
MOX–Report No. 18/2012

Prescription of general defective boundary conditions
in fluid-dynamics

Formaggia, L,; Vergara, C.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





Prescription of general defective boundary conditions

in fluid-dynamics ∗

L. Formaggia1, C. Vergara2

April 10, 2012

1 MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

luca.formaggia@polimi.it

2 Dipartimento di Ingegneria dell’Informazione e Metodi Matematici
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Abstract

This work reviews and extends to a more general setting some strategies
to impose defective boundary conditions to fluid-dynamic problems inves-
tigated by the authors in the last years. We focus here to the steady Stokes
problem as a paradigm for the unsteady and non-linear cases. We show
the well posedness of the proposed approaches and discuss their relative
benefits.

1 Introduction and motivation

A major attention has been paid lately to computational tools to give answers
to medical doctors and bio-engineers on the behavior of the cardiovascular envi-
ronment (see, e.g., [10, 12, 13]). These tools usually need to compute the blood
flow in major arteries. To obtain significant patient-specific results, two are the
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crucial points: i) the reconstruction of the real geometry of the artery at hand,
to build a patient-specific computational domain, and ii) the prescription of suit-
able boundary conditions at the artificial sections that are necessarily introduced
when selecting the domain of interest.

This work is motivated by the second aspect, namely the problem of the
prescription of appropriate boundary conditions. Indeed, in this type of appli-
cations usually one has at disposal only ”defective” data, typically flow rates
or mean pressure, coming either from measurements or from the coupling with
reduced models (see, for instance [12]). This leads to the need of prescribing on
one or more sections Σ ⊂ ∂Ω a condition of the type

αρf

∫

Σ
u · n dσ +

1 − α

|Σ|

∫

Σ
(−p+ δµ (∇u n) · n) dσ = M, (1)

where α ∈ [0, 1] and M are given data and ρf is the fluid density, whilst δ can
assume the values 0 or 1. The first integral on (1) is the flow rate. As for the
second term, for δ = 0 we have the mean pressure, whilst for δ = 1 the mean

normal component of the normal stress (in the following we indicate it simply by
mean normal stress). The parameter α has been introduced to consider a general
defective boundary condition, which includes two classical defective conditions,
namely the flow rate (α = 1) and the mean pressure or normal stress condition
(α = 0). These cases have been tackled in the context of Navier-Stokes equations
in [17, 7, 3, 16] (even with fluid-structure interaction, see [5]) and also applied
to practical haemodynamic problems, like in [19].

Here, we consider the general condition (1) for steady Stokes flow, since the
main characteristics of the problem may already be put into evidence in this
simplified setting. For the sake of simplicity, we also consider (1) applied only
on a single section of the boundary, the extension to multiple sections being
immediate.

Remark 1.1 As observed in [17, 21] for the case of the flow rate, a vectorial
defective boundary condition could be also considered. For the general case,
this is obtained by considering, together with condition (1), also the tangential
conditions

αj ρf

∫

Σ
u · τ j dσ +

1 − αj

|Σ|

∫

Σ
δµ (∇u n) · τ j dσ = Mj , j = 1, 2,

for suitable αj and Mj. This could be the case, for example, of a coupling
with a reduced 1D model where also information about the tangential velocity is
included. However, for the sake of exposition, in what follows we focus just on
condition (1).

The meaning of an 0 < α < 1 is manifold. For instance in the case of
coupling with reduced models of the cardiovascular system, like the classical
Windkessel model, α may be related to the resistance R of the peripheral flow,
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by the relation α = R
R+1 . Another interpretation of α could be related to the

reliability of flow rate and pressure measurements obtained on the same section
Σ. If we have both measurement at disposal we can take this into account by
weighting them in a different manner.

In this work, we review and compare four possible treatment of condition
(1). In particular, in Section 2, we introduce the problem, whilst in Section 3,
we present four different strategies for its numerical treatment. Section 4 gives
a critical comparison of the various methodologies.

2 Preliminaries

Let Ω ⊂ R
d, d = 2, 3, be an open bounded domain with Lipschitz boundary, and

let Σ ⊂ ∂Ω a measurable and connected portion of its boundary. We consider
the following steady-Stokes problem:

Given the scalars α ∈ [0, 1] and M and the function f ∈ L2(Ω), find u ∈
V ⊂ H1(Ω) and p ∈ Q = L2(Ω), such that





µ△u + ∇p = f a.e. in Ω,
∇ · u = 0 a.e. in Ω,
u = 0 on ΓD,

µ∇u n = 0 on ΓN ,

α ρf

∫
Σ u · n dσ + 1−α

|Σ|

∫
Σ(−p+ δµ (∇u n) · n) dσ = M,

(2)

where µ > 0 is the constant viscosity and ΓN and ΓD two non overlapping
portions of boundary, such that ΓN ∪ ΓD ∪ Σ ≡ ∂Ω. The Neumann portion of
the boundary is required to give meaning to the problem since the divergence
free constraints leads to ∫

∂Ω
u · n dσ = 0,

and the absence of a Neumann boundary would reduce (1) to a mean stress
condition for any value of α > 0 and would lead to a non solvable problem for
α = 1 and M 6= 0. For this reason we require here that |ΓN | > 0. This condition
is not necessary anymore if we consider more than one artificial section where a
defective condition of the type (1) is imposed.

Of course, problem (2) has not a unique solution. Among all possible solu-
tions, we focus on those obtained by making the following hypothesis.

Assumption 1 The normal stress on Σ is aligned with the normal direction
and it is constant over the section, that is

−pn + µ∇u n = cn on Σ, (3)

for a suitable c = c(α) ∈ R.
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We have the following result

Lemma 2.1 Under Assumption 1, there exists a unique scalar c such that prob-
lem (2) admits a unique solution, for δ = 1.

Proof. In [7] and [15] the authors have demonstrated the well posedness for the mean
stress and the flow rate condition problems, respectively (both satisfying Assumption
1). We consider then just the case 0 < α < 1. We can construct the two problems





−µ△u0 + ∇p0 = f a.e. in Ω,
∇ · u0 = 0 a.e. in Ω,
u0 = 0 on ΓD,

µ∇u0 n = 0 on Σ ∪ ΓN ,

(4)

and 



−µ△u1 + ∇p1 = 0 a.e. in Ω,
∇ · u1 = 0 a.e. in Ω,
u1 = 0 on ΓD,

µ∇u1 n = 0 on ΓN ,

−p1n + δµ (∇u1 n) = n on Σ.

(5)

The solution (u, p) of (1) may be build by (u, p) = (u0, p0) + γ(u1, p1), where γ =
M + (α− 1)s0 − αq0

α(q1 − 1) + 1
, having set, for i = 0, 1,

qi =

∫

Σ

ui · n dσ, and si = |Σ|−1

∫

Σ

(−pi + δµ (∇ui n) · n) dσ.

Indeed, we may verify easily that (u, p) satisfies the given problem. We only need to
ensure that α(q1 − 1) + 1 6= 0. To do this, we write the weak formulation of (5) and we
take u1 as test function. We obtain

µ

∫

Ω

∇u2
1 dx −

∫

Σ

(−p1n + δµ (∇u1 n)) · u1 dσ = µ‖∇u1‖
2 −

∫

Σ

u1 · n dσ,

which leads to q1 = µ‖∇u1‖
2 > 0. This, together with 0 < α < 1, implies α(q1−1)+1 6=

0.
We observe also that the solution is unique under Assumption 1. Indeed, by sup-

posing that there exist two solutions (u1, p1) and (u2, p2) of problem (2), we obtain that
the difference (w, π) := (u2 − u1, π2 − π1) solves the following problem





−µ△w + ∇π = 0 a.e. in Ω,
∇ · w = 0 a.e. in Ω,
w = 0 on ΓD,

µ∇w n = 0 on ΓN ,

α
∫
Σ

w · n dσ + (1 − α)(c2 − c1) = 0,

(6)

where we have used (3) with c = c1 and c = c2, respectively. Then, by multiplying (6)1
by w, integrating over Ω, integrating by parts and using Assumption 1 and condition
(6)5, we get

µ‖∇w‖2 = −(c2 − c1)
2 1 − α

α
,

which leads to w ≡ 0 and c2 = c1. �
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Remark 2.2 Even if the splitting given by (4) and (5) gives us a direct way to
solve problem (2), this construction may be computational expensive when we ap-
ply defective boundary conditions on more than one boundary section. Moreover,
it is not trivially extensible to the time-dependent or non-linear problems. This
justifies the search of alternative strategies, which are described in the following
sections.

3 Variational strategies

In this Section we review four strategies in view of the numerical solution of
system (2). To this aim, we set

V := {v ∈ H1(Ω) : v|ΓD
= 0},

and use the following notation for scalar functions v and w, vector functions g

and h, and tensor functions A and B

(v, w) :=

∫

Ω
v w dx, (g,h) :=

∑

j

∫

Ω
gjhj dx, (A,B) :=

∑

i,j

∫

Ω
AijBij dx,

‖v‖2
Σ :=

(∫

Σ
v dσ

)2

, ‖g‖2
Σ :=

(∫

Σ
g · n dσ

)2

,

and the L2(Ω)− norms ‖ · ‖ follow as usual. We introduce also the following
bilinear forms

a(v,w) := µ

∫

Ω
∇v : ∇w dσ, b(q,v) := −

∫

Ω
q∇ · v dσ.

In view of the algebraic setting, we introduce two inf-sup compatible finite
element spaces Vh ⊂ V and Qh ⊂ Q, whose basis functions are ϕi and ψl, respec-
tively. We use also the following algebraic variables: Aij := a(ϕj ,ϕi), Bil :=
b(ψl,ϕi), (MΣ)ij :=

∫
Σ ϕj · n dσ

∫
Σ ϕi · n dσ, F i := (f ,ϕi) and (F Σ)i :=∫

Σ ϕi ·n dσ. Finally, with U i and P i we indicate the components of the unknown
velocity and pressure vectors.

3.1 Classical variational approach

This strategy is based on writing the weak formulation of problem (2) and by
exploiting Assumption 1 (see [20]). We consider first the case δ = 1. We observe
that for α ∈ [0, 1), thanks to Assumption 1, from condition (1) we have

c =
M

1 − α
−

αρf

1 − α

∫

Σ
u · n dσ. (7)

From the momentum equation, we have, for all v ∈ V ,

(∇u,∇v) − (p,∇ · v) +

∫

Σ
(pn − µ∇u n) · v dσ = (f ,v),
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where we have exploited the homogeneous boundary conditions on ∂Ω\Σ. Then,
thanks to Assumption 1, we have

(∇u,∇v) − (p,∇ · v) − c

∫

Σ
v · n dσ = (f ,v),

which leads, owing to (7), to the following variational formulation, holding for
α ∈ [0, 1):

Given two scalars α ∈ [0, 1) and M and f ∈ L2(Ω), find u ∈ V and p ∈ Q

such that
{
a(u,v) + b(p,v) +

α ρf

1−α

∫
Σ u · n dσ

∫
Σ v · n dσ = (f ,v) + M

1−α

∫
Σ v · n dσ,

b(q,u) = 0,
(8)

for all v ∈ V and q ∈ Q.

Theorem 3.1 Problem given by (8) admits a unique solution.

Proof. By choosing ‖v‖V := ‖∇v‖, the coercivity of the bilinear form at the left

hand side of (8) is trivially obtained by noticing that (
∫
Σ

v · n dσ)2 ≥ 0, whilst the

continuity of this form and of functional at the right hand side follows directly from

the trace inequality ‖v‖Σ . ‖∇v‖ (see, e.g., [14]). The related inf-sup condition follows

also immediately by means of classical arguments. �

In the case α = 0, from problem (8) we obtain the so-called do-nothing

formulation, proposed in [7] for the prescription of a mean pressure condition,
given by

1

|Σ|

∫

Σ
(−p+ δ µ(∇u n) · n) dσ = M,

with δ = 0. However, as pointed out in [18], this formulation is consistent just
for the case δ = 1. In general, we notice that the case δ = 0 can not be treated
for any value of α, since it would lead to a non consistent formulation. We also
observe that with this approach is not possible to treat the case α = 1 since (7)
does not hold anymore.

From the algebraic point of view, we obtain the following linear system

[
A+ |Σ|

α ρf

1−α
MΣ BT

B 0

] [
U

P

]
=

[
F + |Σ|M

1−α
F Σ

0

]
.

This system has the classical form of a saddle-point problem and its resolvability
is guaranteed by the compatibility of spaces V h and Qh.

3.2 Augmented approach

For α > 0, we consider the following augmented system
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Given f ∈ L2(Ω) and two scalars M and R, find λ ∈ R, u ∈ V and p ∈ Q,
such that 




a(u,v) + b(p,v) + λ
∫
Σ v · n dσ = (f ,v),

b(q,u) = 0,

ψ
∫
Σ u · n dσ − ψ 1−α

αρf
λ = ψ M

αρf
,

(9)

for all v ∈ V , q ∈ Q and ψ ∈ R. We observe that we have added one scalar
equation and one scalar unknown to the weak formulation of the problem. In
the next result, we show the consistency and well-posedness of system (9).

Proposition 3.2 System (9) admits a unique solution [u, p, λ] for all α > 0.
Moreover, u and p are also solution of problem (2) in a distributional sense.

Proof. Rewrite system (9) as follows




a(u,v) + b(p,v) + c(λ,v) = (f ,v)
b(q,u) = 0

c(ψ,u) + d(λ, ψ) = 1
αρf

ψM,

where c(ψ,v) := ψ
∫
Σ

v · n dσ and d(ψ, ζ) := − 1−α
αρf

ψζ. It is known that form b(·, ·)

satisfies an inf-sup condition on Q×H1
0(Ω), that is there exists β1 > 0 such that for all

q ∈ Q, there is a v∗ ∈ H1
0(Ω) such that

b(q,v∗) ≥ β1 ‖v
∗‖H1‖q‖.

Moreover, in [16] it has been shown that the bilinear form c(ψ,v) satisfies an inf-sup
condition when v is restricted to V div = {w ∈ V : b(q,w) = 0, ∀w ∈ V }, that is there
exists β2 > 0 such that for all ψ ∈ R, there is a ṽ ∈ V div such that

c(ψ, ṽ) ≥ β2 ‖ṽ‖H1 |ψ|.

Now, given any q ∈ Q and ψ ∈ R different from zero, we may take v := v∗ + ṽ to have

b(q,v) + c(ψ,v) ≥ β ‖v‖V (‖q‖ + |ψ|),

where β := min{β1, β2}.
Moreover, the bilinear form d(·, ·) is always non-positive, for all α > 0. Therefore,

the existence of a unique solution of system (9) follows from the general theory of
saddle-point problems (see, e.g., [1]).

Take now any v ∈ D(Ω) = C∞
0 (Ω). From (9)1, by contro-integrating by parts, we

obtain
< −µ△u + ∇p− f ,v >= 0

by which −µ△u + ∇p − f = 0 a.e. in Ω. Analogously, (9)2 provides ∇ · u = 0 a.e. in
Ω. If we take now any v ∈ C∞

0 (Ω) with v|ΓD
= 0, and exploit the previous results, we

can write (formally) that
∫

Σ∪ΓN

(µ∇u · n − pn) · v dγ + λ

∫

Σ

v · ndγ = 0,

which, thanks to Assumption 1, implies necessarily that

λ = (pn − µ∇u n) · n on Σ. (10)

Equality (10) , together with the last of (9), tells us that (1) is satisfied.

�
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Remark 3.3 In the case α = 1 we obtain nothing but the Lagrange multipliers
approach proposed in [3] to manage a flow rate condition. In this case, the
Lagrange multiplier is λ.

Remark 3.4 By multiplying (9)3 by α and by taking α = 0, we obtain from (9)
two separate blocks, one involving [u, p] and one λ. Solving the last equation,
we obtain λ = M , which, substituted in the momentum equation, leads to the
do-nothing approach proposed in [7].

From the algebraic point view, the augmented formulation with δ = 1 and
α > 0 reads 


A BT F T

Σ

B 0 0
F Σ 0 −1−α

αρf







U

P

Λ


 =




F

0
1

αρf
M


 ,

where Λ is the approximation of λ.
In the case δ = 0, relation (10) still holds, so that system (9) for α > 0

becomes





a(u,v) + b(p,v) + λ
∫
Σ v · n dσ = (f ,v)

b(q,u) = 0

ψ
∫
Σ u · n dσ − ψ 1−α

|Σ|αρf

∫
Σ µ(∇u n) · n dσ − ψ 1−α

αρf
λ = ψ M

αρf
,

for all v ∈ V , q ∈ Q and ψ ∈ R, and the system looses its saddle point structure.
In this case the algebraic formulation becomes




A BT F T
Σ

B 0 0
F Σ − 1−α

αρf
G 0 −1−α

αρf







U

P

Λ


 =




F

0
M

αρf


 ,

with Gi := 1
|Σ|

∫
Σ µ(∇ϕi n) · n dσ.

3.3 Control-based approach

In this Section we propose to prescribe condition (1) through the minimization
of a suitable functional and the choice of a proper control variable, as done in
the optimal control approach for PDE’s. In particular, we generalize here what
done in [4] for the particular cases α = 0 and α = 1.

3.3.1 Minimization problem

The idea is based on Assumption 1, that is on the existence on a unique (but
unknown) scalar c which guarantees the satisfaction of (1). Therefore, we can
think to look for the constant Neumann boundary condition k ∈ A, which plays
the role of control variable, such that the distance between the left hand side of
(1) and the datum M is minimal in some norm. Let A be the admissible set
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for the control variable, given by A := {k ∈ R : |k| ≤ C}, for a given constant
C > 0. We introduce the following functional

J (v, q; k) :=
1

2

(
ρf α

∫

Σ
v · n dσ +

1 − α

|Σ|

∫

Σ
(−p+ δ µ(∇u n) · n)dσ −M

)2

,

and we consider the following minimization problem.

Problem 1 Given two scalars α ∈ [0, 1] and M and f ∈ L2(Ω), find u ∈ V , p ∈
Q and k ∈ A, which satisfy

min
v,q∈V ×Q

J (v, q; k),

under the constraint given by the state problem

{
a(u,v) + b(p,v) + k

∫
Σ v · n dσ = (f ,v),

b(q,u) = 0,
(11)

for all v ∈ V and q ∈ Q.

We observe that functional J depends, through the solution of the state
problem, on the control variable k.

We have the following

Theorem 3.5 Under the assumption that u ∈ H2(Ω)∩V and p ∈ H1(Ω), there
exists at least a minimizer to the optimization Problem 1.

Proof. For a given k ∈ A, from f ∈ L2(Ω), the assumption u ∈ H2(Ω) ∩ V and
p ∈ H1(Ω) is satisfied under some restrictions on the regularity of ∂Ω, see, e.g., [6]. In
particular, the solution of the state problem depends with continuity on the data (and
in particular on k). Indeed, we have

‖u‖H2(Ω) + ‖p‖H1(Ω) . ‖f‖L2(Ω) + |k| ≤ ‖f‖L2(Ω) + C. (12)

Then, we can build two maps u : R → H2(Ω) ∩ V and p : R → H1(Ω) which, given a
scalar k, return u = u(k) and p = p(k) solutions of the state problem. Thus we can set
J (k) = J (u(k), p(k); k).

For k ∈ A, we observe that the fact that u ∈ H2(Ω) and p ∈ H1(Ω) implies, in
particular, u ·n|Σ ∈ L2(Σ), (∇u n) ·n|Σ ∈ L2(Σ) and p|Σ ∈ L2(Σ). Then J is bounded
and infk∈A J (k) ∈ R, so that there exists a sequence kn ∈ A (converging to k̄ ∈ A)
such that limn→∞ J (kn) = infk∈A J (k). Since the bound (12) on un := u(kn) and
pn := p(kn) is independent of kn, there exists two sub-sequences (denoted again with
un and pn) weakly converging to ū ∈ H2(Ω) in the H2 norm and to p̄ ∈ H1(Ω) in the
H1 norm, respectively. It is easy to see that ū and p̄ satisfy the state problem with k̄

as Neumann condition on Σ.
Now, the weak convergence of un in H2(Ω) implies the strong convergence in H1(Σ),

which in particular implies that both un ·n and (∇un n) ·n strongly converge in L2(Σ).
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In the same way, we observe that the weak convergence of pn inH1(Ω) implies the strong
convergence in L2(Σ). Then, we have

J (k̄) = 1
2

(
ρf R

∫
Σ

ū · n dσ + 1
|Σ|

∫
Σ
(−p̄+ δ µ(∇ū n) · n)dσ −M

)2

=

= 1
2 limn→∞

(
ρfR

∫
Σ

u(kn) · n dσ + 1
|Σ|

∫
Σ
(−p(kn) + δµ(∇u(kn)n) · n)dσ −M

)2

≤

= limn→∞ J (kn) = infk∈A J (k),

which shows that k̄ realizes the infimum of J . This concludes the proof. �

Remark 3.6 In [4], the authors provided, through a different proof, an existence
result just for the case α = 0. Here we have provided a new result which holds
for all values of α.

3.3.2 First order optimality conditions

In view of the numerical solution of Problem 1, we follow the standard Lagrange
multiplier approach. By considering the Lagrangian functional, obtained by
adding to J the state problem (11) as a constraint, and by imposing that its
gradient is zero, we obtain the Karush-Kuhn-Tucker (KKT) conditions, formed
by the state and the adjoint problems and by the optimality condition, as follows:

Given f ∈ L2(Ω) and two scalars M and α, find k ∈ A, u ∈ V , p ∈ L2(Ω),λu ∈
V and λp ∈ L2(Ω), such that

State pbl :

{
a(u,v) + b(p,v) + k

∫
Σ v · n dσ = (f ,v),

b(q,u) = 0;
(13a)

Adj pbl :





a(v,λu) + b(λp,v)+

+
(
ρf α

∫
Σ u · n dσ + 1−α

|Σ|

∫
Σ δµ(∇u · n) · n dσ

)
×

×
(
ρf α

∫
Σ v · n dσ + 1−α

|Σ|

∫
Σ δµ(∇v · n) · n dσ

)
+

−1−α
|Σ|

∫
Σ p dσ

(
ρf α

∫
Σ v · n dσ + 1−α

|Σ|

∫
Σ δµ(∇v · n) · n dσ

)
=

= M
(
ρf α

∫
Σ v · n dσ + 1−α

|Σ|

∫
Σ δµ(∇v · n) · n dσ

)
,

b(q,λu)+

−
(
ρf α

∫
Σ u · n dσ + 1−α

|Σ|

∫
Σ δµ(∇u · n) · n dσ

)
1−α
|Σ|

∫
Σ q dσ+

+1−α
|Σ|

∫
Σ p dσ

1−α
|Σ|

∫
Σ q dσ = −M 1−α

|Σ|

∫
Σ q dσ;

(13b)

Opt. cond :

∫

Σ
λu · n dσ = 0, (13c)

for all v ∈ V and q ∈ Q, and where λu and λp are the Lagrange multipliers. We
remark that this formulation holds for all values of α ∈ [0, 1] and δ.
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From the algebraic point of view, system (13) becomes




A BT 0 0 F T
Σ

B 0 0 0 0
C D A BT 0

DT (1−α)2

|Σ|2
MP

Σ B 0 0

0 0 F Σ 0 0







U

P

Λu

Λp

K




=




F

0

M
(
ρfαF Σ − 1−α

|Σ| HΣ

)

M 1−α
|Σ| F P

Σ

0



,

(14)

where C = ρ2
fα

2MΣ + δ
ρf α(1−α)

|Σ| (TΣ + T T
Σ ) + δ2

(1−α)2

|Σ|2
KΣ,

D = −
ρf α(1−α)

|Σ| NΣ − δ
(1−α)2

|Σ|2
SΣ, (TΣ)ij :=

∫
Σ ϕj · n dσ

∫
Σ µ(∇ϕi n) · n dσ,

(KΣ)ij :=
∫
Σ µ(∇ϕj n) · n dσ

∫
Σ µ(∇ϕi n) · n dσ,

(NΣ)il :=
∫
Σ ψl dσ

∫
Σ ϕi · n dσ, (SΣ)il :=

∫
Σ ψl dσ

∫
Σ µ(∇ϕi n) · n dσ,

(MP
Σ )lm :=

∫
Σ ψm dσ

∫
Σ ψl dσ, (HΣ)i :=

∫
Σ µ(∇ϕi n) · n dσ, (F P

Σ)l :=
∫
Σ ψl dσ,

and where (Λu)i and (Λp)i are the components of the finite element approxi-
mations of the Lagrange multipliers, and K the approximation of the control
variable k.

3.4 Approach based on the Nitsche method

The last strategy we consider has been originally proposed in [18], and it is based
on the Nitsche method [9] for general boundary conditions (see [8, 11]).

Let h < 1 be a parameter, which in the finite element setting will be a
characteristic mesh size. We first consider the case δ = 1. Then, for a given
penalization parameter γ > 0, we introduce the following bilinear forms:

aN (u,v) = a(u,v) +
ρf α

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ
u · n dσ

∫

Σ
v · n dσ+

−
ρfαγh

1 − α(1 − ρfγh)

1

|Σ|

[∫

Σ
µ(∇u n) · n dσ

∫

Σ
v · n dσ +

∫

Σ
µ(∇v n) · n dσ

∫

Σ
u · n dσ

]
+

−
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ
µ(∇u n) · n dσ

∫

Σ
µ(∇v n) · n dσ,

bN (q,v) = b(q,v) +
ρfαγ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ
q dσ

∫

Σ
v · n dσ+

+
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ
q dσ

∫

Σ
µ(∇v n) · n dσ,

cN (p, q) = −
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ
p dσ

∫

Σ
q dσ,

(15)

11



and the following linear functionals:

FN (v) =

∫

Ω
f · v dx +

1 − α

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ
v · n dσ+

−
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ
µ(∇v n) · n dσ+

GN (q) =
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ
q dσ.

(16)

We consider the following discrete problem:

Problem 2 Given f ∈ L2(Ω) and M ∈ R, find uh ∈ V h and ph ∈ Qh such
that 




aN (uh,vh) + bN (ph,vh) = F (vh) ∀vh ∈ V h,

bN (qh,uh) + cN (ph, qh) = G(q) ∀qh ∈ Qh.

(17)

We introduce the following norm

‖v‖2
h := ‖∇v‖2 +

ρfα

1 − α(1 − ρfγ h)
|v · n|2Σ, v ∈ H1(Ω). (18)

All the following analysis refers to norm (18) and to constants independent of h
and R.

Theorem 3.7 Suppose that an inf-sup condition holds for the classical Stokes
problem with the velocity field restricted to V h∩H1

0(Ω), that is there exists β > 0
such that for all q ∈ Qh, there is a v ∈ V h ∩ H1

0(Ω) such that
∫
Σ q∇ · v dσ ≥

β‖q‖ ‖∇v‖ (this assumption holds true, for example for the Taylor-Hood and
the MINI elements, see [2]). Then, formulation (17) is consistent with problem
(2), and admits a unique solution. Moreover, the convergence of the numerical
solution towards the continuous one is optimal.

A proof may be found in [18].
The corresponding algebraic formulation reads

[
AN (BN )T

BN CN

] [
U

P

]
=

[
F N

F P
Σ

]
,

whereAN
ij := Aij+

ρf α

1−α(1−ρf γ h)
1
|Σ|MΣ,ij−

ρf α γ h

1−α(1−ρf γ h)
1
|Σ|(TΣ,ij+TΣ,ji)−

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|KΣ,ij ,

BN
il := Bil+

ρf α γ h

1−α(1−ρf γ h)
1
|Σ|NΣ,il+

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|SΣ,il, C

N
lm := − (1−α)γ h

1−α(1−ρf γ h)
1
|Σ|M

P
Σ,lm,

and
F N

i := F i + 1−α
1−α(1−ρf γ h)

1
|Σ|MF Σ,i −

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|MHΣ,i.

12



In the case of δ = α = 0, in [18] it has been proposed to substitute form
aN (·, ·) and functional F (·) with

aP (u,v) := a(u,v) −
1

|Σ|

∫

Σ
µ(∇u n) · n dσ

∫

Σ
v · n dσ,

FP (v) =

∫

Σ
f · v dσ − P

∫

Σ
v · n dσ.

We observe that this formulation is consistent with problem (2) with δ = 0 and
α = 0.

4 Conclusions

In this work we have presented different strategies to prescribe a general defective
boundary condition to the Stokes problem. In particular, we have extended to
a more general setting (α ∈ (0, 1)) the Lagrange multipliers approach presented
in [3] and the control-based approach introduced in [4].

All of such strategies have their advantages and disadvantages. First of
all, we have noticed that some of them cannot be applied in the whole range of
values of α and δ. In Table 1 we summarize the applicability of the four different
methodologies described in this work to the different cases.

α = 0 α = 0 0 < α < 1 0 < α < 1 α = 1
δ = 0 δ = 1 δ = 0 δ = 1

Classical OK OK
Augmented OK OK OK OK

Control OK OK OK OK OK
Nitsche OK OK OK OK

Table 1: Applicability of the different methods leading to a consistent formula-
tion.

We can notice that the control-based approach is most general but gener-
ally is the most expensive one computationally. The Nitsche approach is rather
general and does not introduce any additional unknown, but the boundary con-
dition is satisfied only approximately and needs the tuning of the penalization
parameter.

From the applicative point of view, it is also important to consider which
methods could be implemented using existing solvers without modifications
(modularity). We have not dealt this specific aspect in this work. Yet, from
our experience the Augmented and the Control approaches are the ones that
lend themselves better to a modular implementation than the others [16, 4].
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