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Abstract

This work considers a Cahn-Hilliard type equation with degenerate mobility and single-well potential
of Lennard-Jones type, motivated by increasing interest in diffuse interface modelling of solid tumors.
The degeneracy set of the mobility and the singularity set of the potential do not coincide, and the
zero of the potential is an unstable equilibrium configuration. This features introduce a nontrivial
difference with respect to the Cahn-Hilliard equation analyzed in the literature. In particular, the
singularities of the potential do not compensate the degeneracy of the mobility by constraining the
solution to be strictly separated from the degeneracy values. The error analysis of a well posed continuous
finite element approximation of the problem, where the positivity of the solution is enforced through a
discrete variational inequality, is developed. Whilst in previous works the error analysis of suitable finite
element approximations has been studied for second order degenerate and fourth order non degenerate
parabolic equations, in this work the a-priori estimates of the error between the discrete solution and
the weak solution to which it converges are obtained for a degenerate fourth order parabolic equation.
The theoretical error estimates obtained in the present case state that the norms of the approximation
errors, calculated on the support of the solution in the proper functional spaces, are bounded by power
laws of the discretization parameters with exponent 1/2, while in the case of the classical Cahn-Hilliard
equation with constant mobility the exponent is 1. The estimates are finally succesfully validated by
simulation results in one and two space dimensions.

1 Introduction

The Cahn-Hilliard (CH) equation in its original formulation, proposed in [10], [11], [4], describes the dynamics
of phase separation in binary alloys. It has been used also as a phenomenological model in several different
areas, from the description of multicomponent polymeric systems in [22], and lithium-ion batteries in [30],
to the modeling of nanoporosity during dealloying in [15], or inpainting of binary images in [8], and even
to the formation of Saturn rings in [27]. Recently, CH type equations have also been employed to describe
pattern formation in biological systems (see, for instance, [20] and [21]) and diffuse interface tumor growth
models, [23], [17]. In particular, a CH equation with degenerate mobility, obtained from the application of
mixture theory to solid tumors, is described in [28].
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In these papers the free energy functional for tumor adhesion is always characterized by a double-well
potential, smooth or with singularities of logarithmic type. However, for the description of the evolution of
biological cells such a choice seems unphysical, (see, e.g., [9]). Indeed, it has been observed that cell-cell
interactions are attractive at a moderate cell volume fraction, and repulsive at a high volume fraction, with
a zero in the absence of cells and an infinite cell-cell repulsion as the cell concentration tends to 1.

In [13] a Cahn-Hilliard type equation with degenerate mobility and single-well potential of Lennard-Jones
type was considered, (cf. also [14] and [12]), as a result of the application of mixture model to solid tumors,
which has the form of the following initial and boundary value problem

Problem P Find c(x, t) such that

∂c

∂t
= ∇ · (b(c)∇(−γ∆c+ ψ′(c))) in ΩT := Ω× (0, T ), (1)

c(x, 0) = c0(x) ∀x ∈ Ω, (2)

∇c · ν = b(c)∇(−γ∆c+ ψ′(c)) · ν = 0 on ∂Ω× (0, T ), (3)

where Ω ⊂ Rd, d = 1, 2, 3 is a given bounded domain with a Lipschitz boundary ∂Ω, ν is the unit normal
vector pointing outward to ∂Ω, c is the volume fraction of cancerous cells, c0 is a given initial concentration
and

ψ(c) = ψ1(c) + ψ2(c), (4)

where

ψ1(c) = −(1− c∗) log(1− c), (5)

ψ2(c) = −c
3

3
− (1− c∗)c

2

2
− (1− c∗)c+ k.

Here c∗ is the volume fraction at which the cells would naturally be at mutual equilibrium and k > 0. The
derivative of the potential is

ψ′(c) =
c2(c− c∗)

1− c
. (6)

Correspondingly, the mobility is given by

b(c) = c(1− c)2. (7)

Note that ψ1 is a convex function defined on [0, 1) while ψ2 is concave. Also, the product bψ′′ is a continuous
function in [0, 1].

In [3] the existence of different classes of weak solutions of Problem P and their positivity properties, for
the cases of spatial dimension d = 1 and d = 2, 3 separately, was studied, and a continuous finite element
approximation of the problem was formulated, studying its convergencence to the weak solutions. As a
consequence of the fact that (1) degenerates on the set {c = 0; c = 1}, and the singularity is concentrated
on the set {c = 1} only, one cannot exploit the relationship between b and ψ at 0 in order to ensure that
c ≥ 0 at a discrete level. Moreover, the Entropy inequalities obtained in [3], which guarantee the positivity
property of the continuous solutions, are not straightforwardly available at the discrete level, (see also [7] and
[16] for details). Therefore, following [6], this condition is imposed as a constraint and a discrete variational
inequality of the following form is formulated. Let Th be a quasi-uniform conforming decomposition of Ω
into d−simplices K, d = 1, 2, 3, and introduce the following finite element spaces:

Sh := {χ ∈ C(Ω̄) : χ|K ∈ P 1(K) ∀K ∈ Th} ⊂ H1(Ω),

Kh := {χ ∈ Sh : χ ≥ 0 in Ω}

where P1(K) indicates the space of polynomials of total order one on K. Let set ∆t = T/N for a N ∈ N
and tn = n∆t, n =, ..., N . For d = 1, 2, 3, starting from a datum c0 ∈ H1(Ω) and c0h = πhc0 (if d = 1) or

c0h = P̂hc0 (if d = 2, 3), with 0 ≤ c0h < 1, the fully discretized problem reads as
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Problem Ph For n = 1, . . . , N , given cn−1
h ∈ Kh, find (cnh, w

n
h) ∈ Kh × Sh such that for all (χ, φ) ∈

Sh ×Kh, 
(
cnh − c

n−1
h

∆t
, χ

)h
+ (b(cn−1

h )∇wnh ,∇χ) = 0,

γ(∇cnh,∇(φ− cnh)) + (ψ′1(cnh), φ− cnh)h ≥ (wnh − ψ′2(cn−1
h ), φ− cnh)h,

(8)

where (·, ·)h is the lumped scalar product. Note that, due to the use of the lumped product, the boundary
of the support of the discrete solution cnh cannot propagate more than a distance h at each time step ∆t (see
e.g. [6] for details). The discrete solution is thus able to track compactly supported solutions of (1) with a
free boundary which moves with a finite speed of velocity vsupp(t) (whose existence is discussed in, e.g., [6])
if one of these two conditions is satisfied:

∆t = O(h1+ε), ε > 0, or (9)

∆t = Ch, C <
1

maxt vsupp(t)
. (10)

In [3] the existence and uniqueness of the solution of (8) was proven, together with the convergence, in the d =
1 spatial dimension, for (h,∆t)→ 0, to a limit point (c, w), with c ∈ L∞(0, T ;H1(Ω))∩H1(0, T ; (H1(Ω))′)∩
C

1
2 ,

1
8

x,t (Ω̄T ) and w ∈ L2
loc(0 < c < 1), ∂w

∂x ∈ L
2
loc(0 < c < 1), which satisfies the weak problem

∫ T

0

〈
∂c

∂t
, η

〉
dt+

∫
0<c<1

(
b(c)

∂w

∂x
,
∂η

∂x

)
dt = 0, ∀η ∈ L2(0, T ;H1(Ω)),∫

0<c<1

γ

(
∂c

∂x
,
∂θ

∂x

)
dt+

∫
0<c<1

(ψ′(c), θ)dt−
∫

0<c<1

(w, θ)dt = 0,

∀θ ∈ L2(0, T ;H1(Ω)),

(11)

with c(·, 0) = c0(·), and with supp(θ) ⊂ {0 < c < 1}. To the sequence of discrete solutions (cnh, w
n
h) of (8)

let’s associate the following piecewise constant-in-time functions

C+
h (t) := cnh, C−h (t) := cn−1

h , (12)

W+
h (t) := wnh , W−h (t) := wn−1

h ,

for t ∈ (tn−1, tn], n = 1, . . . , N . Let’s recall that the following convergence properties, for (h,∆t) → 0, are
satisfied, (see [3]),

C±h ⇀ c weakly in L2(0, T ;H1(Ω)), (13)

C±h → c uniformly on Ω̄T , (14)

W+
h ⇀ w,

∂W+
h

∂x
⇀

∂w

∂x
weakly in L2

loc(0 < c < 1), (15)

where {0 < q < 1} := {(x, t) ∈ ΩT : 0 < q(x, t) < 1}, with ΩT := Ω× (0, T ).
In this paper a-priori estimates in the appropriate functional spaces are studied for the error between the

discrete solution of (8) and the solution of the weak problem (11). The error analysis is studied in the one
dimensional case, since, for the time being, the convergence of the discrete approximation (8) to the weak
formulation (11) is available only in one dimension, (see [3]). However, the error estimates obtained in this
work could be in principle extended to the general d = 2, 3 dimensional cases, provided that the discrete
and weak solutions have additional regularity properties, which will be introduce later (see in particular
assumptions (43) and (44)).

The error analysis for degenerate second order parabolic problems is well studied in literature, see e.g. [29]
and [5]. In these cases, the degenerate flux b(s)∇s, where b is a degenerate mobility and s is the independent
variable of the problem, can be rewritten at the continuous level through the Kirchhoff transformation
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D(s) =
∫ s

0
b(ζ)dζ as b(s)∇s = ∇D(s). The error associated to the elliptic terms can be than estimated using

standard properties of convexity and monotonicity of D(s).
The error analysis for non-degenerate second and fourth order parabolic problems can be studied by

standard methods of error analysis, see e.g. [26], [25], [24] and [19]. In particular, in [19] the L2(0, T ;H−1(Ω))
norm of the time increment of the error of the concentration c is estimated in terms of the discretization
parameters, and this estimate is sufficient to obtain all other estimates in the error analysis. In this case
and for P 1 elements, the norms of the approximation errors are bounded by power laws of the discretization
parameters with exponent 1.

In the case of the fourth-order degenerate parabolic problem (8) and (11), the elliptic terms cannot be
handled by a Kirchhoff-like transformation, and in particular the elliptic term in the second equation of (11)
does not contain a degenerate factor and must be calculated on the set {0 < c < 1}, i.e. on the support of
the function c. The fact that the relationship between b and ψ at 0 does not ensure that c ≥ 0 at a discrete
level induces to consider a discrete variational inequality, where c ≥ 0 is imposed as a constraint, and at the
continuous level it imposes to consider test functions θ whith supp(θ) ⊂ {0 < c < 1}. All these complications
make non standard the error analysis for the present problem. In particular, using test functions θ whith
supp(θ) ⊂ {0 < c < 1} introduces the necessity to calculate the L2(0 < c < 1) norm of the time increment
of the error of c in terms of the discretization parameters.

The main result of this paper states that the norms of the approximation errors for the degenerate CH
equation, calculated on the support of the solution in the proper functional spaces and in the hypothesis that
h/∆t = O(1), which satisfies condition (10), are bounded by power laws of the discretization parameters
with exponent 1/2. Since this result does not depend on the particular form of ψ, but it’s based on the fact
that the singularity set of the potential and the degeneracy set of the mobility do not coincide, it can be
applied also to the degenerate CH equation with smooth potential.

The paper is organized as follows. In Section 2 some properties of the functional setting used in the error
analysis are introduced, together with the main result of this paper regarding the a-priori error estimates
between the discrete solution of (8) and the solution of the weak problem (11). Section 3 introduces some
useful notations and some preliminary lemmas, comprehensive of two crucial lemmas used in the main
calculation steps of the proof of the main result. In Section 4 the proof of the main result is shown. In
Section 5 the proofs of the main Lemmas introduced in Section 3 are reported. Finally, in Section 6 some
numerical experiments in spatial dimensions one and two are presented in order to validate the a-priori error
estimates introduced in Section 2.

2 Functional setting and main result

Before exposing the main result of this paper, I introduce some definitions and fundamental properties of the
functional setting introduced in the first part of the paper which will be used in the following calculations.

Let’s introduce the ”inverse Laplacian” operator Gω : (H1(ω))′ → H1
0 (ω) such that

(∇Gωv,∇η)ω =< v, η >ω ∀η ∈ H1
0 (ω), (16)

The existence and uniqueness of an element Gωv ∈ H1
0 (ω), for any v ∈ (H1(ω))′, follows from the Lax-

Milgram theorem and the Poincaré inequality.
A norm on (H1(ω))′ can be defined by

||v||(H1(ω))′ := |Gωv|1,ω ≡< v,Gv >1/2
ω ∀v ∈ (H1(ω))′. (17)

The following Sobolev interpolation result will be used, (see, e.g., [1]). Let p ∈ [1,∞], m ≥ 1, and set

r ∈


[p,∞] if m− d

p > 0,

[p,∞) if m− d
p = 0,

[p,− d
m−(d/p) ] if m− d

p < 0,
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and µ = d
m

(
1
p −

1
r

)
. Then, there is a constant C such that

||v||0,r ≤ C||v||1−µ0,p ||v||µm,p ∀v ∈Wm,p(Ω). (18)

Similarly to (16), let’s define the operator Ghω : (H1(ω))′ → Sh ∩H1
0 (ω) such that

(∇Ghωv,∇χ)ω =< v, χ >ω ∀χ ∈ Sh, with supp(χ) ⊂⊂ ω. (19)

It is useful to introduce the L2 projection operator Ph : L2(Ω) → Sh and the operator Ĝh : Fh → V h as
follows

(Phη, χ) = (η, χ) ∀χ ∈ Sh, (20)

(∇Ĝhv,∇χ) = (v, χ)h ∀χ ∈ Sh, (21)

where Fh = {v ∈ C̄(Ω) : (v, 1) = 0} and V h = {vh ∈ Sh : (vh, 1) = 0}. The following well-known results
will be used, (see, e.g., [6]),

|χ|1,p ≤ Ch−1||χ||0,p ∀χ ∈ Sh, 1 ≤ p ≤ ∞; (22)

||(I − Ph)η||0 + h|(I − Ph)η|1 ≤ Chm|η|m ∀η ∈ Hm(Ω), m = 1, 2; (23)

||χ||20 ≤ (χ, χ)h ≤ (d+ 2)||χ||20 ∀χ ∈ Sh (24)

|(vh, χ)h − (vh, χ)| ≤ Ch1+m||vh||m||χ||1 ∀vh, χ ∈ Sh, m = 0, 1; (25)

where d is the spatial dimension. The following bounds will also be used in the following calculations.

Lemma 2.1 Given vh ∈ Sh with supp(vh) ⊂⊂ ω, the following inequalities hold:

||∇(Ghωvh)||ω ≤ C||vh||ω; (26)

||vh||ω ≤ Ch−1||∇(Ghωvh)||ω. (27)

Proof. The inequality (26) follows directly from the definition (19) by choosing χ ≡ Ghωvh, using the Cauchy-
Schwarz and the Poincaré inequalities. Choosing χ ≡ vh in (19), using the Cauchy-Schwarz inequality and the inverse
inequality (22), we get

||vh||2ω ≤ ||∇Ghωvh||ω||∇vh||ω ≤ Ch−1||∇Ghωvh||ω||vh||ω,

from which we obtain (27). �
Let’s moreover introduce the following discrete Laplacian operator: given w ∈ Sh, find ∆h,ωw ∈ Sh ∩

H1
0 (ω) such that

−(∆h,ωw, φ)ω = (∇w,∇φ)ω, ∀φ ∈ Sh, with supp(φ) ⊂⊂ ω. (28)

The existence and uniqueness of the element ∆h,ωw in (28) follows from the Riesz representation theorem
and the Poincaré inequality.

Furthermore, C denotes throughout a generic positive constant independent of the unknown variables, the
discretization and the regularization parameters, the value of which might change from line to line; C1, C2, . . .
indicate generic positive constants whose particular value must be tracked through the calculations; C(a)
denotes a constant depending on the non negative parameter a, such that, for C1 > 0, if a ≤ C1, there exists
a C2 > 0 such that C(a1) ≤ C2.

I also recall the definitions of the sets D+
δ , D+

δ (t) and of the cut-off function θ4δ, for a δ > 0, introduced
in [3]:

D+
δ := {(x, t) ∈ Ω̄T : δ < c(x, t) < 1},

D+
δ (t) := {x ∈ Ω̄ : δ < c(x, t) < 1},

θ4δ ∈ C∞0 (D+
2δ), θ4δ ≡ 1 on D+

4δ(t), 0 ≤ θ4δ(·, t) ≤ 1, |∇θ4δ| ≤ Cδ−2.
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On account of the uniform convergence (14), for a fixed δ > 0, it follows that there exists a h(δ) ∈ R+ such
that, for all h ≤ h(δ),

0 ≤ C±h (x, t) < min{2δ, 1} ∀(x, t) 6∈ D+
δ , (29)

1

2
δ ≤ C±h (x, t) < 1 ∀(x, t) ∈ D+

δ .

Choosing

φ(·, t) ≡ C+
h (·, t)± 1

2
δ

ηh(·, t)
||ηh(·, t)||L∞(Ω)

∈ Kh, ∀ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ

in the second equation of system (8) yields, ∀h < h(δ), that∫ T

0

[
γ

(
∂C+

h

∂x
,
∂ηh

∂x

)
+ (ψ′1(C+

h ) + ψ′2(C−h ), ηh)h
]
dt =

∫ T

0

(W+
h , η

h)hdt. (30)

This equality formulation of the inequality in (8) will be used in the following calculations.
The main theorem of this paper is now introduced, which will be proved in Section 4.

Theorem 2.1 Let c ∈ L∞(0, T ;H1(Ω))∩H1(0, T ; (H1(Ω))′)∩L2(0, T ;H2(D+
δ (t))) and w ∈ L2(0, T ;H2(D+

δ (t))),
for a given δ > 0, solutions of the limit system (11). Assume moreover that c0(·) ∈ H1(Ω) ∩ H4(D+

δ (0)).
Under the hypothesis that ∆t ∼ h, the following error estimates hold:

||c− C+
h ||L∞(0,T ;H1(D+

δ (t))) ≤ C(h1/2 + ∆t1/2); (31)

||w −W+
h ||L2(0,T ;H1(D+

δ (t))) ≤ C(h1/2 + ∆t1/2). (32)

Before deriving error bounds for the discrete solution of problem Ph, I need to introduce some notation and
preliminary Lemmas.

3 Notation and preliminary Lemmas

The analysis will be restricted to the one − dimensional case (see [3] - Remark 4.1) and the Introduction). I
proceed by following the same steps as those introduced in [19], here generalized in a non-standard way and
for the first time to the degenerate fourth-order parabolic case.
Let’s introduce the projection operator Ph,1 : H1(Ω)→ Sh defined, for v ∈ H1(Ω), by(

∂

∂x
Ph,1v,

∂

∂x
χ

)
=

(
∂

∂x
v,

∂

∂x
χ

)
∀χ ∈ Sh, (33)

with (Ph,1v, 1) = (v, 1), and the anisotropic projection operator P bh,1 : H1(D+
0 (t)) → Sh defined, for w ∈

H1(D+
0 (t)), δ > 0 and for a.e. t ∈ [0, T ], by(

b(c)
∂

∂x
P bh,1w,

∂

∂x
χ

)
D+
δ (t)

=

(
b(c)

∂

∂x
w,

∂

∂x
χ

)
D+
δ (t)

∀χ ∈ Sh, supp(χ) ⊂⊂ D+
δ (t). (34)

The following bounds hold:

||v − Ph,1(v)|| ≤ Ch||v − Ph,1(v)||1, ∀v ∈ H1(Ω), (35)

||v − Ph,1(v)||1 ≤ Chl||v||l+1 ∀v ∈ Hs+1(Ω), l = min(1, s), (36)
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with analogous bounds, calculated over the set D+
δ (t), for the operator P bh. For ease of exposition, I introduce

the following notations:

ec(·, t) := c(·, t)− C+
h (·, t), ech(·, t) := Ph,1c(·, t)− C+

h (·, t), ecp(·, t) := c(·, t)− Ph,1c(·, t),

with c0h = Phc(·, 0),

ew(·, t) := w(·, t)−W+
h (·, t), ewh (·, t) := P bh,1w(·, t)−W+

h (·, t), ewp (·, t) := w(·, t)− P bh,1w(·, t),

and

δ∆tC
+
h (t) :=

cnh − c
n−1
h

∆t
, t ∈ (tn−1, tn], n ≥ 1;

δ∆tc(t) :=
c(t)− c(t−∆t)

∆t
, t ∈ (tn−1, tn], n ≥ 1;

where C+
h (t) := cnh, W+

h (t) := wnh . I recall here some useful energy estimates for the discrete solution, derived
in [2], (see in particular Lemma 2.4 therein).

min
δ
2≤C

−
h <1

b(C−h )

∫
D+
δ

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt ≤ ∫
D+
δ

b(C−h )

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt ≤ C, (37)

∫ T

0

|δ∆tC+
h (t)|21dt ≤ C(∆t)−1, (38)

∫ T

0

∣∣∣∣Ĝh(δ∆tC
+
h (t))

∣∣∣∣2
1

dt ≤ C. (39)

Moreover, I recall that (see Theorem 2.2 and Lemma 3.3 in [3])

0 ≤ c, C±h < 1 in ΩT . (40)

Next define
Sc(·, t) := δ∆tPh,1c(·, t)− ∂tPh,1c(·, t), t ∈ (tn−1, tn], n ≥ 1.

I introduce the following lemma.

Lemma 3.1 For a given δ > 0 and if c0 ∈ H4(D+
δ (0)), the solution (c, w) of (11) satisfies the properties

c ∈ L2(0, T ;H4(D+
δ (t))), (41)

w ∈ L2(0, T ;H2(D+
δ (t))). (42)

Proof. From the second equation in system (11) and elliptic regularity on the set D+
0 we immediately get

c ∈ L2(0, T ;H2(D+
δ (t))). We choose now η ∈ H1(0, T ;C∞0 (Ω)) with supp(η) ⊂⊂ D+

δ/2(t), in the first equation in

system (11), and integrate by parts in time. We get

(c(·, T ), η(·, T ))
D+
δ/2

(T )
− (c(·, 0), η(·, 0))

D+
δ/2

(0)
−
∫ T

0

(
c,
∂η

∂t

)
D+
δ/2

(t)

dt+

∫ T

0

(
b(c)

∂w

∂x
,
∂η

∂x

)
D+
δ/2

(t)

dt = 0,

for all η ∈ H1(0, T ;C∞0 (D+
δ/2(t))). Using (14), (15) and elliptic regularity on the interior of the set D+

δ/2(t), for each

δ > 0, we get that w(t) ∈ H2
loc(D+

δ/2(t)) for a.e. t ∈ (0, T ], and hence we get (42) and (41). � Note that, when

δ > 0 is a finite parameter, if δ < −
∫
c, then for each t ∈ [0, T ], D+

δ (t) 6= 0.
I introduce the following assumptions, which are consequences of (13), (14), (15), Lemma 3.1, Schauder

theory for parabolic equations (see e.g [18]), the definition (28) and the additional assumption that c0 ∈
H4(D+

δ (0)):
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1.
c ∈ C0([0, T ];H4(D+

δ (t))) , ∂tc ∈ C0(D+
δ ) ∩ L∞(0, T ;H1(D+

δ (t))); (43)

2.
ech ∈ C0([0, T ];H1(D+

δ (t))) , ∆h,D+
δ (t)e

c
h ∈ C0([0, T ];L2(D+

δ (t))). (44)

The following result is valid.

Lemma 3.2 Let c ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′) be the solution of the limit system (11). The
following bounds hold:

||ecp(·, t)||+ h||ecp(·, t)||1 ≤ Ch for a.e. t ∈ [0, T ], (45)

||ec(·, t)|| ≤ C||ec(·, t)||1 for a.e. t ∈ [0, T ]. (46)

Proof. The bound (45) is a simple consequence of (35) and (36). The bound (46) is given by the Poincaré

inequality. � By application of (35) and (36) with s = 1, considering the regularity of the solutions of the
limit system (11), and considering the fact that b(c) > 0 on D+

δ (t), we get the following result.

Lemma 3.3 (Estimates on D+
δ (t)) For each δ > 0,

||ewp (·, t)||D+
δ (t) + h||ewp (·, t)||1,D+

δ (t) ≤ Ch
2; for a.e. t ∈ [0, T ]; (47)

||ecp(·, t)||D+
δ (t) + h||ecp(·, t)||1,D+

δ (t) ≤ Ch
2; for a.e. t ∈ [0, T ]. (48)

Moreover, we get the following result.

Lemma 3.4 Let c(·, t) be the solution of the system (11). The following bounds hold

||Sc||L2(0,T ;(H1(Ω))′) ≤ C∆t; (49)

||Sc − ∂tecp||L2(0,T ;(H1(Ω))′) ≤ C∆t+ Ch. (50)

Proof. Let’s multiply Sc(·, t) by a function η ∈ C∞0 ([0, T ];H1(Ω)), and integrate in time from 0 to T . By expanding
in a Taylor series the term Ph,1c(·, t−∆t) around t, integrating by parts in time and using the first equation in system
(11), we get∫ T

0

(δ∆tPh,1c(·, t), η)dt+

∫ T

0

(
Ph,1c,

∂η

∂t

)
dt = ∆t

∫ T

0

(
Ph,1c,

∂2η

∂t2

)
dt+O[(∆t)2] = ∆t

∫ T

0

(
c,
∂2η

∂t2

)
dt+ (51)

∆t

∫ T

0

(
Ph,1c− c,

∂2η

∂t2

)
dt+O[(∆t)2] = ∆t

∫
D+

0

b(c)
∂w

∂x

∂

∂x

(
∂η

∂t

)
dxdt+ ∆t

∫ T

0

(
Ph,1c− c,

∂2η

∂t2

)
dt+O[(∆t)2].

Hence, using (45) and writing only the lowest order terms in the discretization parameters, we get that Sc ∈
L2(0, T ; (H1(Ω))′), with

||Sc||L2(0,T ;(H1(Ω))′) ≤ C∆t

∣∣∣∣∣∣∣∣∂c∂t
∣∣∣∣∣∣∣∣
L2(0,T ;(H1(Ω))′)

+ Ch∆t ≤ C∆t,

where the following definition for the (H1(Ω))′ norm has been used: given f ∈ (H1(Ω))′,

||f ||(H1(Ω))′ := sup
v∈H1

0 (Ω),v 6=0

< f, v >

||v||1
. (52)

Note from the definition (52), by application of (16) and the Cauchy-Schwarz inequality, and from (26), that the
norms (52) and (17) on (H1(Ω))′ are equivalent.

Summing to both sides of equation (51) the term (ecp,
∂η
∂t

), and using (45), (50) follows.
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Choosing in (51) a function η with supp(η(·, t)) ⊂⊂ D+
δ (t) and using (48), we get similarly that

||Sc||
L2(0,T ;(H1(D+

δ
(t)))′) ≤ C∆t. (53)

||Sc − ∂tecp||L2(0,T ;(H1(D+
δ

(t)))′) ≤ C∆t+ Ch2. (54)

�
I introduce now the two main Lemmas of this section, which will be used as fundamental steps in the

proof of Theorem 2.1 and which will be proved in Section 5. The first Lemma concerns estimates of the
L2(0, T ;H−1(D+

δ (t))) norm of the time increment of the error of the concentration c and the L2(D+
δ ) norm

of the error of the chemical potential w.

Lemma 3.5 Let c ∈ L∞(0, T ;H1(Ω))∩H1(0, T ; (H1(Ω))′)∩L2(0, T ;H2(D+
δ (t))) and w ∈ L2(0, T ;H2(D+

δ (t))),
for a given δ > 0, solutions of the limit system (11). Under the hypothesis that ∆t ∼ h, the following bounds
hold: ∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ (t)

(Ph(θ4δδ∆te
c
h))

∣∣∣∣∣∣∣∣2
D+
δ (t)

dt ≤ (C + C(δ−4))h3 + (C + C(δ−4))(∆t)3/2 (55)

+ (C + C(δ−5))

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ (t)

dt+ (C + C(δ−4))

∫ T

0

||echθ4δ||2D+
δ (t)

dt,

∫ T

0

||ewh θ4δ||2D+
δ (t)

dt ≤ Ch2 + C∆t (56)

+ C

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ (t)

dt+ C

∫ T

0

||echθ4δ||2D+
δ (t)

dt+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ (t)

dt.

The second Lemma concerns estimates of the L∞(0, T ;L2(D+
δ (t))) norm of the error of the concentration c

and the L2(D+
δ ) norm of the time increment of the error of the concentration c.

Lemma 3.6 Let c ∈ L∞(0, T ;H1(Ω))∩H1(0, T ; (H1(Ω))′)∩L2(0, T ;H2(D+
δ (t))) and w ∈ L2(0, T ;H2(D+

δ (t))),
for a given δ > 0, solutions of the limit system (11). Under the hypothesis that ∆t ∼ h, the following bounds
hold:

||ech(·, t)(θ4δ)||2D+
δ (t)
≤ (C + C(δ)−4)h3 + C(δ−6)∆t (57)

+ C

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ (t)

dt+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ (t)

dt,

∫ T

0

||δ∆tech(θ4δ)||2D+
δ (t)

dt ≤ (C + C(δ−5))h+ (C + C(δ−14))∆t (58)

+ C(δ−8)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ (t)

dt+ C(δ−14)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ (t)

dt+

C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ (t̄)

+
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ (0)

+
9

10

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ (t)

dt,

with a constant C4 < 1 and for a given t̄ ∈ (T −∆t, T ].
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4 Proof of Theorem 2.1

I proceed now with the proof of the main result.
Proof. Rewrite (8), using (30), in the following way:

∫ T

0

[
(δ∆tC

+
h , χ) +

(
b(c)

∂W+
h

∂x
,
∂χ

∂x

)]
dt =

∫ T

0

[(δ∆tC
+
h , χ)− (δ∆tC

+
h , χ)h]dt

+

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂χ

∂x

)
dt,

∫ T

0

[
γ

(
∂C+

h

∂x
,
∂φ

∂x

)
+ (ψ′1(C+

h ) + ψ′2(C−h )−W+
h , φ)

]
dt =

∫ T

0

[(ψ′1(C+
h ) + ψ′2(C−h )−W+

h , φ)

−(ψ′1(C+
h ) + ψ′2(C−h )−W+

h , φ)h]dt,

(59)

for all (χ, φ) ∈ L2(0, T ;Sh) × L2(0, T ;Sh), with supp(φ) ⊂⊂ D+
δ , for each δ > 0, and with Ch(0) = c0h = πhc(·, 0).

Moreover, from (11) the following system is derived:
∫ T

0

(δ∆tPh,1c, η)dt+

∫ T

0

(
b(c)

∂P bh,1w

∂x
,
∂η

∂x

)
D+
δ

(t)

dt =

∫ T

0

< Sc − ∂tecp, η > dt,∫ T

0

[
γ

(
∂Ph,1c

∂x
,
∂ξ

∂x

)
D+
δ

(t)

+ (ψ′(c)− P bh,1w, ξ)D+
δ

(t)

]
dt =

∫ T

0

(ewp , ξ)D+
δ

(t)
dt,

(60)

for all η ∈ L2(0, T ;Sh) and ξ ∈ L2(0, T ;Sh) with supp(η) ⊂⊂ D+
δ , supp(ξ) ⊂⊂ D+

δ , and with c(·, 0) = c0(·).
Take φ = ξ ≡ Ph[(θ4δ)

2δ∆te
c
h] in the second equation of (59) and in the second equation of (60), on noting that, for

h ≤ h̄(δ), supp(φ) ⊂⊂ D+
δ (this happens when at least two mesh points are in the set {x ∈ Ω̄ : δ < c(x, t) < 2δ}),

and subtract the former from the latter. Using the equality

∂

∂x
Ph[f ] =

∂

∂x
f +

∂

∂x
(Ph − I)f, for f ∈ H1(D+

δ (t)), (61)

with f ≡ (θ4δ)
2δ∆te

c
h(t), the following identity is obtained∫ T

0

(ewh , (θ4δ)
2δ∆te

c
h)
D+
δ

(t)
dt =

∫ T

0

γ

(
∂ech
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+ (62)

∫ T

0

[
γ

(
∂ech
∂x

, δ∆te
c
h
∂(θ4δ)

2

∂x

)
D+
δ

(t)

+ (ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), Ph[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)

]
dt−

∫ T

0

(ewp , P
h[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)
dt+

∫ T

0

[
(ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2δ∆te

c
h])−

(ψ′1(C+
h ) + ψ′2(C−h )−W+

h , P
h[(θ4δ)

2δ∆te
c
h])h

]
dt−

∫ T

0

γ

(
∂ech
∂x

,
∂

∂x
(I − Ph)((θ4δ)

2δ∆te
c
h)

)
D+
δ

(t)

dt

Furthermore, choose χ = η ≡ Ph[(θ4δ)
2ewh ] in the first equation of (59) and in the first equation of (60), and subtract

the former from the latter. We obtain, using again (61) with f ≡ (θ4δ)
2ewh (t),∫ T

0

(δ∆te
c
h, (θ4δ)

2ewh )
D+
δ

(t)
dt = −

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

(θ4δ)
2

)
D+
δ

(t)

dt−
∫ T

0

(
b(c)

∂ewh
∂x

, ewh
∂(θ4δ)

2

∂x

)
D+
δ

(t)

dt+ (63)

∫ T

0

< Sc − ∂tecp, Ph[(θ4δ))
2ewh ] >

D+
δ

(t)
dt−

∫ T

0

[
(δ∆tC

+
h , P

h[(θ4δ)
2ewh ])− (δ∆tC

+
h , P

h[(θ4δ)
2ewh ])h

]
dt−∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂ewh
∂x

(θ4δ)
2

)
dt−

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂(θ4δ)

2

∂x
ewh

)
dt+∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(I − Ph)((θ4δ)

2ewh )

)
D+
δ

(t)

dt+

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
(I − Ph)((θ4δ)

2ewh )

)
dt.
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Combining (62) and (63) we finally get∫ T

0

γ

(
∂ech
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

(θ4δ)
2

)
D+
δ

(t)

dt = (64)

−
∫ T

0

γ

(
∂ech
∂x

, δ∆te
c
h
∂(θ4δ)

2

∂x

)
D+
δ

(t)

dt−
∫ T

0

(
b(c)

∂ewh
∂x

, ewh
∂(θ4δ)

2

∂x

)
D+
δ

(t)

dt+

∫ T

0

< Sc − ∂tecp, Ph[(θ4δ)
2ewh ] >

D+
δ

(t)
dt−

∫ T

0

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), Ph[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)
dt+∫ T

0

(ewp , P
h[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)
dt−

∫ T

0

[
(δ∆tC

+
h , P

h[(θ4δ)
2ewh ])− (δ∆tC

+
h , P

h[(θ4δ))
2ewh ])h

]
dt−∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂ewh
∂x

(θ4δ)
2

)
dt−

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂(θ4δ)

2

∂x
ewh

)
dt−∫ T

0

[
(ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2δ∆te

c
h])− (ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2δ∆te

c
h])h

]
dt+∫ T

0

[
γ

(
∂ech
∂x

,
∂

∂x
(I − Ph)((θ4δ)

2δ∆te
c
h)

)
D+
δ

(t)

+

∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(I − Ph)((θ4δ)

2ewh )

)
D+
δ

(t)

dt+

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
(I − Ph)((θ4δ)

2ewh )

)
dt =

E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10 + E11 + E12,

where I indicate the terms on the right hand side of (64) with the notation E1, . . . , E12. In order to proceed, I
introduce here two inequalities, which will be frequently used in the sequel. The first one is

||f ||2
D+
δ

(t)
≤ C||fθ4δ||2D+

δ
(t)
, ∀f ∈ L2(D+

δ (t)), (65)

which is given by the fact that

||f ||2
D+
δ

(t)
= ||fθ4δ||2D+

δ
(t)

+ ||f(1− θ2
4δ)

1/2||2
D+
δ

(t)
= ||fθ4δ||2D+

δ
(t)

+ ||f(1− θ2
4δ)

1/2||2
D+
δ

(t)\D+
2δ

(t)

+ ||f(1− θ2
4δ)

1/2||2
D+

2δ
(t)\D+

4δ
(t)
≤ ||fθ4δ||2D+

δ
(t)

+ C1||f ||2D+
δ

(t)

and the fact that there exists a δ̄ such that C1 < 1 for each δ < δ̄. The second one is∣∣∣∣∣∣∣∣∂ewh∂x
∣∣∣∣∣∣∣∣
D+
δ

(t)

≤ 1

(minδ≤c<1 b(c))1/2

∣∣∣∣∣∣∣∣(b(c))1/2 ∂e
w
h

∂x

∣∣∣∣∣∣∣∣
D+
δ

(t)

≤ C(δ−1/2)

∣∣∣∣∣∣∣∣(b(c))1/2 ∂e
w
h

∂x

∣∣∣∣∣∣∣∣
D+
δ

(t)

. (66)

Let’s now bound the terms E1, . . . , E12 on the right hand side of (64). Using the Cauchy-Schwarz and the Young
inequalities, the fact that |∇θ4δ| ≤ Cδ−2 and (65), we get

|E1| ≤ C(δ−4)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C1γ

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt. (67)

Using (58) in (67), choosing a constant C1 in (67) such that C1γC(δ−8) = 1
24

, where C(δ−8) is the coefficient of the
third term on the right hand side of (58), and noting that there exists a value δ̄ such that C1 < 1 for each δ < δ̄
(note that C(δ−8) depends polinomially on its argument), we obtain, at the lowest order,

|E1| ≤ (C + C(δ−5))h+ (C + C(δ−14))∆t+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ C(δ−14)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

(68)

γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ γ
9

10

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.
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Using the Cauchy-Schwarz and Young inequalities and the fact that |∇θ4δ| ≤ Cδ−2 we get

|E2| ≤
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ C(δ−4)

∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt.

Using (56) and (57), choosing the constant C in the third term on the right hand side of (56) and the constant C in
the first term in the right hand side of (57) such that C(δ−4)C = 1

48
, we get, at the lowest order,

|E2| ≤
2

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+(C+C(δ−10))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+C(δ−4)h2 +(C+C(δ−10))∆t. (69)

Using (16) and (61) with f ≡ θ2
4δe

w
h , we rewrite the term E3 as

E3 =

∫ T

0

< Sc − ∂tecp, Ph[θ2
4δe

w
h ] >

D+
δ

(t)
dt =

∫ T

0

(
∂

∂x
G
D+
δ

(t)
(Sc − ∂tecp),

∂

∂x
θ2

4δe
w
h

)
dt−∫ T

0

(
∂

∂x
G
D+
δ

(t)
(Sc − ∂tecp),

∂

∂x
(I − Ph)[θ2

4δe
w
h ]

)
dt.

Using the Cauchy-Schwarz inequality, (17), the fact that |∇θ4δ| ≤ Cδ−2, the stability of the Ph projector under the
H1 seminorm, i.e. |v − Ph(v)|

1,D+
δ

(t)
≤ C|v − Ph,1v|1,D+

δ
(t)

for v ∈ H1(D+
δ (t)) and (36) we obtain

E3 ≤ C||Sc − ∂tecp||L2(0,T ;(H1(D+
δ

(t)))′)

[(∫ T

0

∣∣∣∣∣∣∣∣∂ewh∂x
∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+ C(δ−2)

(∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt

)1/2]
.

Using (54) and (66) we get

E3 ≤ C(h2 + ∆t)

[
C(δ−1/2)

(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2

+ C(δ−2)

(∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt

)1/2]
.

Using the Young inequality and (56) and (57), choosing the constant C in the third term on the right hand side of
(56) and the constant C in the first term in the right hand side of (57) such that C(δ−4)C = 1

48
, and keeping only

the lowest order terms, we get

|E3| ≤
2

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+(C+C(δ−10))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+C(δ−4)h2 +(C+C(δ−10))∆t. (70)

Using the following equality
Ph[f ] = f + (Ph − I)f, for f ∈ L2(D+

δ (t)), (71)

we can rewrite the term E4 as

E4 =

∫ T

0

(θ4δ(ψ
′(c)− ψ′1(C+

h )− ψ′2(C−h )), (θ4δ)δ∆te
c
h)
D+
δ

(t)
dt−∫ T

0

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), (I − Ph)[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)
dt =∫ T

0

(Ph[θ4δ(ψ
′(c)− ψ′1(C+

h )− ψ′2(C−h ))], Ph[(θ4δ)δ∆te
c
h])

D+
δ

(t)
dt+∫ T

0

((I − Ph)[θ4δ(ψ
′(c)− ψ′1(C+

h )− ψ′2(C−h ))], (θ4δ)δ∆te
c
h)
D+
δ

(t)
dt−∫ T

0

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), (I − Ph)[(θ4δ)

2δ∆te
c
h])

D+
δ

(t)
dt.

12



Using (19), the Cauchy-Schwarz and Young inequalities, (23) on the set D+
δ with m = 1 and (27), we get, keeping

only the lowest order terms,

|E4| ≤
(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (Ph[θ4δ(ψ
′(c)− ψ′1(C+

h )− ψ′2(C−h )])

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(72)

(C + C(δ−4))

∫ T

0

||ψ′(c)− ψ′1(C+
h )− ψ′2(C−h )||2

D+
δ

(t)
dt+ C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (ψ′(c)− ψ′1(C+
h )− ψ′2(C−h )

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

Ch2

∫ T

0

||θ4δδ∆te
c
h||2D+

δ
(t)
dt+ Ch2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt ≤

(C + C(δ−4))

∫ T

0

||ψ′(c)− ψ′1(C+
h )− ψ′2(C−h )||2

D+
δ

(t)
dt+ C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (ψ′(c)− ψ′1(C+
h )− ψ′2(C−h )

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

In order to bound the first and the second terms in the last line of (72), we write

ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ) = ψ′1(c)− ψ′1(C+

h ) + ψ′2(c)− ψ′2(C+
h ) + ψ′2(C+

h )− ψ′2(C−h ),

and use the inequality ||a + b||2 ≤ 2||a||2 + 2||b||2. Noting that ψ′1(·) ∈ C1([0, 1)), ψ′2(·) ∈ C1([0, 1]), using (40) and
(65), we obtain

|E4| ≤ (C + C(δ−4))

∫ T

0

(
||ecθ4δ||2D+

δ
(t)

+ (∆t)2||δ∆tC+
h ||

2

D+
δ

(t)

)
dt+ (73)

C

∫ T

0

(∣∣∣∣∣∣∣∣∂ec∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

+ (∆t)2

∣∣∣∣∣∣∣∣ ∂∂xδ∆tC+
h

∣∣∣∣∣∣∣∣2
D+
δ

(t)

)
dt+ C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

Now, from (38) and from (21), (25) and the Cauchy-Schwarz inequality, we get∫ T

0

||δ∆tC+
h ||

2dt ≤
∫ T

0

(δ∆tC
+
h , δ∆tC

+
h )hdt+

∫ T

0

|(δ∆tC+
h , δ∆tC

+
h )h − (δ∆tC

+
h , δ∆tC

+
h )|dt ≤ (74)∫ T

0

(
∂

∂x
Ĝh(δ∆tC

+
h ),

∂

∂x
δ∆tC

+
h

)
dt+ Ch2

∫ T

0

||δ∆tC+
h ||

2
1dt ≤

(∫ T

0

∣∣∣∣Ĝh(δ∆tC
+
h )

∣∣∣∣2
1

dt

)1/2(∫ T

0

|δ∆tC+
h |

2
1dt

)1/2

+

Ch2

∫ T

0

||δ∆tC+
h ||

2dt+ Ch2(∆t)−1.

Using the hypothesis that ∆t ∼ h and from (38) and (39) we get, at the lowest order,∫ T

0

||δ∆tC+
h ||

2dt ≤ C(∆t)−1/2. (75)

Remark 4.1 Note that (75) is more generally valid if we make in (74) the assumption that ∆t = Chn, with n ≤ 4,
which, together with (9) and (10), becomes ∆t = Chm, with 1 ≤ m ≤ 4. Since the condition ∆t ∼ h is the necessary
assumption for the validity of Theorem 2.1, I use it in the calculations.

Using the fact that ec = ecp + ech and (48), using moreover (38) and (75) in (73) we get, at the lowest order,

|E4| ≤ Ch2 + C∆t+ (C + C(δ−4))

∫ T

0

||echθ4δ||2D+
δ

(t)
dt+ C

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

+ (76)

C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

13



Using finally (55) and (57) in (76), choosing a constant C in the last term in (76) such that (C + C(δ−5))C = 1
48

,
where C +C(δ−5) is the coefficient of the third term on the right hand side of (55), choosing moreover a constant C
in the first term on the right hand side of (57) such that (C + C(δ−4))C = 1

48
, we get, at the lowest order,

|E4| ≤ Ch2 + (C + C(δ−10))∆t+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (C + C(δ−8))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (77)

Using (47), (71), (23) with m = 1, the Cauchy-Schwarz and Young inequalities and (27) we get, at the lowest order,

|E5| ≤ C
(∫ T

0

||ewp ||2D+
δ

(t)
dt

)1/2(∫ T

0

||θ4δδ∆te
c
h||2D+

δ
(t)
dt

)1/2

≤ Ch2 + C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

(78)
Using now (55) and (57), choosing a constant C in the last term in (78) such that (C + C(δ−5))C = 1

48
, choosing

moreover a constant C in the first term on the right hand side of (57) such that (C +C(δ−4))C = 1
48

, we get, at the
lowest order,

|E5| ≤ Ch2 + (C + C(δ−10))∆t+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (C + C(δ−8))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (79)

Using (25) with m = 1, (38), (75), (61), (71), (23) with m = 1, (66), the Cauchy-Schwarz and Young inequalities and
the hypothesis that ∆t ∼ h we get, at the lowest order,

|E6| ≤ Ch2

(∫ T

0

||δ∆tC+
h ||

2

1,D+
δ

(t)
dt

)1/2(∫ T

0

||Ph[(θ4δ)
2ewh ]||2

1,D+
δ

(t)
dt

)1/2

≤ (80)

Ch2(∆t)−1/2

[
C(δ−1/2)

(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2

+ (C + C(δ−2))

(∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt

)1/2]
≤

(C + C(δ−4))h3 +
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ C

∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt.

Using (56) and (57), choosing an appropriate value of the constant C in the last term in (80) and an appropriate
value of the constant C in the first term on the right hand side of (57), and keeping only the lowest order terms, we
get

|E6| ≤ Ch2 + (C + C(δ−6))∆t+
2

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (C + C(δ−6))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (81)

Using the Cauchy-Shwarz inequality, (37), (66), (65), (18) with r =∞, d = 1, m = 1, p = 2, the Lipschtitz continuity
of b(·), (38), (75), the hypothesis that ∆t ∼ h and the Young inequality, we get

|E7| ≤ C(δ−1)

(∫ T

0

||b(c)− b(C+
h )||2∞,D+

δ
(t)
dt

)1/2(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2

+ (82)

C(δ−1)

(∫ T

0

||b(C+
h )− b(C−h )||2∞,D+

δ
(t)
dt

)1/2(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2

≤

C(δ−2)

∫ T

0

||echθ4δ||2D+
δ

(t)
dt+ C(δ−2)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C(δ−2)∆t+
1

48

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt.

Using (57) in (82), choosing a constant C in the first term on the right hand side of (57) such that C(δ−2)C = 1
48

,
we get, at the lowest order,

|E7| ≤ (C +C(δ−6))h3 +C(δ−2)∆t+ (C +C(δ−6))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt. (83)

14



Similarly to (83), we get

|E8| ≤ C(δ−5/2)

(∫ T

0

||b(c)− b(C+
h )||2∞,D+

δ
(t)
dt

)1/2(∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt

)1/2

+ (84)

C(δ−5/2)

(∫ T

0

||b(C+
h )− b(C−h )||2∞,D+

δ
(t)
dt

)1/2(∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt

)1/2

≤ C(δ−5)

∫ T

0

||echθ4δ||2D+
δ

(t)
dt+

C(δ−5)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C(δ−5)∆t+ C

∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt.

Using (56) and (57), choosing an appropriate value of the constant C in the last term in (84) and an appropriate
value of the constant C in the first term on the right hand side of (57), and keeping only the lowest order terms, we
get

|E8| ≤ Ch2 + (C + C(δ−11))∆t+ (C + C(δ−9))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt. (85)

Noting that ψ′1(·) ∈ C1([0, 1)), ψ′2(·) ∈ C1([0, 1]), that C±h ∈ L
∞(0, T ;H1(Ω)), that W+

h ∈ L
2(0, T ;H1(D+

δ (t))), using
(25) with m = 1, (27), (61), the Cauchy-Schwarz and Young inequalities and the hypothesis that ∆t ∼ h we get, at
the lowest order,

|E9| ≤ Ch2

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+ C(δ−2)h

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

≤ (86)

C(δ−4)h2 + γ
1

20

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

Remark 4.2 Note that (86), together with (9) and (10), are more generally valid if we make the assumption ∆t =
Chn, with 1 ≤ m ≤ 2.

Using (55), (57) in (86), choosing a constant C in the last term on the right hand side of (86) such that (C+C(δ−5))C =
1
48

and choosing a constant C in the first term on the right hand side of (57) such that (C +C(δ−4))C = 1
48

, we get,
at the lowest order,

|E9| ≤ C(δ−4)h2 + C(δ−10)∆t+
1

24

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (87)

(C + C(δ−8))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ γ
1

20

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

The term E10 can be bounded using a generalized version of identity (28) with a φ ≡ (I − Ph)[(θ4δ)
2δ∆te

c
h] ∈

H1
0 (D+

δ (t)), using moreover the Cauchy-Schwarz and Young inequalities and (23) with m = 1, obtaining, keeping
only the lowest order terms,

|E10| ≤ Ch
∫ T

0

||∆
D+
δ

(t)
ech||2D+

δ
(t)
dt+ C(δ−4)h

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+ (88)

γ
1

20

h

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt ≤ Ch+ γ
1

20

h

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

The terms E11 and E12 can be bounded easily using (23) with m = 1 and the hypothesis that ∆t ∼ h.
Finally, using (68) − (88) in (64) and the identity (a, (a− b)c2) = 1

2
a2c2− 1

2
b2c2 + 1

2
(a− b)2c2 we get, writing only

15



the lowest order terms and omitting to write explicitly the dependence of some constants on the finite parameter δ,

γ
1

2∆t

∫ T

0

(
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− (89)

γ
1

2∆t

∫ T

0

(
∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ)

2

)
D+
δ

(t)

dt+

γ
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt ≤

Ch+ C∆t+ C

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
1

2

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt+

γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ γ
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

In order to treat the first two terms on the left hand side of (89), I write θ4δ(·, t) = θ4δ(·, t−∆t)−∆t ∂
∂t
θ4δ(·, t)|t=t̄,

where t̄ ∈ (t−∆t, t), in the second term in the left hand side of (89), and obtain, at the lowest order,

γ
1

2∆t

∫ T

0

(
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− (90)

γ
1

2∆t

∫ T

0

(
∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ(·, t−∆t))2

)
D+
δ

(t)−D+
δ

(t−∆t)

dt−

γ
1

2∆t

∫ T

0

(
∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ(·, t−∆t))2

)
D+
δ

(t−∆t)

dt+

γ
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt ≤

Ch+ C∆t+ C

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
1

2

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt+

γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ γ
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

Note that the integral on D+
δ (t) − D+

δ (t − ∆t) in (90), due to the continuity of the integrands in time (see (44))
and to the fact that the support of c changes in time by a finite value [6], is proportional to ∆t multiplied by finite
terms on ∂D+

δ (t), and can be bounded by a term like the third on the right hand side of (90). Changing variables as
(t−∆t)→ t in the third term in the left hand side of (90) I rewrite the sum of the first and the third terms in the
left hand side of (90) as

γ
1

2∆t

∫ T

T−∆t

(
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− γ 1

2∆t

∫ 0

−∆t

(
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ(·, t))2

)
D+
δ

(t)

dt. (91)

Noting (44), we can use in (91) the mean value theorem for integrals and obtain that there exists a t̂ ∈ (T −∆t, T ]
such that (91) can be rewritten as

γ
1

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

− γ 1

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

. (92)
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Using (92) in (90), we obtain that there exists a t̂ ∈ (T −∆t, T ] such that

γ
1

2

∣∣∣∣∣∣∣∣∂ech(·, t̂)
∂x

θ4δ(·, t̂)
∣∣∣∣∣∣∣∣2
D+
δ

(t̂)

+
1

2

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt ≤ (93)

γ
1

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ Ch+ C∆t+ C

∫ t̂

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

C

∫ T

t̂

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ γ
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

.

Rewrite the sixth term on the right hand side of (93), using (61) and (43), as∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣
D+
δ

(t̄)

≤
∣∣∣∣∣∣∣∣ ∂∂x (Ph(c(·, t̄)− c(·, t̂)))θ4δ(·, t̄)

∣∣∣∣∣∣∣∣
D+
δ

(t̄)

+ (94)∣∣∣∣∣∣∣∣ ∂∂x (Ph(c(·, t̂))− C+
h (·, t̂))θ4δ(·, t̄)

∣∣∣∣∣∣∣∣
D+
δ

(t̄)

≤ C∆t

∣∣∣∣∣∣∣∣∂c(·, t)∂t

∣∣∣∣∣∣∣∣
L∞(0,T ;H1(D+

δ
(t)))

+

∣∣∣∣∣∣∣∣∂ech(·, t̂)
∂x

θ4δ(·, t̂)
∣∣∣∣∣∣∣∣
D+
δ

(t̂)

+ C∆t.

Using (94) in (93), noting that ∫ T

t̂

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt ≤ C∆t,

noting moreover that ech(·, 0) ≡ 0 and that C4 < 1, we get∣∣∣∣∣∣∣∣∂ech(·, t̂)
∂x

θ4δ(·, t̂)
∣∣∣∣∣∣∣∣2
D+
δ

(t̂)

≤ Ch+ C∆t+ C

∫ t̂

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (95)

Choosing T = tn, n = 1, . . . , N , in (95) and using a Gronwall inequality argument we derive that there exists a set
t̂n ∈ ((n− 1)∆t, n∆t], n = 1, . . . , N , such that∣∣∣∣∣∣∣∣∂ech(·, t̂n)

∂x

∣∣∣∣∣∣∣∣2
D+
δ

(t̂n)

≤ C
∣∣∣∣∣∣∣∣∂ech(·, t̂n)

∂x
θ4δ(·, t̂n)

∣∣∣∣∣∣∣∣2
D+
δ

(t̂n)

≤ Ch+ C∆t. (96)

For t ∈ (tn−1, tn], n = 1, . . . , N , using (96), we have that∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

∣∣∣∣∣∣∣∣
D+
δ

(t)

=

∣∣∣∣∣∣∣∣ ∂∂x (Phc(·, t)− C+
h (·, t))

∣∣∣∣∣∣∣∣
D+
δ

(t)

≤ (97)∣∣∣∣∣∣∣∣ ∂∂x (Ph(c(·, t)− c(·, t̂n)))

∣∣∣∣∣∣∣∣
D+
δ

(t)

+

∣∣∣∣∣∣∣∣ ∂∂x (Ph(c(·, t̂n))− C+
h (·, t̂n))

∣∣∣∣∣∣∣∣
D+
δ

(t)

≤

C∆t

∣∣∣∣∣∣∣∣∂c(·, t)∂t

∣∣∣∣∣∣∣∣
L∞(0,T ;H1(D+

δ
(t)))

+

∣∣∣∣∣∣∣∣∂ech(·, t̂n)

∂x

∣∣∣∣∣∣∣∣
D+
δ

(t̂n)

+ C∆t ≤ Ch1/2 + C∆t1/2.

We can finally derive the bounds in Theorem 2.1.

From the bounds in (96), (97), (48) and (57) we have the bound (31). From (93), (56), (96), (97), (47) and (48)

we get (32). �

Remark 4.3 The error estimates on the whole domain ΩT are not theoretically studied here, but will be
numerically investigated by the test cases in Section 6. Here I only note that, as a consequence of the fact
that c, C+

h ∈ L∞(0, T ;H1(Ω)), the following bound is valid

||c− C+
h ||L∞(0,T ;H1(Ω)) ≤ C. (98)

Indeed, using the fact that |ec|1 ≤ |ech|1+|ecp|1, the bounds (45) and (46), the fact that c, C+
h ∈ L∞(0, T ;H1(Ω))

and (97), we get

||ec||L∞(0,T ;L2(Ω)) ≤ Ch+ C

(∣∣∣∣∣∣∣∣∂ech∂x
∣∣∣∣∣∣∣∣2
L∞(0,T ;L2(Ω\D+

δ (t)))

+

∣∣∣∣∣∣∣∣∂ech∂x
∣∣∣∣∣∣∣∣2
L∞(0,T ;L2(D+

δ (t)))

)1/2

(99)

≤ C,
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and ∣∣∣∣∣∣∣∣∂ec∂x
∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

≤ C +

(∣∣∣∣∣∣∣∣∂ech∂x
∣∣∣∣∣∣∣∣2
L∞(0,T ;L2(Ω\D+

δ (t)))

+

∣∣∣∣∣∣∣∣∂ech∂x
∣∣∣∣∣∣∣∣2
L∞(0,T ;L2(D+

δ (t)))

)1/2

(100)

≤ C,

which give the bound (98). In the case in which the continuous solution c has a fixed in time support, we can
use the convergence property (14) and the fact that c(t), C+

h (t) ∈ C1/2(Ω) in order to improve the estimate
(98). Let’s choose a point x̄ such that c(x̄, 0) = 0 and let’s define the set S := supp(C+

h (x, t)) \ supp(c(x, t)).
There exists a value h̄ such that |c(x̄, 0)− c0h(x̄)| ≤ Ch and |supp(c0h(x)) \ supp(c(x, 0))| ≤ Ch for all h ≤ h̄.
Since the set supp(C+

h (t)) moves at each time step by a distance proportional to h, (see [3] for details), we
should have that |c(x̄, t)− C+

h (x̄, t)| ≤ Ch and |S| ≤ Ch for all h ≤ h̄. Hence,

|c(x, t)− C+
h (x, t)| ≤ |c(x, t)− c(x̄, t)|+ |c(x̄, t)− C+

h (x̄, t)|+ |C+
h (x, t)− C+

h (x̄, t)| ≤ Ch1/2, (101)

∀x | |x− x̄| ≤ h. Taking ∑
K∈Th

∫
K

|c(x, t)− C+
h (x, t)|2dx,

using (101) and (31), we obtain
||ec||L∞(0,T ;L2(Ω)) ≤ Ch1/2. (102)

It can also be observed that the L∞(0, T ;L2(Ω\D+
0 (t))) norm of ∂ec/∂x is different from zero only in the set

S if supp(c(x, t)) ⊂ supp(C+
h (x, t)), for which we have that |S| ≤ Ch. Moreover, from (13) and the inverse

of the Vitali convergence theorem we deduce that

∣∣∣∣∂ec∂x ∣∣∣∣ is a uniformly integrable function. As a consequence

we get that ∣∣∣∣∣∣∣∣∂ec∂x
∣∣∣∣∣∣∣∣2
L∞(0,T ;L2(Ω\D+

0 (t)))

≤ Ch. (103)

From (103) and (31), it follows that ∣∣∣∣∣∣∣∣∂ec∂x
∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

≤ Ch1/2. (104)

5 Proofs of Lemmas 3.5 and 3.6

The proofs of Lemmas 3.5 and 3.6 are given below.

5.1 Proof of Lemma 3.5

Proof. Choose χ = η ≡ Ph[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))] in the first equation of (59) and in the first equation of (60),

and subtract the former from the latter, on noting (19) and the fact that (ah, P
h(fbh)) = (bh, P

h(fah)), for each
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ah, bh ∈ Sh, f ∈ L2(Ω). We obtain∫ T

0

(
∂

∂x
Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h)),

∂

∂x
Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h))

)
D+
δ

(t)

dt = (105)

∫ T

0

(Ph(θ4δδ∆te
c
h),Gh

D+
δ

(t)
(Ph(θ4δδ∆te

c
h)))dt = −

∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt+

∫ T

0

< Sc − ∂tecp, Ph[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))] >

D+
δ

(t)
dt−∫ T

0

[
(δ∆tC

+
h , P

h[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))])− (δ∆tC

+
h , P

h[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))])h

]
dt−∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt.

The second term on the right hand side of (105) can be rewritten using (16) and (61) with
f ≡ θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h)),

∫ T

0

< Sc − ∂tecp, Ph[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))] >

D+
δ

(t)
dt =∫ T

0

(
∂

∂x
G
D+
δ

(t)
(Sc − ∂tecp),

∂

∂x
θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))

)
dt−∫ T

0

(
∂

∂x
G
D+
δ

(t)
(Sc − ∂tecp),

∂

∂x
(I − Ph)[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
dt.

Using the Cauchy-Schwarz inequality, (17), the fact that |∇θ4δ| ≤ Cδ−2, the stability of the Ph projector under the
H1 seminorm, i.e. |v−Ph(v)|

1,D+
δ

(t)
≤ C|v−Ph,1v|1,D+

δ
(t)

for v ∈ H1(D+
δ (t)), (35) and (36) we obtain, at the lowest

order, ∫ T

0

< Sc − ∂tecp, Ph[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))] >

D+
δ

(t)
dt ≤ C||Sc − ∂tecp||L2(0,T ;(H1(D+

δ
(t)))′)×[(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+ C(δ−2)

(∫ T

0

||Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h))||2

D+
δ

(t)
dt

)1/2]
.

Using finally (54) and the Poincaré inequality applied to the function Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h)), we get

∫ T

0

< Sc − ∂tecp, Ph[θ4δGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))] >

D+
δ

(t)
dt ≤ (106)

(C + C(δ−2))(h2 + ∆t)

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

The last term on the right hand side of (105) can be rewritten using the fact that −W+
h = ewh + ewp − w,

−
∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt = (107)

∫ T

0

(
[b(c)− b(C−h )]

∂(ewh + ewp )

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt−

∫ T

0

(
[b(c)− b(C+

h )]
∂w

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt−

∫ T

0

(
[b(C+

h )− b(C−h )]
∂w

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt.
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In order to bound the first term on the right hand side of (107), we use the Lipschitz continuity property of b(·),
(47), (61) with f ≡ θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h)), the fact that |∇θ4δ| ≤ Cδ−2, the Poincaré inequality for the function

Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h)), the stability of the Ph projector under the H1 seminorm, (35), (36), the Cauchy-Schwarz

inequality and the inequality (66), obtaining, at the lowest order,∫ T

0

(
[b(c)− b(C−h )]

∂(ewh + ewp )

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt ≤ (108)

C(δ−5/2)||b(c)− b(C−h )||∞,D+
δ

∫ T

0

∣∣∣∣∣∣∣∣(b(c))1/2 ∂e
w
h

∂x

∣∣∣∣∣∣∣∣
D+
δ

(t)

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣
D+
δ

(t)

dt.

For what concerns the second term on the right hand side of (107), using the Lipschitz continuity property of b(·), the
Cauchy-Schwarz inequality, (65), (61) with f ≡ θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h)), the fact that |∇θ4δ| ≤ Cδ−2, the stability

of the Ph projector under the H1 seminorm, the Poincaré inequality for the function Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h)), (35),

(36), at the lowest order, we get∫ T

0

(
[b(c)− b(C+

h )]
∂w

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt ≤ (109)

(C + C(δ−2))

∣∣∣∣∣∣∣∣∂w∂x
∣∣∣∣∣∣∣∣
∞,D+

δ

∫ T

0

||ecθ4δ||D+
δ

(t)

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣
D+
δ

(t)

dt.

The third term on the right hand side of (107) can be bounded similarly to the second term, considering the fact
that C+

h − C
−
h = ∆t(δ∆tC

+
h (t)), obtaining∫ T

0

(
[b(C+

h )− b(C−h )]
∂w

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt ≤ (110)

(C + C(δ−2))∆t

∣∣∣∣∣∣∣∣∂w∂x
∣∣∣∣∣∣∣∣
∞,D+

δ

∫ T

0

||δ∆tC+
h (t)||

D+
δ

(t)

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣
D+
δ

(t)

dt.

Using (108), (109) and (110) in (107), using moreover the Cauchy-Schwarz inequality and (65), the property (14),
(43) and (75), we get

−
∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
Ph[θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h))]

)
D+
δ

(t)

dt ≤ (111)

(C + C(δ−2))

(∫ T

0

||ecθ4δ||2D+
δ

(t)
dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(C + C(δ−2))(∆t)3/4

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

C(δ−5/2)

(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

.

We can bound the first term on the right hand side of (105) using the Cauchy-Schwarz and Young inequalities, (65)
and (61) with f ≡ θ4δGhD+

δ
(t)

(Ph(θ4δδ∆te
c
h)), the fact that |∇θ4δ| ≤ Cδ−2, the stability of the Ph projector under

the H1 seminorm, the Poincaré inequality for the function Gh
D+
δ

(t)
(Ph(θ4δδ∆te

c
h)), (35) and (36). Moreover, applying

(25) with m = 1, (38) and (75) we can bound the third term on the right hand side of (105). In the hypothesis that
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∆t ∼ h, (as in Remark 4.2, we could choose ∆t = Chn, with 1 ≤ m ≤ 2), at the lowest order, we obtain∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt ≤

(C + C(δ−2))||b(c)||1/2
L∞(D+

δ
)

(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(C + C(δ−2))(h2 + ∆t)

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(C + C(δ−2))h2(∆t)−1/2

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(C + C(δ−2))

(∫ T

0

||ecθ4δ||2D+
δ

(t)
dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

(C + C(δ−2))(∆t)3/4

(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

C(δ−5/2)

(∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt

)1/2(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

≤

(C + C(δ−4))h3 + (C + C(δ−4))(∆t)3/2 + (C + C(δ−4))

∫ T

0

||ecθ4δ||2D+
δ

(t)
dt+

(C + C(δ−5))

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+
1

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂xGhD+
δ

(t)
(Ph(θ4δδ∆te

c
h))

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt,

from which, using the fact that ec = ecp + ech and the bound (48), writing only the lowest order terms we obtain (55).
Choose φ = ξ ≡ Ph[(θ4δ)

2ewh ] in the second equation of (59) and in the second equation of (60), and subtract the
former from the latter, using (61) with f ≡ (θ4δ)

2ewh . We obtain∫ T

0

(ewh , (θ4δ)
2ewh )

D+
δ

(t)
dt =

∫ T

0

γ

(
∂ech
∂x

,
∂ewh
∂x

(θ4δ)
2

)
D+
δ

(t)

dt+

∫ T

0

[
γ

(
∂ech
∂x

, ewh
∂(θ4δ)

2

∂x

)
D+
δ

(t)

+ (112)

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), Ph[(θ4δ)

2ewh ])
D+
δ

(t)

]
dt−

∫ T

0

(ewp , P
h[(θ4δ)

2ewh ])
D+
δ

(t)
dt+∫ T

0

[
(ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2ewh ])− (ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2ewh ])h

]
dt−∫ T

0

γ

(
∂ech
∂x

,
∂

∂x
(I − Ph)(θ2

4δe
w
h )

)
D+
δ

(t)

dt

Noting that ψ′1(·) ∈ C1([0, 1)), ψ′2(·) ∈ C1([0, 1]), using (40), the Cauchy-Schwarz inequality, the Sobolev embedding
result (18) with d = 1, r = ∞, p = 2 and m = 1, the Young inequality, the embedding of L2(D+

δ (t)) in L1(D+
δ (t))

and (65), we bound the third term in (112) as∫ T

0

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), Ph[(θ4δ)

2ewh ])
D+
δ

(t)
dt ≤ (113)(∫ T

0

||ψ′1(c)− ψ′1(C+
h )||2

L∞(D+
δ

(t))
dt

)1/2(∫ T

0

||Ph[(θ4δ)
2ewh ]||2

L1(D+
δ

(t))
dt

)1/2

+(∫ T

0

||ψ′2(c)− ψ′2(C−h )||2
L∞(D+

δ
(t))
dt

)1/2(∫ T

0

||Ph[(θ4δ)
2ewh ]||2

L1(D+
δ

(t))
dt

)1/2

≤

C

[∫ T

0

(
||ecθ4δ||2D+

δ
(t)

+

∣∣∣∣∣∣∣∣∂ec∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

)
dt

]1/2(∫ T

0

||Ph[(θ4δ)
2ewh ]||2

D+
δ

(t)
dt

)1/2

+

C∆t

[∫ T

0

(
||δ∆tC+

h ||
2

D+
δ

(t)
+

∣∣∣∣∣∣∣∣ ∂∂xδ∆tC+
h

∣∣∣∣∣∣∣∣2
D+
δ

(t)

)
dt

]1/2(∫ T

0

||Ph[(θ4δ)
2ewh ]||2

D+
δ

(t)
dt

)1/2

.
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Using (71) with f ≡ (θ4δ)
2ewh and the bound (23), obtained on the set D+

δ (t), with m = 1, as well as the Young
inequality, (38) and (75) in (113), we get, at the lowest order,∫ T

0

(ψ′(c)− ψ′1(C+
h )− ψ′2(C−h ), Ph[(θ4δ)

2ewh ])
D+
δ

(t)
dt ≤ (114)

C

∫ T

0

||ecθ4δ||2D+
δ

(t)
dt+ C

∫ T

0

∣∣∣∣∣∣∣∣∂ec∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C∆t+
1

10

∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt.

Using the inequality (25) with m = 0, the equality (71) with f ≡ (θ4δ)
2ewh , the bound (23) on the set D+

δ (t) with
m = 1 and the Young inequality, we can bound the fifth term on the right hand side of (112), writing only the lowest
order terms, as∫ T

0

[
(ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2ewh ])− (ψ′1(C+

h ) + ψ′2(C−h )−W+
h , P

h[(θ4δ)
2ewh ])h

]
dt ≤ (115)

Ch

∫ T

0

||Ph[(θ4δ)
2ewh ]||

D+
δ

(t)
||ψ′1(C+

h ) + ψ′2(C−h )−W+
h ||1,D+

δ
(t)
dt ≤ Ch2 +

1

10

∫ T

0

||ewh θ4δ||2D+
δ

(t)
dt.

Using (114) and (115) in (112), the fact that ec = ecp + ech, the Cauchy-Schwarz and the Young inequalities, the
bounds (48), (66), (65), (71) with f ≡ (θ4δ)

2ewh and the bound (23) on the set D+
δ (t) with m = 1, we get, at the

lowest order, ∫ T

0

(ewh , (θ4δ)
2ewh )

D+
δ

(t)
dt ≤ C

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ C

∫ T

0

||echθ4δ||2D+
δ

(t)
dt+ (116)

(C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ Ch2 + C∆t+
5

10

∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt,

from which we obtain (56). �

5.2 Proof of Lemma 3.6

Proof. Choose χ = η ≡ Ph[(θ4δ)
2δ∆te

c
h] in the first equation of (59) and in the first equation of (60), and subtract

the former from the latter, using (61). We obtain∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+

∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt = (117)

−
∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
((θ4δ)

2)δ∆te
c
h

)
D+
δ

(t)

dt+

∫ T

0

< Sc − ∂tecp, Ph[(θ4δ)
2δ∆te

c
h] >

D+
δ

(t)
dt−

∫ T

0

[(δ∆tC
+
h , P

h[(θ4δ)
2δ∆te

c
h])− (δ∆tC

+
h , P

h[(θ4δ)
2δ∆te

c
h])h]

D+
δ

(t)
dt−∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt−
∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(I − Ph)(δ∆te

c
h(θ4δ)

2)

)
D+
δ

(t)

dt.

Taking φ(·, t) = ξ(·, t) ≡ ζh(·, t), with ζh(·, t) ∈ Sh and supp(ζh) ⊂⊂ D+
δ (t), in the second equation of (59) and in

the second equation of (60), subtracting the former from the latter, and using (28) and the definition of the lumped
scalar product, we get

ewh |D+
δ

(t)
=− γ∆

h,D+
δ

(t)
ech + Ph(ψ′(c)− ψ′1(C+

h )− ψ′2(C−h ))|
D+
δ

(t)
− Ph(ewp )|

D+
δ

(t)
−
(
Ph(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )−

(118)∑
i∈J̄δ(t),j∈Īδ(t)

M̄−1
ij (ψ′1(C+

h (xi)) + ψ′2(C−h (xi))−W+
h (xi))(1, χi)χj

)
|
D+
δ

(t)
+

∑
k∈Īδ(t)\J̄δ(t)

Ckχk,

for a.e. t ∈ (0, T ], where M̄ij is the mass matrix (χi, χj), Īδ(t) is the set of nodes inside D+
δ (t), J̄δ(t) is the set of

nodes inside D+
δ (t) except the nearest node to ∂D+

δ (t), M̄−1
ij is the right inverse of M̄ij and Ck are finite constants.

22



Note that the last term in (118) is due to the fact that dim Ker(M̄) = 1. For ease of clarity, I indicate the term in
the parenthesis in (118) formally as

Ph(I − (P̂h)−1)(ψ′1(C+
h ) + ψ′2(C−h )−W+

h ),

even if the projector P̂h is not invertible, since we will be only interested in obtaining a bound for a bilinear form
containing this term using (25).

Let’s introduce the following equality

b(c)
∂ewh
∂x

(θ4δ)
2 =

∂

∂x
(Ph[b(c)ewh (θ4δ)

2])− ∂b(c)

∂x
ewh (θ4δ)

2 − b(c)ewh
∂(θ4δ)

2

∂x
+

∂

∂x
((I − Ph)[b(c)ewh (θ4δ)

2]). (119)

Using (118) and (119) in (117), the Cauchy-Schwarz and Young inequalities, a generalized version of identity (28) with
a φ ≡ (I − Ph)[b(c)ewh (θ4δ)

2] ∈ H1
0 (D+

δ (t)) and (23) on D+
δ (t) with m = 1, using moreover (65), similar calculations

to those used in (106), (25) with m = 0 and (71), we get, at the lowest order,∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt− γ

∫ T

0

(
∂

∂x

(
Ph[b(c)∆

h,D+
δ

(t)
ech(θ4δ)

2]
)
,
∂

∂x
δ∆te

c
h

)
D+
δ

(t)

dt ≤

C

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (b(c)ewh (θ4δ)
2)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ Ch2(∆t)−1

∫ T

0

(
∆
D+
δ

(t)
(δ∆te

c
h),∆

D+
δ

(t)
(ech(t)− ech(t−∆t))

)
D+
δ

(t)

dt+

∫ T

0

(
∂

∂x
(b(c))ewh (θ4δ)

2,
∂

∂x
δ∆te

c
h

)
D+
δ

(t)

dt+ 2

∫ T

0

(
b(c)ewh θ4δ

∂

∂x
θ4δ,

∂

∂x
δ∆te

c
h

)
D+
δ

(t)

dt−

∫ T

0

(
b(c)

∂

∂x
(ψ′1(c)− ψ′1(C+

h )),
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt−

∫ T

0

(
b(c)

∂

∂x
(ψ′2(c)− ψ′2(C−h )),

∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂

∂x
ewp ,

∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂

∂x

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∑
k∈Īδ(t)\J̄δ(t)

∫ T

0

(
b(c)Ck

∂χk
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+ C(δ−4)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+

1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+ C(h2 + ∆t)

[(∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt

)1/2

+

C(δ−2)

(∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt

)1/2]
+ Ch

(∫ T

0

||δ∆tC+
h ||

2

1,D+
δ

(t)
dt

)1/2(∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt

)1/2

−∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt−
∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(I − Ph)(δ∆te

c
h(θ4δ)

2)

)
D+
δ

(t)

dt =

E1,1 + E1,2 + E1,3 + E1,4 + E1,5 + E1,6 + E1,7 + E1,8 + E1,9 + E1,10 + E1,11 + E1,12 + E1,13 + E1,14 + E1,15, (120)

where I indicate the terms on the right hand side of (120) as E1,1, . . . , E1,15. Using (41), (42) and (15), we get that

∂

∂x
(b(c))ewh (θ4δ)

2 ∈ L2(0, T ;H1(D+
δ (t))); b(c)ewh θ4δ

∂

∂x
θ4δ ∈ L2(0, T ;H1(D+

δ (t))).

Hence, we can integrate by parts in the terms E1,3 and E1,4. Using the Cauchy-Schwarz and Young inequalities,
the facts that ∂/∂x(b(c)) and ∂2/∂x2(b(c)) are in L∞(D+

δ ) as a consequence of (43), using (65), the fact that
|∇θ4δ| ≤ Cδ−2 and (66) we get, at the lowest order,

|E1,3| ≤ (C + C(δ−4))

∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt+ C(δ−1)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+
1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt,

(121)

|E1,4| ≤ C(δ−8)

∫ T

0

||ewh (θ4δ)||2D+
δ

(t)
dt+C(δ−5)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+
1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt. (122)
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In order to isolate terms in ecp, which can be bounded using (48), and terms in ech, we rewrite the term E1,5 as

E1,5 =

∫ T

0

(
b(c)ψ′′1 (c)

∂

∂x
(c− Ph,1(c)),

∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+ (123)

∫ T

0

(
b(c)ψ′′1 (c)

∂

∂x
(Ph,1(c)− C+

h ),
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∫ T

0

(
b(c)(ψ′′1 (c)− ψ′′1 (Ph,1(c)) + ψ′′1 (Ph,1(c))− ψ′′1 (C+

h ))
∂C+

h

∂x
,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt.

Using (48), (5) and (7), the identity (a, (a−b)c) = 1
2
a2c− 1

2
b2c+ 1

2
(a−b)2c, the fact that ψ′′1 (x) is Lipschitz continuous

for x < 1, the Cauchy-Schwarz and Young inequalities, we get

|E1,5| ≤ Ch+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
(1− c∗)

2∆t

∫ T

0

(
c
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− (124)

(1− c∗)
2∆t

∫ T

0

(
c
∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ)

2

)
D+
δ

(t)

dt+ (1− c∗) max
D+
δ

(t)

[c]
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

Ch2 + Ch2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt−
∫ T

0

(
b(c)(ψ′′1 (Ph(c))− ψ′′1 (C+

h ))
∂ech
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

∫ T

0

(
b(c)(ψ′′1 (Ph(c))− ψ′′1 (C+

h ))
∂c

∂x
,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt.

Note that in the last two terms I have written C+
h = C+

h − Ph,1c + Ph,1c − c + c and I have used (48), in order to
isolate a term containing ∂ech/∂x and in order to be able to integrate by parts in the term containing ∂c/∂x. Let’s
now write θ4δ(·, t) = θ4δ(·, t−∆t)−∆t ∂

∂t
θ4δ(·, t)|t=t̄ and c(·, t) = c(·, t−∆t))−∆t ∂

∂t
c(·, t))|t=t̄, where t̄ ∈ (t−∆t, t),

in the fourth term in the right hand side of equation (124), and obtain, using (43), integrating by parts the last term
in the right hand side of equation (124), and writing only the lowest order terms,

|E1,5| ≤ Ch+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
(1− c∗)

2∆t

∫ T

0

(
c
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− (125)

(1− c∗)
2∆t

∫ T

0

(
c(·, t−∆t)

∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ(·, t−∆t))2

)
D+
δ

(t)−D+
δ

(t−∆t)

dt−

(1− c∗)
2∆t

∫ T

0

(
c(·, t−∆t)

∂ech(·, t−∆t)

∂x
,
∂ech(·, t−∆t)

∂x
(θ4δ(·, t−∆t))2

)
D+
δ

(t−∆t)

dt+

C

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C(∆t)2 + (1− c∗) max
D+
δ

(t)

[c]
∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

∫ T

0

(
b(c)(ψ′′1 (Ph(c))− ψ′′1 (C+

h ))
∂ech
∂x

,
∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt+

1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+ (C + C(δ)−4)

∫ T

0

||ech(θ4δ)||2D+
δ

(t)
dt.

Note that the integral on D+
δ (t) −D+

δ (t −∆t) in (125), due to the continuity of the integrands in time and to the
fact that the support of c changes in time by a finite value [6], is proportional to ∆t times finite terms on ∂D+

δ (t),
and can be bounded by a term like the sixth on the right hand side of (125) multiplied by ∆t. Changing variables as
(t−∆t)→ t in the fifth term in the right hand side of (125), let’s rewrite the sum of the third and the fifth terms in
the right hand side of (125) as

(1− c∗)
2∆t

∫ T

T−∆t

(
c
∂ech(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ)
2

)
D+
δ

(t)

dt− (1− c∗)
2∆t

∫ 0

−∆t

(
c(·, t)∂e

c
h(·, t)
∂x

,
∂ech(·, t)
∂x

(θ4δ(·, t))2

)
D+
δ

(t)

dt.

(126)

24



Recalling (44), we can use in (126) the mean value theorem for integrals and obtain that there exists a t̄ ∈ (T −∆t, T ]
such that (126) can be controlled by

(1− c∗)
2

max
D+
δ

[c]

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+
(1− c∗)

2
max
D+
δ

[c]

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

. (127)

In order to bound the last term in (125), choose χ = η ≡ Ph[(θ4δ)
2ech] in the first equation of (59) and in the first

equation of (60), and subtract the former from the latter. We obtain∫ T

0

(δ∆te
c
h, e

c
h(θ4δ)

2)
D+
δ

(t)
dt = −

∫ T

0

(
b(c)

∂ewh
∂x

,
∂

∂x
(Ph[(θ4δ)

2ech])

)
D+
δ

(t)

dt+

∫ T

0

< Sc − ∂tecp, Ph[(θ4δ)
2ech] >

D+
δ

(t)
dt−

(128)∫ T

0

[(δ∆tC
+
h , P

h[(θ4δ)
2ech])− (δ∆tC

+
h , P

h[(θ4δ)
2ech])h]

D+
δ

(t)
dt−

∫ T

0

(
[b(c)− b(C−h )]

∂W+
h

∂x
,
∂

∂x
(Ph[(θ4δ)

2ech])

)
D+
δ

(t)

dt.

The term on the left hand side of (128) can be treated as the second term on the right hand side of (123) and can
be rewritten using the same calculations which led to (127). The first term on the right hand side of (128) can be
bounded using the Cauchy-Schwarz and Young inequalities, (61), (65) and (23) with m = 1. The second term on
the right hand side of (128) can be bounded using similar calculations to those used in (106). The third term on the
right hand side of (128) can be bounded using bound (25), (38), (39) and the hypothesis that ∆t ∼ h. Finally, the
last term on the right hand side of (128) can be bounded using similar calculations to those used in (107)−(111).
Writing only the lowest order terms, we obtain that there exists a t̄ ∈ (T −∆t, T ] such that

||ech(·, t̄)(θ4δ)||2D+
δ

(t̄)
≤ C

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ (129)

C(δ−5)

∫ t̄

0

||ech(·, t)(θ4δ)||2D+
δ

(t)
dt+ C(δ−5)

∫ T

t̄

||ech(·, t)(θ4δ)||2D+
δ

(t)
dt+ (C + C(δ)−4)h3 + (C + C(δ)−4)(∆t)3/2.

Choosing T = tn, n = 1, . . . , N in (129), noting that
∫ T
t̄
||ech(·, t)(θ4δ)||2D+

δ
(t)
dt ≤ C∆t and using a Gronwall inequality,

we derive that there exists a set t̄n ∈ ((n− 1)∆t, n∆t], n = 1, . . . , N , such that, at the lowest order,

||ech(·, t̄n)(θ4δ)||2D+
δ

(t̄n)
≤C

∫ T

0

(
b(c)

∂ewh (·, t)
∂x

,
∂ewh (·, t)
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

(130)

(C + C(δ)−4)h3 + C(δ−6)∆t.

For t ∈ (tn−1, tn], n = 1, . . . , N , using (43) and (130), we have that

||ech(·, t)θ4δ||D+
δ

(t)
= ||(Phc(·, t)− C+

h (·, t))θ4δ||D+
δ

(t)
≤ ||(Ph(c(·, t)− c(·, t̄n)))θ4δ||D+

δ
(t)

+ (131)

||(Ph(c(·, t̄n))− C+
h (·, t̄n))θ4δ||D+

δ
(t)
≤ C∆t

∣∣∣∣∣∣∣∣∂c(·, t)∂t

∣∣∣∣∣∣∣∣
L∞(D+

δ
)

+ ||ech(·, t̄n)θ4δ(·, t̄n)||
D+
δ

(t̄n)
+ C∆t.

Combining (130) and (131) we get (57).
Note that there exists an h̄ such that b(c)ψ′′1 (c) − b(c)ψ′′1 (Ph(c)) + b(c)ψ′′1 (C+

h ) < 1 for each h < h̄. Hence we
can include the ninth term on the right hand side of (125) in the second term on the right hand side of (123) and
introduce a constant C2, with C2 < 1, such that, using (57) in (125), and writing only the lowest order terms, we get

|E1,5| ≤ Ch+ C∆t+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
C2

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ (132)

C2

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

(1− c∗)∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+ C(δ−6)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt.

25



Let’s rewrite the term E1,6 as

E1,6 =

∫ T

0

(
b(c)

∂

∂x
(ψ′2(c)− ψ′2(c(t−∆t)) + ψ′2(c(t−∆t))− ψ′2(C−h )),

∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt. (133)

Expanding in a Taylor series to first order the term ψ′2(c(t−∆t)) around t, using the Lipschitz continuity of ψ′′2 (·),
(43), the Cauchy-Schwarz and Young inequalities we get that

E1,6 ≤ C∆t+
∆t

160

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

∫ T

0

(
b(c)

∂

∂x
(ψ′2(c(t−∆t))− ψ′2(C−h )),

∂

∂x
(δ∆te

c
h)(θ4δ)

2

)
D+
δ

(t)

dt.

(134)
The third term on the right hand side of (134) is similar to E1,5 and can be treated in a similar way, repeating the
calculations which led to (132), on noting the Lipschitz continuity of ψ′′2 (·) and the fact that |b(c)ψ′′2 (c)| < 1. We get

|E1,6| ≤ Ch+ C∆t+

(
h

400
+

∆t

160

)∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
C3

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+ (135)

C3

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+ (C + C(δ−4))

∫ T

0

∣∣∣∣∣∣∣∣∂ech(·, t)
∂x

θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ (1− c∗)∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+ C(δ−6)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt,

with C3 < 1. Using (47), the Cauchy-Schwarz and Young inequalities, we get

|E1,7| ≤ Ch+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (136)

Let’s rewrite the term E1,8, using (28), as

E1,8 =

∫ T

0

(
∂

∂x
Ph[b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2],
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt− (137)

∫ T

0

(
∂b(c)

∂x

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2,
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt−

∫ T

0

(
b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
) ∂
∂x

(θ4δ)
2,

∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt+

∫ T

0

(
∂

∂x
(I − Ph)[b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2],
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt =

−
∫ T

0

(
b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2,∆
h,D+

δ
(t)

(δ∆te
c
h)

)
D+
δ

(t)

dt−

∫ T

0

(
∂b(c)

∂x

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2,
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt−

∫ T

0

(
b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
) ∂
∂x

(θ4δ)
2,

∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt+

∫ T

0

(
∂

∂x
(I − Ph)[b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2],
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt

Choosing vh ≡ Ph[(ψ′1(C+
h ) +ψ′2(C−h )−W+

h )(θ4δ)], χ ≡ Ph(I − (P̂h)−1)[(ψ′1(C+
h ) +ψ′2(C−h )−W+

h )(θ4δ)] and m = 1
in (25), using (23) and (24), we get that

||(I − (P̂h)−1)((ψ′1(C+
h ) + ψ′2(C−h )−W+

h )θ4δ)||D+
δ

(t)
≤ (138)

||((Ph + (I − Ph))(I − (P̂h)−1)[(ψ′1(C+
h ) + ψ′2(C−h )−W+

h )θ4δ])||D+
δ

(t)
≤ Ch2.

26



The last term in (137) can be bounded using a generalized version of identity (28) with a φ ≡ (I − Ph)[b(c)
(
(I −

(P̂h)−1)(ψ′1(C+
h ) + ψ′2(C−h )−W+

h )
)
(θ4δ)

2], the Cauchy-Schwarz inequality and (138), obtaining∫ T

0

(
∂

∂x
(I − Ph)[b(c)

(
(I − (P̂h)−1)(ψ′1(C+

h ) + ψ′2(C−h )−W+
h )
)
(θ4δ)

2],
∂

∂x
(δ∆te

c
h)

)
D+
δ

(t)

dt ≤ (139)

Ch2(∆t)−1

(∫ T

0

||∆
D+
δ

(t)
(ech(t)− ech(t−∆t))||

D+
δ

(t)
dt

)1/2

.

Using (43), (44), (138), (139), the Cauchy-Schwarz and Young inequalities in (137) and the hypothesis that ∆t ∼ h
we get, at the lowest order,

|E1,8| ≤ Ch+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ C

∫ T

0

||∆
h,D+

δ
(t)
ech||2D+

δ
(t)
dt. (140)

The term E1,9 can be bounded using the Cauchy-Schwarz and Young inequalities, on noting that∣∣∣∣∣∣∣∣b(c)Ck ∂χk∂x
∣∣∣∣∣∣∣∣
D+
δ

(t)

≤ Ch,

obtaining

|E1,9| ≤ Ch+
h

400

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt. (141)

Let’s rewrite the term E1,14 as

E1,14 =

∫ T

0

(
[b(c)− b(c(t−∆t))]

∂W+
h

∂x
,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt+ (142)

∫ T

0

(
[b(c(t−∆t))− b(Ph(c(t−∆t)))]

∂W+
h

∂x
,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt−

∫ T

0

(
[b(Ph(c(t−∆t)))− b(C−h )]

∂ewh
∂x

,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt−

∫ T

0

(
[b(Ph(c(t−∆t)))− b(C−h )]

∂ewp
∂x

,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt+

∫ T

0

(
[b(Ph(c(t−∆t)))− b(C−h )]

∂w

∂x
,
∂

∂x
(Ph[(θ4δ)

2δ∆te
c
h])

)
D+
δ

(t)

dt.

Noting that, for a given ĥ(δ), b(C−h ) − b(Ph(c(t −∆t))) < b(c) for each h < ĥ(δ), we can absorb the third term on
the right hand side of (142) into the second term on the left hand side and the first term on the right hand side of
(117). Using (43), (48), (47), (65), (37) and (18) with r =∞,m = 1, p = 2, integrating by parts the last term on the
right hand side of (142) and using the Cauchy-Schwarz and Young inequalities, we get, at the lowest order,

|E1,14| ≤ (C + C(δ−5))h+ C(δ−5)∆t+

(
h

400
+

∆t

160

)∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h)(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+ (143)

C(δ)−4

∫ T

0

||echθ4δ||2D+
δ

(t)
dt+

1

10

∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt.

Note that, since b(c)ψ′′(c) < 1 for c ∈ [0, 1), there exists a constant C4 such that C2 +C3 = C4 < 1. Finally, in order
to bound the term E1,15, we use a similar trick to (119), integration by parts and a generalized version of identity
(28) with a φ ≡ (I−Ph)(δ∆te

c
h(θ4δ)

2), (23) with m = 1 and the Cauchy-Schwarz and Young inequalities. Using (28),
(38), (75), (56), (129), (57), the Cauchy-Schwarz and Young inequalities in (120), we get, with the hypothesis that
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∆t ∼ h, the fact that c∗ < 1 and writing only the lowest order terms,∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt+

γ

2∆t

∫ T

0

(
b(c)∆

h,D+
δ

(t)
ech(·, t)(θ4δ)

2,∆
h,D+

δ
(t)
ech(·, t)

)
D+
δ

(t)
dt− (144)

γ

2∆t

∫ T

0

(
b(c)∆

h,D+
δ

(t)
ech(·, t−∆t)(θ4δ)

2,∆
h,D+

δ
(t)
ech(·, t−∆t)

)
D+
δ

(t)
dt+

γ

2
∆t

∫ T

0

(
b(c)∆

h,D+
δ

(t)
(δ∆te

c
h)(θ4δ)

2,∆
h,D+

δ
(t)

(δ∆te
c
h)
)
D+
δ

(t)
dt ≤ C

∫ T

0

||∆
h,D+

δ
(t)
ech||2D+

δ
(t)
dt+

(C + C(δ−5))h+ (C + C(δ−14))∆t+ C(δ−8)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ C(δ−14)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+

C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+
9

10

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt.

Using similar calculations to those used in (125)-(127) in order to treat the second and third terms on the left hand
side of (144), using moreover (44) and similar Gronwall arguments to those used in (129), we get∫ T

0

||δ∆tech(θ4δ)||2D+
δ

(t)
dt ≤ (C + C(δ−5))h+ (C + C(δ−14))∆t+ C(δ−8)

∫ T

0

(
b(c)

∂ewh
∂x

,
∂ewh
∂x

θ2
4δ

)
D+
δ

(t)

dt+ (145)

C(δ−14)

∫ T

0

∣∣∣∣∣∣∣∣∂ech∂x θ4δ

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt+
C4

2

∣∣∣∣∣∣∣∣∂ech(·, t̄)
∂x

θ4δ(·, t̄)
∣∣∣∣∣∣∣∣2
D+
δ

(t̄)

+
C4

2

∣∣∣∣∣∣∣∣∂ech(·, 0)

∂x
θ4δ(·, 0)

∣∣∣∣∣∣∣∣2
D+
δ

(0)

+

9

10

∆t

2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂x (δ∆te
c
h(·, t))(θ4δ)

∣∣∣∣∣∣∣∣2
D+
δ

(t)

dt,

with C4 < 1 and for a t̄ ∈ (T −∆t, T ], which is (58). �

6 Numerical results.

In this section different test cases are simulated in order to validate the error analysis introduced in Theorem
2.1. In order to simplify the notation, let’s indicate in the sequel

e0,δ := ||c− C+
h ||L∞(0,T ;L2(D+

δ (t))),

e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))

,

e0 := ||c− C+
h ||L∞(0,T ;L2(Ω)),

e1 :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

.

Three test cases will be studied in one and two space dimensions in which proper right hand sides are added to
equation (1) in such a way that exact solutions are known. In the first test case a one dimensional stationary
H1(Ω) exact solution will be considered. In the second test case a one dimensional time dependent H2(Ω)
exact solution is considered; note that a more regular solution could result in a higher rate of convergence
for the error estimates. In the third test case a two dimensional H1(Ω) exact solution is considered.

6.1 Test case 1 - One dimensional stationary H1(Ω) solution

Let’s study a first test case in which a proper right hand side is added to equation (1) in such a way that
the function c(x, t) = 1

2 cos

(
x√
γ + π

)
if
π
√
γ

2 ≤ x ≤ 3π
√
γ

2 ,

0 otherwise,
(146)
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Figure 1: Test case 1. Values of log(e0,δ), log(e1,δ), log(e0), log(e1) vs log(1/h), for δ = 0.05, ∆t = 2.44·10−6,

and an exact decay law proportional to h1/2, where e0,δ := ||c − C+
h ||L∞(0,T ;L2(D+

δ (t))), e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c −

C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))

, e0 := ||c− C+
h ||L∞(0,T ;L2(Ω)), e1 :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

.

is a stationary exact solution. This solution has H1(Ω) regularity, since its space derivative has a jump
discontinuity. As data the values γ = 0.0196, c∗ = 0.6 are taken.

In Figures 1, 2 and 3 the convergence behaviours of the errors e0,δ, e1,δ, calculated inside the support
of the solution (146) for different values of δ, and of the errors e0, e1 on the whole domain, are shown, by
plotting the log of the error norm and seminorm in function of log(1/h) and log(1/∆t).

In Figure 1 the convergence behaviour is studied by varying the parameter h and keeping a small fixed ∆t.
From Figure 1 it can be observed that the h1/2 behaviour of the error estimate (31) is recovered. Moreover,
note that (98) is a rough estimate, and that effectively

||c− C+
h ||L∞(0,T ;H1(Ω)) ≤ Ch1/2, (147)

as predicted in (102) and (104), (note that the support of (146) is fixed in time).
In Figure 2 the convergence behaviour is studied by varying the parameter ∆t and keeping a small fixed

h. From Figure 2 it can be noted that the ∆t1/2 behaviour of the error estimate (31) is recovered.
In Figure 3 the convergence behaviour is studied both for the cases ∆t ∼ h and ∆t = h2, in order to

observe if the rate of convergence changes if we change the assumption ∆t ∼ h to ∆t = h2, which satisfies
the constraint introduced in Remark 4.2. From Figure 3 it can be noted that the h1/2 behaviour of the error
estimate (31) is recovered both for the cases ∆t ∼ h and ∆t = h2.

6.2 Test case 2 - One dimensional time dependent H2(Ω) solution

A second test case is considered in which a proper right hand side is added to equation (1) in such a way
that the function c(x, t) = exp(−t)

2 sin2

(
x√
γ −

π
2

)
if
π
√
γ

2 ≤ x ≤ 3π
√
γ

2 ,

0 otherwise,
(148)

29



Figure 2: Test case 1. Values of log(e0,δ), log(e1,δ), vs log(1/∆t), for δ = 0.05, h = 1/512, and an exact decay

law proportional to ∆t1/2, where e0,δ := ||c− C+
h ||L∞(0,T ;L2(D+

δ (t))), e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))

.

is an exact solution. Differently from (146), this solution is time dependent and has H2(Ω) regularity, since
its space derivative is continuous. As data the values γ = 0.0196, c∗ = 0.6 are taken; the convergence
behaviour is studied for the cases ∆t ∼ h and ∆t = h2.

In Figure 4 the convergence behaviours of the error e1,δ, calculated inside the support of the solution
(148), and of the error e1 on the whole domain, are shown.

Note from Figure 4 that the h1/2 behaviour of the error estimate (31) is recovered both for the cases
∆t ∼ h and ∆t = h2. Moreover, observe that (147) is also valid in this test case, both for the cases ∆t ∼ h
and ∆t = h2.

Figure 3: Test case 1. Values of log(e1,δ), vs log(1/h), for δ = 0.2, with ∆t ∼ h and ∆t = h2, and an exact

decay law proportional to h1/2, where e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))
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6.3 Test case 3 - Two dimensional H1(Ω) solution

Let’s study a test case in 2− d dimensions in order to test the convergence properties of the discrete scheme
for the d = 2 case. A proper right hand side is added to equation (1) in such a way that the functionc(x, y, t) = 1

2 cos

(
x2
√
γ + y2√

γ

)
if x2 + y2 ≤ π

√
γ

2 ,

0 otherwise.
(149)

is a stationary exact H1(Ω) solution. As data the values γ = 0.0196, c∗ = 0.6 are taken; the convergence
behaviour is studied by varying the parameter h and keeping a small fixed ∆t. In Figure 5 the convergence
behaviours of the errors e0,δ and e1,δ, calculated inside the support of the solution (146), are shown, by
plotting the log of the error norm and seminorm in function of log(1/h).

Note from Figure 5 that the h1/2 behaviour of the error estimate (31) is recovered also in the 2− d case.

Figure 4: Test case 2. Values of log(e1,δ) and log(e1) vs log(1/h), for δ = 0.1, for the cases ∆t ∼ h

and ∆t = h2, and an exact decay law proportional to h1/2, where e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c − C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))

,

e1 :=

∣∣∣∣∣∣∣∣ ∂∂x (c− C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

.
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Figure 5: Test case 3. Values of log(e0,δ) and log(e1,δ) vs log(1/h), for δ = 0.05, for ∆t = 2.44 · 10−6,

and an exact decay law proportional to h1/2, where e0,δ := ||c − C+
h ||L∞(0,T ;L2(D+

δ (t))), e1,δ :=

∣∣∣∣∣∣∣∣ ∂∂x (c −

C+
h )

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(D+

δ (t)))

.

7 Conclusions

This work investigated the error analysis of a discrete finite element approximation of the degenerate Cahn-
Hilliard equation, with degenerate mobility and single-well potential introduced in [3]. In contrast to the
CH equations studied in the literature, where the degeneracy and the singularity sets coincide, here the
degeneracy set {c = 0, c = 1} and the singularity set {c = 1} do not coincide. This constitutive choice
introduces further complications, as explained in the Introduction, which causes the error analysis to be
non-standard with respect to the standard CH case with constant mobility. Starting from some preliminary
Lemmas, introduced in Section 3 and shown in Section 5, which in particular give the estimates of the
L2(0, T ;H−1(Ω)) and L2(0 < c < 1) norms of the time increment of the error of the concentration c in terms
of the discretization parameters, the main a-priori error estimates were derived, which describe the fact that
the norms of the approximation errors for the concentration variable c and for the chemical potential variable
w, calculated on the support of the solution c in the spaces L∞(0, T ;H1(D+

δ (t))) and L2(0, T ;H1(D+
δ (t)))

respectively, are bounded by power laws of the discretization parameters with exponent 1/2. These estimates
are obtained for discretization parameters h and ∆t which satisfy the condition ∆t ∼ h, which guarantees
that the discrete solution is able to track compactly supported solutions of (1) with a free boundary which
moves with a finite speed of velocity, (see in particular condition (10)). This property is peculiar to a
degenerate fourth order parabolic equation. The obtained a-priori estimates are indeed different from that
obtained in the case of the classical CH equation with constant mobility, (see e.g. [19] for details), where the
exponent in the power laws of the discretization parameters is 1 and no relation between the discretization
parameters has to be satisfied. The main result of this paper is introduced in Theorem 2.1, and shown in
Section 4 in the d = 1 dimensional case. Let’s however note that the error estimates could be in principle
extended to the general d = 2, 3 dimensional cases, as described in the Introduction.

Finally, in Section 6 some numerical results for different test cases with known exact solutions both in one
and two space dimensions were reported, which validated the a-priori error estimates introduced in Section
2. The numerical results validated the theoretical error estimates in the case of a one dimensional stationary
H1(Ω) exact solution (test case 1), in the case of a more regular exact solution, i.e. a one dimensional time
dependent H2(Ω) exact solution (test case 2), and in the case of a two dimensional stationary H1(Ω) exact
solution (test case 3).

Future work will concern the study of the convergence of the finite element approximation (8) to the
weak formulation (11) in the d = 2, 3 dimensional cases, together with the natural extension of the error
estimates in Theorem 2.1 to the multidimensional case. Moreover, the error analysis of the discrete solution
obtained using a finite element approximations with discontinuous elements will be investigated. In this
case, no lumping of the scalar product has to be introduced in order to have discrete solutions which track
compactly supported solutions with moving support, and hence better convergence properties than the ones
obtained within the present discretization could be expected.
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