hemodynamic
applications. Our investigation shows that RN-GMRES is much less sensitive
to this coefficient than RN-Richardson but is also a little more expensive. From
this analysis we can conclude that if a good guess of the Robin coefficient is
available (such as the one proposed in [26] when applicable), the RN-Richardson
is more efficient than the RN-GMRES. However, if a good guess is not available,
as it will be the case in most applications, the RN-GMRES should be preferred.

The second goal of this paper is to propose the algorithms based on the
RN preconditioner as effective tools to solve enclosed fluid problems, where only
Dirichlet or flow rate boundary conditions are prescribed on the fluid boundary
(excluding the FS interface). Indeed, it is well known that this kind of problems
can not be solved with a DN preconditioner, since the mass conservation law is in
general violated [19, 25]. Other strategies have been proposed in the literature,
such as the one based on enforcing a solvability condition through the intro-
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duction of a Lagrange multiplier [25, 22] or the one based on the introduction
of a pseudo-compressibility term [34]. In both cases, the computational costs
are quite high. On the contrary, our RN-GMRES algorithm can be straight-
forwardly applied to this kind of problems and seems to be superior than the
aforementioned approaches.

The outline of the paper is as follows. In Section 2 we set the FSI problem
both in its continuous and time-discrete forms and derive the algebraic interface
problem. In Section 3 we reinterpret the RR partitioned procedure proposed in
[2] as partitioned Richardson iterations on the algebraic interface problem and
identify the corresponding preconditioner. We also introduce a parallel version
of the preconditioner which is a generalization of the Neumann-Neumann pre-
conditioner used in the Domain-Decomposition framework (see e.g. [18, 9]). In
Section 4 we analyze the RR-GMRES solver, highlighting its modularity, and
reducing it to a sequence of calls to fluid and structure solvers with suitable
Robin boundary conditions. In Section 6 we provide the convergence analysis of
the RN-GMRES scheme applied to a model linear FSI problem. In Section 7 we
review the difficulties related to the solution of enclosed flow problems by tra-
ditional partitioned procedures (such as DN) and show how RR-preconditioned
Krylov methods naturally overcome such difficulties Finally, in Section 8 we
present several 2D and 3D numerical results, confirming the theoretical obser-
vations of the previous sections.

2 Problem setting

2.1 The continuous FSI problem

Let us consider the fluid-structure domain Ωt ⊂ R
d (d=2, 3, being the space

dimension), where t here denotes time. This domain is divided into a sub-domain
Ωt

s occupied by an elastic structure and its complement Ωt
f occupied by the fluid

(see Fig. 1). The fluid-structure interface Σt is the common boundary between
Ωt

s and Ωt
f , i.e. Σt = ∂Ωt

s ∩ ∂Ωt
f . Furthermore, nf is the outward normal to Ωt

f

on Σt and ns = −nf is its counterpart for the structure domain. The initial
configuration Ω0 at t = 0 is considered as the reference one. In order to describe
the evolution of the whole domain Ωt we define two families of mappings:

L : Ω0
s × (0, T ) −→ Ωt

s, (x0, t) 7→ x = L(x0, t)

and
A : Ω0

f × (0, T ) −→ Ωt
f , (x0, t) 7→ x = A(x0, t).

The maps Lt = L(·, t) and At = A(·, t) track the solid and the fluid domains in
time. Due to the continuity of the velocity at the interface, the two mappings
have to satisfy the condition

Lt = At on Σt, ∀t ∈ (0, T ). (1)

4



Ωt
f Σt

Ωt
s

Σt

Figure 1: Example of domain Ωt; fluid domain Ωt
f (left) and solid domain Ωt

s

(right).

To describe the structure kinematics we use a Lagrangian framework. Therefore,
the solid mapping Lt is straightforwardly determined by

Lt(x0) = x0 + η̂(x0, t),

where η̂ denotes the displacement of the solid medium with respect to the ref-
erence configuration.

The fluid problem is stated in an Arbitrary Lagrangian-Eulerian (ALE)
framework (see e.g. [21, 10]). The fluid domain mapping At is defined by
an arbitrary extension of its value on the interface, which is given by condition
(1):

At(x0) = x0 + Ext(η̂(x0, t)|Σ0).

A classical choice is to consider a harmonic extension operator in the reference
domain. This mapping does not necessarily track the fluid particles far from the
interface Σt.

For any function ĝ : Ω0
s × (0, T ) −→ R defined in the reference solid configu-

ration, we denote by g = ĝ ◦ (Lt)−1 its counterpart in the current domain:

g : Ωt
s × (0, T ) −→ R, g(x, t) = ĝ((Lt)−1(x), t).

An analogous notation is adopted for the fluid domain: given f̂ : Ω0
f × (0, T ) −→

R defined in the reference fluid configuration, we denote by f = f̂ ◦ (At)−1 its
counterpart in the current fluid domain.

We define the ALE time derivative as follows:

∂tf |x0
: Ωt

f × (0, T ) −→ R, ∂tf |x0
(x, t) = ∂tf̂ ◦ (At)−1(x).

Moreover, we calculate the fluid domain velocity w as

w(x, t) = ∂tx|x0
= ∂tAt ◦ (At)−1(x).
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The solid is assumed to be an elastic material, characterized by a constitutive
law relating the Cauchy stress tensor T s to the deformation gradient F (η̂) =
I + ∇η̂.

The fluid is assumed to be homogeneous, Newtonian and incompressible. We
denote by T f its Cauchy stress tensor:

T f (u, p) = −pI + 2µ(∇u + (∇u)T ),

where p is the pressure u the velocity and µ the dynamic viscosity.
In order to write the fluid problem in ALE form, let us apply the chain rule

to the velocity time derivative:

∂tu|x0
= ∂tu + w · ∇u,

where ∂tu is the partial time derivative in the spatial frame (Eulerian derivative).
Then, the fluid-structure problem in strong form reads:

1. Fluid-structure problem. Find the fluid velocity u, pressure p and the struc-
ture displacement η̂ such that

ρf∂tu|x0
+ ρf ((u − w) · ∇)u −∇ · T f = ff in Ωt

f × (0, T ), (2a)

∇ · u = 0 in Ωt
f × (0, T ), (2b)

ρs∂ttη̂ −∇ · T̂ s = f̂ s in Ω0
s × (0, T ), (2c)

u = ∂tη on Σt × (0, T ), (2d)

T s · ns + T f · nf = 0 on Σt × (0, T ). (2e)

2. Geometry problem. Find the fluid domain displacement

At(x0) = x0 + Ext(η̂|Σ0), w = ∂tAt ◦ (At)−1, Ωt
f = At(Ω0

f ). (3)

Here, ρf and ρs are the fluid and structure densities and ff and f̂ s the forcing
terms. Two transmission conditions are enforced at the interface: the continuity
of fluid and structure velocities (2d), due to the adherence condition, and the
continuity of stresses (2e), expressing the action-reaction principle. The fluid
and structure problems are also coupled by the geometrical condition (3), leading
to a highly nonlinear problem. Finally, system (2)-(3) has to be endowed with
suitable boundary conditions on ∂Ωt \Σt and initial conditions. Since the choice
of boundary and initial conditions is not essential in the forthcoming discussion,
they will not be detailed here.

2.2 The time discretization and the algebraic problem

In what follows we discretize in time system (2)-(3). Let ∆t be the time step
size and tn = n∆t for n = 0, . . . , N . We denote by zn the approximation
of a time dependent function z at time level tn. Let us define the backward
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difference operator δt as δtz
n+1 = (zn+1 − zn)/∆t. The discrete ALE derivative

is evaluated by the following expression:

δtz
n+1|x0

= (zn+1 − zn ◦ An ◦ (An+1)−1)/∆t.

We consider a backward Euler scheme for the time discretization of the fluid
problem and an implicit first order BDF scheme for the structure problem. Ob-
serve, however, that all the partitioned procedures proposed in this work can be
easily extended to other, high order, time marching schemes.

In all cases we obtain a nonlinear problem, since the convective term and the
interface position are unknown, and possibly the structure in non-linear. Several
strategies have been proposed to solve such monolithic problem. In particular,
one could consider Picard or Newton iterations over the nonlinear FSI system,
to handle all nonlinearities (implicit strategy, see, e.g., [25, 13]), or treat the
non-linear terms in an explicit way by extrapolation from previous time steps
(semi-implicit algorithm, see, e.g., [12, 26, 4]). Whatever strategy is adopted,
a sequence of linearized FSI problems (implicitly coupled through the interface
conditions (2d)-(2e)) has to be solved.

Let us now consider the algebraic counterpart of such linearized problem.
To this aim, let Ω∗ be the (known) domain where this problem is solved. Ω∗

is the domain obtained at the previous subiteration in the Picard or Newton
loop if an implicit treatment of the interface position is considered, while it is
a suitable extrapolation of fluid domains from previous time steps if a semi-
implicit algorithm is applied. We introduce a suitable triangulation of the FSI
domain Ω∗ (for the sake of simplicity assumed conforming at the interface Σ∗)
and consider a finite element discretization in space. For the sake of exposition
we skip the details and we refer the reader to [4].

By this procedure, we are led at each time step to the solution of the following
linear system of equations




Cff CfΣ 0 0
0 MΣ −MΣ 0

CΣf CΣΣ NΣΣ NΣs

0 0 NsΣ Nss







Vf

VΣ

UΣ

Us


 =




bf

0
bΣ

bs


 (4)

where we have split the degrees of freedom associated to nodes interior to the
fluid and structure domain from the degrees of freedom associated to the FSI
interface and we have omitted the time step superscript for simplicity. The
vector Vf contains interior velocity values and all the pressure values for the
fluid, Us contains interior velocity values for the structure problem, whereas VΣ

and UΣ contain the interface velocity values for the fluid and for the structure,
respectively.

The first row is the fully discrete version of the momentum and mass conser-
vation equations for the fluid problem, while the second row states the continuity
of the velocities at the interface. Indeed, we have indicated by MΣ the interface
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mass matrix, which is invertible, so that the second equation is equivalent to
VΣ = UΣ. The third equation enforces continuity of normal stresses in a weak
form. Finally, the fourth row is the structure problem on the interior nodes.

The right-hand side (RHS) includes time derivative terms, body forces and
other terms which come from the fact that the structure problem has been
rewritten in terms of velocities instead of displacements.

2.3 The interface problem

As suggested in [8] the FSI problem can also be understood as an interface prob-
lem in which the only unknown is the velocity at the fluid-structure interface.
At the continuous level, the interface problem can be written using the fluid and
structure Steklov-Poincaré operators (see e.g. [8]). For the fully discrete FSI
system, the interface problem is obtained by means of the fluid and structure
Schur complement matrices (discrete versions of the Steklov-Poincaré operators,
see [3]). System (4) is equivalent to

(C̃Σ + ÑΣ)UΣ = b̃Σ (5)

where

C̃Σ = CΣΣ − CΣfC−1
ff CfΣ, (6a)

ÑΣ = NΣΣ − NΣsN
−1
ss NsΣ (6b)

are the fluid and structure Schur complement matrices and

b̃Σ = bΣ − CΣfC−1
ff bf − NΣsN

−1
ss bs

is the corresponding body force for the interface problem.
It is well known (see e.g. [33]) that for finite element approximation the

system matrix of the interface problem (5) has a condition number of order
O(h−1) whereas the one for the global system matrix in (4) is O(h−2). Anyway,
this matrix is still ill-conditioned and an optimal preconditioner that will cure
the dependence of the condition number of the matrix with respect to the mesh
size is required. The development of preconditioners for interface problems is
one of the main goals of domain decomposition theory (see e.g. [33]). We refer
to [8] for an extension of the domain decomposition theory to fluid-structure
interaction problems.

In particular, it has been shown in [8] that the classical partitioned procedure
known as the Dirichlet-Neumann scheme (see, e.g., [28, 25]) can be interpreted
as a Richardson method over the preconditioned system

Ñ−1
Σ (C̃Σ + ÑΣ)UΣ = Ñ−1

Σ b̃Σ, (7)

the preconditioner being PDN = ÑΣ. In what follows, we refer to this scheme as
DN-Richardson. It is well known that this method is optimal with respect to h
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since the condition number of the preconditioned matrix is uniform with respect
to the characteristic mesh size h (see [33]). However, for the heterogeneous
domain decomposition encountered in FSI, the efficiency of this preconditioner
strongly depends on the fluid and structure physical parameters and the time
step size (see e.g. [6]). In particular, the performance of the preconditioner
deteriorates when the ratio ρs/ρf decreases (increasing the added mass effect,
see [37, 6, 16]), or when slender domains are considered. Therefore, an optimal
preconditioner for the FSI interface problem has to be optimal also with respect
to the added mass effect.

Alternatively to Richardson iterations, one could use more efficient algo-
rithms. In particular, it is possible to consider Krylov methods over the precon-
ditioned system (7) (see [24]). As in [3] we will focus in this work on the GMRES
method. Every iteration of this algorithm requires a matrix-vector multiplica-

tion with the system matrix Ñ−1
Σ

(
ÑΣ + C̃Σ

)
. This matrix-vector product can

be easily computed in a modular way if one disposes of separate fluid and struc-
ture codes. In [3] it has been shown that the DN preconditioner combined with
GMRES iterations (DN-GMRES) performs much better than DN-Richardson for
large added-mass effects. However, its performance is still negatively affected by
the added-mass and by the time step size.

In [2] a new family of partitioned procedures, based on Robin transmission
conditions, has been introduced. Some of these schemes look very attractive,
since their dependence on the added-mass effect is limited, as revealed by the
convergence analysis and numerical tests proposed therein. In the next section,
we interpret these partitioned schemes as preconditioned Richardson iterations
on the interface problem and identify the corresponding RR preconditioner to
be used later with more efficient Krylov solvers (such as GMRES). We also
introduce a parallel Robin-Robin preconditioner, which is more commonly used
in the Domain-Decomposition framework.

3 The Robin-Robin preconditioners

3.1 Sequential RR preconditioner

Let us recall the sequential Robin-Robin partitioned scheme for the solution of
(4) introduced in [2]. For general sequential Robin-Robin schemes in the frame-
work of domain decomposition we refer, e.g., to [23, 1, 17]. This algorithm is
suitable for problems with large added-mass effect, such as in hemodynamic
applications (blood-vessel systems). Both fluid and structure sub-problems are
supplemented with Robin transmission conditions, obtained by linear combina-
tions of the interface conditions with coefficients αf and αs respectively. The
choice of the coefficients in these combinations is crucial to achieve good con-
vergence properties. A possible choice that provides very good performance
in hemodynamic applications has been proposed in [2] and has been obtained
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starting from the simplified fluid and structure models presented in [6] and [26],
respectively. By setting αs = ∞ or αs = 0 in the structure problem, one re-
covers other coupling strategies, namely Robin-Dirichlet and Robin-Neumann,
respectively. Among all possible choices, the Robin-Neumann algorithm turns
out to be the most efficient (see [2]). In particular, it is much more efficient than
the classical Dirichlet-Neumann scheme in problems with large added-mass ef-
fects. However, for completeness, in the next section we discuss the more general
Robin-Robin approach.

The sequential Robin-Robin scheme consists of the following steps:

Algorithm 1: Sequential Robin-Robin
Given (Uk

Σ,Uk
s) and the quantities at the previous time steps, we solve

1. Fluid sub-problem (Robin)

[
Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
Vk+1

f

Vk+1
Σ

]
=

[
bf

bΣ

]
−

[
0

NΣsU
k
s + (NΣΣ − αfMΣ)Uk

Σ

]

(8a)

2. Structure sub-problem (Robin)

[
NΣΣ + αsMΣ NΣs

NsΣ Nss

] [
Uk+1

Σ

Uk+1
s

]
=

[
bΣ

bs

]
−

[
CΣfV

k+1
f + (CΣΣ − αsMΣ)Vk+1

Σ

0

]

(8b)

with αf , αs > 0, and iterate until convergence on (Uk
Σ,Uk

s).
¤

Let us now reinterpret this scheme as preconditioned Richardson iterations
over system (5).

We have the following:

Lemma 1 The sequential Robin-Robin scheme (8) is equivalent to solve the
interface problem (5) using preconditioned Richardson iterations with precondi-
tioner

PRR =
1

αf + αs

(
C̃Σ + αfMΣ

)
M−1

Σ

(
ÑΣ + αsMΣ

)
. (9)

PROOF Every preconditioned Richardson iteration of the method consists of:
given Uk

Σ compute Uk+1
Σ such that

1

αf + αs

(
C̃Σ + αfMΣ

)
M−1

Σ

(
ÑΣ + αsMΣ

)
δUk+1

Σ = b̃Σ −
(
C̃Σ + ÑΣ

)
Uk

Σ,

(10)
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where δUk+1
Σ = Uk+1

Σ − Uk
Σ. We can split (10) into two different steps

(
C̃Σ + αfMΣ

)
δVk+1

Σ = b̃Σ −
(
C̃Σ + ÑΣ

)
Uk

Σ, (11a)
(
ÑΣ + αsMΣ

)
δUk+1

Σ = (αf + αs)MΣδVk+1
Σ . (11b)

Setting now δVk+1 = Vk+1
Σ − Uk

Σ and rearranging (11a), we have

(
C̃Σ + αfMΣ

)
Vk+1

Σ = b̃Σ −
(
ÑΣ − αfMΣ

)
Uk

Σ. (12)

Using the definitions (6) in (12), we get

1. Auxiliary structure sub-problem (Dirichlet)

NssŨ
k+1
s = bs − NsΣUk

Σ

2. Fluid sub-problem (Robin)

[
Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
Vk+1

f

Vk+1
Σ

]
=

[
bf

bΣ

]
−

[
0

NΣsŨ
k+1
s + (NΣΣ − αfMΣ)Uk

Σ

]

On the other hand, using (12) and (11b) we get:

(
ÑΣ + αsMΣ

)
Uk+1

Σ =
(
ÑΣ + αsMΣ

) (
Uk

Σ + δUk+1
Σ

)

=
(
ÑΣ + αsMΣ

)
Uk

Σ + (αf + αs)MΣδVk+1
Σ

=
(
ÑΣ − αfMΣ

)
Uk

Σ + (αf + αs)MΣVk+1
Σ

= b̃Σ −
(
C̃Σ + αfMΣ

)
Vk+1

Σ + (αf + αs)MΣVk+1
Σ

= b̃Σ −
(
C̃Σ − αsMΣ

)
Vk+1

Σ

which corresponds to

(3) Structure sub-problem (Robin)

[
NΣΣ + αsMΣ NΣs

NsΣ Nss

] [
Uk+1

Σ

Uk+1
s

]
=

[
bΣ

bs

]
−

[
CΣfV

k+1
f + (CΣΣ − αsMΣ)Vk+1

Σ

0

]
.

Observe that the second equation of the third step and the first step coincide.
Then, the solution of the auxiliary problem is simply Ũk+1

s = Uk
s . Moreover,

if we set Ũ1
s = Un

s , the first step can be eliminated. Thus the preconditioned
Richardson algorithm coincides with (8). ¤

We point out that the preconditioner PRR is called sequential because fluid
and structure Robin sub-problems must be performed in a sequential fashion.
In what follows, we refer to this scheme as RR-Richardson.
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3.2 Parallel RR preconditioner

An alternative version of the RR preconditioner, introduced in context of Domain-
Decomposition methods, is obtained as a natural extension of the Neumann-
Neumann (NN) preconditioner (see [9, 18]). Applied to the FSI problem (5),
it entails the solution of two fluid and two structure sub-problems at each iter-
ation. Since fluid and structure sub-problems at every iteration can be solved
independently we call this preconditioner the parallel RR preconditioner and is
defined as:

P
‖
RR =

(
β

(
C̃Σ + αfMΣ

)−1
+ (1 − β)

(
ÑΣ + αsMΣ

)−1
)−1

,

where β ∈ (0, 1) is arbitrary and affects the convergence rate.
When this preconditioner is used with Richardson iterations on the interface

problem, it leads to the following

Algorithm 2: Parallel Robin-Robin Richardson
Given Uk

Σ compute

(1.1) Structure sub-problem I (Dirichlet)

NssŨ
k+1
s = bs − NsΣUk

Σ

(1.2) Fluid sub-problem I (Dirichlet)

CffṼ
k+1
f = bf − CfΣUk

Σ

(2.1) Fluid sub-problem II (Robin)

[
Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
Vk+1

f

Uk+1,f
Σ

]
=

[
bf

bΣ

]
−

[
0

NΣsŨ
k+1
s + (NΣΣ − αfMΣ)Uk

Σ

]

(2.2) Structure sub-problem II (Robin)

[
NΣΣ + αsMΣ NΣs

NsΣ Nss

] [
Uk+1,s

Σ

Uk+1
s

]
=

[
bΣ

bs

]
−

[
CΣfṼ

k+1
f + (CΣΣ − αsMΣ)Uk

Σ

0

]

(3) Update of the interface velocity:

Uk+1
Σ = βUk+1,f

Σ + (1 − β)Uk+1,s
Σ .

¤

This preconditioner has a structure similar to the Neumann-Neumann method
used in [8] for fluid-structure interaction.
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4 RR-preconditioned GMRES method

The reinterpretation of the RR partitioned procedures (either sequential or par-
allel) as preconditioned Richardson iterations on the interface system is not just
formal. It allows us to use more efficient (orthonormal) Krylov methods on the
(preconditioned) interface problem instead of Richardson iterations (see [3] for
the DN algorithm). In particular, we can consider the GMRES algorithm, ob-
taining the RR-GMRES scheme. In order to do that, we have to generate the
Krylov basis associated to the matrix Q = P−1

RR(C̃Σ + ÑΣ), started with the

initial preconditioned residual r0 = P−1
RR[b̃Σ − (C̃Σ + ÑΣ)U0

Σ], where U0
Σ is the

initial guess for the interface velocity. The Krylov space that is generated at the
m-th iteration of the GMRES method is

Km := span{r0, Qr0, Q2r0, ..., Qm−1r0}.

In fact, the GMRES method uses an orthonormal basis {zj} such that

span{z0, z1, ..., zm−1} = Km.

Given zk, in order to get zk+1 we have to evaluate a matrix-vector product

w = P−1
RR(ÑΣ + C̃Σ)zk (13)

and then compute zk+1 = w − ΠKM
w, where ΠKM

is the orthogonal projection
operator onto KM . The same procedure can be applied for the parallel RR
preconditioner as well.

For the sequential RR preconditioner, the following result holds:

Lemma 2 The matrix-vector product (13) can be rearranged in the following
three steps:

(
C̃Σ + αfMΣ

)
ṽΣ =

(
ÑΣ − αfMΣ

)
zk (14a)

(ÑΣ + αsMΣ)vΣ =
(
C̃Σ − αsMΣ

)
ṽΣ (14b)

w = zk − vΣ. (14c)

PROOF From (14a) and (14b), we have

vΣ =
(
ÑΣ + αsMΣ

)−1 (
C̃Σ − αsMΣ

) (
C̃Σ + αfMΣ

)−1 (
ÑΣ − αfMΣ

)
zk.

Then, from (14c), we obtain

w =
[
I −

(
ÑΣ + αsMΣ

)−1 (
C̃Σ − αsMΣ

) (
C̃Σ + αfMΣ

)−1 (
ÑΣ − αfMΣ

) ]
zk

=
(
ÑΣ + αsMΣ

)−1
[
(αs + αf )MΣ + (αs + αf )MΣ

(
C̃Σ + αfMΣ

)−1 (
ÑΣ − αfMΣ

)]
zk

= P−1
RR(ÑΣ + C̃Σ)zk, (15)
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with PRR as in (9). ¤

We can rewrite the matrix-vector product (13) as a set of sub-problems. In
particular, the first two equations in (14) leads to the following

Algorithm 3: Sequential Robin-Robin GMRES (matrix vector multi-
plication)

1. Auxiliary structure sub-problem (Dirichlet)

Nssṽs = −NsΣzk

2. Fluid sub-problem (Robin)
[

Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
ṽf

ṽΣ

]
=

[
0

NΣsṽs + (NΣΣ − αfMΣ)zk

]

3. Structure sub-problem (Robin)
[

NΣΣ + αsMΣ NΣs

NsΣ Nss

] [
vΣ

vs

]
=

[
CΣf ṽf + (CΣΣ − αsMΣ)ṽΣ

0

]

¤

We point out that the auxiliary structure sub-problem arises from the matrix-
vector product ÑΣzk which involves the product N−1

ss NsΣzk, that is a structure
problem with Dirichlet boundary conditions. The same occurs for the matrix-
vector product C̃ΣṽΣ that involves a fluid sub-problem with Dirichlet boundary
conditions. However, in this case we have C−1

ff CfΣṽΣ = ṽf and this sub-problem
can be skipped.

From a computational point of view, the extra cost of one GMRES iteration
(matrix-vector multiplication (13)) with respect to one Richardson iteration is
given by the auxiliary structure problem in step (1), which must be solved and
cannot be avoided (as done in Lemma 1 for the Richardson iterations). Note that
also DN-GMRES requires only two sub-problems per iterations (see [3]). In any
case, the extra sub-problem is a structural one, which in most real applications
(such as in hemodynamics) is much cheaper than the fluid one.

In conclusion, we can compute the matrix-vector product (13), which allows
us to build the new basis element of the Krylov space, by solving the same
systems that appear when using Richardson iterations, the only modification
being the extra auxiliary structure sub-problem.

Remark 1 The last step (Robin problem for the structure) could be replaced by

(ÑΣ + αsMΣ)w = (αf + αs)(ṽΣ + z)

slightly reducing the computational cost.

In Tab. 1 we indicate the sub-problems that have to be solved at each
iteration for the methods considered.
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Richardson GMRES

PRR Fluid 1R - Struct. 1R Fluid 1R - Struct. 1D+1R

P
‖
RR Fluid 1D+1R - Struct. 1D+1R Fluid 1D+1R - Struct. 1D+1R

Table 1: Subproblems characterizing the different algorithms: R and D indicate
that the sub-problem is equipped with a Robin or a Dirichlet boundary condition
at the interface

5 On the modularity of the RR algorithms

In [2] we pointed out the modularity of the sequential RR-Richardson scheme,
that is the possibility of using “black-box” fluid and structure solvers. Here,
we want to stress that also the parallel RR-Richarsdon and the sequential RR-
GMRES schemes are modular.

The building block of all algorithms presented so far (Algorithm 1, 2 and 3)
is the solution of Robin problems as (8a) and (8b). We recall here the Robin
problem (8a) for the fluid:

[
Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
Vf

VΣ

]
=

[
bf

bΣ

]
−

[
0

NΣsUs + (NΣΣ − αfMΣ)UΣ

]

(16)

for some forcing term [bf bΣ]T and some structure velocity [Us UΣ]T (in Al-
gorithm 3 the forcing term b is actually zero). Our goal is to show that all
quantities appearing in (16) are easily accessible when using “black-box” fluid
and structure solvers. Therefore, the proposed Algorithms are actually modular.

Let us split the boundary forcing term as bΣ = bf
Σ + bs

Σ and assume that
the term Us satisfies the algebraic system (as it is the case in all Algorithms 1,2
and 3)

NssUs = bs − NsΣUΣ

corresponding to a Dirichlet structure problem. The residual of the structure
equation on the interface nodes, given in algebraic form by

R(bs,Us,UΣ) = NΣsUs + NΣΣUΣ − bs
Σ

represents the structure normal stress at the interface in a weak form (i.e. already
integrated against the structure shape functions corresponding to the interface
degrees of freedom; see e.g. [4]). Hence, system (16) can be rewritten as

[
Cff CfΣ

CΣf CΣΣ + αfMΣ

] [
Vf

VΣ

]
=

[
bf

bf
Σ

]
−

[
0

R(bs,Us,UΣ) − αfMΣUΣ

]
.

(17)

Let us denote by η̇h the finite element function whose nodal values are given
by the vectors (Us,UΣ) (structure velocity), ηh the corresponding structure

15



displacement, and (uh, ph) the finite element fluid functions corresponding to the
vectors (Vf ,VΣ). It is easy to see that system (17) corresponds to a standard
fluid problem with the following Robin boundary conditions at the interface:

αfuh + T f (uh, ph) · nf = −T s(ηh) · ns + αf η̇h.

Exactly the same considerations apply to the structure Robin problem (8b).
We see that the Algorithms we have proposed so far are modular provided we
dispose of fluid and structure solvers that allow us to impose Robin boundary
conditions with non-zero right hand side and that can output the velocity and
normal stress on the interface, information that has to be passed to the other
subproblem.

6 Analysis of a model problem

In this section we analyze the convergence of the RN-GMRES algorithm for a
FSI model problem and compare its reduction factor to the one found in [3] for
DN-GMRES. The RN-GMRES scheme is obtained from the general RR-GMRES
setting αs = 0. The simplified FSI model considered here has been previously
introduced in [6] for the analysis of the DN-Richardson scheme. We refer to [6, 2]
for the analysis of DN-Richardson scheme, to [3] for the analysis of DN-GMRES
and to [2] for the analysis of RN-Richardson.

The model problem is a simplified blood-vessel system. We take a rectangu-
lar fluid domain Ωf ∈ R

2 of height R and length L (see Fig. 2). The structure is

Ωf

Σ

Γ

Γ

Γ1 2

3

L

R

Figure 2: Reference domains Ωf .

placed on the top side of Ωf and is considered a one dimensional body. There-
fore, Ωs ≡ Σ, where Σ denotes the fluid-structure interface. The model for the
fluid is linear, incompressible and inviscid. For the structure, we consider the
generalized string model (see e.g. [32]). The fluid problem is discretized in time
by using the implicit backward Euler scheme; a first order BDF scheme is con-
sidered for the structure. Then, the FSI coupled problem, discretized in time
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reads as:

ρfδtu + ∇pn+1 = 0 in Ωf × (0, T ),

(18a)

∇ · u = 0 in Ωf × (0, T ),
(18b)

u · nf = δtη
n+1 on Σ × (0, T ), (18c)

ρsHs
ηn+1 − 2ηn + ηn−1

∆t2
+ a ηn+1 − b ∂xxηn+1 = pn+1 in Ωs × (0, T ),

(18d)

with suitable boundary conditions on Ωf \ Σ. Here, η = η(x, t) is the dis-
placement in the direction of nf , Hs is the thickness of the structure, a =
EHs/R2(1 − ν2), E being the Young modulus and ν the Poisson coefficient,
b = kGh, G being the shear stress modulus and k the Timoshenko shear correc-
tion factor. We observe that the continuity of the normal stress at the interface
is given by the structure equation itself.

In [6, 2] it has been shown that the previous problem can be reduced to the
following interface equation

(ρsHsI + ρfM)
ηn+1 − 2ηn + ηn−1

∆t2
+ a ηn+1 + Nηn+1 = p̂n+1 in Ωs × (0, T ),

where I is the identity operator, p̂n+1 takes into account non-homogeneous
boundary conditions on ∂Ωf \ Σ and M : H−1/2(Σ) → H1/2(Σ) stands for the
added-mass operator which consists of: given γ ∈ H−1/2(Σ), find q ∈ H1(Ωf )
such that

−∆q = 0 in Ωf , (19a)

q = 0 on Γ1 ∪ Γ2, (19b)

∂q

∂n
= 0 on Γ3, (19c)

∂q

∂n
= γ on Σ. (19d)

and extract the value of the solution q on Σ. Moreover, N = −∂xx. We refer
to [6] for a more detailed illustration of the model problem under consideration
We can write the interface problem in more compact form as

Qηn+1 = fn+1
Σ

where the operator Q is given by

Q =
(ρsHs

∆t
+ a∆t

)
I + b∆tN +

ρf

∆t
M

17



and fΣ includes all the forcing terms. We will not detail it since its expression
does not play any role in the subsequent analysis.

We can split Q into its fluid and structure contributions, Qf and Qs respec-
tively:

Qf =
ρf

∆t
M, Qs =

(ρsHs

∆t
+ a∆t

)
I + b∆tN .

Then, the RN-GMRES consists of applying the GMRES algorithm over the
preconditioned interface problem

P−1
RNQηn+1 = P−1

RNfn+1
Σ ,

where, in analogy with (9), the Robin-Neumann preconditioner is

PRN =
1

αf
(Qf + αfI)Qs.

Observe that for this simplified FSI model, both Q and PRN are symmetric and
positive operators.

The reduction factor ρ(k) with respect to the initial residual for the k-th
iteration of the GMRES algorithm is defined as

‖r(k)‖ ≤ ρ(k)‖r(0)‖

where r(m) denotes the residual vector at the m-th iteration (see [36]). The
sharpest expression of the reduction factor ρ(k) depends on the iteration number
(see [36, 11]). It is easy to show that, asymptotically, this estimate, for the case
of an operator R characterized by real and positive eigenvalues, leads to the
following expression

lim
k→∞

ρ(k) =: ρAS ≤
√

σmax −√
σmin√

σmax +
√

σmin
, (20)

where

σmin = inf
η 6=0

(Rη, η)

(η, η)
, σmax = sup

η 6=0

(Rη, η)

(η, η)
,

and is the same reduction factor of the conjugate gradient method. In our case,
we have R = P−1

RNQ and, since as we will prove in Proposition 1, the eigenvalues
of P−1

RNQ are positive and real, we obtain that the asymptotic reduction factor
of RN-GMRES is given by (20) with

σmin = inf
η 6=0

(
P−1

RNQη, η
)

(η, η)
, σmax = sup

η 6=0

(
P−1

RNQη, η
)

(η, η)
.

However, a non asymptotic and iteration-independent bound for the reduction
factor in the case of an operator with real and positive eigenvalues, is given by
(see, e.g., [11])

ρ ≤
√

1 − σmin

σmax
. (21)
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This bound is not as sharp as the iteration-dependent expression of ρ(k) but
allows to compare the effectiveness of different preconditioners.

To evaluate the bound (21) we first perform a spectral analysis of the operator
Q. It diagonalizes for the L2(Σ) orthonormal basis {gi}∞i=1, where

gi =

√
2

L
sin

(
iπ

x

L

)
.

The eigenvalues associated to gi for the operators M and N are

µi(M) =
L

iπ tanh
(
iπ R

L

) and λi(N ) =
( iπ

L

)2
, for i = 1, ...,∞

respectively (see [6, 2]). We also denote by ψi = ρfµi/∆t the eigenvalues of the
operator Qf .

In [2], it has been shown that an optimal choice for the parameter αf is given
by

αopt
f =

ρsHs

∆t
+ a∆t (22)

We note that in this case Qs = αopt
f I + b∆tN . We have the following result:

Proposition 6.1 The RN-GMRES method, with the optimal choice αopt
f given

in (22), applied to the simplified system (18), always converges to the monolithic
solution, with reduction factor bounded by

ρRN ≤
√√√√ 1

1 + ρsHs+a∆t2

b∆t2λī
+ ρsHs+a∆t2

ρf µī
+ (ρsHs+a∆t2)2

b∆t2λīρf µī

(23)

where ī = argmini=1,2,...

{
b∆tλiψi

(ψi+αopt
f )(b∆tλi+αopt

f )

}

PROOF
Let us evaluate σmin and σmax with the notation introduced above. The

operator P−1
RNQ can be written as

P−1
RNQ = I − P−1

RN (PRN −Q) .

On the other hand, we have that

PRN =
1

αopt
f

(
Qf + αopt

f I
) (

αopt
f I + b∆tN

)
=

= Qf +
1

αopt
f

Qfb∆tN + αopt
f I + b∆tN =

1

αopt
f

Qfb∆tN + Q.
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Thanks to the last two identities, we get:

P−1
RNQ = I − 1

αopt
f

P−1
RNQfb∆tN .

At this point, we can easily evaluate the eigenvalues of P−1
RNQ associated to gi,

and denoted by γi:

P−1
RNQgi =


1 − b∆tλiψi(

ψi + αopt
f

) (
b∆tλi + αopt

f

)


 gi := γigi.

The supremum of γi is attained for i → ∞, and its value is 1; this is due to the
fact that λi → ∞ and ψi → 0 as i → ∞. Therefore, σmax = 1. It is easy to see
that 0 < γi < 1. However, it does not exhibit a monotone behavior with respect
to i. Let us denote by ī the value of i for which the minimum is attained so that
σmin = γī. The reduction factor reads as:

ρRN =
√

1 − γī =

√√√√
b∆tλīψī(

ψī + αopt
f

) (
b∆tλī + αopt

f

)

=

√
b∆t2λīρfµī(

ρfµī + ρsHs + a∆t2
) (

b∆t2λī + ρsHs + a∆t2
) ,

and the thesis follows. ¤

The reduction factor for DN-GMRES has been derived in [3] and is given by:

ρDN =

√
ρfµ1

ρsHs + a∆t2 + ∆t2bλ1
. (24)

6.1 Sensitivity analysis of the reduction factors

Let us compare the bounds for the reduction factor ρ of RN-GMRES and DN-
GMRES for the physical parameters given in Table 2 with ∆t = 4 · 10−4. We

Fluid density: ρf = 1.0 g/cm3 Fluid viscosity: µ = 0.035 poise

Structure density: ρs = 1.1 g/cm3 Wall thickness: h = 0.1 cm

Lamé constants: µℓ = 106 dyne/cm2, λℓ = 1.73 · 106 dyne/cm2

Table 2: Fluid and structure physical properties

check the sensitivity of the analytical expression of ρ given in (23) for both meth-
ods, with respect to some important values: ρf , ρs, ∆t and the Young’s modulus
E. For every parameter, we consider the problem for the reference parameter
times a factor in the range [10−4, 104]. This is a very wide range and extremal
values can be of no interest for real applications, but it allows to identify the

20



asymptotic behavior. Let us remark that the reduction factor plots in Fig. 3 are
obtained from its analytical expression and not from numerical experimentation.
In the x-coordinate of these plots we have the factor we multiply the reference
parameter by.
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(a) Structure density sensitivity
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(b) Fluid density sensitivity
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(c) Time step size sensitivity
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(d) Young’s modulus sensitivity

Figure 3: Reduction factor for RN-GMRES (solid line with circles) and for DN-
GMRES (dashed line with x) with respect to several parameters. The horizontal
scale is relative to a reference value.

In order to analyze the sensitivity with respect to the added-mass, we con-
sider variations of the structure density ρs. It is clear from Fig. 3(a) that
RN-GMRES is much more efficient than DN-GMRES. For the typical range
in hemodynamics (factor ∼ 1), the reduction factor for RN-GMRES is around
0.5, whereas it is almost 1 for DN-GMRES; the bad behavior of DN-GMRES
in hemodynamics applications has been reported in [3]. Variations of Hs and a
have a similar effect on the reduction factor of both methods, as we can see from
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(23)-(24). Let us comment that for aeroelastic applications (factor ∼ 102−103 )
both methods are very effective. However, in the whole range of ρs, RN-GMRES
proves to be more effective than DN-GMRES.

An alternative way to show the added-mass sensitivity is to play with ρf (see
Fig. 3(b)). Again, RN-GMRES always exhibits smaller reduction factor (faster
convergence). In this case, for both schemes the reduction factor tends to 1 for
extremely large fluid density, as for ρf ∼ 1000ρs. However, as far as we know,
there are no applications of interest in this ultra-large added-mass range.

Another negative point of the DN-GMRES algorithm is its bad behavior for
small time step sizes. In Fig. 3(c) we solve the FSI problem for different values
of ∆t. It is clear from this figure that DN-GMRES barely converges as ∆t → 0.
On the contrary, the convergence of RN-GMRES is not deteriorated in the small
time step limit. As would be expected from (23), the reduction factor tends to
0 (no iterations needed) very fast in this limit.

Finally, we vary the strength of the material, multiplying the reference
Young’s modulus by a factor in [10−4, 104]. We see in Fig. 3(d) that DN-
GMRES barely converges as the strength of the material is reduced. On the
contrary, RN-GMRES always converges.

In conclusion, we can state that RN-GMRES scheme exhibits a much better
behavior than the DN-GMRES scheme for a wide range of parameters.

We turn now to the more general RR-GMRES algorithm. The reduction
factor for RR-GMRES and a generic αs can be obtained in a similar way as for
RN-GMRES. We omit the proof and the expression of the reduction factor in
this case. The value of αs must be a good approximation of the operator Qf .
We consider the following expression of αs:

αs = 10−k ρfL

∆tjπ tanh
(
jπ R

L

) (25)

for j > 0 and k ≥ 0. Taking j = 1, we are considering the maximum eigenvalue
of Qf times a factor smaller than one. Fixing k = 0 and considering other
values of j consists in taking αs as an intermediate eigenvalue. We show in Fig.
4 the reduction factor for RN-GMRES, DN-GMRES and RR-GMRES. For RR-
GMRES we have considered a wide set of choices for j and k; the direction of
growth of j and k is marked with arrows. It is easily inferred that the reduction
factor for RR-GMRES is always smaller than DN-GMRES but larger than RN-
GMRES. As expected, the method tends to RN-GMRES as αs → 0 (that is
to say, increasing k and/or j). On the other hand, the algorithm performs as
DN-GMRES for the case k = 0 and j = 1, which consists in taking αs equal
to the maximum eigenvalue of Qf . As a conclusion, for the model problem,
the RN-GMRES algorithm is the optimal choice. For a more realistic problem
(where the fluid is governed by the Navier-Stokes equation) and Richardson
coupling iterations are performed, a slight improvement of RR-Richardson with
respect to RN-Richardson was found in [2] for specific choices of αs. In any
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case, finding an appropriate αs is not easy and the improvements are very small.
For this reasons, we will consider only the RN preconditioner in the numerical
experiments of Section 8. Anyway, the use of RR algorithms can be of great
interest in case of dealing with fully submerged incompressible structures (see
Section 7).
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(a) RR for different j and k=0
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Figure 4: Reduction factor for RN, DN, and RR vs. the factor in [10−4, 104] that
multiplies the structure density ρs. For the RR algorithm, we consider different
values of j and k in (25).
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We have also analyzed the RR parallel preconditioner. The results obtained
for this method are disappointing and have not been included. For this reason,
this method has been discarded in the numerical experiments and in what follow
we focus only on the sequential RR preconditioner.

7 Enclosed fluid sub-problem

In the previous sections, we did not specify the fluid boundary conditions on
∂Ωf \ Σ because they do not play any role in the design of partitioned proce-
dures. However, there is a pathological case in which these boundary conditions
can make the Dirichlet-Neumann partitioned procedures inadequate. Let us as-
sume that the fluid sub-problem is supplemented on ∂Ωf \ Σ with the Dirichlet
boundary conditions

u · nf = ud on ∂Ωf \ Σ. (26)

When using the Dirichlet-Neumann method and the boundary condition (26)
is prescribed, the fluid sub-problem is supplemented with Dirichlet boundary
conditions on its whole boundary. As a consequence, the fluid matrix becomes
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singular because the pressure can only be determined up to a constant. To
overcome this problem, it is possible to fix the value of the pressure in a node or
project the pressure equation onto the subspace of functions with zero average.
However, the pressure for the original unsplit FSI system is unique, since it is
determined by the interaction with the structure.

On the other hand, from the fluid continuity equation, the structure dis-
placement has to satisfy the condition

−
∫

Ωf

∇ · u =

∫

∂Ωf\Σ
ud +

∫

Σ
∂tη · nf = 0. (27)

However, there is no guarantee that in the “Neumann” step, the structure solver
computes a structure velocity satisfying (27) and if this does not happen, the
fluid Dirichlet datum is incompatible, meaning that at the algebraic level, the
right hand side of the fluid subproblem is not admissible. Therefore, an algorithm
based on the DN preconditioner cannot be straightforwardly applied in this case.

In the following, we review some existing strategies to overcome this difficulty
and finally tackle this problem with the Robin-Robin algorithm.

7.1 A review a some existing strategies

7.1.1 Enforcing the solvability condition

One modification of the DN algorithm which makes this algorithm suitable for
balloon-type problems has been suggested in [22]. We recall this formulation
here. Let Ud be the array of (assigned) velocity nodal values on the boundary
∂Ωf \Σ. We use the subscript d for vectors and matrices associated to boundary
nodes (see [4]). Moreover, if Uf denotes the velocity degrees of freedom (on
interior nodes only), the Dirichlet fluid sub-problem consists of: find Uf and P
such that

[
Aff Gf

Df Lτ

] [
Uf

P

]
=

[
bf

0

]
−

[
AfdUd + AfΣUΣ

DdUd + DΣUΣ

]
=:

[
b̃f

b̃p

]
(28)

We write (28) in compact form as CffVf = b̃ where Cff =

[
Aff Gf

Df Lτ

]
and

Vf =

[
Uf

P

]
. The matrix Lτ accounts for possible residual-based stabilization

terms. We assume that LτP vanishes for constant vectors P . We have already
recalled that the system matrix Cff is singular in this case. Indeed, the kernel
of this matrix, Ker(Cff ), is of dimension one, and a basis is given by the element
[Uf ,P]T = [0,1]T . This is the array which corresponds to uh = 0 and ph = 1
on Ωf .

In order to make the flud-subproblem well posed (with a uniquely defined
pressure), let us introduce the pressure finite-dimensional space Qh,0 ≡ Qh \
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Ker(Cff ) corresponding to pressure functions with zero mean value and project
the problem onto Qh,0:

[
Aff G0

f

D0
f L0

] [
Uf

P0

]
=

[
b̃f

b̃p

]
(29)

The projected fluid matrix C0
ff =

[
Aff G0

f

D0
f L0

]
is not singular anymore

and we can define the interface operator (Schur complement) C̃0
Σ = CΣΣ −

CΣf (C0
ff )−1CfΣ.

However, the projected fluid subproblem will be equivalent to the original
one only if the right hand side satisfies the solvability condition

projKer(CT
ff

)

(
b̃p

)
= 0. (30)

In fact, it is easy to check, by the definition of b̃p, that this condition is equivalent
to the discrete version of (27). In particular, the algebraic counterpart of (27)
is

hTUΣ = −g (31)

where

(h)i =

∫

Σ
φi

h · nf ,

i being a node on the interface, φi
h its corresponding shape function and

g =

∫

Ωf\Σ
ud.

Equation (31) can be seen as a constraint on the interface velocity. Let us force
this constraint through the introduction of a Lagrange multiplier λ (see [22]).
We are led, therefore, to the “augmented” interface problem

[
ÑΣ + C̃0

Σ h
hT 0

] [
UΣ

λ

]
=

[
b̃Σ

−g

]
, (32)

Observe that this interface equation does indeed represent the continuity of
stresses at the interface for the original FSI problem. Indeed, let us start from
the 3rd equation in the original algebraic system (4), namely

CΣfVf + CΣΣVΣ + NΣΣUΣ + NΣsUs = bΣ.

Exploiting the unique decomposition

P = P0 + p̄1, for P0 ∈ Qh,0, p̄ ∈ R
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and using the definition [AΣf GΣ] = CΣf , this equation can be rewritten as

AΣfUf + GΣP0 + CΣΣUΣ + NΣΣUΣ + NΣsUs + p̄GΣ1 = bΣ.

Now, eliminating Uf , P0, Us and observing that h = GΣ1, the previous equation
corresponds to

(C̃0
Σ + ÑΣ)UΣ + p̄h = b̃Σ

from which we infer that p̄ is in fact the value of the Lagrange multiplier λ
needed to enforce the constraint (31). This important observation was already
given in [19, 25].

Having defined an augmented interface problem one can now define the “aug-
mented” DN preconditioner as

[
ÑΣ h
hT 0

]
. (33)

When applied together with Richardson or GMRES iterations, this entails, in
particular, the solution of a fully Dirichlet fluid subproblem and a constrained
structure problem at each iteration.

We point out however that the enforcement of the solvability condition on
the structure sub-problem couples all the interface nodes, with the subsequent
dramatic increase of the matrix band width. Furthermore, this approach leads
to a saddle-point problem for the structure, loosing the typical semi-positive
definiteness.

As a final remark, we mention the possibility to recover modularity by adopt-
ing the strategy presented in [15, 38] (although in a different context) and be
able to use pre-existing codes. Indeed, solving the structure step in the DN-
Richardson algorithm (similar arguments hold using other Krylov methods):

[
ÑΣ h
hT 0

] [
Uk+1

Σ

λ

]
=

[
b̃Σ − C̃0

ΣUk
Σ

0

]

is equivalent to solving hT Ñ−1
Σ hλ = hT Ñ−1

Σ (b̃Σ − C̃0
ΣUk

Σ). This is a scalar
problem in the unknown λ which can be solved with one iteration of a Krylov
method. This entails the computation of the initial residual and one matrix
vector multiplication. Each of these steps requires the computation of the action
of (ÑΣ)−1 on a vector, which corresponds to a solution on an unconstrained
Neumann structure problem. The constrained structure solution can therefore
be computed by solving two unconstrained structure problems, and this can be
done with no difficulty using “black-box”solvers.

7.1.2 Pseudo-compressibility methods

An alternative strategy to tackle balloon-type problems using the DN precon-
ditioner consists in adding a a pseudo-compressibility term. This has been pro-
posed in [34] asa way to make the fluid problem non-singular and has been
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relaxed along the iterative process (pseudo-compressibility iterations). The idea
is to introduce in the mass conservation equation of the fluid formulation a term

1

ǫ

(
pk+1

h − pk
h, qh

)

where k is the iteration counter and ǫ a positive numerical parameter. Therefore,
once convergence is reached, the compressibility vanishes and the incompress-
ible solution is attained. With the new term, the fluid problem is not singular
anymore. Unfortunately, this method is too expensive because involves as many
FSI solvers (using DN) as pseudo-compressibility iterations are needed. The DN
method is very expensive by itself, and this method multiplies the CPU cost of
DN by the number of pseudo-compressibility iterations.

In order to make the method slightly less expensive, one-loop algorithms
dealing with coupling and pseudo-compressibility iterations have been designed
in [34]. In this loop two different unknowns, the interface velocity and the fluid
pressure, need to converge. In order to get convergence, the authors suggest a
method in which ǫ depends on the structure model. This method is hard to
generalize to complex situations and is still extremely expensive (see [22]). Fur-
thermore, a one-loop approach cannot be straightforwardly used with GMRES
iterations. It implies that we can only use the DN-Richardson algorithm for the
coupling; this algorithm does not converge in general, relaxation techniques are
needed and the convergence is so slow that the method is not suitable for ap-
plications with large added-mass and/or small time step size (see e.g. [6]). For
all these reasons, this approach seems not to be a valid alternative for realistic
problems.

7.2 Robin transmission conditions

Finally, we propose the schemes based on Robin transmission conditions as ef-
fective tools for the solution of FSI problem where the fluid is entirely enclosed
by Dirichlet or flow rate boundary conditions at ∂Ωt \Σt. Indeed, using the par-
titioned procedures suggested in [2] and the related preconditioners proposed in
this work, balloon-type problems can be straightforwardly solved without any
extra modification.

In particular, focusing on the sequential RR Algorithm 1 the use of a Robin
transmission condition for the fluid problem guarantees that the fluid matrix
is invertible and the problem solvable no matter what boundary conditions are
enforced on ∂Ωf \Σ. Hence, we don’t need to enforce any solvability condition to
the structure problem, nor projecting the fluid equation on the subspace of zero
average pressures. Furthermore, by imposing a Robin (or Neumann) boundary
condition at the interface for the structure problem, it is also possible to deal
with fully submerged incompressible structures.
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A RR preconditioner to the interface problem (32) can be written as

PRR =

[
C̃0

Σ + αfMΣ h

hT 0

] [
1

αf+αs
M−1

Σ 0

0 1

] [
ÑΣ + αsMΣ 0

0 1

]
(34)

Observe that the solution of a fluid problem with matrix FΣ =

[
C̃0

Σ + αfMΣ h

hT 0

]

corresponds to a fluid problem with Robin boundary conditions at the interface,
with no special modifications. Indeed, the Lagrange multiplier (mean pressure)
can be added to the zero average pressure degrees of freedom to recover the
original pressure space and, in fact, the matrix FΣ coincides with the matrix
(C̃Σ + αfMΣ) considered in (9).

Following the same arguments as in Lemmas 1 and 2 it can be shown that,
also in case of an enclosed fluid problem, the RR-preconditioned Richardson
algorithm leads to exactly the same sequence of solves described in Algorithm 1
whereas the RR-preconditioned GMRES algorithm leads to the same sequence
of solves described in Algorithm 3. Therefore, these algorithms can be applied
with no modification to encolsed flow problems.

As shown in [2], algorithms based on Robin transmission conditions are su-
perior to DN in terms of efficiency, especially for high added mass effect. For
balloon-type problems, where modified (and even more expensive) versions of
DN are needed, the use of RR methods are even more justified.

8 Numerical experimentation

In this section, we carry out some numerical tests in order to show the per-
formance of the RN-GMRES algorithm with respect to RN-Richardson, DN-
Richardson and DN-GMRES algorithms for problems with large added-mass
effect and balloon-type problems.

For both problems we choose a conforming space discretization between fluid
and structure: stabilized P1 − P1 finite elements for the fluid, where the stabi-
lization is the orthogonal subgrid scales approach (see e.g. [7]), and P1 finite
elements for the structure.

The software that has been used is ZEPHYR, a multi-physics finite element
code written in Fortran and developed at CIMNE-UPC (Barcelona). For the
solution of the linear systems we have used SPARSKIT, developed by Yousef
Saad (see [35]).

In particular, in Section 8.1.1 we analyze the sensitivity of RN-GMRES
and RN-Richardson with respect to the value αf and the performances of RN-
GMRES and DN-GMRES algorithms for a wide range of structure densities.
In Sections 8.1.2 and 8.1.3 we show the effectiveness of RN-GMRES for three-
dimensional problems. Finally, in Section 8.2 we show the numerical results
obtained for a balloon-type problem consisting of a 3d cavity with one elastic
wall and one inlet wall with prescribed flux. The remaining walls are rigid.
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8.1 Hemodynamics applications with large added-mass effect

Three different problems with a large added-mass effect have been considered:

• A fully 3d problem, whose fluid domain is a cylinder of radius R0 = 0.5 cm
and length L = 6 cm;

• its 2d approximation, obtained by intersecting the pipe with a plane;

• a carotid bifurcation using a realistic geometry.

Our goal is to simulate the propagation of a pressure pulse in an artery with
deformable boundaries as the structure density varies. The fluid and structure
physical parameters used in the simulations are the same as the ones employed
in the analysis of Section 6.1 (see Table 2). However, the listed wall thickness
does not apply for the carotid bifurcation test.

On the inflow section we impose the following Neumann boundary condition:

T f · nf =

{
Pin

2

[
1 − cos

(
πt

2.5·10−3

)]
nf , t < 5 · 10−3

0 t ≥ 5 · 10−3

while on the outflow section an homogeneous Neumann condition has been
imposed. The amplitude Pin of the pressure pulse has been taken equal to
2 · 104 dyne/cm2 and the time duration of the pulse is 5 ms. We solve the prob-
lem over the time interval [0, 0.012] s. Otherwise indicated, the time step size is
∆t = 4 · 10−4s.

8.1.1 A 2d straight artery

We start by solving a classical benchmark in FSI interaction (see e.g. [25]). In
all cases, we consider a tolerance for the coupling iterations of 10−6.

A good value of the parameter αf in the interface Robin condition for the
fluid subproblem can be obtained from the structure simplified model proposed
in [26] and is given by

αopt
f =

ρsHs

∆t
+

∆thsE

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2), (35)

where ρ1 and ρ2 are the mean and the Gaussian curvature of the interface, re-
spectively. In this case, αopt

f is a function of the position on the interface. In
many realistic geometries the values of the curvatures are not easily available
or even not computable directly (as in a geometry with edges). It is therefore
reasonable, in these situations, to use an approximate value (even constant in
space) for αf (see Sect. 8.1.3). We are then interested in testing the robustness
of the RR-based schemes with respect to the parameter αf . To this aim, as first
test we consider the RN-based schemes and a cylindrical computational domain,
for which a good value of αf is known and given by (22) (see [26, 2]). Using
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the values of Table 2, we have αopt
f = 743.4. In particular, this test consists of

comparing the performance of RN-GMRES and RN-Richardson (with no relax-
ation) for different values of αf . We consider αf = γαopt

f with different values of
γ. The nonlinearities given by the domain position and by the convective term
are treated in a semi-implicit way and the structure is linear elastic. The mean
number of iterations per time step and, in parentheses, the computational cost
normalized to the cost of RN-GMRES with γ = 1 are summarized in Table 3.

γ RN-GMRES RN-Richardson

0.01 21.53 (3.43) > max. it.
0.1 15.47 (2.58) > max. it.
1.0 5.07 (1.00) 8.933 (1.02)

10.0 10.13 (1.79) no conv.
100.0 10.80 (1.83) no conv.

Table 3: 2d straight artery: average number of iterations and normalized CPU
cost for RN-GMRES and RN-Richardson for different values of γ (αf = γαopt

f ).

As expected, RN-GMRES has the minimum number of iterations for γ = 1
(optimal value of αf ). The number of iterations increases when we take αf

smaller or larger than the optimal value. In any case, the increase is much more
important for smaller values of αf . These results show that RN-Richardson is
much more sensitive to αf . For the optimal value, the performance is similar to
the one of RN-GMRES, as proved by the computational costs. Taking a tenth of
the optimal αf the convergence is so slow that we reach the maximum number
of iterations without reaching tolerance.

In Fig. 5 we show the reduction of the interface normalized residual

‖Uk+1
Σ − Uk

Σ‖
‖Uk

Σ‖

along the iterative process at a given time step The RN-Richardson method
seems to converge (even though extremely slowly) to the solution, as we can see
in Fig. 5(b). However, for αf much larger than the optimal value (ten times or
more), the RN-Richardson does not converge (indeed, its behavior tends to the
one of DN-Richardson which does not converge without any relaxation).

From this first test, we conclude that RN-GMRES is moderately sensitive
to the choice of αf , but much less than RN-Richardson. For this reason, the
RN-Richardson algorithm is very useful when a sharp evaluation of αf is avail-
able, but it does not work if we cannot get a good expression for αf . On the
contrary, the RN-GMRES scheme, thanks to its robustness, can be used with
good performances also for those geometries for which an optimal value of αf

cannot be evaluated with precision, such as in the enclosed-domain simulation
shown in Sect. 8.2.
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Figure 5: 2d straight artery: norm of the error vs. iteration number for (a)
RN-GMRES and (b) RN-Richardson with different values of αf

ρs RN-GMRES DN-GMRES

1 5.20 (1.00) 11.73 (1.92)
10 6.00 (1.12) 7.87 (0.99)

100 4.73 (0.92) 5.93 (0.79)
1000 4.60 (0.90) 4.80 (0.66)

Table 4: 2d straight artery: average number of iterations and CPU cost normal-
ized to the cost of RN-GMRES - ρs = 1, for RN-GMRES and DN-GMRES for
different values of ρs.

The second test consists in evaluating the sensitivity of both RN-GMRES and
DN-GMRES to the added-mass effect. The Navier-Stokes system is solved for
the fluid and a semi-implicit treatment of convective and domain nonlinearities
is adopted. We have solved the 2d straight artery with the following values of
the structure density:

ρs = 1, 10, 100, 1000 g/cm3.

For RN-GMRES, we have used the optimal value of αf in (22). The results
are listed in Table 4. RN-GMRES is extremely insensitive to the added-mass
effect. On the contrary, as proved in [3], DN-GMRES is fairly sensitive to the
added-mass effect. The number of fluid elements is 3.7 times larger than the
structure elements. Therefore, the additional computational cost of the RN-
GMRES iterations (one extra structural sub-problem) is not very important
and the RN-GMRES algorithm is better than DN-GMRES both in number of
iterations and CPU cost for large added-mass effect. From these results, we
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can state that RN-GMRES becomes more efficient than DN-GMRES as the
added-mass effect increases and the CPU cost of the structure problem is small
compared to the fluid one.

We finally consider one test comparing RN-GMRES and RN-Richardson for
implicit treatment of the nonlinearities. For RN-Richardson, it is very easy to
treat coupling iterations and nonlinearities using the same loop (one-loop algo-
rithm). Therefore, only one tolerance is needed, simplifying the implementation.
For RN-GMRES, the design of a one-loop algorithm is not straightforward and
it is currently under investigation. We consider instead nested loops: an external
loop for nonlinearities and an internal loop (GMRES iterations) for the FSI cou-
pling. In this case, two tolerances are required. The nonlinear tolerance is set to
10−3. The performance of the algorithm is highly dependent on an appropriate
choice of the internal tolerance. In Table 5 we show that a very tight tolerance
for the internal GMRES iterations leads to a very poor performance; the internal
GMRES tolerance is so small that it requires lots of iterations, for every non-
linear iteration, that in fact are not needed. Using a much looser tolerance, the
method “tends to a one-loop algorithm.” In this case, the GMRES iterations eas-
ily converge and the tolerance that dictates the convergence is the external one.
In any case, we can state that the one-loop RN-Richardson algorithm performs
better than RN-GMRES for implicit treatment of the nonlinearities.

internal tol. RN-GMRES RN-Richardson

(one-loop) 6.93
10−1 7.87
10−6 24.20

Table 5: 2d straight artery: average of accumulated RN-GMRES iterations for
two different values of the GMRES tolerance vs. average of accumulated RN-
Richardson iterations (one-loop algorithm)

8.1.2 A 3d straight artery

The second problem we solve is the 3d straight artery, in order to show that the
behavior that we have observed for a 2d problem also applies in the 3d case. We
consider a semi-implicit scheme. Two different values of the coupling tolerance
have been considered, 10−3 and 10−6. When the tolerance is not reported, it
has been set to 10−3. Otherwise indicated, the time step size is ∆t = 10−4.

The sensitivity of RN-GMRES and RN-Richardson algorithms with respect
to the value of αf is shown in Table 6 and Fig. 6 . The behavior is very similar
to the one observed in the 2d case. RN-GMRES is less sensitive to αf than in
the 2d case. RN-Richardson is efficient for the optimal value of αf but again has
a very slow convergence or does not converge for bad choices of this parameter.
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γ RN-GMRES (10−3) RN-Richardson (10−3)

0.1 9.13 (2.01) > max.it.
1.0 4.00 (1.00) 6.67 (0.98)

10.0 5.73 (1.34) no conv.

γ RN-GMRES (10−6) RN-Richardson (10−6)

0.1 16.20 (1.60) > max.it.
1.0 6.60 (1.00) 10.00 (1.41)

10.0 9.40 (0.54) no conv.

Table 6: 3d straight artery: average number of iterations and CPU cost normal-
ized to the cost of RN-GMRES - γ = 1, for RN-GMRES and RN-Richardson for
different values of γ (αf = γαopt

f ). The first table corresponds to a tolerance of

10−3 and the second one to 10−6.
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Figure 6: 3d straight artery: norm of the error vs. iteration number for (a)
RN-GMRES and (b) RN-Richardson with different values of αf

The sensitivity of RN-GMRES and DN-GMRES algorithms with respect to
the added-mass effect is shown in Table 7. Again, RN-GMRES requires less iter-
ations to reach convergence; this improvement is much more evident increasing
the added-mass effect. The number of iterations is a fair comparison of both
methods in FSI applications where the structural problem is much cheaper than
the fluid one; this is the situation in most real applications of interest. However,
when the CPU cost related to the structural problem is an important part of
the overall CPU cost, one RN-GMRES iteration (that involves an additional
structure problem) becomes more expensive than one DN-GMRES iteration.
We have considered a problem with 2.14 fluid elements per structure element.
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Moreover, we have listed in Table 7 the CPU cost normalized to the cost of
RN-GMRES with ρs = 1 (in parentheses). The improvement of RN-GMRES
over DN-GMRES is reduced as the structure problem CPU cost increases with
respect to the fluid one.

ρs RN-GMRES (10−3) DN-GMRES (10−3)

1 4.00 (1.00) 6.47 (1.04)
10 3.80 (0.96) 4.47 (0.75)

100 2.13 (0.63) 3.07 (0.56)
1000 2.53 (0.71) 3.00 (0.57)

ρs RN-GMRES (10−6) DN-GMRES (10−6)

1 7.00 (1.00) 10.00 (0.95)
10 5.40 (0.81) 6.00 (0.61)

100 3.90 (0.62) 5.00 (0.52)
1000 3.90 (0.59) 4.00 (0.45)

Table 7: 3d straight artery: average number of iterations and normalized CPU
cost for RN-GMRES and DN-GMRES for different values of ρs. The first value
corresponds to a tolerance of 10−3 and the second one to 10−6.

In Table 8 we report a comparison of DN-GMRES and RN-GMRES methods
for two different time step sizes. The RN-GMRES algorithm seems to be less
sensitive to the time step size, whereas the number of DN-GMRES iterations
clearly increases as the time step size decreases. In this case we have considered
a tolerance of 10−6 for the GMRES loop. Therefore, the RN-GMRES algorithm
also becomes more effective than DN-GMRES as the time step size is reduced.

Table 8: 3d straight artery: average number of iterations and CPU cost normal-
ized to the cost of RN-GMRES - ∆t = 10−5, for RN-GMRES and DN-GMRES
for different values of ∆t. The values correspond to a tolerance of 10−6.

∆t RN-GMRES DN-GMRES

10−5 8.10 (1.00) 13.00 (1.28)
5 · 10−4 7.25 (0.92) 10.05 (1.02)

8.1.3 The carotid bifurcation

Finally, we employ the RN-GMRES on a real geometry of a human carotid, in
physiological conditions. In Fig. 7 the pressure wave traveling along the carotid
is shown at 4 different instants.

As observed from expression (35), in this case the optimal value based on
a simplified structural model for αf is not constant. However, in this example
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(a) t = 3 ms (b) t = 6 ms

(c) t = 9 ms (d) t = 12 ms

Figure 7: Propagation of the initial pressure pulse in the carotid geometry,
moving from the inflow to the outflow section. Solution at every 3 ms.

we take a simplified approach and construct a constant αf using expression (22)
where an average value of the radius and thickness of the carotid are used. The
use of non-constant αf depending on the curvature will be investigated in a
future work.

Due to the fact that the value of αf is not so good as for the previous
examples, the behavior of RN-Richardson, as expected, is much worse than the
one of RN-GMRES, which is much less sensitive to αf (see Fig. 8). Moreover,
despite the non-optimal value of αf , RN-GMRES is clearly superior to DN-
GMRES (see Fig. 8(a)). In Table 9 we show the average number of iterations for
these two algorithms, with different values of αf for RN-GMRES. The sensitivity
of RN-GMRES with respect to αf is similar to what we have observed from the
previous tests. The RN-GMRES algorithm with the optimal choice of αf reduces
the CPU cost (in Tab. 9 normalized to the cost of RN-GMRES - γ = 1) even
for 1.95 fluid elements per structure element. In applications where the ratio
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between the number of structure elements and fluid elements is smaller, this
saving in CPU time should increase.

γ RN-GMRES

0.1 7.80 (1.32)
1.0 5.13 (1.00)

10.0 8.33 (1.40)

DN-GMRES

8.80 (1.10)

Table 9: Carotid bifurcation: average number of iterations and normalized CPU
cost for RN-GMRES and DN-GMRES for different values of ρs.
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Figure 8: Carotid bifurcation: norm of the error vs. iteration number for (a)
RN-GMRES with αopt

f and DN-GMRES; (b) RN-Richardson with αopt
f

8.2 Enclosed domains: a balloon-type problem

With respect to balloon-type problems, we have solved a 3d cavity with one
elastic wall, in which we have enforced the inflow velocity. We have simulated
the inflation and deflation processes.

In particular, we consider a problem similar to the one in [34]: the fluid
domain Ωf is the unit cube [0, 1]× [0, 1]× [0, 1] cm. The side on the plane x = 0
is where we enforce the inflow Dirichlet boundary condition

u(x, t) = f(t)v(x),
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where v(x) is the parabolic profile

vx = 16(y2 − y)(z2 − z),

vy = 0,

vz = 0,

and f(t) = sin
(

πt
0.04

)
defines the time evolution. The side on the plane x = 1

is the fluid-structure interface Σ. The structure is a wall of thickness 0.1 cm.
On the remaining sides of ∂Ωf , no-slip boundary conditions are imposed. As we
can see from the inflow boundary conditions, at t = 0.08 we must recover the
initial volume of 1 cm3. On the other hand, at t = 0.04 the maximum volume is
attained. In the numerical experiments the tolerance in the FSI iterations is 10−4

and the time step size is 10−3 (if not otherwise indicated). The nonlinearities
are treated in a semi-implicit way.

The same properties in Table 2 have been used in this case, as well as similar
spatial dimensions. Therefore, this problem is in the range of hemodynamics
applications.

In this case it is not so easy to get a good constant estimate for αf and then
we have considered the following choice:

αf =
γρsHs

∆t
(36)

where γ > 0, i.e. αf is obtained from (35) by dropping the terms including the
curvatures and weighting the remaining “inertial” term with a suitable coefficient
γ. An improved expression of αf could be obtained by evaluating the curvature of
the structure (see [26]). First, we have solved the problem using RN-Richardson.
As commented above, this approach is very sensitive to αf , and requires a very
good expression of this value in order to be effective. In this case, where αf

only involves inertia terms, its behavior is not good. We show the reduction
of the interface residual for RN-Richardson in Fig. 9, using (36) with γ = 1
and 10. The method performs better for the larger value of αf , but it does not
converge for γ = 100. On the other hand, we have solved the problem using the
more robust RN-GMRES algorithm. In Table 10 we show the average number
of iterations for the same values of γ used for RN-Richardson and two different
time step sizes. The method exhibits a better behavior for γ = 10 although the
convergence is attained in a fairly low number of iterations in both cases. From
the expression (36), we can see that the value of αf increases as the time step
size decreases and therefore the importance of the inertia term with respect to
other structural terms increases; for this reason, for a smaller time step size, the
improvement of using γ = 10 instead of 1 is not so clear as for the large time
step size. In any case, for both methods the choice of γ = 10 is clearly the best
one.

Fig. 10(a) shows the deformed configuration and the displacement (in mod-
ulus) at time t = 0.04 s, when the maximum volume is attained. Fig. 10(b)
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Figure 9: Balloon problem: norm of the error vs. iteration number for RN-
Richardson with two values of αf

Table 10: Balloon problem: average number of iterations for RN-GMRES and
two different values of γ and ∆t.

∆t = 10−3 ∆t = 5 · 10−3

γ = 1 6.32 8.68

γ = 10 4.02 3.81

shows the same at t = 0.08 s, where the initial configuration has been recovered
without loss of volume.

(a) t = 4 · 10−4 s (b) t = 8 · 10−4 s

Figure 10: Balloon problem: deformed configuration of the balloon problem and
contour fill of displacements at two different instants.

In conclusion, we can state that the RN-GMRES is able to solve this balloon-
type problem without any modification in the scheme (such as the introduction
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of a Lagrange multiplier or a pseudo-compressibility term) with physical and
numerical properties in the range of hemodynamics applications (which implies
a large added-mass effect) in a fairly low number of iterations. Let us remind
that a direct application of the DN preconditioner is unfeasible.

9 Conclusions

In this article, we have reinterpreted the Robin-Robin (RR) partitioned proce-
dure proposed in [2] as preconditioned iterations over the interface FSI problem.
This has allowed us to define an interface RR preconditioner and apply it to-
gether with GMRES iterations, leading to the so-called RR-GMRES algorithm.
Two different RR preconditioners have been designed, a parallel and a sequential
one. The sequential preconditioner performs much better than the parallel one.
Therefore, only the former has been extensively analyzed numerically.

The convergence of the RN-GMRES algorithm has been analyzed on a sim-
plified blood-vessel system. We have obtained the expression of the reduction
factor and we have analyzed its sensitivity with respect to some important pa-
rameters. In particular, a comparison of the (iteration-independent) reduction
factor of RN-GMRES and DN-GMRES (the latter found in [3]) leads to the
following conclusions:

• The RN-GMRES always guarantees better performances, in particular in
the range of parameters which leads to a high added mass effect and for
small time steps, situations where the DN-based schemes is known to be
characterized by a slow convergence.

• A good coefficient for the Robin transmission condition on the structure
problem may be hard to find. Even reasonable choices of αs (which however
are difficult to generalize to complex problems) have given performances
poorer than the RN strategy.

Numerical tests have allows us to confirm the behavior foreseen by the the-
oretical investigation and to draw further conclusions:

• The new RN-GMRES algorithm becomes superior to the DN-GMRES al-
gorithm as the added-mass effect increases or the time step size is reduced
and the CPU cost of solving the structure sub-problem is small compared
to the one of the fluid.

• RN-GMRES is more robust with respect to some geometrical and physical
parameters than RN-Richardson. In particular, it is shown to be less
sensitive to the parameter αf in the interface Robin condition for the fluid
subproblem. This has a very practical consequence, since it suggests to
use RN-GMRES instead of RN-Richardson in those situations where the
curvatures of the FS interface are not available or difficult to compute.
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• RN-Richardson is still competitive for an implicit treatment of the non-
linearity when a very effective Robin transmission condition can be mo-
tivated. This is due to the fact that we can adopt a one loop strategy
dealing with interface coupling and nonlinear iterations at the same time.
On the contrary, Using GMRES, there is not a straight way to merge these
two iterative processes, but the CPU cost can be clearly reduced using a
loose tolerance for the inner (coupling) loop.

• Balloon-type problems cannot be solved with the classical DN precondi-
tioner. Modified DN algorithms specifically designed for this kind of prob-
lems reduce the modularity (straight use of pre-existing fluid and structure
solvers without internal modification) and increase the computation cost.
RR (or RN)-based algorithms applied to this kind of problems are very
effective and do not need any modification in the fluid and/or structure
codes. Again, RN-GMRES performs much better than RN-Richardson
when a sharp estimate of αf is not available.

All these considerations allow us to state that the RN-GMRES algorithm is
the most robust and most efficient modular approach for the solution of hemo-
dynamics applications (or similar situations) and balloon-type problems among
the methodologies considered in this work.
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