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Abstract

We address the coupling of an advection equation with a diffusion-
advection equation, for solutions featuring boundary layers. We consider
non-overlapping domain decompositions and we face up the heterogeneous
problem using an extended variational formulation. We will prove the
equivalence between the latter formulation and a treatment based on a
singular perturbation theory. An exhaustive comparison in terms of so-
lution and computational efficiency between these formulations is carried
out.

Mathematical Subject Classification: 35Q35, 65N55, 656N35, 65F08
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1 Introduction

Subdomain splitting is an interesting path towards multiphysics, i.e. the use of
mathematical models based on different kinds of partial differential equations to
address physical problems of heterogeneous nature in different subregions of a
given computational domain. In this presentation we focus on the framework of



advection-diffusion equations with boundary layer solutions. The complete ellip-
tic advection-diffusion problem is solved only in a small subdomain embodying
the layer, while the reduced hyperbolic model, that is obtained by neglecting
the diffusion term, is used on the remainder of the computational domain.
Gastaldi et al. (see [GQL9I0, GQ89]) analysed this problem and they derived a
suitable set of matching conditions at the interface between subdomains, which
guarantee the well posedness of the heterogeneous problem. Such conditions ex-
press the continuity of the velocity field across the inflow part of the interface (i.e.
the part of interface which is an inflow for the hyperbolic domain) and the con-
tinuity of the fluxes (i.e. the conormal derivatives associated to the differential
operators) across the whole interface, If properly split, these conditions can be
used to numerically solve the problem through a Dirichlet/Neumann-like algo-
rithm. Different kinds of boundary conditions were derived in [Dub93, GHIMO07].
The set of interface conditions proposed in [GQL90| can be formulated in two
ways which are equivalent at continuous level and yield two equivalent Steklov-
Poincaré formulations, but they differ one another in imposing the continuity of
fluxes on the interface. The first set of interface conditions (IC1) enforces the
continuity of fluxes on the whole interface, while the second set (IC2) exploits
the continuity of traces across the inflow interface, so that, there, the continuity
of fluxes is achieved by imposing null normal derivative of the elliptic solution.
A special attention is given in this work to the comparison of the two sets of
interface conditions IC1 and IC2. At discrete level, the formulation of flux conti-
nuity on the inflow interface is responsible for the efficiency of the corresponding
approach, the interface conditions IC2 perform better than IC1, mainly when
the viscosity is small.

More recently ([BFU07, BFUOS8]), an extended variational approach has been
proposed to solve heterogeneous problems, including those coupled problems
featuring different geometrical dimensions. The starting point of this approach
is the reduction of the geometrical dimension of the problem in a part of the
computational domain, motivated by the need of reducing the computational
cost in applications of practical interest. Such geometrical reduction entails
different kinematic assumptions within the different subregions of the domain,
so that a heterogeneous problem arises. This problem is then re-formulated
globally (i.e. on the whole computational domain), by resorting to a saddle-point
approach in which the constraint expresses the continuity of the solution across
either the interface or a subset of it. The associated Lagrange multipliers are the
fluxes across the interface, more precisely, the conormal derivatives associated to
the differential operators defined in the different subdomains. Consequently, the
matching conditions at the interface are identified by writing the Euler-Lagrange
system associated to the saddle-point problem.

In this paper we re-formulate the heterogeneous advection/advection-diffusion
problem in terms of the extended variational formulation. How to choose the
functional spaces and the bilinear forms is suggested by the well-posedness of
the saddle-point problem. A first goal of this paper consists to find out which



interface conditions, alternative to those proposed in [GQL90], are admissible
and lead to a well-posed extended variational formulation. In Section 3 we prove
that the saddle-point problem whose constraint enforces the continuity of the
solution only across the inflow (and not on the whole) interface is well-posed and
the associated Euler-Lagrange equations provide the same interface conditions
given in [GQL90].

In Section 4 the extended variational problem is re-formulated as an interface
problem in terms of Steklov-Poincaré operators. Four possible coupling strate-
gies are analyzed depending on how the interface unknowns are chosen, as traces
of order zero (Dirichlet’s) or one (Neumann’s). They are named DD, NN, DN and
ND, where the first letter identifies the kind of trace (D=Dirichlet, N=Neumann)
used for the hyperbolic solution, the second one that for the elliptic problem.
In Section 5.3 we propose optimal preconditioners for the finite dimensional
counterpart of the extended interface problems. Such preconditioners are built
as inexact factorizations of the primal matrices in which the Schur complement
matrix is replaced by its optimal preconditioner. No preconditioners for ex-
tended problems have been developed so far and it has been proved tat the
proposed preconditioners have good properties. In all cases, the condition num-
ber of the preconditioned matrices are bounded from above independently of the
discretization parameters (grid space and polynomial degree).

The second aim of this work is to set up a systematic comparison between the
heterogeneous approach ([GQL90]) and XVF, from the computational point of
view. We discretize the PDE’s by conforming Spectral Elements and we solve
the interface problems by the preconditioned Bi-CGStab method [vdV03].

The non-conforming discretization of the hyperbolic-elliptic heterogeneous prob-
lem is a matter of current research ([BGQ11]). A paper that deals with a similar
class of problems (anisotropic semidefinite diffusion problems with advection)
is [?], where the authors approximate the solution by Discontinuous Galerkin
methods.

We compare the Steklov-Poincaré approach with all the proposed extended vari-
ational forms for what concerns accuracy, boundedness of the condition number
of the preconditioned matrix, and computational efficiency. In order to analyze
the accuracy, we measure trace and flux jumps across interface between ellip-
tic and hyperbolic solutions. The best accurate approaches are those based on
the Steklov-Poincaré equation and the Dirichlet-Dirichlet version of the XVF,
while both Dirichlet-Neumann and Neumann-Neumann forms are ill-posed for
advection-dominated problems when interface conditions IC1 are considered.
From the computational point of view, the most efficient approaches are those
based on the Steklov-Poincaré equation, as they entail the lowest number of el-
liptic and hyperbolic subproblems at each preconditioned Bi-CGStab iteration.
In conclusion, XVF is a valid alternative to the heterogeneous form proposed in
[GQLI0] from the theoretical point of view. Moreover, it is interesting to see that
XVF provides the same set of interface conditions derived in [GQL90] and then
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Figure 1: Example of a computational domain Q C R? split into two disjoint
subdomains.

the latter approach strengthens the validity of the former one. At discrete level,
Extended Variational Formulation is not so efficient as the Steklov-Poincaré
approach, as a matter of fact the computational complexity of the augmented
linear system associated to XVF is larger than that of Steklov-Poincaré equation.
An outline of the paper is as follows. In Section 2 we introduce the problem
setting and resume known theoretical results about the well-posedness of the
heterogeneous advection/ advection-diffusion problem. In Section 3 we present
and analyse the XVF of the heterogeneous problem, while in Section 4 we write
the interface problem (XIP) associated to XVF. Section 5 is devoted to the dis-
cretization of the XIP, the development and analysis of suitable preconditioners
for XIP and the numerical results comparing Steklov-Poincaré formulation and
XIP.

2 Problem setting

We consider an open bounded domain Q2 ¢ R? (d = 2, 3) with Lipschitz boundary
02, split into two open subsets 21 and {29 such that

ﬁzﬁl Uﬁg, Q1 NQy=0. (1)

Then, we denote by
I'= 00 N9 (2)
the interface between the subdomains (see Fig. 1) and we assume that T' is of

(o]
class C11; T' denotes the interior of T.
Given two scalar functions f and by defined in €2, a positive function v defined

[e]
in 2o UT', a d—dimensional vector valued function b defined in €2 satisfying the
following inequalities:

JpeR: v(x) >y >0, VxeQul

1 (3)
dog € R: bp(x) + idivb(x) >o00>0, Vxe,



we look for two functions u; and wup (defined in Q; and s, respectively) such
that wy satisfies the advection-reaction equation

Ajug = dz’v(bul) + bouy = f, in 4, (4)
while us satisfies the advection-diffusion-reaction equation
Agug = div(—vVug + bug) + byug = f, in Qs. (5)

For each subdomain, we distinguish between the external (or physical) boundary
00NIQy, = 02 \T (for k = 1,2) and the internal one (i.e. the interface) I'. Let
us denote by ny the outward normal unit vector to 92 and by nr the normal

unit vector to I' oriented from ; to g, so that nr(x) = ni(x) = —na(x),
vVx el
Moreover, for any non-empty subset S C 02y, we define:
the inflow part of S: S = {x €S :b(x) ni(x) <0}, (6)
the outflow part of S: S° = {x € S:b(x)-n;(x) >0}. (7)

Boundary conditions for problem (4) are assigned on the inflow boundary (9 ).
Then, we set homogeneous Dirichlet boundary conditions on the external bound-
aries:

up =0 on (0Q;\ )™, up =0 on 90y \T. (8)

A crucial issue is the setting of the interface (or transmission) conditions on I'.
In [GQLY0], the heterogeneous problem (4), (5), (8) is closed with the following
interface conditions (that are named IC1)

. ou
up = uy on I'?, —b -nru; = ve—= _b. nrus on L. (9)
al’lp
They express the continuity of the velocity field across the inflow part of the
interface and the continuity of the fluxes across the whole interface.

The final formulation of the heterogeneous problem reads

diV(bul) + b0u1 = f in Ql,
div(—vVug + bug) + bous = f in Qo,
uy = 0 on (891 \F)m
uy =0 on 9 \ T (10)
U] = Us on I'"
b~npu1+u%—b~npu2:0 on I

L Onr

and its solution will be named heterogeneous solution (or else solution of the
heterogeneous problem).



Note that the interface conditions (9) can be equivalently expressed as:

UL = Usg V% =0 on I''"
- Omp ’ (11)
—b - npu; = I/a—ni — b - nprus n [out,

The last set of interface conditions is named IC2.

Let b € [Wl’oo(Q)]f and 2 be either ©; or {23. Thanks to the assumption made
on both € and I', {2 has a Lipschitz continuous boundary, piecewise chl.
Given an open subset ¥ C 99 of class C1'!, whose outward normal unit vector
is denoted by ny, we define the following Hilbert spaces (see [GQL90, QV99])
endowed with their standard norms:

1/2
Ly(E)={v:Z=R: Vb ngpe LX)}, |vllze = </ b n2|”2d2> ’

Hy)? () = {v: L*(%): 35 € HY09): dls=v, 5\ =0},  (13)

= inf =
¥y = el

=)

L% p(Q) = {v € L*(9), div(bv) € L*(Q)}, (14)

)
) 1/2
lollzs, @ = (o122 + Idivibu) 2, 6)
and finally
Xb(Q) = {v € L3, ,(Q) : v e LE(0Q)}, (15)

1/2
ol = (125 + ol
The following result has been proved in [GQL90]:

Theorem 2.1 Assume the following regularity properties on the data:

O and 8 are Lipschitz continuous, piecewise CHY; T is of class OB, (16)

veL™®(Q), be[Whe@)]?, bel™Q), felL*Q).(17)

Finally, assume that (3) holds.

Then there is a unique solution (uy,us) € L*(Q1) x HY(Q) of (10), where:
equations (10)12 hold in the sense of distributions in 0y and Qg, respectively;
boundary condition (10)3 holds a.e. on (9Q1 \ T')"; boundary condition (10)4
holds in HY?(09s); interface condition (10)s holds a.e. on T™, interface con-
dition (10)s holds in (H, égQ(I’))’. Finally, the heterogeneous problem (10) can be
regarded as the limit of a family of globally elliptic variational problems.



Remark 2.1 Other interface conditions have been proposed in the literature to
close system (4), (5), (8). For instance, (see [Dub93|)

—b - npu; = I/% —b-npuy on %,
Onp (18)
’ 8nr anp ’

which are based on absorbing boundary condition theory, or else (see [GHJ02,
GHJIMOT7])

u _Ouy pin, (19)

up =uy onl =
’ anp anp

However, the coupled problem with either one of these sets of conditions ((18),
(19)) cannot be regarded as a limit of the same variational problem as v — 0
in Q. For a survey on this subject we refer to [GHIJM09, CMWO00, Bog02] for
1D problems, to [LNS93] for 2D problems with convection limited to only one
coordinate direction, and to [Dub93, GHJ02, GHIMO07] for 2D problems. 0O

In the next sections we will consider another possible approach to close the
heterogeneous problem (4), (5), (8) based on a saddle-point formulation of the
coupled problem ([BFU07, BFU08]).

The following results will be useful later. (We refer to [GQL90] and [QV94] for
their proof.)

Theorem 2.2 Under the same assumptions on the data as in Theorem 2.1, if
e H-Y2(09) such that /\|8Q§n € L (0Q), the first-order problem

Auy = f in Qq, up =\ on (02)™ (20)
admits a unique solution uy € Xp(£21).
If the Dirichlet condition (20) o is replaced by a flux condition
b -nju; =¢ on (99)™, (21)
with ¢ € (Héf(@(lil”))’, the first-order problem (20)y, (21) is still well-posed.
Theorem 2.3 Under the same assumptions of Theorem 2.1,
1. if A e H%Z(F), the second-order problem

Agug = f in Qo,
up =0 on 02\ T, (22)
Uy = A on T

admits a unique solution in H(Qs);



2. ifpe (Héé2 ), with pyprouw € L(T), the second-order problem

Agug = f in Qo, upg =0 ondQ\T,
Vg—zz =0 onI™, Vg_itlz Cbomgu— g on T (23)
admits a unique solution in Hl(QQ);
5. if p € (Hg(T)), and
bl ooy < 0, 0<eg < 2min{vo, oo} (24)

C:

(where Cy is the constant of the trace inequality ||v]|12(a0,) < Cxllv][m1(0y)>
Vv € HY(Q2)), the second-order problem

Agug = f in o,
ug =0 on 02\ T,

D1ty (25)
v— —b-mnus=p onl

81’12

admits a unique solution in H'(s).

3 Extended Variational Formulation (XVF)

In this section we reformulate the coupled advection /advection-diffusion problem
by regarding the continuity across I''" as a constraint, yielding a saddle-point
problem.

Let the regularity assumptions (3) and (16)-(17) hold on the data.

Let us consider the Hilbert spaces L (I'™) and Xp(£1) defined in (12) and (15),
respectively. Moreover we define

Ay = L2(T), Ay = Hyp (T,

26
V1 :Xb(Ql), VQIHl(QQ), V:‘/l X ‘/2 ( )

/2
The space V', endowed with the graph norm ||v||y = <||vl Hg{b(gl) + ‘|U2||§{1(Q2)) ,
is a Hilbert space, then we set

VY = {v1 € Xp (), v; =0 ae. in (0Q; \ )"} C Vi, (27)

Vy = {vz € H(Q2) : va90,\1) = 0} C V2 (28)



and VY =V x V). We introduce the bilinear form: a: V® x V0 — R :

a(u,v) = /Q div(bul)vldﬂ-i-/ boulvldQ—/F_ b - nru,v,dl
1 n

1951
+/ I/VUQ . vadQ - / UQb . vadQ + / bougvng (29)
Qo Qo 92

— / b- npul’Ung
Tout

where u, = auy + (1 — a)ug, v = avy + (1 — a)ve, « can be either 0 or 1, and
the linear continuous functional F: V? — R :

F(’U) = fudQ + fuodQ2. (30)
(921 Qo

As we will see in the proof of the next Theorem, the choice of the parameter «
is responsible for the setting of interface conditions across the inflow interface,
more precisely, & = 1 (o = 0, resp.) will provide interface conditions (9) ((11),
resp.).

The bilinear form a is continuous. Let us bound ourselves to check only the

integrals on the interface. Since u,v € VO, then uj,v; € L{(I') and b -
Tin

nrujv1dl is therefore bounded.

For the regularity assumptions (17) on b, it holds HY?(T') ¢ L}(T), so that

also the boundedness of the mixed integral / b - nrujvedl’ is guaranteed.
Fout

Finally the integral / b-nrusvedl can be interpreted as a duality pair between
Tin
H%Q(F) and its dual space.
We denote by s an element in A}. Note that the dual space of A is
A =13 p(T") = {s:T" > R: (|b-np|)""/%s € L*(I')} (31)

and the duality between A; and A} can be written as

s = [ s, (32)
Finally, let us define the following bilinear continuous form:
b:VOx A —R: b(v,s) = A (s, (v1 = v2)jpin ) A, (33)

Note that (v1 — v2)|pin is well defined and it belongs to Lg (I'™). As a matter

of fact, vy € H%Q(F) and, since regularity assumptions (16)—(17) hold, its
restriction to I'™ belongs to L (I'™). Then we set:

Z={veV’: b,s)=0, Vsec A},



since b is continuous on V', then Z is a closed subspace of VY and then it is a
Hilbert space with respect to the norm of V.

We are now able to define the saddle-point problem:

seek u e VY t € Al:

a(u,v) +b(v,t) = Fv) Yve VO
b(u,s) =0 Vs € A].

3.1 Well-posedness and Euler-Lagrange equations

Our aim is twofold. From one hand we want to prove the well-posedness of
the saddle-point problem (34). On the other hand we want to characterize the
multiplier ¢ € A} and recover the interface conditions on I' that are hidden in
this formulation.

We begin by defining the following linear and continuous operators:

A:VO— (VY vi(Au,v)y = alu,v) Yu,v € VY,
B:V?— Ay A (ss Bu)a, = b(v,s) Vo€ VO Vs e AL
By definition (33), we have Bv = (v; — va)pin, and Z = ker(B) C VY, i.e.,
Z={veV’: v =uvyae. on ™}

We now introduce the orthogonal of Z: Z+ = {v € VO : (v,2) = 0Vz € Z},
where (-,-) denotes the inner product on V, and the so called polar set of Z=:
(ZHYe ={f € (VY : vi{f,v)v =0 Vv € Z+}. The dual space Z’ of Z can be
identified with (Z+)° (see [Bre74, Dur08]), the latter being a closed subspace of
(V). Finally, we define the linear and continuous operator

TA:Z — 7' yimAu,v)y = v (Au,v)y, Yu,v € Z,

where 7 : (V9) — Z' is the orthogonal projection from (V)" onto Z'.
The following theorem states the well-posedness of the saddle-point problem
(34).

Theorem 3.1 If reqularity assumptions (3) and (16)-(17) hold on the data and
b satisfies the smallness assumption (24), then there exists a unique solution
(u,t) € VO x A} of (34) and the solution u = (ui,us) satisfies the interface
conditions (9) ((11), resp.) when o =1 (o =0, resp.).

Proof. We have seen above that V? and A} are Hilbert spaces, the bilinear
forms a and b are continuous and F € (V). Thus, existence and uniqueness of
solution (u,t) of (34) are ensured if (see [Bre74)):

i) mA is an isomorphism from Z onto Z’,

it) 36 > 0 such that

b
inf sup ﬂ >
sed; pevo [|v][vIsllag

10



Proof of 7). Thanks to the Banach-Necas-Babuska theorem (see, e.g. [EG04]),
mA is an isomorphism from Z onto Z’ iff

ACy > 0: ||7rAully > Collully Yue Z (36)
Vwe Z (a(w,v) =0 Yve Z)=w=0. (37)

Condition (36) is often referred to by saying that A is bounding ([Rud91, Thm
4.15]) and it is equivalent to prove that wA is injective and its range is closed
in Z’', while condition (37) means that the adjoint operator (mA)* of (7A) is
injective.

Let us start by proving that mA is bounding. For any v € Z it holds v, = v = v9
and

vi{mrAu,u)y = a(u,u)

1 1
= / (—divb+b0> uldQ + —/ b - njuldl —/ b - nruldl
(951 2 2 o0 Iin

1 1
—|—/ V|Vu2|2d(2—|—/ <—divb—|—b0> u3dQ — —/b-ngu%df
Q, 0, \2 2 Jr

— / b- npuﬂmdr
Fout

. 1
= oollurllzz ) + minfvo, oo}zl 0y + 5 /(BQ e nuydl
1
1 1 1
+= b-nrufdl — = [ b-nruidl — = [ b-nyuidl
2 Fout 2 an 2 an
1
Y / b- HZU%dF — / b - nrujusdl’
2 Fout Fout
= oollu1]|F2(0,) +min{re, 00 }|uzllf g,
1 1
+—/ b-n1u2+—/ b-np(ul —UQ)QdF
2 (6(2)1\1“)0ut 2 Fout2
> UOHUIHL?(Ql) + min{VOaUO}HU2||H1(QQ)

1 2 2
T <HU1||L%(391) - /r b HF\U2dF> )

where we have used the fact that u; = ug on ' and (uj — uz2)? > (1 — )u? +

(1 —1/e)ud with e = 1/2.

By the trace inequality [luz| r2r) < Cillual|g1(q,), it holds

[ uzl|7 ) < Cf||b\|Loo(r)||u2||§{1(92) and, under assumption (24) we define the
b

positive constant C1 = min{rg, 00} — CbeHLoo(p), so that

1
vi{mAu, )y > oollur[|72 o, + Cilluzllz ) + ZHulH%i(any (38)

11



For any v = (v1,v2) € V we define the norm

/2
lollz = (lenZay) + o2l gy + 10112 oy)) (39)

It is straightforward to prove that 3M > 0 such that |a(u,v)| < M||ullv||v|/z for
any u,v € V°, while (38) says that

3Cy > 0: a(u,u) > Cyl|ul|2 Yu e Z. (40)

We set a(u,v) = a(u,v) — (div(bui),v1)r2(q,), therefore there exists M >0

such that |a(u,v)| < M|ul|p||v||z for any u,v € V. Since ||jv||; < |jv||y for any
v € VO, it holds

div(buy),v
a(u,v) sup a(u,v) > sup (div(bu1),v1)r2(q,
vez [[vllL ~ vez [l

sup ) _ MHUHL

veZ ||U||V

(div(bu),vi)r2@) M a(u,v)
sup - —
nen v vy C2 ez |lvllz

Y]

so that

M1\ a(we)
I+ —+ su > ||div(bu + |lull > Csllully,
( C C)E oy = 1divbun)lizze) + llullz = Callully

where C3 > 0. (36) follows with Cy = CoC3/(Co + M + 1).

In order to prove (37), we start by noting that a(w,v) = 0 for any v € Z, then
we take v = w. By applying (40) we conclude that w = 0 a.e. in Q.

Proof of ii). As a consequence of the Closed Range theorem ([Yos74]) together
with the Open Mapping Theorem, the inf-sup condition (35) is satisfied iff the
operator B is surjective from V onto A;.

For the regularity assumption (16)—(17), it holds that HééQ (') ¢ L (™). Let
A € LE(T™), for any Ay € Héé2(Fi”) we can define \; € L (™) such that
A1 = A+ Ag, solve the differential problems

A1U1 =0 in Ql AQUQ =0 in QQ
vy =0 a.e. on (0Q \ )" vy =0 on 9Oy \ T (41)
V] = A\ a.e. on '™ Vg = Ao on I'm

and define v = (vi,v2). By Theorems 2.2, 2.3 it holds v € VY and Bv =
(v, — ’UQ)‘FM. = Al — Ay = A, l.e. B is surjective and the saddle-point problem
(34) is well-posed.

It remains to prove that the solution u = (uq,us) of (34) satisfies the interface
conditions (9). To this aim, we integrate by parts the first equation of (34). It

12



holds:

a(u,v) + b(v,t) = / (Ajuq)v1dQ — / b - npu,vedl
Ql in

/ (Aguz)vadS) —/ <u% —b- nFuQ) odl’
Qs r\ onr

(42)
— / b - npuqvodl + A <t, (’U1 — U2)|1“in>Al
Fout
— / fordQ + / fodf2 v e VO
Ql QQ
By taking v; € C§°(21), va = 0 first, then vy =0, vy € C§°(Q2), it holds
A1U1 = f a.e. in Ql, A2u2 = f a.e. in QQ. (43)

Let us take now v = 0 and s; € A}, from the second equation of (34) it holds
up = ug a.e. on '™, (44)

that is the interface condition (9);. Finally, starting from (42), for any v € V©,
thanks to (43), it holds

—/ b- npuavadr — / < % —b- Ilr“ng) ’Ugdr

—/ b - npujvedl + A <t, (211 — UQ)‘Fm>A1 =0 Yo € V.
Fout

and, by exploiting the integral on I' as the sum of integrals on I'"* and I'°%, it
holds

—/ b- npuavadl“ — / < % —b- npu2> Ugdr + A <t, (Ul - '1)2)‘1"in>A1
in in anr 1

(45)
8uQ 0
—/ (V——b nrus +b - npu1> vodl' =0 Yo e Vo,
Tout anl"
The interface condition on I'°“! easily reads as
0
b - nru; + yaﬂ —b-nrug =0 in (HééQ(I‘OUt))/, (46)
nr

while the characterization of t € A} depends on « as well as the interface condi-
tion on I'". When o = 1 the multiplier ¢ is

0
t=b-nru; = —Vﬂ—l—b nrug
onr

and the corresponding interface condition on I'"" reads

—V% +b-npug —b-npu; =0 in (HééQ(I‘m))',
anr‘
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while when a = 0 the multiplier ¢ is

8u2
t = = —U/—
0 v anr

and the corresponding interface condition on I'"" reads

Oug : 1/2 i
—v5e=0 i (H A Tim)).

Therefore, when o = 1 we obtain the interface conditions IC1 (9), while when
a = 0 we recover interface conditions IC2 (11).

In view of (44) and the characterization of ¢, it holds u|pin € HY?(I'") and

1/2

te (HY*(D)y. O

From the previous theorem we deduce that the saddle-point problem (34) is
equivalent to the heterogeneous problem (10).

Remark 3.1 It is important to note that the interface condition u; = ug a.e.
on I'", cannot be extended to the whole interface I' since it would induce the
definition of a linear operator B:

B:VY = Li(I): Bu = (v1 —v2)|p (47)

which is not surjective. As a matter of fact, if T'°“* = (), it is not guaranteed
that, given a function A\; € L} (T), there exists a function v; € V) such that its
restriction to I' coincides with \;. 0O

4 The interface problem

In Sections 2-3 we have shown the equivalence at continuous level between the
heterogeneous formulation (10) of Gastaldi et al. [GQL90] and the extended
variational formulation (34), by proving that both formulations provide the same
set of interface conditions.

In Sect. 4.1 we recall the Steklov-Poincaré equation associated to (10), see
[GQLI0], while in Sect. 4.2, starting from the saddle-point formulation (34),
we derive the associated interface equation by setting the decomposition of wuy
and uo and their variations, introducing the interface variables and unveiling the
interface balance equations.

4.1 Steklov-Poincaré equation for the heterogeneous problem
(10)

For k = 1,2, we write each u; as the sum of two functions, the former uzk

depending on the unknown trace A\p of u; at the interface I', the latter u£

depending on the forcing term f, i.e.

up = ui‘l + u{, Uy = u%‘Q + ug (48)

14



Thanks to the linearity of the differential problem, the corresponding test func-
tions vy, depend only on the trace p;, on I' (on the external force f) i.e., vy = vi*

(for k =1,2).

More precisely, u{ and ug are the solutions of problems

Alu{ = f in Ql A Agug = f in QQ (49)
u{ =0 on (0€2)™" ug =0 on 0y,
while ui‘l and u%Q are the solutions of
A )\1 S : AQ S :
' =0 in ' Aguy®> =0 in ()
uyt =0 on (8(21 \ )™ up? =0 on 9 \ T (50)
ui‘l =\ on I'"", ug‘Q = )\ on I'.

For any A € L?(T'), let A™ = A|pin denote the restriction of A to '™, Similarly,
v]" and vh? are the solutions of problems (50) with data p; and us instead of
A1 and Ao on I', respectively.

We define the Steklov-Poincaré operators on the interface:
1/2
S L3(D) — (Hy (D))"

(S1A1, po)r = /F —b-mutpedl Vg € HYA(T), (51)

(actually S; depends only on A7)
Sy Hop (T) — (o) ()Y -

A2
0uy

8n2

(SoAa, w2l = ag(un?, vh?) = / (,, —b.n2u§2> pi2dT, (52)
r

where for any subset ¥ C I', ((-,-))r denotes the duality between H(%Q(F ) and
(Hop (1)’

System (10) can be equivalently written as:
seek A € Ay = HééQ(I‘) such that

{(SA mhr = (6 )T Vi € Ay, (53)

where
(SA, )T = (SIA™, 1t + (SoA, )1, O )r = (s phr + (<X27/~L>>(F, |
54
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A" = X|pin, while 1 and yo are the fluxes on I' associated to u{ and ug ,

respectively, i.e.
Oug

X1 1U7, X2 V8n2+ 2 v

dul

e (55)

Note that xi|pin = 0.
We set the interface operators S) : LE(I') — (H(%?(F))/ and 89 : H(%Q(F) —
(HééQ(I‘))’ such that

oud .
0 on I'" uﬁ on I
SO = . Sx={ I (56)
-b- njuj on Pout7 V% S nQUS\ on Fout’
61’12

(actually S\ depends only on ™) and S° = SY + 89 on Ag, such that

(S°A 1) = (STA mhr + (S2A, wir- (57)
A A

Since uy = u3 = X on I'™, the Steklov-Poincaré equation (53) can also be written
as:

find A € Ay : (SN, )T = (O )T Y € As. (58)

Remark 4.1 In view of Theorem 2.3, it is straightforward to prove that the
operators &Y, S and SY are coercive on H(%Q(F ), whereas Sy is coercive only
if smallness assumption for b are assumed, as required in (24). (See [GQL90,
QV99] for a proof.)

Remark 4.2 The Steklov-Poincaré equations (53) and (58) realize the interface
conditions IC1 (9) and IC2 (11), respectively, and they are equivalent one an-
other at continuous level. Nevertheless they might not coincide at discrete level,
when nonconforming discretization across the interface I' is used (see [BGQ11]).
Moreover, their discrete counterparts feature a different computational perfor-
mance, in particular for what concerns preconditioner efficiency.

4.2 The interface problem associated with XVF

Let us start by writing the saddle-point problem (34) in terms of uq, us and .
It reads: seek u; € V), ug € Vi, t € A such that

al(ul,vl) + A <t,7)1>A1 = fvldQ Vv € Vlo
951
CLQ(’LLQ,’UQ) + dl(ul,vg) — A, <t,7)2>A1 = /Q fUQdQ Yvg € VQO (59)
2
A8, ur —ugha, =0 Vs e A,

16



Whereal:VPxVP—ﬂR:

al(ul,vl) = / [div(bul) + boul]’UldQ — a/
01 r

in
ag : V@ x V@ - R:

ag(UQ, Ug) = / vVug - VuodS) — / usb - Vuod) + / bougvodS2
QQ QQ

Q2
—(1—-a) / b - nrusvedl,
Fin

with @ = 0,1 and dy : VO x V) - R

dl(ul,’Ug) = — / . b- nlulvgdf.
Fou

By decomposing both u; and wuy as done in (48), problem (59) reads: seek
A1 € A1, Ay € Ay, t € A} such that

b- npuwldf,

ai (ui\l’

Uil‘l) + A} <t7 vi“>A1 = /Q f’UileQ — aq (uf
1

L) Y € A
A2 2 A1 M2
az(uy®, vy*) + di(upt, v

1 vh) = ar(t vh?)a,

Fub2dQ — ag(ud

(60)
Q’Uéw) - dl(u{7v52)

Qo
A1 A2 _
\ A’1<87u1 — Ug )a, =0

Vs € A

Vs € Al.
We consider the Steklov-Poincaré operators previously introduced.

Moreover, we denote by Si" and S¢“ the restrictions of the operator S; to I''"
and %, respectively. Therefore, we note that

al(ui‘l,vfl) = a/F_ —b -0\ dl = a(SI" A1, 1 )pin Yy € Ay,

A
di(ui*, vh?)

/ t —b- nluiq:quF = «Sfut)\lv M2>>F°m V/-LQ € A27
Fou
where (-, -)pin is an abridged notation for x(-,-)a,, while

az(uy?, vh?) = a(Sada, v + (1 = @) (S9A2, p2))r
and we set 8¢ = aSy + (1 — )89, for a = 0, 1.

The interface problem equivalent to (60) takes the following form: seek \; € Ay,
Ao € Ao, t € Al such that

OZ<S:'IL-"A17 'U,1>]_'*in + <t, ,LL1>]_“in = O

Vi € Ay
(S5 X2, ) + (S A1, pra)) pout — (t, p2) i (61)
= (X2, u2))r + (X1, p2)) rout Vg € Ag
(8, )\1 — )\2>Fm =0 Vs € A/lv
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where y1 and yo are the fluxes on I' associated to u{ and ug , respectively, already
defined in (55).

For brevity, we name (61) extended interface problem (XIP).

We can formally write system (61) in terms of a block-matrix operator as

find X € Ay x A} x Ay (ADpA, p) = (x, ) V€ Ar x A} x Ay (62)

with
aS}’i"” 110 0 A1 0 11
I'0/-1 0 t 0 s
AR MR X g
Simti 0 : )\gut X(th +X(17ut Iugut
‘ (63)

and where the upper-script in (out, resp.) denotes the restriction of the function
to I (¥ resp.).

Remark 4.3 Problem (62) is well-posed and A is indeed the trace of the unique
solution of (34).

The lower-script DD stands for Dirichlet-Dirichlet. This notation is motivated
by noting that, if A; and Ay are known trace functions on I'"* and I, respectively,
then the evaluation of the matrix-vector product A% A inside Bi-CGStab iter-
ations requires the approximate solution of two Dirichlet problems like (50) (in
Qq and Qo, respectively) and the numerical evaluation of the fluxes across the
interface T.

In view of the numerical discretization of problem (34) via interface problems
like (62), a natural question arising from the analysis of the block-matrix system
(62) concerns the possibility of replacing the operator A%, with another one
involving Neumann interface conditions instead of Dirichlet ones.

To this aim, thanks to Theorems 2.2 and 2.3, we observe that both Si" is in-
vertible, and, if the smallness assumption (24) on b is satisfied, Ss is invertible
too. Under assumption (24), by defining the (unknown) fluxes

(Hy"(T™) 3 61 = S\, (Hy)’ (D)) 3 b2 = S$ha, (64
we can split the unknown functions u; and us as
ulzﬁfl—l—u{, U2:ﬂ§2+ug,

where u{ and ug still denote the solutions of problems (49), while 4{" and @5?
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are the solutions of the Neumann problems

( A21~L§2 = in (9
~¢o
Aaft =0 in w2 on O\ T
=0 on (99 \ )i %“2 “bongil — ¢y onTo  (69)
_ ; n
—b-nui" =¢; on I, 8&52 ] N
ony —ab - -nyuy® =¢2 onl

Problem (59) can be reformulated in terms of the (unknown) flux variables ¢;
and ¢o. It reads:

find ¢ € Aj x A} x A (AVn . 1) = (X, 1) V€ A x Aj x Ay (66)

with
, ol " 110 0 o1
(sim~! IR T R R
~ 09 e t
NNT Lo -1 10 ? = i
oo jooa $gut
Si)ut(Si‘n)—l | :

while ¢ and x have the same meaning as above.

In this case, the evaluation of the matrix vector product A%y ¢ requires the
solution of two Neumann problems (like (65)) and then the evaluation of the
trace of aj" (ﬂgQ, resp.) on '™ (T, resp.), together with the evaluation of the
flux —b-nﬂ‘f1 on I'°“!. For this reason, the formulation (66) is named Neumann-

Neumann.

Remark 4.4 When the smallness assumption (24) is not satisfied, the elliptic
problem in (65) is not always well-posed and instabilities can develop (see Fig.
5). The same drawback characterizes the next Dirichlet-Neumann form, too.

The survey can be completed by considering either Dirichlet-Neumann or Neumann-

Dirichlet formulations for problem (59), depending on the choice of either Dirich-
let or Neumann unknowns at the interface.

More precisely, we name Dirichlet-Neumann (Neumann-Dirichlet, resp.) the
formulation in which we decompose the unknown functions uq and us as uq =
u?l + u{, Uy = ﬂgQ + ug (up = &(fl + u{, Ug = ug‘Q + ug, resp.). More precisely, we
name Dirichlet-Neumann (Neumann-Dirichlet, resp.) the formulation in which
we decompose the unknown functions u; and us as u; = ui‘l + u{ , U9 = ﬂgQ + ug
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(ug = ﬂ‘fl —i—u{ ,Ug = u§2 —i—ug , resp.). The corresponding systems at the interface

reads:

find ¥y € Ay x A} X A (ADNY DN ) = (X, 1) Ve Ay x A} x Ay
(67)
and

find ¥ p € A} X A} X Ay (ANDYND 1) = (X, 1) Ve Ay x A} x Ay

(68)
with ¢DN: [)‘btv( an’ gut)]t’ wND: [¢17t>( an’)\gut)]t and
oS 110 0 | ol I/ 0 0
***** (ST b
0: I|—(SY) Ypin ~ 0| -1 0
DN g1 1| I 0 NOT o og]
Speti o | 00 T 0 |
3 ; Sgu(simy~1L_

As for the NN form, DN form is well-posed if the smallness assumption (24)
on b is assumed. It is worth repeating that (62), (66), (67) and (68) represent
alternative (albeit equivalent) interface formulations for the extended problem
(34). Their finite dimensional approximations will however yield different nu-
merical solutions, and the algebraic counterparts will give rise to systems whose
computational solution features different levels of complexity, see Sect. 5.3.

5 The discretized problems

In this section we describe the discretization of the variational problems discussed
in the previous sections and we propose optimal preconditioners to efficiently
solve the associated linear systems.

5.1 Spectral Element discretization

The discretization of the differential equation within each subdomain is per-
formed by quadrilateral conformal Spectral Element Methods (SEM). We refer
to [CHQZO7] for a detailed description of these methods, here we briefly recall
their basic features.

For k = 1,2, let 7T, = {Tk,m}%il be a partition of the computational do-
main Q, C R? (d = 2,3), where each element T}, is obtained by a bijective
and differentiable transformation Fy, ,,, from the reference (or parent) element
Ot = (—1,1)%. We suppose that two adjacent elements of 7, share either a
common vertex or a complete side. On the reference element we define the finite
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dimensional space Qy = Aspan{:i‘{1 . -~:i‘ff 00 < j1,...,7¢ < N} and, for any
Tk,m € Tp: Tk;,m = Fk,m(Qd), set h]“m = diam(Tk,m) and

VN, (Tym) ={v :v="200 F;}n for some v € QNk}
The SEM multidimensional space on Qj, (for k = 1,2) is
Xis, = {v € CO(W) : vy, € Vv, (Tkom), YTkm € T}

where J; is an abridged notation for “discrete”, that accounts for the local
geometric sizes {hy, m, } and the local polynomial degrees { Ny}, form = 1,..., M
and k=1, 2.

Note that the polynomial degree Nj can either coincide or differ along each
spatial direction. In the latter case we denote by Ni¥, NV, ,f and Nf the polynomial
degrees along x, y and z directions, respectively. N, N} and N} can change from
one spectral element to another, however both geometric and approximation
conformity is guaranteed inside €.

The finite dimensional spaces in which we look for the Spectral Element solution
are defined as follows (see (26), (27) and (28) for definitions of Vi, V)2, Ay):

Vk,ék =ViN Xk,f;k? ng(;k = Vko N X]w;k, k=1,2

69
A5 =A{vig |pin + vis € Vig, ), A5, = {v2,5,|1 0 V25, € Vas,}- (69)

Because of the difficulty to compute integrals exactly, the bilinear forms a1, as,
di, the duality products between Ay and A} (for k = 1,2), and the L?—inner
products are all approximated by Legendre-Gauss-Lobatto (LGL) formulas on
the grid induced by the finite dimensional spaces defined above. It is well known
(see [CHQZO06]) that the quadrature error introduced behaves like the approx-
imation error induced by the spectral approximation. The abridged notation
SEM-NI stands for Spectral Element Method with Numerical Integration.
Coherently, we can define the finite dimensional counterpart of the Steklov-
Poincaré operators Si, Sa, etc.. To this aim, for k = 1,2, we denote by N 1 the
set of nodes of 7 NI whose cardinality is N; r. Similar notations are used for
the nodes lying on either T or 7%,

The finite dimensional basis in Ay 5, is generated by the characteristic Lagrange
polynomials in € associated to the LGL nodes of N} pin, while that in Ay g,
is generated by the characteristic Lagrange polynomials in {2 associated to the
LGL nodes of Nar. We denote by ,ugz), i =1,..., Ny pin the basis functions of
Ay 5, and by ,ug), i =1,...,Naor the basis functions of Ay, .

To span the dual spaces A;a 5, We use the same Lagrange basis of Ay s, , respec-
tively for £ = 1,2. It is immediate to prove that, under regularity assumptions
(3) and (16), Ay 5 C Ay, for k= 1,2.
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Then we set

(S5 = (S i"uﬁ’ >H1)>rin i,5=0,..., Ny pin
(S94)i; =(S %1 7u§’>rm i=0,...,Nypout, j=0,...,Nypin
(So5)ij = (Sa) 7/1 )> i,j=0,...,Nar
(895,)i5 = (S u$)e i, j=0,...,Nor.

In general, the subscript § denotes the finite dimensional counterpart of the cor-
responding operator defined at the continuous level and, even if it is not specified,
we understand that it is constructed following the SEM-NI approximation. For
an extensive presentation of these methods we refer to [CHQZ06, CHQZO07].

Remark 5.1 If the two partitions 77 and 75 share the same edges on I' and
the polynomial degrees coincide in the hyperbolic domain €27 and in the elliptic
one (o, we call that conforming discretization or conforming coupling across
I'. In this case N = Nir = Nar denotes the common polynomial degree and
0 = 01 = 09 denotes the conforming discretization.

Otherwise, we call nonconforming discretization or nonconforming coupling across
I" the case in which either the partitions 77 and 75 do not share the same edges
on I' or the polynomial degrees Nir and N differ each other. In this work
we bound our analysis to conforming couplings, while we refer to [BGQ11] for
the nonconforming case, where among all the known methods dealing with non-
conformity we choose mortar methods (see, e.g., [BMP94, Bel99]), since they
achieve the constraint equation associated to the XVF in a very natural way. O

The use of conforming discretization across the interface I implies that the ap-
proximation of the unknown trace function is defined through a unique set of
degrees of freedom on I' and the same symbol §(= 0; = d2) will be used. We
denote by Ms, M ’" and MZ"" the mass matrices associated to the interface
integrals on I, T and rout, respectively. Due to the orthogonality of the char-
acteristic Lagrange basis functions with respect to the Gauss-Legendre-Lobatto
quadrature formulas, these mass matrices are diagonal.

The conforming finite dimensional counterpart of (53) reads:

find A\s € A275 : Ss\s = X6, (70)
while that of (58) reads:
find A\s € Ao : SINs = Xs- (71)

After setting x5 = [0,0, M{"x 5%, Mg (y “t+ xout)]t, the discretized form corre-
sponding to XIP problems (62), (66), (67) and (68) read, respectively:

Dirichlet-Dirichlet

find Ay = [A1s, ts, (A5, ASY)]T € Aqs x A5 x Ay ABp X = X50 (72)
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Neumann-Neumann

find g5 = [¢1,5, 15, (8575, 055)]" € Arg x Al 5 x A5 ANNsPs = X, (73)

Dirichlet-Neumann

find s = (A5, ts, (8575, 055" € Mg x Al 5x Ao : ADpsVPDNs = Xo
(74)
Neumann-Dirichlet
find ¢ p 5 = (D16, ts, (A5, A3F)]" € Apgx ] 5x N5 ANDs¥NDs = Xs»
(75)
where
as™ MM 0 0 el MEL 00
77777 e N e Y7 M A Bl B
I 10 |- o0 N0 | -REU(SS ) TIMs
Afps = [T T Agns = [T T
ppo 0 =M N0 0 =M
——————— s R
St 0 % - 10 ‘
3 | spsys) g |
(76)
R%" is the restriction matrix from Nap to N pin, and
aSi M¥ 0 0 , laMPME 0 0
I Sl B (si~ge 0 L T
I 0 |—Ry(S55)"1 Ms = 0 |-I 0
Apng = T 1 e P
DN, 0 —Mif N0 0 =My
——————— My s
s o | o |
(77)
Remark 5.2 Let us consider the discrete counterpart of (34):
seek ug € V), t(gEA’Lé:
a(us, v5) + b(vs,ts) = F(v5) Ve € V) (78)
b(ug, 55) =0 Vss € A/1,5’

where V50 = Vl(f 5 X VQ%.
When the conforming discretization is considered across the interface, which is
the case of the present work, the following inclusions hold: V50 C VO A 5 C A,
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Zs = {vs € V50 D V1§ = Vg5 ON "} C Z, where Zs is the kernel of the discrete
counterpart By of B, that is 5 (s5, Bsvus)n, = b(vs,ss), for any vs € V50 and
S5 € All, 5

The latter inclusion is crucial for the proof that the discrete operator wAg is an
isomorphism from Zs onto Z5 (wA; is defined by v/ (7w Asus, vs)v = a(us, vs), for
any ug,vs € V¥) and it can be obtained by using the same arguments of i) in
the proof of Theorem 3.1. Finally, in order that the discrete inf-sup condition
corresponding to (35) holds, the surjectivity of Bs can be proved as in step i)
of the proof of Theorem 3.1.

All the finite dimensional interface equations (72)—(75) can be solved by a Krylov
method for non-symmetric systems (e.g. Bi-CGStab).

5.2 Comparison among formulations. Numerical results

In this section we compare the Steklov-Poincaré approaches SP0 (71) and SP (70)
with the extended interface problems (XIP) (72), (73), (74) and (75) presented
in this work in terms of Bi-CGStab iterations (see [vdV03]) needed to solve the
corresponding interface equations, versus the discretization parameters, both the
polynomial degree N and the number of spectral elements M in each subdomain.
More precisely, Steklov-Poincaré approach SPO is related to the four XIP with
a = 0, since all these forms provide interface conditions (11); similarly Steklov-
Poincaré approach SP is related to XIP with o = 1, since all these forms provide
interface conditions (9).

Let us consider the following test cases.

Test case #1. The computational domain Q = (—1,1)? is split in Q; = (—1,0.8)x
(—=1,1) and Q5 = (0.8,1) x (—1,1). The interface is I' = {0.8} x (—1,1). The
data of the problem are: b = [10y,0]!, by = 1, f = 1 and the inflow interface
is '™ = {0.8} x (—1,0). Dirichlet boundary conditions are imposed on the ver-
tical sides of €2, precisely u; = 1 on (0Q; \ I')"* = {—1} x (0,1), uz = 0 on
{1} x (=1,1), while the homogeneous Neumann condition g—ﬁz = 0 is imposed
on ((0.8,1) x {—=1}) U ((0.8,1) x {1}) (see Fig. 2 left).

Test case #2. The computational domain Q = (—1,1)2 is split in Q; = (—1,0.8)x
(—=1,1) and Q9 = (0.8,1) x (—1,1). The interface is I' = {0.8} x (—1,1). The
data of the problem are: b = [5y,1 — z]', by = 1, f = 1 and the inflow interface
is ' = {0.8} x (—1,0). The imposed Dirichlet boundary conditions are: u; = 1
on ((—1,0.8) x {—=1}) U ({—1} x (0,1)), ug = 0 on {1} x (=1,1), ug = 1 on
(0.8,1) x {—1}, while the homogeneous Neumann condition g% = 0 is imposed
2
on (0.8,1) x {1} (see Fig. 2 center).

Test case #3. The computational domain Q = (—1,1)2 is split in Q1 = (—1,0.8)x
(—=1,1) and Q9 = (0.8,1) x (—1,1). The interface is I' = {0.8} x (—1,1). The
data of the problem are: b = [2y, —x]', by = 1, f = 1 and the inflow inter-
face is I'® = {0.8} x (—1,0.1). The imposed Dirichlet boundary condition are:
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Figure 2: Data for test cases #1 (left), #2 (center) and # 3 (right). The cyan (red,
resp.) line denotes the interface I'°“* (T, resp.)

ui(z,y) = (1 —2)/2 on (—=1,0) x {—=1}, ug = 1 on {—1} x (0,1), uy(z,y) =
2/7 arctan(1000(1 — z)) on (0,0.8) x {1}, ua(z,y) = 2/7 arctan(1000(1 — z))
on (0.8,1) x {1}, ug = 0 on {1} x (—1,1). Finally the homogeneous Neumann
condition g—:‘lz = 0 is imposed on (0.8,1) x {—1} (see Fig. 2 right).

For all the test cases, the viscosity will be specified below.

We discretize the problem using the conforming SEM-NI approach, presented
in the previous Section. In each subdomain we define a mesh of quadrilaterals
that can be either uniform or not. We remind that in this section and in the
following one we consider conforming discretizations across the interface between
the hyperbolic and the elliptic subdomains.

Because of the presence of a boundary layer near the right vertical side, the mesh
is finer there and a high polynomial degree along = direction is used to prevent
the numerical solution to be affected by spurious oscillations.

In Fig. 3 we compare the number of Bi-CGStab iterations for the Test case #1
needed to solve the extended interface problems (72), (73), (74), (75) and the
heterogeneous Steklov-Poincare equations (70), (71) versus the spectral polyno-
mial degree and the number of spectral elements, respectively. Denoting by r(*)
the residual of the linear system at the k—th Bi-CGStab iteration, the iterations
are stopped when [|r* 4D /||| <€, with e = 10712,

For each formulation, we have computed a least-square fit of a law like #it ~
Cz?, where x can indicate either the viscosity v, the spectral polynomial de-
gree N or the number of spectral elements M along each direction and in each
subdomain. In each legend we report the estimated value of ¢.

The convergence rate of the XIP approaches depends on the parameter «, i.e.
on the set of interface conditions chosen, (9) for « =1 and (11) for « = 0. As a
matter of fact when a = 0, DD (as SP0) is the best approach, while ND is the
worst one for what concerns the dependence on polynomial degree and number
of spectral elements (see Fig. 3, top). On the contrary, when o« = 1, with the
exception of DN form, all the other XIP forms outperform in a similar way, but
the number of iterations are always lower for the Bi-CGStab solution applied
to the classical (non-extended) interface problems (70) (cf. curve). (see Fig. 3,
bottom).
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Figure 3: Test case #1. Bi-CGStab iterations needed to solve the extended interface
problems DD (72), NN (73), DN (74), ND (75) (at top with o = 0, at bottom with o = 1)
and the Steklov Poincaré equations SP0 (71) and SP (70). The viscosity is v = 0.01.
At left, the spectral element mesh is formed by 3 x 6 (4 x 6, resp.) elements in Qq (o,
resp.), while the polynomial degree is N in each element of each domain. At right, the
polynomial degree is N = 6 in all elements, while the number of spectral elements in
each Qi (k=1,2)is M = M, x M,,.
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Figure 4: Test case #1. Bi-CGStab iterations needed to solve the XIP DD (72), NN
(73), DN (74), ND (75) (at left with « = 0, at right with @ = 1) and the Steklov
Poincaré equations SPO (71) and SP (70). The spectral element mesh is generated by
3 x 4 elements with N = 6 in €, and by 6 x 4 elements with in Q5. N = 6 in all
elements of Q9 with the exception of those close to the boundary layer (where N3 = 72
NY = 6).

In Fig. 4 we report the number of Bi-CGStab iterations versus the viscosity.
It noticeably grows when v — 0 and o = 1 (Fig. 4, right) for both NN and
DN approaches. This is due to the fact that condition (24) is not satisfied when
v < 1073 and instabilities affect the numerical solution, see also Remark 4.4.
In Fig. 5 the numerical solution of Test # 1 is shown for v = 10~%, unstable
(stable, resp.) for NN (DD, resp.) form and a = 1. In some situations, the use
of a good preconditioner will stabilize the solution, as we will see in the next
section.

For what concerns the dependence on the viscosity, the convergence rate of all
approaches is independent of v, with the exception of XIP approaches NN and
DN when o = 1. Also in this case, the number of iterations are always lower for
the Bi-CGStab solution applied to the classical (non-extended) interface prob-
lems (71) and (70) (cf. “SP0” and “SP” curves).

5.3 Optimal preconditioners for the interface problems

Starting from well known results about preconditioning of the discrete Steklov-
Poincaré operator Sg (57), in this Section we propose optimal preconditioners
for the finite dimensional counterpart of the extended interface problems DD,
NN, DN and ND.

It is well known (see, e.g. [GQL90, pag.62],[QV99]) that 88’5 is an optimal
preconditioner of Sg, in the sense that there exists a positive constant Cy inde-
pendent of ¢, but depending on problem data (e.g. €2, v, b, by) such that

K((S35)7"8%) < Co, (79)
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Figure 5: Test case #1. Numerical solution provided by NN formulation (66)
(at left) and by DD form (62) (at right) for v = 10~* when a = 1

where K(A) = (max; [A\;(A)])/(min; |A;(A)|) is the iterative condition number of
a generic square real matrix A whose eigenvalues are \;(A) € C.

Following [GQL90] it is possible to prove that Sg 5 is an optimal preconditioner
of S5 with respect to the discretization, i.e., there exists C'y > 0 independent of
J, but depending on problem data (e.g. Q, v, b, by) such that

K((S55)""Ss) < Ch. (80)

Numerical results that confirm (79) and (80) are shown in Tables 1, 3, 5 (columns
SP0 and SP, respectively), where few Preconditioned Bi-CGStab (PBi-CGStab)
iterations are sufficient to converge to the required tolerance for all used dis-
cretizations. Experimental results show that in general Cy > Cj.

Let us now consider the extended interface Dirichlet-Dirichlet problem (72)—
(76). We take a 2 x 2-block decomposition of A}, s, as drawn by the continuous
lines in (76). The construction of an optimal préconditioner for problem (72)
is based on the construction of an optimal preconditioner P, ; for the Schur
complement X, 5 of the matrix A%, 5, with respect to the (2,2)-block S35
Such idea has been proposed in [QV99, Sect. 2.3.1] in the context of domain
decomposition methods for elliptic problems.

Since Mg” is non-singular, it is easy to see that

« « aSiné 0 0
EDD,(S = 52,5 + Sin:;t 0 = 0455 + (1 - CM)S5, (81)

where S5 and SY are the matrices introduced in (70) and (71), respectively. Thus,
we set Py, = Sgﬁ and, owing to both (79) and (80), P, ; is an optimal
preconditioner for E%D,é? ie.,

K(Ps! SHps) < Ca, for « = 0,1. (82)

XpDs
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Now, we proceed as follows. Since A%, D5 = Ly UR D& with

I 0 ‘ 0 0 aSi M| 0 0
0 1 00 I 0 |-1 0
a ] 53 —
L(S — iy O‘Sina 7 0 ) UDD,J 0 0 s ) (83)
0 Sy 10 I 0 0 Db
we define the left preconditioner Pp D6 for A%%Z g as
asis Mi"| 0 0
PRps=1§ Ups with Ufps= |—g——a—t |, (84)

0 0 ‘ PEDD,&

In fact, US, differs from U, only in the (2,2)-block, where the Schur comple-
ment matrix X, D.s has been replaced by its preconditioner Py, ;.
The following theorem holds:

Theorem 5.1 Let A € R™ "™ be non-singular, L,U € R™™ be (2 x 2)-block
triangular matrices lower and upper, respectively, such that A = LU and

| Unn Ure
o= o]

where Uy1, Usy are squared blocks.
If there exists a square non-singular matriz Py of the same dimension of Uao
and a positive constant C' such that

K(P3' Uss) < C, (85)

then the matriz P = ij, with

~ | U U

satisfies the bound
K(P~'U) < C. (86)

Proof. Since A is non-singular, both U and Uy, (for k = 1,2) are non-singular
and

U1l = Uﬂl _Uﬂ1U12P231
0 Py ’

prtam gy =[] U P |
P22 Us
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that is, the spectrum of P~ A coincides with that of P251 Uy plus the eigenvalue
A= 1

Indeed A = 1 is an eigenvalue of P251 Usa, too. As a matter of fact, the eigenvector
v of P71 A associated to A = 1 satisfies the matrix equation

Av=PveUv=0Uv

if and only if

Ui Ur2 vi] [Un U vi -
[0 U22}|:V2:|_[0 P22:||:v2:|<:>U22V2—P22V27

that is A = 1 is an eigenvalue of P2_21U22, provided that vs is not null.
It follows that \;(P~'A) = \;(Py,' Usz) and

K(P7A) = K(Pyy' Usa). (87)
The thesis immediately follows. 0

The next result follows from Theorem 5.1 and states that the matrix PgD#;
defined in (84) is an optimal preconditioner for A, p.s With respect to the dis-
cretization.

Theorem 5.2 We have
K((PBps) 'Abps) < Ca (88)

where Cy, are the positive constants independent of &, introduced in (79) and
(80).

By considering now the finite dimensional counterpart of the other three formula-
tions, Neumann-Neumann (66), Dirichlet-Neumann (67) and Neumann-Dirichlet
(68), and still extracting the Schur complement matrix, again with respect to
the (2,2)-block, we obtain preconditioners also for the corresponding matrices
A‘j‘VNﬁ, A%Nﬁ and A‘j{,Dﬁ. More precisely, the Schur complements of A?‘VN’ 5
AP N.& A% p.s and their optimal preconditioners are:

« _ Yy« a \—1 « _ Yy« « _ Yy«

ENN,(S - EDD,é(SQ,cS) M57 EDN,(S - ENN,&’ END,(S - EDD,(S’ (89)
« _ Q0 a \—1 e} _ p«a _
ZNN,(s —52’5( 276) M57 EDN,J _PENN,67 PEND,:S _PZDD,zS’

Remark 5.3 In view of Remark 4.1 it is noteworthy noticing that S5 s is not
always invertible. From now on, when we deal with S, ; we suppose that the
vector field b satisfies the smallness assumption (24).

30



We write

(07 — (e} o (e} — (e} (67 (e} J— (e} (67
vno = LsUrns ADns =L§Ubns: ANps = LsUNpys

(6% —_ OZNOZ (6% _ OZNO( (6% _ OZNO(
NN = Ls§UNns: Pons =L§Upns: Phps = LsUnps

where, in all cases, L§ is the matrix defined in (83), while

M Mo 0
Ue _ ( {75)_1M§n 0 —R%n(Sg(;)_lMg
NN,§ — 0 0 N
0 0 ENN,(S
aMi® M0 0 ]
S | (STe)TIMET 0 | —RY(S5s) "t Ms
NN, — 0 0 N
0 0 PENN,&
[ aSiy M |0 0 T
Ja |10 | -Ry(sg)Ms
DN, — 0 0 5
0 0 EOZDN,zS
[ S M| 0 0 ]
Ga |10 | -Ry(Sg)Ms
DN,6 — 0 0 ’
0 0 SDN.&
aMi® M| 0 0
N Y N
UND,6: : 0 0 ’
0 0 E(])\‘/D,é
[ M M| 0 0
e (g ~tagr 0 |1 0
UND,5: 0 0
0 0 PEND,(S

The same conclusion of Theorem 5.2 can be stated also

formulations, more precisely:

Theorem 5.3 We have

K(Pip.s) "A%p.s) < Ca,

(90)

for NN, DN and ND

(91)

where Cy is the constant introduced in (80). Moreover, if So s is invertible (for
that it suffices that (24) be satisfied) when o =1, then

K((Pins) ™ Afws) < Ca,

K((PBs)" ADys) < Ca-

31

(92)



Proof. Estimate (91) immediately follows from the equality X%, s = X% p 5-
By (89), it holds

(PZQNN,(s)AZ%N,é = Mé_lsgl,é(sg,a)flZ%D,J(S%)AM&,

that is, if S is invertible, then (P )" Sy s is similar to Pg} 5%, .
The same conclusion holds for X% 5. O

Remark 5.4 We notice that, even if (S5 )L shows up in all Schur complement
matrices defined in (89) and in both U N, and Us ~,s» actually only the inversion
of S% s is required when solving the linear systems Pz = r. This means that
during the preconditioner step we do not solve elliptic problems with interface
condition vdus/Ony — b - ngugs = ¢ on T’ n_that might be ill-posed when o = 1
and (24) does not hold.

Numerical results shown in Tables 1-6 are obtained by using preconditioners
defined in (84) and (90). We note that for Test case #1, the preconditioned
version of both NN and DN do not suffer from instability for all considered
viscosity, in spite of the corresponding unpreconditioned version when o = 1
(see Fig. 4 and Tab. 2).

In all the test cases the number of Preconditioned Bi-CGStab (PBi-CGStab) iter-
ations is bounded from above for both Steklov-Poincaré and extended forms, in-
dependently of the used discretization (see Tables 1, 3, 5). The discrete Steklov-
Poincaré form SPO (71) provides the lower number of PBi-CGStab iterations.
In Tables 2, 4 and 6, the number of PBi-CGStab iterations is shown for vanishing
viscosity. We notice that it is bounded from above in all cases with the exception
of the Test case #3, approaches NN and DN when o = 1, and v = 10~%. Here
the same instabilities shown in Fig. 5 (left) occur and we conjecture that, for this
particular choice of the vector field b, the non-coercivity of the Steklov-Poincaré
Sy is responsible of it even in the case of preconditioned systems.

We conclude that in general, the set of interface conditions IC2 (11) provides
the best efficient approaches in terms of PBi-CGStab iterations and they do not
suffer from instabilities in the case of advection-dominated problems.

5.3.1 Computational cost per iteration

The results of Tables 1, 3, 5 confirm optimality properties for all the precon-
ditioners presented in Sec. 5.3. Therefore, to sort out the “best” method, a
remark on the computational impact per iteration is necessary.

Each PBi-CGStab iteration requires to compute 2 matrix-vector products and to
solve 2 linear systems on the preconditioner, then we analyze these operations.
First of all we recall that, thanks to the use of Gauss-Lobatto numerical inte-
gration, the spectral-element mass matrices are diagonal, so that either multi-
plication or inversion of mass matrices is a low-cost operation.
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a=0 a=20
N | SPO | DD | NN | DN | ND M, =M, | SPO | DD | NN | DN | ND
8 1 2 3 3 2 8 1 2 3 3 2
16 1 2 3 3 2 16 1 2 3 3 2
24 1 2 3 3 2 20 1 2 3 3 2
28 1 2 3 3 2 24 1 2 3 3 2
a=1 a=1
N | SP | DD | NN | DN | ND M,=M, | SP | DD | NN | DN | ND
8 2 2 2 2 2 8 1 2 2 2 2
16 1 2 2 2 2 16 1 2 2 2 2
24 1 2 2 2 2 20 1 2 2 2 2
28 1 2 2 2 2 24 1 2 2 2 2

Table 1: Test case #1. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov-Poincaré
equations SPO (71) and SP (70). The viscosity is v = 0.01. The discretizations coincide
with those used to provide the results of Fig. 3. At right, the total number of spectral

elements in each subdomain €2y, is M = M, x M,

a=20 a=1
v SPO | DD | NN | DN | ND v SP| DD | NN | DN | ND
10~ 1 1 2 3 3 2 1001 | 1 2 2 2 2
1072 1 2 3 3 2 1072 | 1 2 2 2 2
1073 | 1 2 3 3 2 1073 | 1 2 2 2 2
1074 1 2 3 3 2 1074 1 2 2 2 2

Table 2: Test case #1. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov Poincaré

equations SP0 (71) and SP (70)
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a=0 a=20
N | SPO | DD | NN | DN | ND M, =M, | SPO | DD | NN | DN | ND
8 3 5 4 4 5 4 3 5 4 4 5
12 3 5 4 4 5 8 3 5 4 4 5
16 3 5 4 4 5 12 3 5 4 4 5
20 3 5 3 3 5 16 3 5 4 4 5
a=1 a=1
N | SP | DD | NN | DN | ND M,=M, | SP | DD | NN | DN | ND
8 4 5 6 6 5 4 4 6 6 6 6
12 5 6 6 6 6 8 4 7 7 7 6
16 5 6 6 6 6 12 5 6 7 8 6
20 5 6 6 6 6 16 5 6 8 8 6

Table 3: Test case #2. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov-Poincaré
equations SPO (71) and SP (70). The viscosity is v = 0.01. At left, M, = M, =4 in
both 7 and Q5. At right, N = 6 in each element, the total number of spectral elements

in each subdomain €y, is M = M, x M,

a=0 a=1
v | SPO | DD [ NN [ DN [ ND v | SP|DDJNN]|DN][ND
100°T] 3 5 3 3 5 100°T] 5 5 6 6 5
1072 | 3 5 4 4 5 1072 | 5 6 6 6 6
1073 | 3 5 3 3 4 1073 | 6 6 7 7 6
1074 | 5 6 5 5 6 10074 7 7 9 8 7

Table 4: Test case #2. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov Poincaré

equations SP0 (71) and SP (70)
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a=0 a=20
N | SPO | DD | NN | DN | ND M, =M, | SPO | DD | NN | DN | ND
8 3 4 4 4 4 4 3 5 4 4 5
12 3 5 4 4 5 8 3 5 4 4 5
16 3 4 3 3 4 12 3 5 4 5 5
20 3 4 3 3 4 16 3 4 4 4 4
a=1 a=1
N | SP | DD | NN | DN | ND M, =M, SP | DD | NN | DN | ND
8 6 6 7 7 8 4 6 7 7 7 6
12 6 6 7 7 7 8 7 7 8 8 7
16 6 6 6 6 6 12 7 8 9 9 7
20 5 6 6 6 6 16 6 7 8 8 7

Table 5: Test case #3. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov-Poincaré
equations SP0O (71) and SP (70). The viscosity is v = 0.01. At left, M, = M, =4 in
both €7 and Q3. At right, N = 6 in each element, the total number of spectral elements
in each subdomain 2, is M = M, x M,

a = o =
v | SPO | DD | NN | DN | ND v |SP|DD| NN | DN | ND
10071 | 2 3 3 3 3 1071 | 4 5 5 5 5
1072 | 3 4 3 3 4 1072 | 6 6 6 6 6
1073 | 3 5 4 4 5 103 719 8 9 8
1074 | 5 6 5 5 6 1074 | 11 | 8 | >40] >40| 9

Table 6: Test case #3. PBi-CGStab iterations needed to solve the preconditioned finite
dimensional systems DD (72), NN (73), DN (74), ND (75), and the Steklov Poincaré
equations SP0 (71) and SP (70). When v < 104 and a = 1 both NN and DN forms
suffer from the ill-posedness of Steklov-Poincaré operator S
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Recalling that the local Steklov-Poincaré operators Sy (for k = 1,2) realize
Dirichlet to Neumann maps, it follows that the action of S5 requires the solu-
tion of a hyperbolic problem in £, while the action of S5 5 requires the solution
of an elliptic problem in Q2. Both the inverse operators (S¢s)~! and (S55) ™! re-
alize Neumann to Dirichlet maps and they require the same computatidnal cost
of the corresponding operators ST s and S5 s, respectively. The approximation of
local hyperbolic and elliptic probléms, is the more expensive steps of the process,
so we measure the computational complexity of either one Matrix-Vector Prod-
uct (MVP) and one Linear System whose matrix is the Preconditioner (LSP) in
terms of number of hyperbolic and elliptic problems to be solved in £2; and s,
respectively.

In the Table 7 we summarize the number of hyperbolic and elliptic problems
to be solved for implementing one MVP and one LSP and one PBi-CGStab
iteration.

| 1 MVP | 1LSP | 1 PBi-CGStab it
SPO lell + 1 hyp | Lell 4 ell + 2 hyp
SP lell + 1 hyp | 1ell 4 ell + 2 hyp
DD (@ =10) | Lell + Thyp | Lol + 1 hyp | 4 ol + 4 hyp
DN (a=0)|lell+ 1hyp | 1ell + 1 hyp | 4ell + 4 hyp
ND (a=0) | Lell + 1hyp | 1ell + 2 hyp | 4 ell + 6 hyp
NN (a=0) | lell+ 1hyp | 1ell +2hyp | 4ell + 6 hyp
DD (¢=1)| lell+ 1hyp | 1lell + 2 hyp | 4ell + 6 hyp
ND (a¢=1) | lell+ 1hyp | 1ell + 2 hyp | 4 ell + 6 hyp
DN (a=1)|lell+ 1hyp | 2ell + 2 hyp | 6 ell + 6 hyp
NN (a=1) | lell+ 1hyp | 2ell + 2 hyp | 6 ell + 6 hyp

Table 7: Computational cost of each approach in terms of the number of elliptic
(ell) and hyperbolic (hyp) subproblems

In conclusion, Steklov-Poincaré approaches provide the “best” performing PBi-
CGStab iteration, DD and ND forms with a = 0 follow, while DN and NN when
«a = 1 are the most expensive ones.

5.3.2 Accuracy comparison

We compare now all formulations for what concerns the jumps of both solutions
and fluxes across the interface.

Recalling that no continuity constraint is imposed on I'“!, we measure the jump
between u; and us on I'™, while the jump of fluxes is measured on the whole
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Figure 6: Test case #2. Conforming coupling. At left [u|pin, at right [¢]r versus the
polynomial degree N. The viscosity is ¥ = 0.01. The discretization is that used to
provide the results of Tab. 3 left. At top, o = 0, at bottom, o = 1

interface I'. Then we set

6u2,5

anp

—b - nruys

[ulpin = [Ju1,s —uaslls,r2iny [P0 = Hb ‘npug s+ v
8,L2(T)
(93)
where the sub-index ¢ in || - ||5. means that we have computed discrete norms on
the nodes of either 7o, NI or T, N T .
For what concerns the trace jump, we observe that both Steklov-Poincaré SP
and SP0, and extended DD approaches provide the smaller jumps and perform
similarly. On the contrary, extended DN and NN approaches produce the largest
trace jump (see Fig. 6, left). For what concerns flux jumps, the Steklov-Poincaré
approach SPO0 is the most accurate one, followed by SP and by the other XIP
forms, without a clear ranking. On the whole we can say that both NN and DN
provide the largest flux jumps when a =1 (see Fig. 6, right).
Similar conclusions can be drawn when addressing the other analyzed test cases.

37



6 Conclusions

One of the contributions of the present work has been to formulate an extended
interface problem (XIP) to treat the domain decomposition problem when cou-
pling heterogeneous models governed by partial differential equations.

In order to do that it was necessary to recast the problem as a saddle point
formulation. Specifically, this has been carried out in such a way that it was
possible to switch between two different formulations by choosing a parameter
a € {0,1} (see (29)). These two cases yield different Euler-Lagrange equations,
which in turn have an impact in the performance of the numerical methods for
solving the problem in an iterative manner.

Furthermore, the analysis of these formulations allowed us to provide a guid-
ance with respect to the choice of the XIP form such that the performance of
the iterative methods and the solution obtained after convergence of the itera-
tive methods are better.

As well, another novelty of the work that must be highlighted is the develop-
ment of preconditioners for the different XIP. No preconditioners for extended
problems have been developed so far and it has been proved that the proposed
preconditioners have good properties. When comparing the classical SPO with
the XIP notice that in the latter it is possible to get, after convergence, the
consistent flux of the problem directly from the solution process, since now it is
considered an unknown in our problem.

Moreover, this extended formulation may be useful when working with different
meshes from the underlying subdomains, being this a matter of current research
(see [BGQ11)).
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