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Abstract

In this paper we present a three dimensional dispersion and dissipation analysis
for both the semi-discrete and the fully discrete approximation of the elastodynam-
ics equation based on the plane wave method. For space discretization we compare
different approximation strategies, namely the continuous and discontinuous spectral
element method on both tetrahedral and hexahedral elements. The fully discrete
scheme is then obtained exploiting a leap-frog time integration scheme. Several nu-
merical results are presented and discussed.

1 Introduction

In the field of computational seismology the use of high-order numerical methods is es-
sential for the study of complex wave propagation phenomena. In particular, the Spectral
Element (SE) method, firstly introduced in [26], has been widely used in the simulation of
elastic waves propagation [15, 20, 33], thanks to its accuracy and computational efficiency.

To handle highly heterogeneous media, e.g. strong contrast in the soil features, or in
soil-structure interaction problems, flexible techniques such as the discontinuous Galerkin

∗Paola F. Antonietti and Ilario Mazzieri have been partially supported by the SIR Research Grant no.
RBSI14VTOS PolyPDEs: Non-conforming polyhedral finite element methods for approximation of partial
differential equations funded by MIUR - Italian Ministry of Education, Universities and Research.
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(DG) method, see, e.g. [31, 19], or the discontinuous Galerkin spectral element (DGSE)
method [4, 2] have been set up. The DG approach (both in its high-order or spectral
element version) provides accurate solutions and is well suited for parallel implementa-
tion; moreover, the local mesh size and the local polynomial approximation degree can be
tailored to the region of interest, according to the mechanical properties or the geometrical
features of the computational domain. For example we mention a high-order discontinu-
ous approximation combined with an Arbitrary high order DERivatives time integration
scheme proposed in [19, 13], and a a spectral discontinuous Galerkin method based on a
domain decomposition approach introduced in [4]. In this latter work the discontinuities
are imposed only across the macro-regions in which the domain is partitioned, differently
for example from [31], where the DG approximation is applied elementwise.

Conforming and discontinuous spectral element methods are usually based on dis-
cretizations made by tensor product elements (i.e., hexahedral). However, since generat-
ing hexahedral grids for complex geometries may require a huge computational effort, in
recent years spectral element methods have been extended to triangular and tetrahedral
grids, see, e.g. [18, 36, 25]. In particular, high order methods for elastic wave propagation
problems on triangular and tetrahedral grids can be found in [23, 24, 3].

A distinguishing feature of spectral methods is their very low dispersion and dissipation
errors. Compared with other low order approximation techniques as for example finite
difference or finite element methods, they therefore need a lower number of grid points
per wavelength to retain the same level of accuracy [10]. The dispersion properties of
spectral elements methods for elastic wave propagation problems have been analysed in
[32] using a Rayleigh quotient approximation of the eigenvalue problem resulting from
the dispersion analysis. The case of a DGSE approximation on quadrilateral grids has
been investigated using a plane wave analysis in [11] and in [4]. In [4] a comparison
with the Mortar method is also presented. A similar approach has been presented for
spectral elements and DGSE approximations on triangular grids in [22], where different
sets of interpolating nodes have been compared, and in [3], where the authors have used
the modal boundary adapted functions proposed in [35]. All these works deal with two-
dimensional model problems and show that triangular spectral elements feature dispersion
and dissipation properties similar to those of the standard tensor product elements.

In this paper we propose a numerical study of dispersion and dissipation properties for
the three-dimensional elastodynamics equation discretized with hexahedral and tetrahe-
dral spectral elements, using both a continuous and a discontinuous approximation. Our
analysis is based on the plane wave method and it is applied to the semi-discrete as well as
the fully-discrete formulation, resulting after a leap-frog time integration. All methods we
have considered provide low dispersion and dissipation effects and show similar behaviours
with respect to the different parameters taken into account.

The paper is organized as follows. In Section 2 we introduce the elastodynamics problem
and its weak formulation. In Section 3 we recall its semi-discrete continuous and discontin-
uous spectral elements approximation, as well as the fully discrete scheme resulting after
leap-frog integration. In Section 4 we present the dispersion and dissipation analysis, de-
scribing the details of the plane wave method for both the continuous and the discontinuous
case. Several numerical tests are then presented in Section 5 for the semi-discrete problem
and in Section 6 for the fully-discrete problem, showing dispersion and dissipation errors as
a function of different discretization parameters such as the polynomial degree, the mesh
size, the incident angles and the time step. Finally, in Section 7 we draw some conclusions.
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Throughout the paper, the Sobolev spaces of vector–valued and tensor-valued functions
defined on open bounded domain D ⊂ R3 are denoted by Hm(D) = [Hm(D)]3 and
Hm(D) = [Hm(D)]3×3, respectively. We will use the symbol (· , ·)D to denote the stan-
dard inner product in any of the spaces H0(D) ≡ L2(D) or H0(D) ≡ L2(D).

2 Governing equations and weak formulation

We consider an open bounded domain Ω ⊂ R3 with a smooth boundary Γ = ∂Ω, decom-
posed into two non-intersecting portions ΓD 6= ∅ and ΓN , on which we prescribe the values
of the displacement and of the external traction, respectively. Considering a temporal in-
terval [0, T ], with T > 0, the dynamic equilibrium equation for an elastic medium subject
to an external force leads to the following system





ρ∂ttu−∇ · σ(u) = f , in Ω× (0, T ],

u = 0, on ΓD × (0, T ],

σ(u) n = t, on ΓN × (0, T ],

u = u0, in Ω× {0},
∂tu = v0, in Ω× {0}.

(1)

There ρ = ρ(x) > 0 ∈ L∞(Ω) is the medium density, u = u(x, t) is the displacement field,
σ(u) is the stress tensor and f = f(x, t) is a (smooth enough) given external load (e.g., a
seismic source). On the boundary we impose a rigidity condition on ΓD and a (smooth
enough) traction t = t(x, t) on ΓN , respectively. Finally u0 = u0(x) and v0 = v0(x) are
(smooth enough) initial data for the displacement and the velocity field, respectively.
We use the Hooke’s law

σ(u) = λtr(ε(u)) + 2µε(u), (2)

as the constitutive equation for the stress tensor σ. In particular ε(u) = 1
2(∇u + ∇Tu)

is the strain tensor, λ = λ(x) ∈ L∞(Ω) and µ = µ(x) ∈ L∞(Ω) are the Lamé elastic
coefficients and tr(·) is the trace operator. From the Lamé coefficients and the density the
compressional (cP ) and shear (cS) velocities of the elastic wave are obtained through the
relations

cP =
√

(λ+ 2µ)/ρ, cS =
√
µ/ρ. (3)

By (formally) multiplying the first equation of (1) by a test function v ∈ V = H1
ΓD

(Ω) =

{v ∈ H1(Ω), v = 0 on ΓD }, integrating by parts over Ω and imposing the boundary
conditions we obtain the following weak formulation: ∀t ∈ (0, T ] find u(t) ∈ V such that

(ρü(t),v)Ω +A(u(t),v) = L(v) ∀v ∈ V, (4)

supplemented with the initial conditions u(0) = u0 and u̇(0) = v0. The bilinear form
A(·, ·) : V ×V→ R and the linear functional L(·) : V→ R are defined as

A(u,v) = (σ(u), ε(v))Ω ∀u,v ∈ V, (5)

L(v) = (f ,v)Ω + (t,v)ΓN
∀v ∈ V, (6)

with (·, ·)Ω and (·, ·)ΓN
standing for the inner product of L2(Ω) and L2(ΓN ) respectively.

The following well-posedness result holds, cf. [28, Theorem 8.3-1].
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Theorem 2.1. Problem (4) admits a unique solution u ∈ C0((0, T ]; V)∩C1((0, T ]; L2(Ω)).
provided that ρ ∈ L∞(Ω), ρ > 0 a.e. in Ω, u0 ∈ V, v0 ∈ L2(Ω), f ∈ L2((0, T ]; L2(Ω)) and

t ∈ C1((0, T ]; H
1
2 (ΓN )).

3 Numerical discretization

In this section we introduce the finite element discretization of (4) and some technical
tools that will be used in our analysis.

Mesh partitions. We consider a conforming partition {Th, h > 0} of Ω made by open
disjoint elements E such that Ω = ∪E∈ThE, with Ei ∩Ej = ∅ if i 6= j. The parameter h is
defined as h = maxE∈Th diam(E). We also suppose that for each element there exists an

invertible map FE defined through the relation E = FE(Ê), where Ê is a fixed reference
element, either an hexahedron or a tetrahedron. To deal with a discontinuous approxi-
mation we define an interior face as the non-empty interior of ∂E+ ∩ ∂E−, being E± two
adjacent elements, and we define as Foh the set of all internal faces. We also assume that

for any pair of elements E+ and E− sharing a face there exists a positive constant C̃ such
that C̃−1hE− ≤ hE+ ≤ C̃hE− , see [16]. Moreover, we define as FDh (FNh resp.) the set of
Dirichlet (Neumann resp.) boundary faces and we collect the boundary faces in the set
Fbh = FDh ∪ FNh . Finally, we define Fh as Fh = Foh ∪ Fbh.

For s ≥ 1, we introduce the broken Sobolev spaces

Hs(Th) =
{
v ∈ L2(Ω) v

∣∣
E
∈ Hs(E) ∀E ∈ Th

}
,

Hs(Th) =
{
τ ∈ L2(Ω) τ

∣∣
E
∈ Hs(E) ∀E ∈ Th

}
.

We denote by (· , ·)Th and 〈· , ·〉Fh
the L2(Th) ≡ H0(Th) and L2(Fh) ≡ H0(Fh) inner

products, defined as

(ϕ,ψ)Th =
∑

E∈Th

(ϕ,ψ)E , 〈ϕ,ψ〉Fh
=
∑

F∈Fh

(ϕ,ψ)F ,

for any (regular enough) couple of functions ϕ, ψ.

Trace operators. Let E+ and E− be two element sharing a face F ∈ Foh, and let
n+ and n− be the unit normal vectors to F pointing outward to E+ and E− respectively.
For (regular enough) vector and tensor-valued functions v and τ we denote by v± and τ±

the traces of v and τ on F , taken within the interior of E±, respectively. On each F ∈ Foh,
the average and jump operators are defined as

{v} =
v+ + v−

2
, {τ} =

τ+ + τ−

2
,

[[v]] = v+ ⊗ n+ + v− ⊗ n−, [[τ ]] = τ+ n+ + τ− n−,

(7)

cf. [6]. On F ∈ Fbh, we set {v} = v, {τ} = τ , [[v]] = v ⊗ n, [[τ ]] = τn.

Finite element spaces. For a given integer N ≥ 1, we introduce the discrete space
VDG and VCG defined as

VDG = {u ∈ L2(Ω) ,u = 0 on ΓD : u
∣∣
E
◦ FE ∈ [MN (Ê)]3 ∀ E ∈ Th},

VCG = {u ∈ C0(Ω) ,u = 0 on ΓD : u
∣∣
E
◦ FE ∈ [MN (Ê)]3 ∀ E ∈ Th},
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where MN (Ê) is either the space PN (Ê) of polynomials of total degree at most N on Ê,
if Ê is the reference tetrahedron, or the space QN (Ê) of tensor product polynomials on Ê
of degree N in each coordinate direction, if Ê is the unit reference cube in R3.

3.1 Continuous and discontinuous spectral elements formulations

In the following, we introduce a family of semidiscrete approximations to problem (1). We
focus on the DG discretization, since the continuous one can be seen as a special case.
The semi-discrete symmetric interior penalty DG (SIPG, see [5, 29, 8]) approximation of
problem (4) reads: for a.e. t ∈ (0, T ], find u = u(t) ∈ VDG such that

(ρü(t),v)Th +Ah(u(t),v) + Bh(u(t),v) = L(v) ∀v ∈ VDG, (8)

where L is defined as in (6) and

Ah(u,v) =(σ(u), ε(v))Th ∀u,v ∈ VDG, (9)

Bh(u,v) =− 〈{σ(u)}, [[v]]〉Fo
h
− 〈[[u]], {σ(v)}〉Fo

h

+ 〈ηF [[u]], [[v]]〉Fo
h

∀u,v ∈ VDG (10)

On each face F ∈ F0
h the penalty parameter ηF is defined as

ηF = α{λ+ 2µ}AN2/hF , (11)

where {q}A = 2q+q−/(q+ + q−) is the harmonic average of the quantity q across F , N
is the polynomial degree, hF is the area of the face F and α is a large enough positive
constant to be properly chosen, see [14].

In the case of a continuous approximation the interface term Bh(u,v) is identically equal
to zero. Thus, the semi-discrete formulation of problem (4) can be written as: for a.e.
t ∈ (0, T ], find u = u(t) ∈ VCG such that

(ρü(t),v) +A(u(t),v) = L(v) ∀v ∈ VCG. (12)

Error bounds and stability estimates for problem (8) and (12) can be found in [31, 30, 2, 4].

3.2 Algebraic formulation

In this section we present the algebraic formulation stemming after space discretization
with discontinuous and continuous spectral elements.
Now, let Ndof be the number of degrees of freedom per each component of the displacement

and let {Ψ`
i}`=1,2,3
i=1,...,Ndof

be a basis for the finite element space VDG (or VCG), where

Ψ1
i = (ψi, 0, 0)T , Ψ2

i = (0, ψi, 0)T and Ψ3
i = (0, 0, ψi)

T , for i = 1, ..., Ndof . We express a
function u ∈ VDG (or VCG) as linear combination of the basis functions, namely

u(x, t) =

NDof∑

j=1



ψj(x)

0
0


U1

j (t) +




0
ψj(x)

0


U2

j (t)




0
0

ψj(x)


U3

j (t).

Using the above expansion and writing (8) for any test function Ψk
i , k = 1, 2, 3, i =

1, ..., Ndof , we obtain the following second order differential system

MÜ +KU = F, (13)
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or, blockwise,



M1 0 0
0 M2 0
0 0 M3






Ü1

Ü2

Ü3


+



K1,1 K1,2 K1,3

K2,1 K2,2 K2,3

K3,1 K3,2 K3,3






U1

U2

U3


 =




F1

F2

F3


 . (14)

Each block M ` of the mass matrix M has the following form

M `
i,j = (ρΨ`

j ,Ψ
`
i)Th ` = 1, 2, 3 i, j = 1, ..., Ndof .

The structure of the blocks M `, ` = 1, 2, 3 clearly depends on the choice of the basis: this
will be discussed later on. The entries of the stiffness matrix are given by

K`,m
i,j = Ah(Ψm

j ,Ψ
`
i) + Bh(Ψm

j ,Ψ
`
i) `,m = 1, 2, 3, i, j = 1, ..., Ndof .

We recall that Bh(·, ·) ≡ 0 for continuous approximations. Finally, the right-hand side F
has the following expression

F `i = L(Ψ`
i), ` = 1, 2, 3, i, j = 1, ..., Ndof .

3.3 Construction of discrete spaces

In this section we show how to choose the basis functions for the spaces QN (ÊH) and
PN (ÊT ), and discuss the way this choice reflects on the structure of the linear system
(14). We first discuss the case of hexahedral elements and then focus on tetrahedral
elements.

3.3.1 Reference hexahedron

For the standard reference hexahedron ÊH = [−1, 1]3. A basis {ψ̂i} of the space QN (ÊH)
is obtained by tensor product of the one dimensional nodal lagrangian functions associated
with the Gauss-Legendre-Lobatto (GLL) interpolating points. On the reference element
ÊH the GLL points are tensor product of the GLL points defined in the interval [−1, 1]
that are the zeros of (1 − x2)L′N (x), where LN is the Legendre polynomial of degree N ,

cfr. [7]. The dimension of the space QN (ÊH) is thus equal to (N + 1)3.
The lagrangian basis functions satisfy the relation ψ̂i(xj) = δij , where δij is the Kro-

necker symbol, then the components of the vector U in (13) represent the nodal values
that the function u assumes at the interpolating nodes.
We recall that for spectral elements on hexahedral grids the GLL points {x̂i} are used
both as quadrature points and interpolating nodes. The integral of a generic function g
over an element E is then computed by

∫

E
g(x) dx =

∫

ÊH

g(FE(x̂))|JE | dx̂ ≈
(N+1)3∑

i=1

g(FE(x̂i))|JFE
|wi, (15)

where |JE | is the determinant of the Jacobian of the transformation FE and wi are the
weights associated to the GLL nodes x̂i, i = 1, ..., (N + 1)3. This results in a diagonal
structure for the mass matrix M in (13) for both discontinuous or continuous approxima-
tions.
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3.3.2 Reference tetrahedron

To deal with the spectral element approximations on tetrahedral grids we consider both the
reference tetrahedron ÊT = {(ξ1, ξ2, ξ3) : ξ1, ξ2, ξ3 > −1, ξ1 +ξ2 +ξ3 6 1} and the reference
hexahedron ÊH = {(η1, η2, η3) : −1 6 η1, η2, η3 6 1}. We introduce a transformation
T : ÊH → ÊT (see [35]) defined as

ξ1 =
(1 + η1)(1− η2)(1− η3)

4
− 1 ξ2 =

(1 + η2)(1− η3)

2
− 1 ξ3 = η3 (16)

We notice that the transformation (16) maps the face η3 = 1 of ÊH into the vertex
(−1,−1, 1) of ÊT and the face η2 = 1 of ÊH to the edge ξ2 + ξ3 = 0 of ÊT . For this reason
the coordinate system (η1, η2, η3) is often referred as the collapsed coordinate system.

The idea behind the construction of a spectral element basis on the reference tetra-
hedron is to exploit the tensor product structure of the collapsed coordinates to build an
orthogonal basis for the space PN (ÊT ), see [12, 21]. The latter, as it is, is not suitable
for a C0 approximation, but it can be modified in order to have continuous functions at
the interface between elements. The basis obtained in this way is called boundary adapted
basis, see [18, 35]. The set of boundary adapted basis functions can be split into vertex,
edges, faces and interior functions. The vertex modes are defined in order to be one at
the corresponding vertex and zero at in all the other vertices. The edge modes assume
non zero-value along the faces sharing the edge and are zero on the remaining ones. The
face modes are non-zero on the corresponding face and zero on the others. Finally, the
interior modes are different from zero only inside the tetrahedron and equal to zero along
the boundary. Moreover the interior modes are mutually orthogonal. We observe that,
with a polynomial space of dimension N , we have four vertex modes, N − 1 edge modes,
(N − 1)(N − 2)/2 face modes and (N − 1)(N − 2)(N − 3)/6 interior modes. Thus, the
dimension of the space PN (ÊT ) is given as expected by (N + 1)(N + 2)(N + 3)/6. We
report the complete expression of the basis functions in the appendix A.

The components of the vector U, given the modal nature of the boundary adapted
basis, no longer represent the nodal value of the solution u, but they are instead the
modal coefficients of its expansion with the boundary adapted basis.

The quadrature rule (15) introduced for hexahedral grids is unsuitable for spectral
element approximation on tetrahedra, since the map (16) applied to GLL points causes
a redundancy of quadrature points and the presence of singularities in the evaluation of
shape functions derivatives (see [18]). To avoid these problems it is sufficient to use a
quadrature rule that do not include the faces η2 = 1 and η3 = 1, as for example the
Gauss-Radau or the Gauss-Legendre quadrature rule. Thus, when integrating a generic
function g on a tetrahedral element, the quadrature formula reads as

∫

E
g(x) dx =

∫

ÊT

g(FE(ξ1, ξ2, ξ3))|JE | dξ

=

∫

ÊH

g(FE ◦ T (η1, η2, η3))|JE |
(1− η2)

2

(1− η3)2

4
dη.

(17)

The term (1−η2)
2

(1−η3)2

2 is the determinant of the Jacobian ∂(ξ1, ξ2, ξ3)/∂(η1, η3, η3) and
it is convenient to include its computation directly in the quadrature rule, exploiting for
instance the Gauss-Jacobi quadrature rule

∫ 1

−1
(1− η)α(1− η)βg(η) dη ≈

N∑

i=1

g(ηα,βi )wα,βi , (18)
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where {ηα,βi } are the zeros of the Jacobi polynomial Pα,βN and {wα,βi } are the corresponding
weights. In our case we apply (18) with α = β = 0 in the η1 direction, α = 1, β = 0 in the
η2 direction, and α = 2, β = 0 in the η3 direction. Finally, (17) is numerically evaluated
as ∫

E
g(x) dx ≈

N∑

p=1

N∑

q=1

N∑

r=1

g(FE ◦ T (η0,0
1,p, η

1,0
2,q , η

2,0
3,r ))|JE |w0,0

p

w1,0
q

2

w2,0
r

4
.

3.4 Time integration scheme

In this section we briefly present the time marching scheme that is employed to integrate
the second order ordinary differential system (13). We subdivide the time interval (0, T ]
into NT subintervals of amplitude ∆t = T/NT and we denote by Ui the approximation
vector U at time ti = i∆t, i = 0, ..., NT . To solve system (13) we apply the second order
leap-frog time integration scheme. Then, at the first time step we set

MU1 = (M − ∆t2

2
K)U0 −∆tMU0 +

∆t2

2
F0, (19)

and at the following steps

MUn+1 = (2M −∆t2K)Un −MUn−1 + ∆t2Fn. n = 1, ..., NT − 1, (20)

We notice that, on hexahedral grids the system above can be easily inverted, exploiting
the structure of the mass matrix M . We observe that in the case of tetrahedral grids the
mass matrix is no longer diagonal, so at each time step we need to solve the linear system
(20) using a suitable direct or iterative method. Here, we use a preconditioned conjugate
gradient method, since M is symmetric and positive definite, see [27]. We recall that
the leap-frog method is an explicit second order accurate scheme, therefore to ensure the
numerical stability a CFL condition has to be satisfied, see [27]. In particular, in [4], it is
shown that for the DG formulation the following condition is sufficient to ensure stability:

∆t 6 c∗
h

cPN2
,

where c∗ = c∗(λ, µ, α) is a positive constant that depends on the Lamé coefficients and
on the penalty constant α. In the case of an SIPG approximation the constant c∗ is
proportional to α−1/2 [4].

4 Dispersion and dissipation analysis: generalities

The aim of this section is to analyze (numerically) the dispersion and dissipation errors
for the numerical schemes presented before. We recall that if the numerical wave shows a
delay with respect to the physical one we have a dispersion effect, whereas if we observe
a decrease in amplitude we are in presence of dissipation (cf. Fig. 1). A wave travelling
in a three dimensional elastic medium can be decomposed into a pressure wave (P-wave)
having velocity cP , and a shear wave (S-wave) having velocity cS . The P-wave induces a
displacement in the same direction of the propagating wave, whereas the S-wave induces
a displacement in a direction transversal to the propagating wave. Additionally, for the
latter, it is possible to identify a vertical component (SV-wave), that gives a motion
on a plane perpendicular to the wave direction, and a horizontal component (SH-wave),
that gives a transversal motion on an horizontal plane containing the wave direction, see

8



dispersion

dissipation

Figure 1: Example of a travelling wave (solid line) and its numerical approximation (dotted
line).

[1, 34]. In the following we will measure the dispersion and the dissipation errors for
both the compressional and shear velocities cP and cS . A standard technique to obtain
quantitative estimates of these errors is the Von Neumann analysis [9, 17], that consists
in propagating a plane wave of the form

u(x, t) = Uei(k·x−ωt), (21)

in an unbounded domain. Here, U represents the amplitude of the wave, ω the angular
frequency and k = 2π/L(cos θ cosφ, sin θ cosφ, sinφ) the wave vector, being L the wave-
length and θ and φ the angles between the direction of propagation and the coordinate
axes. Obviously, the physical wave can be finally recovered by taking the real part of (21).
Without loss of generality, in the following, we will assume U = 1. Moreover, we suppose
that |u(x, t)| → 0 as |x| → +∞, and absence of seismic source (f ≡ 0). Under these
conditions the semi-discrete problem (13) becomes

MÜ +KU = 0. (22)

We remind that the entries ofM andK have different expression, depending on whether we
are employing a continuous or a discontinuous spectral elements approximation. Moreover,
the components of the vector U can be either the nodal values of the solution for spectral
elements methods on hexahedral grids or the modal expansion coefficients for spectral
elements approximations on tetrahedral grids. Nevertheless, the analysis we present in
the next section is carried out in a general framework and is independent of the basis
adopted to span the discrete space.

In the following sections we will use a Cartesian discretization of the domain Ω into
non-overlapping cubes E having uniform size h. The latter have sides parallel to the
coordinate axes in order to generate a periodic tessellation of the domain. In the case of
tetrahedral grids each element E is further divided into tetrahedra. We finally suppose to
use the same degree of approximation N in each E.

4.1 Continuous spectral elements

To comply with unboundedness and periodicity, we consider problem (1) posed over the
domain EC = (−1, 1)3 and impose periodic boundary conditions on its boundary, con-
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sisting of the faces FR, FL, FU , FD, FF , FB (see Figure 2). In the case of an hexahedral
grid the smallest periodic grid is made by a single element EC , whereas with tetrahedral
elements it is composed by six tetrahedra (see Figure 2, right) . We consider as test and

trial functions in (22) the functions Ψ`,EC
i , ` = 1, 2, 3, that have support in EC . This leads

to a linear system of equations of dimension 3(N+1)3×3(N+1)3, being N the polynomial
approximation degree. In order to impose periodic boundary conditions we define J as the
set of master indexes (i.e., the degrees of freedom in which we compute the solution) and
with ĴF , F = {FR, FU , FB} the set of slave indexes (i.e., where we impose the periodicity
condition). Assuming that the solution is a plane wave, we have that

U `
ĵF

= eβFU `j ` = 1, 2, 3 ∀ĵF ∈ ĴF , (23)

where βF = {−ikxh,−ikyh,−ikzh} for F = {FR, FU , FB}, and ĵF is the slave index in ĴF
corresponding to the master index j ∈ J on the opposite face (see for example Figure 2).

j

ĵ

FR
FL

FD

FF

FB

FU

j

̂j

FF FR

FD

FL

FB

FU

Figure 2: Periodic reference element EC with faces {FU , FD, FR, FL, FF , FB} and smallest
pattern of periodic decomposition: hexahedral grid (left) and tetrahedral grid (right).
The circles represents the degrees of freedom on top (FU ) and bottom (FD) faces for a
polynomial degree N = 3. Filled circles denote the master degrees of freedom, whereas
empty circles denote the slave degrees of freedom where the periodic boundary conditions
are imposed.

Imposing the periodicity conditions (23) through a suitable matrix Π ∈ R3(N+1)3×3N3

we obtain
MÜ +KU = 0, (24)

where K and M are given by

K = ΠTKΠ, M = ΠTMΠ.

4.2 Discontinuous spectral elements

For DGSE methods we consider the same periodicity pattern presented in the previous
section. The discontinuities are imposed at the interfaces between each periodic element
EC and its neighbours (see Figure 3).
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EC

EF

EU

EL

EREB

ED

EC

EF

EU

EL

ER
EB

ED

Figure 3: Periodic pattern considered in the discontinuous framework with hexahedral
(left) and tetrahedral (right) elements.

Let Ψ
`,Ef

i , ` = 1, 2, 3, be the basis functions with support in Ef , with f = {C,R,L,U ,D,F ,B}.
Following [22], we select in (22) as test and trial functions the following

Ψ`
i(x) = Ψ`,EC

i (x) ∀x ∈ EC , (25)

Ψ`
j(x) =





Ψ`,EC
j (x) ∀x ∈ EC ,

Ψ
`,Ef

j (x) ∀x ∈ Ef , f = {R,L,U ,D,F ,B},
0 otherwise.

(26)

This choice leads to a rectangular linear system of 21(N+1)3 equations in the 3(N+1)3

unknowns

U` = [U`,EC ,U`,ER ,U`,EL ,U`,EU ,U`,ED ,U`,EF ,U`,EB ], ` = 1, 2, 3.

Then, the blocks in the mass and stiffness matrices in (22) become

M ` = [M `,EC , 0, 0, 0, 0, 0, 0], ` = 1, 2, 3, (27)

K`,m = [A`,m,EC +B`,m,EC , B`,m,ER , B`,m,EL , B`,m,EU , B`,m,ED , B`,m,EF , B`,m,EB ],

`,m = 1, 2, 3, (28)
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respectively, where

M `,EC
i,j =

∫

EC

ρΨ`,EC
j ·Ψ`,EC

i ,

A`,m,EC
i,j =

∫

EC

σ(Ψm,EC
j ) : ε(Ψ`,EC

i ),

B`,m,EC
i,j =

∑

f∈{R,L,T ,D,F ,B}

−
∫

Ff

{σ(Ψm,EC
j )} : [[Ψ`,EC

i ]]−
∫

Ff

[[Ψm,EC
j ]] : {σ(Ψ`,EC

i )}

+ηf

∫

Ff

[[Ψm,EC
j ]] : [[Ψ`,EC

i ]],

B
`,m,Ef

i,j = −
∫

Ff

{σ(Ψ
m,Ef

j )} : [[Ψ`,EC
i ]]−

∫

Ff

[[Ψ
m,Ef

j ]] : {σ(Ψ`,EC
i )}

+ηf

∫

Ff

[[Ψ
m,Ef

j ]] : [[Ψ`,EC
i ]], f ∈ {R,L, T ,D,F ,B}.

In order to obtain a square linear system we use (21), i.e. the expression of the plane wave,
u(x, t) = ei(k·x−ωt), and this, together with the imposition periodic conditions, implies that

U
`,Ef

j = eβfU `,ECj , ` = 1, 2, 3, (29)

where βf = {−ikxh, ikxh,−ikzh, ikzh, ikyh,−ikyh} for f = {R,L,U ,D,F ,B}, respec-
tively. Substituting (29) in (27) and (28) leads to the following linear system of 3(N + 1)3

equations in 3(N + 1)3 unknowns U = UEC

MÜ + K̃U = 0. (30)

The components of the matrix K̃ are defined as

K̃
`,m

= A`,m,EC +B`,m,EC +
∑

f∈{R,L,U ,D,F ,B}

eβfB`,m,Ef , `,m = 1, 2, 3.

5 Semi-discrete formulation: dispersion and dissipation anal-
ysis

In this section we analyse the dispersion and dissipation properties, assuming exact time
integration. Taking the second derivative with respect to time in (24) and (30) we find
the generalized eigenvalue problems

KU = ω2MU, (31)

K̃U = ω2MU. (32)

5.1 Dispersion analysis

By solving numerically (31) and (32) we obtain the eigenvalues ξ = ω2
h that represent the

best approximations of the angular frequencies of the travelling waves. For a 3D plane
wave we can distinguish between the frequency ωP , which is related to the longitudinal
displacement, and the two frequencies ωSV = ωSH , which are related to the transversal
displacement of vertically polarized (SV) and horizontally polarised (SH) shear waves, re-
spectively. The number of eigenvalues obtained through (31) and (30), in general, exceeds

12



the number of physical modes. Then, we identify the numerical eigenvalues ξP and ξS ,
corresponding to the physical frequencies, by computing the numerical velocities obtained
for each eigenvalue and comparing them to the real values of cP and cS . We remark
that the computed eigenvalues approximating ωSV and ωSH are not exactly the same but
their difference is negligible [32, 37]. In the following we will select ξS as that eigenvalue,
between the two physically relevant, that leads to the worst approximation of cS .

Once selected the eigenvalues ξP and ξS , we compute the numerical angular frequencies
ωP,h =

√
ξP and ωS,h =

√
ξS for P-wave and S-wave, respectively. The numerical wave

velocities are therefore given by

cP,h =
hωP,h
2πδ

, cS,h =
hωS,h
2πδ

,

where δ = h/(NL) is the sampling ratio, i.e. the number of interpolation points per
wavelength, and L is the wavelength. In the following we consider the relative dispersion
errors

eP =
cP,h
cP
− 1, eS =

cS,h
cS
− 1.

Note that eP , eS > 0 implies that the numerical wave propagates faster than the physical
ones.

Numerical results

We now investigate how the dispersion error depends on the polynomial degree N , the
sampling ratio δ and the angles of incidence θ and φ of the plane wave. In the following
tests we fix the mechanical parameters ρ = 2, λ = 1 and µ = 0.5, and the wave velocities
cP = 1 and cS = 0.5, with a ratio r = cP /cS = 2. Notice that a ratio r ' 2 is a realistic
value in geophysical applications. In all tests performed with the DGSE approximation
we set the value of the penalty constant α = 10. For the first case, we consider δ = 0.2,
i.e., five nodes per wavelength, and we set the incidence angles φ = θ = π/4. In Figure
4 we observe an exponential decay of the dispersion error with respect to the polynomial
degree N , using both continuous and discontinuous approximations on hexahedral and
tetrahedral grids.

In Figure 5, we report the computed grid dispersion error as a function of δ for differ-
ent approximation degrees N = 2, 3, 4. Looking at the slopes of the eP and eS curves we
get the following empirical estimate of the orders of convergence, i.e., eP = O(h2N ) and
eS = O(h2N ) respectively.

Finally, we study the dispersion error as a function of the angles of incidence of the plane
wave. In Figure 6 we report the results obtained with DGSE discretization. An analogous
behaviour is observed for continuous approximations. We set the polynomial degree N = 3
and the sampling ratio δ = 0.2. We notice that with hexahedral grids the error behaves
symmetrically with respect to the origin of the axes, whereas with tetrahedral grids the
error grows along the direction in which the periodic cell EC is cut into tetrahedra.

We also observe that, fixing a threshold for the grid dispersion errors, SE on hexahe-
dral elements perform better than those on tetrahedral ones. However, for the latter, low
dispersion errors (less than 10−6) can be obtained choosing a suitable value for the poly-
nomial degree of interpolation and for the number of points per wavelength, for instance
N > 4 and δ ≤ 0.2, see Figures 4 and 5. Moreover, with both kinds of elements, the use
of a discontinuous approximation does not introduce significant changes with respect to
the continuous one.
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Figure 4: Dispersion errors |eP | and |eS | versus N with δ = 0.2 and θ = ϕ = π/4. Con-
tinuous spectral elements (SE, top) and discontinuous spectral elements (DGSE, bottom)
on both hexahedral (Hex) and tetrahedral (Tet) grids.
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(b) N = 3
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(c) N = 4

Figure 5: Dispersion errors versus δ for N = 2, 3, 4, for continuous spectral elements (SE)
and discontinuous spectral elements (DGSE) on both hexahedral (Hex) and tetrahedral
(Tet) grids.
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(a) eP ,hexahedral grid (b) eS ,hexahedral grid

(c) eP ,tetrahedral grid (d) eS ,tetrahedral grid

Figure 6: Dispersion errors eP (left) and eS (right) as a function of the incidence angles
(θ, φ). DG spectral elements approximation on hexahedral (top) and tetrahedral (bottom)
grids.
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5.2 Dissipation analysis

For the dissipation error we study the amplitude of the numerical displacement. Con-
sidering as exact solution of (22) the unitary amplitude plane wave, we can express its
amplitude as

|ei(k·x−ωt)| = etIm(ω).

Since the physical wave satisfies Im(ω) = 0, its amplitude is equal to 1 for all times t. On
the contrary, the numerical wave will have in general Im(ωh) 6= 0. Then, we say that the
scheme is non dissipative if Im(ωh) = 0, whereas it is dissipative if Im(ωh) < 0. To give a
quantitative estimate of the dissipation errors, we will compute Im(ωP,h) and Im(ωS,h).

Numerical results

In Tables 1 and 2 we report the values of dissipation errors for different values of the
polynomial degree and the sampling ratio. The results reported refer only to the contin-
uous case. Numerical tests performed with discontinuous approximations display similar
values. Since these values are all near machine precision we can state that the analysed
schemes do not suffer from dissipation errors.

SE-Hex SE-Tet

N Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h)

2 -4.124e-16 -5.534e-16 1.712e-17 1.468e-17

4 -3.913e-16 7.401e-15 -2.078e-16 1.339e-16

6 -4.259e-18 1.556e-16 -1.504e-17 -2.065e-16

Table 1: Dissipation error for N = 2, 4, 6 and δ = 0.2 for continuous spectral elements
(SE) on both hexahedral (Hex) and tetrahedral (Tet) grids.

SE-Hex SE-Tet

δ Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h)

0.4 -2.041e-17 3.228e-17 1.016e-16 -6.736e-16

0.2 -3.913e-16 7.401e-15 -2.078e-16 1.339e-16

0.1 -2.076e-16 1.011e-16 1.297e-17 -7.022e-17

0.05 -3.432e-17 1.073e-16 -2.547e-17 -5.996e-17

Table 2: Dissipation error for δ = 0.4, 0.2, 0.1, 0.05, N = 4, for continuous spectral elements
(SE) on both hexahedral (Hex) and tetrahedral (Tet) grids.

6 Fully-discrete formulation: dispersion and dissipation anal-
ysis

In this section we investigate dispersion and dissipation behaviours of the solution of the
fully-discrete problem when the leap-frog time integration scheme is applied to the semi-
discrete problem (22). The latter is a typical choice for time integration in the framework
of computational seismology, see for instance [9, 15, 20]. Substituting (21) with U = 1
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into (24) we obtain

M(e−iωtj+1 − 2e−iωtj + e−iωtj−1)
U0

∆t2
+Ke−iωtjU0 = 0, j = 1, ..., NT − 1. (33)

The above system can be rewritten as

M(2− e−iω∆t − eiω∆t)
U0

∆t2
= KU0.

Now, using the following relation

2− e−iω∆t − eiω∆t = 2(cos(ω∆t)− 1) = 4 sin2

(
ω

∆t

2

)
,

we obtain a generalized eigenvalues problem of the form

KU0 = ΛMU0,

where the eigenvalues Λ are related to the angular frequency of the grid ωh through the
relation

Λ =
4

∆t2
sin2(ωh

∆t

2
), ωh =

2

∆t
arcsin(

∆t

2

√
Λ).

The same result can be obtained by applying the leap-frog method to (30).
Now the dispersion and the dissipation errors can be computed as described in Section 5.

Numerical results

We present the grid dispersion and dissipation errors for the fully discrete approximation,
varying both the parameters N , δ, θ, φ and the time step ∆t. In the following, for brevity,
we will present only the results related to the DGSE discretization. Similar results can be
obtained with the continuous approach.

We first address the behaviour of the dispersion error by varying the polynomial degree
N . In particular, we compute the dispersion errors versus N for different time steps ∆t,
fixing the values of velocities, sampling ratio and incident angles as cP = 1, cS = 0.5,
δ = 0.2 and φ = θ = π/4. In Figure 7 we observe that as ∆t goes to zero we retrieve
the exponential convergence as already observed in the semi-discrete case. Indeed, for
sufficiently small values of ∆t, the following asymptotic relation holds

ωh ≈
√

Λ +O(∆t2),

see [3]. Thus ωh decays as in the semi-discrete case until the term ∆t2 becomes dominant.
In Figure 8 we compare the behaviour of the fully discrete scheme obtained on both
hexahedral and tetrahedral grids using ∆t = 0.001. We notice that the same level of
accuracy is obtained with both grids for a polynomial degree N ≥ 5.

Next, we analyse the dispersion error with respect to the sampling ratio δ, using N = 4.
As ∆t approaches zero, the fully-discrete curves recover the semi-discrete ones (see Figure
9). In Figure 10 we compare the results obtained with both hexahedral and tetrahedral
elements with a time step ∆t = 0.001. We observe that for δ ≤ 0.1, i.e., ten points per
wavelength, both methods retain the same level of accuracy.

Finally, in Table 3 and 4 we report the computed values of the dissipation errors with
a fixed value ∆t = 0.001, varying the polynomial degree N and the sampling ratio δ,
respectively. The results obtained show that dissipative behaviours are negligible also for
the fully-discrete formulation, as expected from the results obtained in [22, 3].
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Figure 7: Dispersion errors eP (left) and eS (right) as a function of N , using discontinuous
spectral elements on both hexahedral (top) and tetrahedral (bottom) grids. The contin-
uous lines refers to the semi-discrete approximation, the dotted lines refers to the fully
discrete approximation with ∆t = 0.01, 0.001, 0.0001.

DGSE-Hex DGSE-Tet

N Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h)

2 -1.070e-15 5.094-15 -1.595e-15 6.839e-16

4 -7.548e-15 1.876e-14 -9.681-15 3.392e-14

6 3.044e-15 4.390e-14 -8.898e-14 -6.686e-14

Table 3: Dissipation errors for P- and S-waves: N = 2, 4, 6, δ = 0.2 and ∆t = 0.001.
Discontinuous spectral elements (DGSE) on both hexahedral (Hex) and tetrahedral (Tet)
elements.
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Figure 8: Dispersion errors eP (left) and eS (right) as a function of N with a time step
∆t = 0.001, using discontinuous spectral elements (DGSE) on both hexahedral (Hex) and
tetrahedral (Tet) grids.

DGSE-Hex DGSE-Tet

δ Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h)

0.4 -1.745e-15 -6.608e-15 6.423e-13 5.115e-14

0.2 -7.549e-15 2.351e-14 -9.681-15 3.392e-14

0.1 -2.584e-14 2.063e-14 9.7423e-15 -5.749e-14

0.05 -2.664e-14 3.515e-15 -2.233e-15 -4.311e-14

Table 4: Dissipation errors for P- and S-waves for δ = 0.4, 0.2, 0.1, 0.05, N = 4 and
∆t = 0.001. Discontinuous spectral elements (DGSE) on both hexahedral (Hex) and
tetrahedral (Tet) elements.
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Figure 9: Dispersion errors for P- and S-waves as a function of δ using discontinuous
spectral elements (DGSE) on hexahedral (Hex) and tetrahedral (Tet) grids, with a fixed
polynomial degree N = 4. The continuous lines refers to the semi-discrete approximation,
the dotted lines refers to the fully discrete approximation with ∆t = 0.01, 0.001, 0.0001.
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Figure 10: Dispersion errors eP (left) and eS (right) versus δ, fixing N = 4 and ∆t = 0.001.
Discontinuous spectral elements (DGSE) on both hexahedral (Hex) and tetrahedral (Tet)
grids.

7 Conclusions

In this paper we have presented a comprehensive dispersion and dissipation numerical
analysis for three dimensional elastic wave propagation problems discretized using (both
discontinuous and continuous) spectral element methods on both hexahedral and tetra-
hedral grids. Our analysis has been applied to the semi-discrete and the fully-discrete
formulation, the latter obtained using the leap-frog time integration scheme. The results
obtained show that all the considered techniques retain low dispersion and dissipation
errors. In particular, we can conclude that :

- for both continuous and discontinuous spectral element methods the computed dis-
persion errors on hexahedral meshes are much lower than the corresponding ones
computed on tetrahedral meshes;

- both continuous and discontinuous spectral element methods show negligible disper-
sion errors (i.e., less than 10−6),provided that a polynomial degree N ≥ 4 and more
than 5 (10 resp.) points per wavelength are employed on hexahedral (tetrahedral
resp.) grids;

- the leap-frog time integration scheme does not introduce any further significant
dispersion and dissipation errors to those arising from space discretization. Indeed,
the error curves follow the ones obtained in the semi-discrete case until the time
discretization error becomes dominant.
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Figure 11: Reference tetrahedron

A Basis functions for tetrahedral elements

We consider the reference tetrahedron ÊT and the collapsed reference system (η1, η2, η3) as
defined in Section 3. Identifying with A, B, C and D the vertices (−1,−1,−1), (−1, 1,−1),
(1,−1,−1) and (−1,−1, 1) (see Figure 11), respectively, the basis functions for the space
PN(ÊT ) have the following form

Vertex A :

(
1− η1

2

)(
1− η2

2

)(
1− η3

2

)
,

Vertex B :

(
1 + η1

2

)(
1− η2

2

)(
1− η3

2

)
,

Vertex C :

(
1 + η2

2

)(
1− η3

2

)
,

Vertex D :

(
1 + η3

2

)
,

Edge AB :

(
1− η1

2

)(
1 + η1

2

)
P 1,1
p−1(η1)

(
1− η2

2

)p+1(1− η3

2

)p+1

, 0 < p < N,

Edge AC :

(
1− η1

2

)(
1− η2

2

)(
1 + η2

2

)
P 1,1
p−1(η2)

(
1− η3

2

)p+1

, 0 < p < N,

Edge BC :

(
1 + η1

2

)(
1− η2

2

)(
1 + η2

2

)
P 1,1
p−1(η2)

(
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2

)p+1

, 0 < p < N,

Edge AD :

(
1− η1

2

)(
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2

)(
1− η3

2

)(
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2

)
P 1,1
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Edge BD :

(
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2

)(
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2

)(
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2

)(
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2
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Edge CD :

(
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2

)(
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2

)(
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2

)
P 1,1
p−1(η3), 0 < p < N,

23



Face ABC :

(
1− η1

2

)(
1 + η1

2

)
P 1,1
p−1(η1)

(
1− η2

2

)p+1(1 + η2

2

)

P 2p+1,1
q−1 (η2)

(
1− η3

2

)p+q+1

, 0 < p, q, p+ q < N,

Face ABD :

(
1− η1

2

)(
1 + η1

2

)
P 1,1
p−1(η1)

(
1− η2

2

)p+1(1− η3

2

)p+1

P 2p+1,1
q−1 (η3)

(
1 + η3

2

)
, 0 < p, q, p+ q < N,

Face ACD :

(
1− η1

2

)(
1− η2

2

)(
1 + η2

2

)
P 1,1
p−1(η2)

(
1− η3

2

)p+1

P 2p+1,1
q−1 (η3)

(
1 + η3

2

)
, 0 < p, q, p+ q < N,

Face BCD :

(
1 + η1

2

)(
1− η2

2

)(
1 + η2

2

)
P 1,1
p−1(η2)

(
1− η3

2

)p+1

P 2p+1,1
q−1 (η3)

(
1 + η3

2

)
, 0 < p, q, p+ q < N,

Interior :

(
1− η1

2

)(
1 + η1

2

)
P 1,1
p−1(η1)

(
1− η2

2

)p+1(1 + η2

2

)

P 2p+1,1
q−1 (η2)

(
1− η3

2

)p+q+1(1 + η3

2

)
P 2p+2q+1,1
r−1 , 0 < p, q, r, p+ q + r < N,

where Pα,βp is the Jacobi polynomial of degree p and parameter α and β, see [18].
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