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Abstract

This paper presents an algebraic dynamic multilevel method with local time-
stepping (ADM-LTS) for transport equations of sequentially coupled flow in
heterogeneous porous media. The method employs an adaptive multilevel
space-time grid determined on the basis of two error estimators, one in time
and one in space. More precisely, at each time step, first a coarse time step
on a coarsest space-grid resolution is taken. Then, based on the error esti-
mators, the transport equation is solved by taking different time step sizes at
different spatial resolutions within the computational domain. In this way,
the method is able to use a fine grid resolution, both in space and in time,
only at the moving saturation fronts. In order to ensure local mass conserva-
tion, two procedures are developed. First, finite-volume restriction operators
and constant prolongation (interpolation) operators are developed to map
the system across different space-grid resolutions. Second, the fluxes at the
interfaces across two different time resolutions are approximated with an av-
eraging scheme in time. Several numerical experiments have been performed
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to analyze the efficiency and accuracy of the proposed ADM-LTS method for
both homogeneous and heterogeneous permeability field. The results show
that the method provides accurate solutions, at the same time it reduces the
number of fine grid-cells both in space and in time.

Keywords: Local time-stepping strategies, Conservative multirate
methods, Algebraic Multilevel methods, Multiphase flow, Porous media

1. Introduction1

Simulation of multiphase flow in natural porous media is challenging due2

to the variety of time and length scales involved in the process. In fact, geo-3

logical formations extend for several hundreds of meters whereas physical and4

chemical phenomena which are of interest for many geoscientific applications5

(e.g., renewable energy and greenhouse gas storage, hydrocarbon production6

and geothermal energy extraction), occur at much smaller scales (cm and7

below). Moreover, fast process (e.g., high velocity flow in highly permeable8

rocks and fractures) and slow process (e.g., flow in low permeable porous9

rock) processes coexist, which have to be correctly represented to obtain10

reliable numerical simulations. Additionally, at the continuum (or Darcy)11

scale, porous media present highly heterogeneous properties (e.g., perme-12

ability). Thus, accurate numerical models require very high resolution grids13

both in space and time to capture all relevant physics. However, the size of14

the domains and the large number of simulations, required for uncertainty15

reduction [1, 2], make field scale simulations on such high resolution grids16

impractical.17

Traditionally, the computational cost is reduced by employing upscal-18

ing methods [3] which define effective rock and fluid properties to represent19

the physics at a much coarser resolution. However, in presence of highly20

heterogeneous permeability fields and whenever a clear scale separation is21

not present, excessive upscaling may not give accurate results [4]. For this22

reason, advanced and scalable algorithms have to be developed to allow for23

efficient simulation on high resolution grids without having to define upscaled24

quantities.25

Multiscale methods [5, 6, 7, 8, 9] and dynamic local grid refinement tech-26

nique [10, 11] are among these advance simulation strategies. The first ones27

were developed to efficiently solve the elliptic (or parabolic) pressure equa-28

tion on a coarser grid resolution, without losing the influence of the fine-29
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scale permeability distribution. The latter takes advantage of the locality30

of transport processes by dynamically adapting the grid resolution so to al-31

low for accurate transport simulations even in presence of complex physics32

(e.g., [12, 4]). Recently, the Algebraic Dynamic Multilevel (ADM) method33

[13, 14] has been developed to combine the consistent multilevel mapping34

of the pressure field throughout different grid resolutions with an adaptive35

grid refinement technique. In ADM simulation the discrete governing equa-36

tions on a high resolution grid (referred to as fine-scale) are obtained. Then,37

they are mapped and solved on a dynamically defined multilevel spatial grid38

system. The final solution can be provided both at the dynamic multilevel39

and fine-scale resolutions, through a sequence of prolongation and restriction40

operators.41

Along with the advancements in the space-grid aspect of simulation, in42

order to reduce the overall simulation time, an implicit time integration43

scheme is usually employed which allows for much larger time step sizes44

(compared with the explicit alternative). Adaptive Implicit Methods (AIM)45

[15, 16, 17, 18, 19, 20], which are able to combine explicit and implicit integra-46

tion schemes, have also been proposed in the literature. Despite the use of im-47

plicit integration, in presence of strong non-linearities, the Newton-Raphson48

method fails to converge for large time steps. As a consequence, several49

remedies have been proposed to enhance non-linear convergence [21, 22, 23];50

these allow for the use of very large time steps and considerably improve sim-51

ulation time. However, the excessive numerical dispersion introduced by the52

use of large time steps can significantly impact the accuracy of the solution,53

by, for example, smearing the advancing saturation front. Thus, multirate or54

local time-stepping (LTS) approaches are of great interest for porous media55

flow simulation. These methods employ different time step sizes within the56

domain based on the local flow characteristics. In earlier multirate methods,57

the fast and slow region were characterized a priori, based on the knowl-58

edge of the problem [24]. In a more recent work, a self-adjusting, recursive59

time-stepping strategy has been proposed [25]. The fast regions are detected60

using a time error estimator after a tentative global time step and then re-61

fined. In [26], an explicit adaptive conservative time integration techniques62

is presented, where the sizes of the local time steps are imposing by the CFL63

restriction. Very recently, a conservative implicit multirate method has been64

developed and analyzed for hyperbolic equations [27], and also applied to65

multiphase flow in heterogeneous porous media [28].66

In this paper, an algebraic dynamic multilevel approach is combined with67
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a mass conservative local time-stepping strategy for the solution of the trans-68

port equation. The proposed simulation strategy (ADM-LTS) employs an69

adaptive multilevel grid both in space and in time. The dynamically de-70

fined grid resolution is chosen based on two error estimators, one in time71

and one in space. As a consequence, the method is able to use a fine grid72

resolution only at the location of the moving saturation fronts. In particular,73

the method first performs a global time step on the coarsest possible grid74

resolution. Then, thanks to the error estimators, a multilevel grid resolution75

is defined. On this new grid, the solution is recomputed with smaller time76

steps only in a fraction of the domain.77

ADM-LTS is applied to homogeneous and heterogeneous 2D and 3D test78

cases. Systematic studies of the performance (i.e., accuracy and system com-79

plexity) have been conducted. Numerical test cases show that the ADM-LTS80

approach provides an accurate solution reducing the number of active cells81

both in space and in time.82

The paper is organized as follows. The equations describing multiphase83

flow in porous media are presented in section 2 along with the fine-scale84

discrete systems for transport equation. The ADM-LTS method is explained85

in detail in section 3 whereas numerical experiments are presented in section86

4. Finally, conclusions are provided in section 5.87

2. Sequential implicit formulation for flow in porous media88

Mass conservation for the flow ofNp incompressible phases in d-dimensional89

porous domain Ω ⊂ Rd reads90

∂

∂t
(φSα)−∇ · (λα · ∇p) = qα ∀α ∈ {1, . . . , Np}, (1)

where capillary and gravitational effects are neglected. Here, Sα,λα and91

qα are the α-phase saturation, mobility and source term. Additionally, p is92

the fluid pressure. The phase mobility λα is λα = Kkrα/µα, where K, krα and93

µα are rock absolute permeability, phase relative permeability, and viscosity,94

respectively. Remark that the constrain
∑Np

α=1 Sα = 1 holds, which can be95

used to eliminate one saturation unknown. By summing all the phase balance96

equations [29],a global pressure equation is obtained, i.e.97

−∇ · (λt · ∇p) = qt in Ω, (2)
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where λt =
∑Np

i=1 λi is the total mobility and qt =
∑Np

i=1 qi is the total source98

term. The total velocity,defined as ut =
∑Np

i=1 ui, can be computed as99

ut = −λt · ∇p in Ω. (3)

Thus, the (Np − 1) saturation equations can be rewritten as100

∂

∂t
(φSα) +∇ · (fαut) = fαqt ∀α ∈ {1, . . . , Np−1}, (4)

where fα is the fractional flow function fα = λα/λt. Equations (2), (3)101

and (4) are coupled by the total velocity and the (nonlinear) phases relative102

permeability krα.103

Sequential implicit simulation (SIM) consists of decoupling the pressure104

and the transport equation and solve them implicitly in time. Given the105

state at a current time tn, the solution at time tn+1 is found by first solving106

Eq. (2), freezing all saturation dependencies, i.e.,107

∇ ·
(
λt(S

n
α) · ∇pn+1

)
= qt in Ω. (5)

Then, given the pressure field, the total velocity is computed as108

un+1
t = −λt(Snα) · ∇pn+1 in Ω. (6)

Finally the transport equations are solved, i.e.109

φ
Sn+1
α − Snα

∆t
+∇ ·

(
fn+1
α un+1

t

)
− fn+1

α qt = 0 ∀α ∈ {1, . . . , Np−1}. (7)

The saturation equations are non-linear functions. Thus, Eq. (7) is solved110

with a Newton-Raphson’s method and at each Newton’s iteration, a system111

of the form Jνδxν+1 = −rν has to be solved. Here, δx is the vector of increment112

for α-saturation, J is the Jacobian matrix and r is the residual.113

Let us now consider a two-phase system of a wetting (w) and a non114

wetting (nw) phase. For such a system, for cell K one can write115

rn+1
wK

= (Sn+1
wK
− SnwK

)− 1

φ|K|
∑

eKL∈EK

eKLF
n+1
eKL

(
un+1
tKL

+ qn+1
t

)
= 0. (8)

Here, |K| is the volume of element K and eKL is the interface area between116

cells K and L and EK is the set of faces e of the element K. Finally, F n+1
eKL

un+1
t117

is the numerical flux computed using the first-order upwind method, i.e.,118

F n+1
eKL

=

{
∆tfα(Sn+1

wU
) if uTKL

> 0

∆tfα(Sn+1
wD

) otherwise,
(9)
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where, SU and SD denote the upstream and downstream saturation values,119

respectively.120

The quality of the solution of Eq. (7) is highly influenced by the resolution121

of the spatial and time discretization scheme. The objective of this work is122

the development of an algebraic dynamic multilevel method with local time-123

stepping (ADM-LTS) to solve efficiently and accurately Eq. (7) by employing124

a refined grid both in time and in space around the moving saturation front.125

3. ADM-LTS method126

In this section, first, the original ADM method [13] is reviewed, then, the127

newly proposed ADM-LTS algorithm is presented in details.128

3.1. The ADM method129

The ADM method is employed to reduce the computational cost associ-130

ated with the solution of the linear system arising from the linearized Eq.131

(7).132

Let us consider a domain discretized with a high resolution grid which is133

assumed to be fine enough to capture all relevant physics and to honour the134

heterogeneous distribution of the geological properties. Given this fine-scale135

discretization, a hierarchy of nl nested coarse grids is constructed. Each grid136

is formed by Nl = Nlx ×Nly ×Nlz grid cells, where l is the resolution index137

and l = 0 represents the fine grid resolution.138

The set of all grid cells belonging to resolution level l is called Πl. At each139

time step ADM defines a multilevel grid by combining grid cells belonging to140

the hierarchy of grids previously defined. Given a multilevel ADM grid, let141

us define Ωl as the set of grid cells belonging to all levels from 0 to l which142

are present in the ADM grid. Additionally, it is convenient to define the set143

Γl as Γl = Ωl ∩ Πl.144

Given an ADM grid formed by the set of grid cells Ωl, ADM assumes145

that the fine scale solution can be approximated by employing a sequence of146

prolongation operators, i.e.147

δxwf
≈ δx′w = P̂1

0 . . . P̂
l
l−1δxw. (10)

Here, operator P̂ii−1 interpolates the solution at level i to the finer resolution148

level (i− 1) and δxADMw is the ADM solution on the adaptive multilevel grid.149

The fine-scale Jacobian system is mapped to the ADM grid by150

R̂l−1
l . . . R̂0

1JP̂
1
0 . . . P̂

l
l−1δx

ADM
w = −R̂l−1

l . . . R̂0
1rf , (11)
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where R̂i−1
i is the restriction operator and it maps the solution from resolution151

at level i to coarser level (i− 1). In order to ensure mass conservation at all152

level, a finite volume restriction operator is considered [6]. Thus, the entry153

(i, j) of a restriction operator reads154

R̂l−1
l (i, j) =

{
1 if cell i ∈ Γl and cell j ∈ Γl−1,

δij otherwise.
(12)

Additionally, constant interpolation is considered for saturation,155

P̂ll−1 =
(
R̂l−1
l

)T
. (13)

3.2. ADM method with local time-stepping (ADM-LTS)156

At each time step n, after having solved the pressure equation and after157

having computed the total velocity field, the transport equation is solved158

employing the ADM-LTS algorithm159

First, Eq. (11) is solved over the whole domain on the coarsest grid160

resolution (lmax) formed by cells belonging to Πlmax and keeping refinement161

only around the wells, with time step ∆t. Then, based on the coarse solution162

obtained, the proper ADM grid resolution is chosen according to a front-163

tracking criterion. Two alternative front-tracking strategies are considered164

in this work:165

• a criterion based on the saturation difference between neighbouring166

cells. A cell i belonging to level l is refined whenever the saturation167

difference, as defined in [13], between i and one of its neighbours exceeds168

a user-defined tolerance εx.169

• a time-dependent criterion is combined with the previous one to de-170

termine whether cells belonging to Π0 should stay fine. Let us de-171

fine ψS = Sn+1 − Sn. A fine cell i is kept at the fine resolution172

only if ψSi
> εt, where εt is a user-defined tolerance. A similar time-173

based coarsening criterion has successfully been used in the literature174

for channelized heterogeneous problems where stationary gradients are175

present [30].176

Once the ADM grid resolution has been defined, the solution is recom-177

puted for all cells belonging to Ωlmax−1 with a time step ∆tlmax−1 = ∆t/η by178

imposing local boundary conditions as described in the following subsection.179
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Here η is the time refinement ratio. Then, the same operation is repeated180

for all resolution levels l until l = 0 has been reached. Thus, each resolu-181

tion level l (formed by the set of grid blocks Ωl) is solved with a time step182

∆tl = ∆tl+1/η. For the finest level (l = 0) ADM-LTS only recomputes the183

solution, with time step ∆t0 = ∆t/ηlmax , for a subset, defined Ω0
A, of the cells184

belonging to Ω0. Only fine cells for which ψ′S = Sn+∆t1 − Sn > εt are part of185

the set Ω0
A.186

The method advances in time for the active cells in Ω0
A until they reach187

t = tn + ∆t1. Once they are synchronized, cells in Ω1 advance in time. At188

this point, a new set of cells Ω0
A is selected and these cells are advanced by189

∆t1 performing η ∆t0 time steps. Once all cells in Ω1 have reached time190

t = tn + ∆t2 another time step ∆t2 can be performed for all cells belonging191

to Ω2. This is a recursive procedure which is performed for all levels until all192

cells have reached time tn+1 = tn + ∆t.193

Figure 1 illustrates a schematic overview of the ADM-LTS method where194

η and lmax are both equal to 2. Figure 2 shows an example of the ADM195

grid at each step and the refining area. At the global time step ∆t, the196

solution is computed on the coarsest resolution lmax. At the intermediate197

time step the ADM grid resolution is defined and the solution is recomputed198

with the intermediate time step everywhere except at the coarsest region199

(middle figure). At the end, the method checks the errors and defines the200

set of active cells Ω0
A (pink region on the right), the solution is recomputed201

with the smallest time step.202

3.2.1. Local systems and local boundary conditions203

For each resolution level l, the set of grid cells Ωl is solved with the204

corresponding time step ∆tl =
∆t

η(lmax−l)
. The number of active cells contained205

by Ωl is N l
A.206

When solving for the cells belonging to Ωl, the numerical flux at the inter-207

face between two cells K and L such that K ∈ Ωl ∧ L ∈ Γl+1 is approximated208

by209

F
n+β(i)
KL =

F
n+γ(j)
KL

η
(14)

where210

β(i) =
i

η(lmax−l)
, i = {1 · · · η(lmax−l)} (15)
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Start time-step Pressure Solver Compute ut
Solve transport

on Ωlmax
g with ∆t

Select ADM
Grid &

build R̂ and P̂

Solve transport
on Ω1 with ∆t

2

Define the set of
active cells Ω0

A

Is it empty ? t0 = t0 + ∆t
2

Transport on
Ω0
A with ∆t

4

t0 = t0 + ∆t
4

t0 == tn + ∆t
2

t == tn+1 End time-step

no

yes

yes

no

no

yes

Figure 1: Schematic overview of a time step for the ADM-LTS strategy with η = 2 and
lmax = 2.
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Figure 2: Example of ADM grid and active regions for the refinement time steps with
η = 2 and lmax = 2.

211

γ(j) =
j

η(lmax−l−1)
, j = {1 · · · η(lmax−l−1)}. (16)

Thus, Eq. (8) can be modified to account for the presence of different time212

levels,213

r
n+β(i)
K = (Sn+β(i)

wK
− Sn+β(i)−1

wK
)

− 1

φ|K|
∑

eKL∈EKA

eKLF
n+β(i)
eKL

(
u
n+β(i)
tKL

+ q
n+β(i)
t

)
− 1

φ|K|
∑

eKL∈EKL

eKL
F
n+γ(j)
eKL

η

(
u
n+γ(j)
tKL

+ q
n+γ(j)
t

)
.

(17)

Here, EKA is the set of interface fluxes exchanged between two cells K and L214

both belonging to Ωl. Additionally, EKL is the set of fluxes at the interface215

between two cells K and L where K ∈ Ωl and L ∈ Γl+1. Note that, for l = 0216

the residual for the active cells is the same described by equation (8) but EKL217

would be the set of fluxes at the interface between Ω0
A and Ω1 \ Ω0

A .218

Remark that, for each level l, the linear system that has to be solved has219

the size N l
A×N l

A which is significantly smaller the the full fine-scale system.220

The above strategy allows for conservative multi-scale march in time221

and space for transport equation within the sequentially implicit simulation222

framework. Next, its performance is being studied for various test cases both223

for 2D and 3D domains.224

10



4. Numerical results225

The performance the newly developed ADM-LTS strategy is thoroughly226

investigated for several challenging test cases. For all cases presented, quadratic227

relative permeability curves are considered. Additionally, all errors are com-228

puted with respect to a reference solution, obtained by employing a high229

resolution discretization both in space and in time.230

4.1. Test case 1: 2D homogeneous reservoir231

The first test case is a 100 × 100 [m2] homogeneous reservoir, with per-232

meability of 5 × 10−15 [m2]. A pressure-constrained wetting-phase injector233

well is positioned in the bottom-left corner of the domain with a pressure234

pinj = 108 [Pa], whereas a production well is present in the top-right corner235

with a relative pressure of pprod = 0 [Pa]. The phase viscosity values are236

µw = 10−3 [kg/m3] and µnw = 10−2 [kg/m3] for the wetting and non wetting237

phase, respectively. The final simulated time is 600 [days] after injection has238

started.239

A fine-scale grid with 99× 99 cells is imposed on the domain. ADM-LTS240

employs, a time refining ratio η = 2 and a space coarsening ratio equal to 3 in241

all directions. The user-defined tolerances for the coarsening and refinement242

criteria are εx = 0.07 and εt = 5× 10−2.243

Simulations are run employing three different time step sizes: 5, 10 and244

20 days. Figure 3 reports the CFL values at time t = 500 days for the three245

different time steps for fine-scale in space simulations.246

dt = 5days dt = 10days dt = 20days

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 3: Test case 1 [99× 99] - CFL values for different global time steps at time t = 500
days.

Figure 4 shows a comparison of the ADM-LTS solution with the reference247

solution at time t = 500 [days] using three different sizes of the global time248

steps.249
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Figure 4: Test case 1 [99× 99] - Reference solution (first column) and ADM-LTS solution
using a global time step size: ∆t = 5, 10 and 20 [days] at time t = 500 days for the second,
third and fourth column, respectively.

Figure 5 reports the error for the saturation at time t = 500 days between250

a reference solution and the ADM method with fine time steps (first column)251

with the LTS approach (second column) and with the coarse time steps (third252

column) for the three different time steps sizes ∆t = 5 (first row), ∆t = 10253

(second row) and ∆t = 20 (third row). In all cases the AMD-LTS approach254

improves the errors of the coarse time step approach.255

The complexity of the algorithm is shown in Fig. 6. In particular, each256

column represents the total amount of active cells multiplied by the num-257

ber of Newton iterations involved to compute the solution, for the three258

approaches and for the three different global time step sizes. Note that, to259

obtain the solution at time t=600 [days], 120, 60 and 30 global time steps260

have been performed using the three analyzed time steps. Remark that the261

errors obtained by employing the original ADM method with a fine time step262

are comparable to those obtained with ADM-LTS.263

Figure 7 shows the complexity per a single global time step. For the ADM264

method with fine time steps, the local steps are just the small steps applied265

at the domain. At the end of the local steps both the ADM-LTS method and266

the ADM fine step method reach the same time. For the ADM-LTS method,267

local step 1 indicates the global step on the coarsest grid, step 2 and 5 are the268

intermediate time steps performed on level 0 and 1 of the ADM grid, and the269

other local steps are the small time steps for the active cells detected by the270

error estimator in time. In particular, we can notice that the intermediate271

time steps have almost the same complexity of the small time steps of the272

ADM fine method, even if the size of the time step is two times bigger with273

almost the same number of active cells. This is due to the improvement of274

the initial guess for the Newton loop. In the intermediate time steps we use275

as initial guess a linear combination of the solution of the previous time tn276
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Figure 5: Test case 1 [99×99] - Saturation errors for the ADM method with fine time steps
(first column), ADM-LTS method (second column) and ADM coarse time steps method
(third column) for the three different global time step sizes.
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Figure 6: Test case 1 [99 × 99] - Total amount of active cells multiplied by number of
Newton iterations for the three different time step sizes. On the top of each bar the
mean in time of the averaged absolute difference respect to the reference solution for the
saturation is displayed Es = mean|S(tf )− Sref (tf )| where tf is the final time 600 days.

and the solution obtained on the coarsest grid at the new global time tn+1.277

In the small time steps is not necessary to perform this technique since a278

small step is used to advance in time.279

The same test case is analyzed after performing a 2× 2 refinement of the280

space fine-scale grid. In order to obtain a reasonable solution, using a global281

∆t equal to 20 [days], we need to compute more local time steps inside the282

global one, so a refining ratio equal to 4 has been taken into account.283

Figure 8 reports the complexity for the entire simulation using ADM-284

LTS method and the ADM with fine time steps. To obtain the solution at285

final time t = 600 [days] with a global time step equal to 20 days, the same286

number of global time step are involved (30 time steps in total). Of course287

the number of local time step for both the LTS method and the fine time288

steps approach would be increased; but the ratio between active cells and289

total cells decreases.290

Figure 9 shows the averaged number of active cells times the number of291

Newton iterations for each local time step within a global time step.292

In Figure 10 we can see that the ADM-LTS approach reduces the errors293

obtained using a coarse grid in time.294
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Figure 7: Test case 1 [99×99] - Computational complexity history at each local times step
within a global step. The computation complexity is the number of active cells multiplied
by the number of Newton iterations.

Figure 8: Test case 1 [198 × 198] - Total amount of active cells multiplied by number of
Newton iterations for the ADM with fine time steps and the ADM LTS method.
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Figure 9: Test case 1 [198× 198] - Computational complexity history at each local times
step within a global step. The computation complexity is the number of active cells
multiplied by the number of Newton iterations.

Figure 10: Test case 1 [198× 198] - Saturation errors at time t = 540 [days] for the ADM
method with fine grid in time (left), ADM-LTS method (center) and the ADM method
with coarse grid in time (right).
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4.2. Test case 2: 3D homogeneous reservoir295

A 3D 108 × 108 × 108 [m3] homogeneous reservoir is considered in this296

test case. The domain is discretized, at the fine-scale, with a 54 × 54 × 54297

Cartesian grid for a total of 157464 cells. The physical parameters are the298

same of the first test case. The size of the global steps is equal to 125 days.299

The simulation ends after 70 global steps. The tolerances for the coarsening300

criteria in space and time are set to be εx = 0.2 and εt = 5× 10−2.301

Figure 11 reports the saturation maps at two different simulation times302

(on the top). For the first time the set of active cells Ω0
A (left, bottom) and303

also a section of the solution at final time t = 8750 days (right, bottom) are304

plotted. Note that ADM-LTS employs fine cells only around the advancing305

saturation front and that the active cells in time are only a fraction of them.306

Figure 12 shows the total complexity and the mean complexity per local time307

step for both the ADM-LTS method and the ADM method with fine time308

steps.309

Figure 11: Test case 2 - Saturation profile (top row) at time t = 1500 days (left) and at
time t = 8750 days (right). Active cells for the level lref=0 at time t= 1500 (bottom-left)
and saturation profile inside the domain at time t = 8750 (bottom-right).
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Figure 12: Test case 2 - Total amount of active cells multiplied by number of Newton
iterations for the ADM with fine time steps and the ADM LTS method (left) and compu-
tational complexity history at each local times step within a global step (right).

4.3. Test case 3: 2D homogeneous reservoir with barrier310

A 2D homogeneous reservoir with low permeability barriers is considered,311

as shown in Fig. 13. The same permeability field was presented in [30]. The312

domain dimensions and the physical parameters are the same of the first test313

case, the same 99×99 fine scale grid is imposed. The global time step is equal314

to 50 [days] and the simulation ends after 100 global time steps (t = 5000315

days).316

Simulations are both with the original ADM method employing a global317

fine time-step and with ADM-LTS. The coarsening and the time-refinement318

criteria tolerances are set to εx = 0.05 and εt = 0.005.319

Figure 13: Test case 3 - Absolute permeability field.

Figure 14 shows a comparison of the saturation profile and the grid res-320

olution for the two different strategies. The original ADM method with a321
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saturation difference-based coarsening criterion (top row) employs a lot of322

fine grids wherever saturation gradients are present even if they are station-323

ary. On the other hand the newly proposed grid resolution criterion (bottom324

row) for the ADM-LTS approach uses fine cells only in those regions where325

the saturation gradient is moving, reducing the number of active cells.326

Figure 14: Test case 3 - Saturation profile and ADM grid at different time steps (columns)
for ADM with coarse time steps and classical ADM grid resolution (first row) and for
ADM-LTS method with the new ADM grid resolution (second row).

Figure 15 reports the evolution of the active grid cells percentage for the327

two different approaches (left) and the evolution of the relative saturation328

error in l1-norm (right). In the early steps, we can see that the ADM fine329

with just the gradient resolution approach employs almost the same number330

of active grid cells used by the ADM-LTS method. For the ADM with fine331

time steps at every small local time step we solve both the flow and the332

transport equations, instead for the ADM-LTS approach only the transport333

equation is solved for the local steps. This is the reason why in the first five334

steps the saturation errors for the ADM-LTS approach are bigger respect to335

the ADM fine steps approach. Instead, in the last steps the errors increase336

because a lower number of fine grid cells has been used.337
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Figure 15: Test case 3 - number of active cells employed in ADM with fine grid in time and
ADM-LTS simulations expressed as percentage of fine grid cells (left) and the saturation
relative errors in l1-norm for the ADM fine and ADM-LTS method (right).

Figure 16 shows the total complexity (number of active cells multiplied by338

the number of Newton iterations) for the ADM with fine steps and the ADM-339

LTS approach. Remark that the local time steps of ADM-LTS method reduce340

the complexity of the system compared to the classical ADM approach.341

Figure 16: Test case 3 - Total amount of active cells multiplied by number of Newton
iterations (left) and computational complexity history at each local times step within a
global step (right) for the ADM with fine time steps approach and for the ADM-LTS
method.

4.4. Test case 4: Heterogeneous reservoir (SPE10 top layer)342

In this test case a heterogeneous reservoir is considered. The permeability343

map is the top layer of the SPE10 test case [31] and it is presented, in344

logarithmic scale, in Fig. 17. The size of the reservoir is 2200× 600 [m2] and345
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a 216 × 54 grid is employed at the finest level. The injector is at the top346

left corner and has a constrained pressure 107 [Pa]. A producer is, instead,347

located at the bottom right corner of the domain with a pressure equal to348

0 [Pa]. The porosity of the reservoir φ is equal to 0.2. The viscosity for349

wetting phase is 10 × 10−5 [kg/m3], whereas, for the non-wetting phase, is350

10−4 [kg/m3]. The coarsening ratio for the space grid is equal to 2 as well as351

the time refining ratio. The error tolerance for the time estimator is equal352

to 5× 10−2.

Figure 17: Test case 4 - Natural logarithm of the permeability.

353

Figure 18 reports the saturation map and the ADM grid for different354

threshold values of the ADM grid resolution criterion using the classical ADM355

approach with fine time steps and the ADM-LTS approach with the new grid356

resolution strategy. The classical approach uses, for small threshold values, a357

lot of fine grid cells. Relaxing the threshold parameter the method is not able358

to capture the fronts. Thanks to the new resolution approach, the method359

is able to apply the fine grid cells only where the front is moving fast (high360

permeability regions).361

Figure 19 shows the active cells in time at the finest level lref = 2 for362

different global time steps. The method recomputes the solution with small363

time steps only for a few percentage of cells where the front pass high perme-364

ability regions. In fact, in the last snapshot, the saturation profile is almost365

evolved everywhere and so, the set of active cells, is very small.366

In Figure 20 we compared the number of active cells and the saturation367

errors for the different simulations. Using the classical ADM approach with368

small values of the tolerance a lot of active grid cells are employed giving369

very small errors. The classical ADM approach with larger tolerance value370

and the ADM-LTS method are comparable in terms of active cells during all371

the simulation but the ADM-LTS approach gives better results in term of372

errors.373

Figure 16 reports the complexity of the four simulations. The ADM ap-374

proach with fine grid in time and small threshold values are really expensive.375
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Figure 18: Test case 4 - Saturation map and ADM grid for the ADM with fine time step
approach with classical grid criterion for different values of the threshold εx = 0.05, 0.1, 0.2
(row 1, 2, and 3) and for the ADM-LTS method with the new grid criterion εx = 0.05 and
εt = 0.05 (row 4) at time t = 1200 days (first column), t = 15000 days (second column)
and t = 20000 days (third column).

Figure 19: Test case 4 - Active cells for the refinement in time, at time t = 1200 days
(left), t = 15000 days (center) and t = 20000 days (right).

22



Figure 20: Test case 4 - Number of active cells expressed as percentage of fine grid cells
(left) and saturation relative errors in l1-norm (right) for the ADM with fine grid in time
with different values of the threshold and for the ADM-LTS simulation.

The ADM-LTS approach is comparable to the ADM with fine time step ap-376

proach and large value of εx but, as shown previously, the solution of the377

classic ADM, in this case, is not as accurate.378

4.5. Test case 5: Heterogeneous reservoir (SPE10 bottom layer)379

Permeability of SPE10 bottom layer is used for this test case, as show in380

Figure 22.381

The global time step is equal to 10 days and the simulation ends after382

50 global time steps. The input parameters for the wells and the physical383

properties are identical to Test Case 4.384

The top 2 rows of Fig. 23 shows the saturation distribution at simulation385

time of 150, 250 and 350 days obtained with εx = 0.15 and εx = 0.2. The386

bottom rows, instead, show the saturation map, at the same simulations387

times, obtained by employing the ADM-LTS method with εx = 0.05 and388

εt = 5× 10−2 and εt = 5× 10−3.389

Figure 24 shows the active cells for the refining in time for lref = 2 at390

time 150, 250 and 350 days. As expected, for smaller value of the threshold391

more cells are involved in the refining step.392

The history of the percentage of active cells employed by the different393

simulation strategies for the various tolerances is shown in Fig. 25 (left),394

along with the l1 norm of the saturation error (right). For both the ADM-395

LTS tolerance values less active cells are involved respect to the classical396

ADM approach. Since a smaller number of cells is employed, the saturation397

errors are higher but still of the same order of magnitude.398

Figure 26 reports the complexity of the four simulations for different399

tolerance values.400
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Figure 21: Test case 4 - Total amount of active cells multiplied by number of Newton
iterations (top) and computational complexity history at each local times step within a
global step (bottom) for the ADM approach.

Figure 22: Test case 5 - Natural logarithm of the permeability.
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Figure 23: Test case 5 - Saturation map and ADM grid at 150, 250 and 350 days for the
ADM approach with fine time steps and the ADM-LTS approach.

Figure 24: Test case 5 - Active cells for the refinement level lref = 2, at 150 (left), 250
(center) and 350 (right) days for the two threshold values.

Figure 25: Test case 5 - Number of active cells expressed as percentage of fine grid cells
(left) and saturation relative errors in l1-norm (right) for the ADM with fine grid in time
and for the ADM-LTS simulations.

25



Figure 26: Test case 5 - Total amount of active cells multiplied by number of Newton
iterations (top) and computational complexity history at each local times step within a
global step (bottom) for the ADM approach.
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4.6. Test case 6: Heterogeneous reservoirs with different layering orienta-401

tions.402

A 500 × 500 m2 2D reservoir is considered on which a 99 × 99 grid is403

imposed. The fluid properties, the location of the wells and their constraints404

are the same as in the previous test cases. Five sets of permeability fields,405

with different layering orientation and created using sequential Gaussian sim-406

ulations with spherical variogram and dimensionless correlation lengths 0.5407

and 0.02 [32], are considered. Each set consists of 20 statistically identical408

realizations.409

Figure 27 shows one realization for each set. Injection of the wetting410

phase, for 560 days, is simulated for each realization. Simulations are run411

both with the ADM-LTS method. For all runs, the spatial coarsening crite-412

rion tolerance is εx = 0.008. Two different values are instead considered for413

the time-based criterion tolerance, εt: 5× 10−2 and 5× 10−3.414

Figure 28 shows a comparison, for one permeability realization of each415

set, of the saturation map at the end of the simulation obtained with fine-416

scale (time and space) simulation (top row), ADM-LTS employing a fixed417

refined time-step.418

Figure 29 displays the active cells in time for the last refinement level of419

the last global time step. As expected, using bigger value of the tolerance420

for the time error estimator, just few cells need to be computed with small421

time steps, also the space grid changes and allow to use coarser grid cells.422

Figure 30 represents the mean and the standard deviations of the com-423

plexity for the ADM-LTS method using the two different time-based criterion424

tolerances and for the solution computed with the fine grid resolution both425

in space and in time. Note that the y-axis scale for the two pictures are426

different.427

Figure 31 shows the mean and the standard deviations of the satura-428

tion errors respect to the reference solution for the ADM-LTS method using429

the two different time-based criterion tolerances. From these studies, one430

can conclude that the ADM-LTS performs robust when several equiproba-431

ble realizations are considered. In other words, the error and computational432

complexities for all 20 realizations are not much different compared with the433

average values.434
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Figure 27: Test case 6 - One of the 20 realization of each of the 5 sets of permeability
fields with different angles (0 deg, 15 deg, 30 deg, 45 deg and patchy from left to right).

Figure 28: Test case 6 - Comparison of the saturation profile, for one realization of each
set of permeability fields at time t = 560 days. Two different threshold values for the time
error estimator are employed for the ADM-LTS simulation (center row and bottom row),
the fine scale solution are also shown (top row).
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Figure 29: Test case 6 - Active calls at the last refinement level for the last global time
step using two different threshold values for the error estimator in time.

Figure 30: Test case 6 - Mean and standard deviation of complexity over 20 realization
for the ADM-LTS method (left) and for the reference solution computed with fine grid
resolution both in space and time (right).
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Figure 31: Test case 6: Mean and standard deviation errors of the saturation errors over
20 realization for the ADM-LTS method with different time threshold values respect to
the reference solution ES = meanNt

t=1 (mean|Sf (t)− S(t)|).

5. Conclusions435

In this paper, a dynamic multilevel approach with a local time-stepping436

strategy for the solution of the transport equation in heterogeneous porous437

media was presented. The ADM-LTS method enables to capture the moving438

fronts. Particularly, it combines, at each global time step, a dynamic multi-439

level grid in space with a local time-stepping strategy that is able to use small440

time step only where the front is moving fast. Compared with the classical441

ADM approach, the newly developed method allows to use more coarsening442

regions where the high gradients do not evolve in time. This method is a443

promising way to reduce the size of the system in the nonlinear loop without444

loss of accuracy.445
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